| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * NET3 Protocol independent device support routines. |
| 4 | * |
| 5 | * Derived from the non IP parts of dev.c 1.0.19 |
| 6 | * Authors: Ross Biro |
| 7 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| 8 | * Mark Evans, <evansmp@uhura.aston.ac.uk> |
| 9 | * |
| 10 | * Additional Authors: |
| 11 | * Florian la Roche <rzsfl@rz.uni-sb.de> |
| 12 | * Alan Cox <gw4pts@gw4pts.ampr.org> |
| 13 | * David Hinds <dahinds@users.sourceforge.net> |
| 14 | * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> |
| 15 | * Adam Sulmicki <adam@cfar.umd.edu> |
| 16 | * Pekka Riikonen <priikone@poesidon.pspt.fi> |
| 17 | * |
| 18 | * Changes: |
| 19 | * D.J. Barrow : Fixed bug where dev->refcnt gets set |
| 20 | * to 2 if register_netdev gets called |
| 21 | * before net_dev_init & also removed a |
| 22 | * few lines of code in the process. |
| 23 | * Alan Cox : device private ioctl copies fields back. |
| 24 | * Alan Cox : Transmit queue code does relevant |
| 25 | * stunts to keep the queue safe. |
| 26 | * Alan Cox : Fixed double lock. |
| 27 | * Alan Cox : Fixed promisc NULL pointer trap |
| 28 | * ???????? : Support the full private ioctl range |
| 29 | * Alan Cox : Moved ioctl permission check into |
| 30 | * drivers |
| 31 | * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI |
| 32 | * Alan Cox : 100 backlog just doesn't cut it when |
| 33 | * you start doing multicast video 8) |
| 34 | * Alan Cox : Rewrote net_bh and list manager. |
| 35 | * Alan Cox : Fix ETH_P_ALL echoback lengths. |
| 36 | * Alan Cox : Took out transmit every packet pass |
| 37 | * Saved a few bytes in the ioctl handler |
| 38 | * Alan Cox : Network driver sets packet type before |
| 39 | * calling netif_rx. Saves a function |
| 40 | * call a packet. |
| 41 | * Alan Cox : Hashed net_bh() |
| 42 | * Richard Kooijman: Timestamp fixes. |
| 43 | * Alan Cox : Wrong field in SIOCGIFDSTADDR |
| 44 | * Alan Cox : Device lock protection. |
| 45 | * Alan Cox : Fixed nasty side effect of device close |
| 46 | * changes. |
| 47 | * Rudi Cilibrasi : Pass the right thing to |
| 48 | * set_mac_address() |
| 49 | * Dave Miller : 32bit quantity for the device lock to |
| 50 | * make it work out on a Sparc. |
| 51 | * Bjorn Ekwall : Added KERNELD hack. |
| 52 | * Alan Cox : Cleaned up the backlog initialise. |
| 53 | * Craig Metz : SIOCGIFCONF fix if space for under |
| 54 | * 1 device. |
| 55 | * Thomas Bogendoerfer : Return ENODEV for dev_open, if there |
| 56 | * is no device open function. |
| 57 | * Andi Kleen : Fix error reporting for SIOCGIFCONF |
| 58 | * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF |
| 59 | * Cyrus Durgin : Cleaned for KMOD |
| 60 | * Adam Sulmicki : Bug Fix : Network Device Unload |
| 61 | * A network device unload needs to purge |
| 62 | * the backlog queue. |
| 63 | * Paul Rusty Russell : SIOCSIFNAME |
| 64 | * Pekka Riikonen : Netdev boot-time settings code |
| 65 | * Andrew Morton : Make unregister_netdevice wait |
| 66 | * indefinitely on dev->refcnt |
| 67 | * J Hadi Salim : - Backlog queue sampling |
| 68 | * - netif_rx() feedback |
| 69 | */ |
| 70 | |
| 71 | #include <linux/uaccess.h> |
| 72 | #include <linux/bitmap.h> |
| 73 | #include <linux/capability.h> |
| 74 | #include <linux/cpu.h> |
| 75 | #include <linux/types.h> |
| 76 | #include <linux/kernel.h> |
| 77 | #include <linux/hash.h> |
| 78 | #include <linux/slab.h> |
| 79 | #include <linux/sched.h> |
| 80 | #include <linux/sched/isolation.h> |
| 81 | #include <linux/sched/mm.h> |
| 82 | #include <linux/smpboot.h> |
| 83 | #include <linux/mutex.h> |
| 84 | #include <linux/rwsem.h> |
| 85 | #include <linux/string.h> |
| 86 | #include <linux/mm.h> |
| 87 | #include <linux/socket.h> |
| 88 | #include <linux/sockios.h> |
| 89 | #include <linux/errno.h> |
| 90 | #include <linux/interrupt.h> |
| 91 | #include <linux/if_ether.h> |
| 92 | #include <linux/netdevice.h> |
| 93 | #include <linux/etherdevice.h> |
| 94 | #include <linux/ethtool.h> |
| 95 | #include <linux/ethtool_netlink.h> |
| 96 | #include <linux/skbuff.h> |
| 97 | #include <linux/kthread.h> |
| 98 | #include <linux/bpf.h> |
| 99 | #include <linux/bpf_trace.h> |
| 100 | #include <net/net_namespace.h> |
| 101 | #include <net/sock.h> |
| 102 | #include <net/busy_poll.h> |
| 103 | #include <linux/rtnetlink.h> |
| 104 | #include <linux/stat.h> |
| 105 | #include <net/dsa.h> |
| 106 | #include <net/dst.h> |
| 107 | #include <net/dst_metadata.h> |
| 108 | #include <net/gro.h> |
| 109 | #include <net/netdev_queues.h> |
| 110 | #include <net/pkt_sched.h> |
| 111 | #include <net/pkt_cls.h> |
| 112 | #include <net/checksum.h> |
| 113 | #include <net/xfrm.h> |
| 114 | #include <net/tcx.h> |
| 115 | #include <linux/highmem.h> |
| 116 | #include <linux/init.h> |
| 117 | #include <linux/module.h> |
| 118 | #include <linux/netpoll.h> |
| 119 | #include <linux/rcupdate.h> |
| 120 | #include <linux/delay.h> |
| 121 | #include <net/iw_handler.h> |
| 122 | #include <asm/current.h> |
| 123 | #include <linux/audit.h> |
| 124 | #include <linux/dmaengine.h> |
| 125 | #include <linux/err.h> |
| 126 | #include <linux/ctype.h> |
| 127 | #include <linux/if_arp.h> |
| 128 | #include <linux/if_vlan.h> |
| 129 | #include <linux/ip.h> |
| 130 | #include <net/ip.h> |
| 131 | #include <net/mpls.h> |
| 132 | #include <linux/ipv6.h> |
| 133 | #include <linux/in.h> |
| 134 | #include <linux/jhash.h> |
| 135 | #include <linux/random.h> |
| 136 | #include <trace/events/napi.h> |
| 137 | #include <trace/events/net.h> |
| 138 | #include <trace/events/skb.h> |
| 139 | #include <trace/events/qdisc.h> |
| 140 | #include <trace/events/xdp.h> |
| 141 | #include <linux/inetdevice.h> |
| 142 | #include <linux/cpu_rmap.h> |
| 143 | #include <linux/static_key.h> |
| 144 | #include <linux/hashtable.h> |
| 145 | #include <linux/vmalloc.h> |
| 146 | #include <linux/if_macvlan.h> |
| 147 | #include <linux/errqueue.h> |
| 148 | #include <linux/hrtimer.h> |
| 149 | #include <linux/netfilter_netdev.h> |
| 150 | #include <linux/crash_dump.h> |
| 151 | #include <linux/sctp.h> |
| 152 | #include <net/udp_tunnel.h> |
| 153 | #include <linux/net_namespace.h> |
| 154 | #include <linux/indirect_call_wrapper.h> |
| 155 | #include <net/devlink.h> |
| 156 | #include <linux/pm_runtime.h> |
| 157 | #include <linux/prandom.h> |
| 158 | #include <linux/once_lite.h> |
| 159 | #include <net/netdev_lock.h> |
| 160 | #include <net/netdev_rx_queue.h> |
| 161 | #include <net/page_pool/types.h> |
| 162 | #include <net/page_pool/helpers.h> |
| 163 | #include <net/page_pool/memory_provider.h> |
| 164 | #include <net/rps.h> |
| 165 | #include <linux/phy_link_topology.h> |
| 166 | |
| 167 | #include "dev.h" |
| 168 | #include "devmem.h" |
| 169 | #include "net-sysfs.h" |
| 170 | |
| 171 | static DEFINE_SPINLOCK(ptype_lock); |
| 172 | struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; |
| 173 | |
| 174 | static int netif_rx_internal(struct sk_buff *skb); |
| 175 | static int call_netdevice_notifiers_extack(unsigned long val, |
| 176 | struct net_device *dev, |
| 177 | struct netlink_ext_ack *extack); |
| 178 | |
| 179 | static DEFINE_MUTEX(ifalias_mutex); |
| 180 | |
| 181 | /* protects napi_hash addition/deletion and napi_gen_id */ |
| 182 | static DEFINE_SPINLOCK(napi_hash_lock); |
| 183 | |
| 184 | static unsigned int napi_gen_id = NR_CPUS; |
| 185 | static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); |
| 186 | |
| 187 | static inline void dev_base_seq_inc(struct net *net) |
| 188 | { |
| 189 | unsigned int val = net->dev_base_seq + 1; |
| 190 | |
| 191 | WRITE_ONCE(net->dev_base_seq, val ?: 1); |
| 192 | } |
| 193 | |
| 194 | static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) |
| 195 | { |
| 196 | unsigned int hash = full_name_hash(salt: net, name, strnlen(p: name, IFNAMSIZ)); |
| 197 | |
| 198 | return &net->dev_name_head[hash_32(val: hash, NETDEV_HASHBITS)]; |
| 199 | } |
| 200 | |
| 201 | static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) |
| 202 | { |
| 203 | return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; |
| 204 | } |
| 205 | |
| 206 | #ifndef CONFIG_PREEMPT_RT |
| 207 | |
| 208 | static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); |
| 209 | |
| 210 | static int __init setup_backlog_napi_threads(char *arg) |
| 211 | { |
| 212 | static_branch_enable(&use_backlog_threads_key); |
| 213 | return 0; |
| 214 | } |
| 215 | early_param("thread_backlog_napi" , setup_backlog_napi_threads); |
| 216 | |
| 217 | static bool use_backlog_threads(void) |
| 218 | { |
| 219 | return static_branch_unlikely(&use_backlog_threads_key); |
| 220 | } |
| 221 | |
| 222 | #else |
| 223 | |
| 224 | static bool use_backlog_threads(void) |
| 225 | { |
| 226 | return true; |
| 227 | } |
| 228 | |
| 229 | #endif |
| 230 | |
| 231 | static inline void backlog_lock_irq_save(struct softnet_data *sd, |
| 232 | unsigned long *flags) |
| 233 | { |
| 234 | if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) |
| 235 | spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); |
| 236 | else |
| 237 | local_irq_save(*flags); |
| 238 | } |
| 239 | |
| 240 | static inline void backlog_lock_irq_disable(struct softnet_data *sd) |
| 241 | { |
| 242 | if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) |
| 243 | spin_lock_irq(lock: &sd->input_pkt_queue.lock); |
| 244 | else |
| 245 | local_irq_disable(); |
| 246 | } |
| 247 | |
| 248 | static inline void backlog_unlock_irq_restore(struct softnet_data *sd, |
| 249 | unsigned long *flags) |
| 250 | { |
| 251 | if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) |
| 252 | spin_unlock_irqrestore(lock: &sd->input_pkt_queue.lock, flags: *flags); |
| 253 | else |
| 254 | local_irq_restore(*flags); |
| 255 | } |
| 256 | |
| 257 | static inline void backlog_unlock_irq_enable(struct softnet_data *sd) |
| 258 | { |
| 259 | if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) |
| 260 | spin_unlock_irq(lock: &sd->input_pkt_queue.lock); |
| 261 | else |
| 262 | local_irq_enable(); |
| 263 | } |
| 264 | |
| 265 | static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, |
| 266 | const char *name) |
| 267 | { |
| 268 | struct netdev_name_node *name_node; |
| 269 | |
| 270 | name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); |
| 271 | if (!name_node) |
| 272 | return NULL; |
| 273 | INIT_HLIST_NODE(h: &name_node->hlist); |
| 274 | name_node->dev = dev; |
| 275 | name_node->name = name; |
| 276 | return name_node; |
| 277 | } |
| 278 | |
| 279 | static struct netdev_name_node * |
| 280 | netdev_name_node_head_alloc(struct net_device *dev) |
| 281 | { |
| 282 | struct netdev_name_node *name_node; |
| 283 | |
| 284 | name_node = netdev_name_node_alloc(dev, name: dev->name); |
| 285 | if (!name_node) |
| 286 | return NULL; |
| 287 | INIT_LIST_HEAD(list: &name_node->list); |
| 288 | return name_node; |
| 289 | } |
| 290 | |
| 291 | static void netdev_name_node_free(struct netdev_name_node *name_node) |
| 292 | { |
| 293 | kfree(objp: name_node); |
| 294 | } |
| 295 | |
| 296 | static void netdev_name_node_add(struct net *net, |
| 297 | struct netdev_name_node *name_node) |
| 298 | { |
| 299 | hlist_add_head_rcu(n: &name_node->hlist, |
| 300 | h: dev_name_hash(net, name: name_node->name)); |
| 301 | } |
| 302 | |
| 303 | static void netdev_name_node_del(struct netdev_name_node *name_node) |
| 304 | { |
| 305 | hlist_del_rcu(n: &name_node->hlist); |
| 306 | } |
| 307 | |
| 308 | static struct netdev_name_node *netdev_name_node_lookup(struct net *net, |
| 309 | const char *name) |
| 310 | { |
| 311 | struct hlist_head *head = dev_name_hash(net, name); |
| 312 | struct netdev_name_node *name_node; |
| 313 | |
| 314 | hlist_for_each_entry(name_node, head, hlist) |
| 315 | if (!strcmp(name_node->name, name)) |
| 316 | return name_node; |
| 317 | return NULL; |
| 318 | } |
| 319 | |
| 320 | static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, |
| 321 | const char *name) |
| 322 | { |
| 323 | struct hlist_head *head = dev_name_hash(net, name); |
| 324 | struct netdev_name_node *name_node; |
| 325 | |
| 326 | hlist_for_each_entry_rcu(name_node, head, hlist) |
| 327 | if (!strcmp(name_node->name, name)) |
| 328 | return name_node; |
| 329 | return NULL; |
| 330 | } |
| 331 | |
| 332 | bool netdev_name_in_use(struct net *net, const char *name) |
| 333 | { |
| 334 | return netdev_name_node_lookup(net, name); |
| 335 | } |
| 336 | EXPORT_SYMBOL(netdev_name_in_use); |
| 337 | |
| 338 | int netdev_name_node_alt_create(struct net_device *dev, const char *name) |
| 339 | { |
| 340 | struct netdev_name_node *name_node; |
| 341 | struct net *net = dev_net(dev); |
| 342 | |
| 343 | name_node = netdev_name_node_lookup(net, name); |
| 344 | if (name_node) |
| 345 | return -EEXIST; |
| 346 | name_node = netdev_name_node_alloc(dev, name); |
| 347 | if (!name_node) |
| 348 | return -ENOMEM; |
| 349 | netdev_name_node_add(net, name_node); |
| 350 | /* The node that holds dev->name acts as a head of per-device list. */ |
| 351 | list_add_tail_rcu(new: &name_node->list, head: &dev->name_node->list); |
| 352 | |
| 353 | return 0; |
| 354 | } |
| 355 | |
| 356 | static void netdev_name_node_alt_free(struct rcu_head *head) |
| 357 | { |
| 358 | struct netdev_name_node *name_node = |
| 359 | container_of(head, struct netdev_name_node, rcu); |
| 360 | |
| 361 | kfree(objp: name_node->name); |
| 362 | netdev_name_node_free(name_node); |
| 363 | } |
| 364 | |
| 365 | static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) |
| 366 | { |
| 367 | netdev_name_node_del(name_node); |
| 368 | list_del(entry: &name_node->list); |
| 369 | call_rcu(head: &name_node->rcu, func: netdev_name_node_alt_free); |
| 370 | } |
| 371 | |
| 372 | int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) |
| 373 | { |
| 374 | struct netdev_name_node *name_node; |
| 375 | struct net *net = dev_net(dev); |
| 376 | |
| 377 | name_node = netdev_name_node_lookup(net, name); |
| 378 | if (!name_node) |
| 379 | return -ENOENT; |
| 380 | /* lookup might have found our primary name or a name belonging |
| 381 | * to another device. |
| 382 | */ |
| 383 | if (name_node == dev->name_node || name_node->dev != dev) |
| 384 | return -EINVAL; |
| 385 | |
| 386 | __netdev_name_node_alt_destroy(name_node); |
| 387 | return 0; |
| 388 | } |
| 389 | |
| 390 | static void netdev_name_node_alt_flush(struct net_device *dev) |
| 391 | { |
| 392 | struct netdev_name_node *name_node, *tmp; |
| 393 | |
| 394 | list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { |
| 395 | list_del(entry: &name_node->list); |
| 396 | netdev_name_node_alt_free(head: &name_node->rcu); |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | /* Device list insertion */ |
| 401 | static void list_netdevice(struct net_device *dev) |
| 402 | { |
| 403 | struct netdev_name_node *name_node; |
| 404 | struct net *net = dev_net(dev); |
| 405 | |
| 406 | ASSERT_RTNL(); |
| 407 | |
| 408 | list_add_tail_rcu(new: &dev->dev_list, head: &net->dev_base_head); |
| 409 | netdev_name_node_add(net, name_node: dev->name_node); |
| 410 | hlist_add_head_rcu(n: &dev->index_hlist, |
| 411 | h: dev_index_hash(net, ifindex: dev->ifindex)); |
| 412 | |
| 413 | netdev_for_each_altname(dev, name_node) |
| 414 | netdev_name_node_add(net, name_node); |
| 415 | |
| 416 | /* We reserved the ifindex, this can't fail */ |
| 417 | WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); |
| 418 | |
| 419 | dev_base_seq_inc(net); |
| 420 | } |
| 421 | |
| 422 | /* Device list removal |
| 423 | * caller must respect a RCU grace period before freeing/reusing dev |
| 424 | */ |
| 425 | static void unlist_netdevice(struct net_device *dev) |
| 426 | { |
| 427 | struct netdev_name_node *name_node; |
| 428 | struct net *net = dev_net(dev); |
| 429 | |
| 430 | ASSERT_RTNL(); |
| 431 | |
| 432 | xa_erase(&net->dev_by_index, index: dev->ifindex); |
| 433 | |
| 434 | netdev_for_each_altname(dev, name_node) |
| 435 | netdev_name_node_del(name_node); |
| 436 | |
| 437 | /* Unlink dev from the device chain */ |
| 438 | list_del_rcu(entry: &dev->dev_list); |
| 439 | netdev_name_node_del(name_node: dev->name_node); |
| 440 | hlist_del_rcu(n: &dev->index_hlist); |
| 441 | |
| 442 | dev_base_seq_inc(net: dev_net(dev)); |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Our notifier list |
| 447 | */ |
| 448 | |
| 449 | static RAW_NOTIFIER_HEAD(netdev_chain); |
| 450 | |
| 451 | /* |
| 452 | * Device drivers call our routines to queue packets here. We empty the |
| 453 | * queue in the local softnet handler. |
| 454 | */ |
| 455 | |
| 456 | DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { |
| 457 | .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), |
| 458 | }; |
| 459 | EXPORT_PER_CPU_SYMBOL(softnet_data); |
| 460 | |
| 461 | /* Page_pool has a lockless array/stack to alloc/recycle pages. |
| 462 | * PP consumers must pay attention to run APIs in the appropriate context |
| 463 | * (e.g. NAPI context). |
| 464 | */ |
| 465 | DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { |
| 466 | .bh_lock = INIT_LOCAL_LOCK(bh_lock), |
| 467 | }; |
| 468 | |
| 469 | #ifdef CONFIG_LOCKDEP |
| 470 | /* |
| 471 | * register_netdevice() inits txq->_xmit_lock and sets lockdep class |
| 472 | * according to dev->type |
| 473 | */ |
| 474 | static const unsigned short netdev_lock_type[] = { |
| 475 | ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, |
| 476 | ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, |
| 477 | ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, |
| 478 | ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, |
| 479 | ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, |
| 480 | ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, |
| 481 | ARPHRD_CAN, ARPHRD_MCTP, |
| 482 | ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, |
| 483 | ARPHRD_RAWHDLC, ARPHRD_RAWIP, |
| 484 | ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, |
| 485 | ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, |
| 486 | ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, |
| 487 | ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, |
| 488 | ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, |
| 489 | ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, |
| 490 | ARPHRD_IEEE80211_RADIOTAP, |
| 491 | ARPHRD_IEEE802154, ARPHRD_IEEE802154_MONITOR, |
| 492 | ARPHRD_PHONET, ARPHRD_PHONET_PIPE, |
| 493 | ARPHRD_CAIF, ARPHRD_IP6GRE, ARPHRD_NETLINK, ARPHRD_6LOWPAN, |
| 494 | ARPHRD_VSOCKMON, |
| 495 | ARPHRD_VOID, ARPHRD_NONE}; |
| 496 | |
| 497 | static const char *const netdev_lock_name[] = { |
| 498 | "_xmit_NETROM" , "_xmit_ETHER" , "_xmit_EETHER" , "_xmit_AX25" , |
| 499 | "_xmit_PRONET" , "_xmit_CHAOS" , "_xmit_IEEE802" , "_xmit_ARCNET" , |
| 500 | "_xmit_APPLETLK" , "_xmit_DLCI" , "_xmit_ATM" , "_xmit_METRICOM" , |
| 501 | "_xmit_IEEE1394" , "_xmit_EUI64" , "_xmit_INFINIBAND" , "_xmit_SLIP" , |
| 502 | "_xmit_CSLIP" , "_xmit_SLIP6" , "_xmit_CSLIP6" , "_xmit_RSRVD" , |
| 503 | "_xmit_ADAPT" , "_xmit_ROSE" , "_xmit_X25" , "_xmit_HWX25" , |
| 504 | "_xmit_CAN" , "_xmit_MCTP" , |
| 505 | "_xmit_PPP" , "_xmit_CISCO" , "_xmit_LAPB" , "_xmit_DDCMP" , |
| 506 | "_xmit_RAWHDLC" , "_xmit_RAWIP" , |
| 507 | "_xmit_TUNNEL" , "_xmit_TUNNEL6" , "_xmit_FRAD" , |
| 508 | "_xmit_SKIP" , "_xmit_LOOPBACK" , "_xmit_LOCALTLK" , "_xmit_FDDI" , |
| 509 | "_xmit_BIF" , "_xmit_SIT" , "_xmit_IPDDP" , "_xmit_IPGRE" , |
| 510 | "_xmit_PIMREG" , "_xmit_HIPPI" , "_xmit_ASH" , "_xmit_ECONET" , |
| 511 | "_xmit_IRDA" , "_xmit_FCPP" , "_xmit_FCAL" , "_xmit_FCPL" , |
| 512 | "_xmit_FCFABRIC" , "_xmit_IEEE80211" , "_xmit_IEEE80211_PRISM" , |
| 513 | "_xmit_IEEE80211_RADIOTAP" , |
| 514 | "_xmit_IEEE802154" , "_xmit_IEEE802154_MONITOR" , |
| 515 | "_xmit_PHONET" , "_xmit_PHONET_PIPE" , |
| 516 | "_xmit_CAIF" , "_xmit_IP6GRE" , "_xmit_NETLINK" , "_xmit_6LOWPAN" , |
| 517 | "_xmit_VSOCKMON" , |
| 518 | "_xmit_VOID" , "_xmit_NONE" }; |
| 519 | |
| 520 | static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; |
| 521 | static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; |
| 522 | |
| 523 | static inline unsigned short netdev_lock_pos(unsigned short dev_type) |
| 524 | { |
| 525 | int i; |
| 526 | |
| 527 | for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) |
| 528 | if (netdev_lock_type[i] == dev_type) |
| 529 | return i; |
| 530 | /* the last key is used by default */ |
| 531 | WARN_ONCE(1, "netdev_lock_pos() could not find dev_type=%u\n" , dev_type); |
| 532 | return ARRAY_SIZE(netdev_lock_type) - 1; |
| 533 | } |
| 534 | |
| 535 | static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, |
| 536 | unsigned short dev_type) |
| 537 | { |
| 538 | int i; |
| 539 | |
| 540 | i = netdev_lock_pos(dev_type); |
| 541 | lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], |
| 542 | netdev_lock_name[i]); |
| 543 | } |
| 544 | |
| 545 | static inline void netdev_set_addr_lockdep_class(struct net_device *dev) |
| 546 | { |
| 547 | int i; |
| 548 | |
| 549 | i = netdev_lock_pos(dev_type: dev->type); |
| 550 | lockdep_set_class_and_name(&dev->addr_list_lock, |
| 551 | &netdev_addr_lock_key[i], |
| 552 | netdev_lock_name[i]); |
| 553 | } |
| 554 | #else |
| 555 | static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, |
| 556 | unsigned short dev_type) |
| 557 | { |
| 558 | } |
| 559 | |
| 560 | static inline void netdev_set_addr_lockdep_class(struct net_device *dev) |
| 561 | { |
| 562 | } |
| 563 | #endif |
| 564 | |
| 565 | /******************************************************************************* |
| 566 | * |
| 567 | * Protocol management and registration routines |
| 568 | * |
| 569 | *******************************************************************************/ |
| 570 | |
| 571 | |
| 572 | /* |
| 573 | * Add a protocol ID to the list. Now that the input handler is |
| 574 | * smarter we can dispense with all the messy stuff that used to be |
| 575 | * here. |
| 576 | * |
| 577 | * BEWARE!!! Protocol handlers, mangling input packets, |
| 578 | * MUST BE last in hash buckets and checking protocol handlers |
| 579 | * MUST start from promiscuous ptype_all chain in net_bh. |
| 580 | * It is true now, do not change it. |
| 581 | * Explanation follows: if protocol handler, mangling packet, will |
| 582 | * be the first on list, it is not able to sense, that packet |
| 583 | * is cloned and should be copied-on-write, so that it will |
| 584 | * change it and subsequent readers will get broken packet. |
| 585 | * --ANK (980803) |
| 586 | */ |
| 587 | |
| 588 | static inline struct list_head *ptype_head(const struct packet_type *pt) |
| 589 | { |
| 590 | if (pt->type == htons(ETH_P_ALL)) { |
| 591 | if (!pt->af_packet_net && !pt->dev) |
| 592 | return NULL; |
| 593 | |
| 594 | return pt->dev ? &pt->dev->ptype_all : |
| 595 | &pt->af_packet_net->ptype_all; |
| 596 | } |
| 597 | |
| 598 | if (pt->dev) |
| 599 | return &pt->dev->ptype_specific; |
| 600 | |
| 601 | return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : |
| 602 | &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; |
| 603 | } |
| 604 | |
| 605 | /** |
| 606 | * dev_add_pack - add packet handler |
| 607 | * @pt: packet type declaration |
| 608 | * |
| 609 | * Add a protocol handler to the networking stack. The passed &packet_type |
| 610 | * is linked into kernel lists and may not be freed until it has been |
| 611 | * removed from the kernel lists. |
| 612 | * |
| 613 | * This call does not sleep therefore it can not |
| 614 | * guarantee all CPU's that are in middle of receiving packets |
| 615 | * will see the new packet type (until the next received packet). |
| 616 | */ |
| 617 | |
| 618 | void dev_add_pack(struct packet_type *pt) |
| 619 | { |
| 620 | struct list_head *head = ptype_head(pt); |
| 621 | |
| 622 | if (WARN_ON_ONCE(!head)) |
| 623 | return; |
| 624 | |
| 625 | spin_lock(lock: &ptype_lock); |
| 626 | list_add_rcu(new: &pt->list, head); |
| 627 | spin_unlock(lock: &ptype_lock); |
| 628 | } |
| 629 | EXPORT_SYMBOL(dev_add_pack); |
| 630 | |
| 631 | /** |
| 632 | * __dev_remove_pack - remove packet handler |
| 633 | * @pt: packet type declaration |
| 634 | * |
| 635 | * Remove a protocol handler that was previously added to the kernel |
| 636 | * protocol handlers by dev_add_pack(). The passed &packet_type is removed |
| 637 | * from the kernel lists and can be freed or reused once this function |
| 638 | * returns. |
| 639 | * |
| 640 | * The packet type might still be in use by receivers |
| 641 | * and must not be freed until after all the CPU's have gone |
| 642 | * through a quiescent state. |
| 643 | */ |
| 644 | void __dev_remove_pack(struct packet_type *pt) |
| 645 | { |
| 646 | struct list_head *head = ptype_head(pt); |
| 647 | struct packet_type *pt1; |
| 648 | |
| 649 | if (!head) |
| 650 | return; |
| 651 | |
| 652 | spin_lock(lock: &ptype_lock); |
| 653 | |
| 654 | list_for_each_entry(pt1, head, list) { |
| 655 | if (pt == pt1) { |
| 656 | list_del_rcu(entry: &pt->list); |
| 657 | goto out; |
| 658 | } |
| 659 | } |
| 660 | |
| 661 | pr_warn("dev_remove_pack: %p not found\n" , pt); |
| 662 | out: |
| 663 | spin_unlock(lock: &ptype_lock); |
| 664 | } |
| 665 | EXPORT_SYMBOL(__dev_remove_pack); |
| 666 | |
| 667 | /** |
| 668 | * dev_remove_pack - remove packet handler |
| 669 | * @pt: packet type declaration |
| 670 | * |
| 671 | * Remove a protocol handler that was previously added to the kernel |
| 672 | * protocol handlers by dev_add_pack(). The passed &packet_type is removed |
| 673 | * from the kernel lists and can be freed or reused once this function |
| 674 | * returns. |
| 675 | * |
| 676 | * This call sleeps to guarantee that no CPU is looking at the packet |
| 677 | * type after return. |
| 678 | */ |
| 679 | void dev_remove_pack(struct packet_type *pt) |
| 680 | { |
| 681 | __dev_remove_pack(pt); |
| 682 | |
| 683 | synchronize_net(); |
| 684 | } |
| 685 | EXPORT_SYMBOL(dev_remove_pack); |
| 686 | |
| 687 | |
| 688 | /******************************************************************************* |
| 689 | * |
| 690 | * Device Interface Subroutines |
| 691 | * |
| 692 | *******************************************************************************/ |
| 693 | |
| 694 | /** |
| 695 | * dev_get_iflink - get 'iflink' value of a interface |
| 696 | * @dev: targeted interface |
| 697 | * |
| 698 | * Indicates the ifindex the interface is linked to. |
| 699 | * Physical interfaces have the same 'ifindex' and 'iflink' values. |
| 700 | */ |
| 701 | |
| 702 | int dev_get_iflink(const struct net_device *dev) |
| 703 | { |
| 704 | if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) |
| 705 | return dev->netdev_ops->ndo_get_iflink(dev); |
| 706 | |
| 707 | return READ_ONCE(dev->ifindex); |
| 708 | } |
| 709 | EXPORT_SYMBOL(dev_get_iflink); |
| 710 | |
| 711 | /** |
| 712 | * dev_fill_metadata_dst - Retrieve tunnel egress information. |
| 713 | * @dev: targeted interface |
| 714 | * @skb: The packet. |
| 715 | * |
| 716 | * For better visibility of tunnel traffic OVS needs to retrieve |
| 717 | * egress tunnel information for a packet. Following API allows |
| 718 | * user to get this info. |
| 719 | */ |
| 720 | int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) |
| 721 | { |
| 722 | struct ip_tunnel_info *info; |
| 723 | |
| 724 | if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) |
| 725 | return -EINVAL; |
| 726 | |
| 727 | info = skb_tunnel_info_unclone(skb); |
| 728 | if (!info) |
| 729 | return -ENOMEM; |
| 730 | if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) |
| 731 | return -EINVAL; |
| 732 | |
| 733 | return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); |
| 734 | } |
| 735 | EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); |
| 736 | |
| 737 | static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) |
| 738 | { |
| 739 | int k = stack->num_paths++; |
| 740 | |
| 741 | if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) |
| 742 | return NULL; |
| 743 | |
| 744 | return &stack->path[k]; |
| 745 | } |
| 746 | |
| 747 | int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, |
| 748 | struct net_device_path_stack *stack) |
| 749 | { |
| 750 | const struct net_device *last_dev; |
| 751 | struct net_device_path_ctx ctx = { |
| 752 | .dev = dev, |
| 753 | }; |
| 754 | struct net_device_path *path; |
| 755 | int ret = 0; |
| 756 | |
| 757 | memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); |
| 758 | stack->num_paths = 0; |
| 759 | while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { |
| 760 | last_dev = ctx.dev; |
| 761 | path = dev_fwd_path(stack); |
| 762 | if (!path) |
| 763 | return -1; |
| 764 | |
| 765 | memset(path, 0, sizeof(struct net_device_path)); |
| 766 | ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); |
| 767 | if (ret < 0) |
| 768 | return -1; |
| 769 | |
| 770 | if (WARN_ON_ONCE(last_dev == ctx.dev)) |
| 771 | return -1; |
| 772 | } |
| 773 | |
| 774 | if (!ctx.dev) |
| 775 | return ret; |
| 776 | |
| 777 | path = dev_fwd_path(stack); |
| 778 | if (!path) |
| 779 | return -1; |
| 780 | path->type = DEV_PATH_ETHERNET; |
| 781 | path->dev = ctx.dev; |
| 782 | |
| 783 | return ret; |
| 784 | } |
| 785 | EXPORT_SYMBOL_GPL(dev_fill_forward_path); |
| 786 | |
| 787 | /* must be called under rcu_read_lock(), as we dont take a reference */ |
| 788 | static struct napi_struct *napi_by_id(unsigned int napi_id) |
| 789 | { |
| 790 | unsigned int hash = napi_id % HASH_SIZE(napi_hash); |
| 791 | struct napi_struct *napi; |
| 792 | |
| 793 | hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) |
| 794 | if (napi->napi_id == napi_id) |
| 795 | return napi; |
| 796 | |
| 797 | return NULL; |
| 798 | } |
| 799 | |
| 800 | /* must be called under rcu_read_lock(), as we dont take a reference */ |
| 801 | static struct napi_struct * |
| 802 | netdev_napi_by_id(struct net *net, unsigned int napi_id) |
| 803 | { |
| 804 | struct napi_struct *napi; |
| 805 | |
| 806 | napi = napi_by_id(napi_id); |
| 807 | if (!napi) |
| 808 | return NULL; |
| 809 | |
| 810 | if (WARN_ON_ONCE(!napi->dev)) |
| 811 | return NULL; |
| 812 | if (!net_eq(net1: net, net2: dev_net(dev: napi->dev))) |
| 813 | return NULL; |
| 814 | |
| 815 | return napi; |
| 816 | } |
| 817 | |
| 818 | /** |
| 819 | * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it |
| 820 | * @net: the applicable net namespace |
| 821 | * @napi_id: ID of a NAPI of a target device |
| 822 | * |
| 823 | * Find a NAPI instance with @napi_id. Lock its device. |
| 824 | * The device must be in %NETREG_REGISTERED state for lookup to succeed. |
| 825 | * netdev_unlock() must be called to release it. |
| 826 | * |
| 827 | * Return: pointer to NAPI, its device with lock held, NULL if not found. |
| 828 | */ |
| 829 | struct napi_struct * |
| 830 | netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) |
| 831 | { |
| 832 | struct napi_struct *napi; |
| 833 | struct net_device *dev; |
| 834 | |
| 835 | rcu_read_lock(); |
| 836 | napi = netdev_napi_by_id(net, napi_id); |
| 837 | if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { |
| 838 | rcu_read_unlock(); |
| 839 | return NULL; |
| 840 | } |
| 841 | |
| 842 | dev = napi->dev; |
| 843 | dev_hold(dev); |
| 844 | rcu_read_unlock(); |
| 845 | |
| 846 | dev = __netdev_put_lock(dev, net); |
| 847 | if (!dev) |
| 848 | return NULL; |
| 849 | |
| 850 | rcu_read_lock(); |
| 851 | napi = netdev_napi_by_id(net, napi_id); |
| 852 | if (napi && napi->dev != dev) |
| 853 | napi = NULL; |
| 854 | rcu_read_unlock(); |
| 855 | |
| 856 | if (!napi) |
| 857 | netdev_unlock(dev); |
| 858 | return napi; |
| 859 | } |
| 860 | |
| 861 | /** |
| 862 | * __dev_get_by_name - find a device by its name |
| 863 | * @net: the applicable net namespace |
| 864 | * @name: name to find |
| 865 | * |
| 866 | * Find an interface by name. Must be called under RTNL semaphore. |
| 867 | * If the name is found a pointer to the device is returned. |
| 868 | * If the name is not found then %NULL is returned. The |
| 869 | * reference counters are not incremented so the caller must be |
| 870 | * careful with locks. |
| 871 | */ |
| 872 | |
| 873 | struct net_device *__dev_get_by_name(struct net *net, const char *name) |
| 874 | { |
| 875 | struct netdev_name_node *node_name; |
| 876 | |
| 877 | node_name = netdev_name_node_lookup(net, name); |
| 878 | return node_name ? node_name->dev : NULL; |
| 879 | } |
| 880 | EXPORT_SYMBOL(__dev_get_by_name); |
| 881 | |
| 882 | /** |
| 883 | * dev_get_by_name_rcu - find a device by its name |
| 884 | * @net: the applicable net namespace |
| 885 | * @name: name to find |
| 886 | * |
| 887 | * Find an interface by name. |
| 888 | * If the name is found a pointer to the device is returned. |
| 889 | * If the name is not found then %NULL is returned. |
| 890 | * The reference counters are not incremented so the caller must be |
| 891 | * careful with locks. The caller must hold RCU lock. |
| 892 | */ |
| 893 | |
| 894 | struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) |
| 895 | { |
| 896 | struct netdev_name_node *node_name; |
| 897 | |
| 898 | node_name = netdev_name_node_lookup_rcu(net, name); |
| 899 | return node_name ? node_name->dev : NULL; |
| 900 | } |
| 901 | EXPORT_SYMBOL(dev_get_by_name_rcu); |
| 902 | |
| 903 | /* Deprecated for new users, call netdev_get_by_name() instead */ |
| 904 | struct net_device *dev_get_by_name(struct net *net, const char *name) |
| 905 | { |
| 906 | struct net_device *dev; |
| 907 | |
| 908 | rcu_read_lock(); |
| 909 | dev = dev_get_by_name_rcu(net, name); |
| 910 | dev_hold(dev); |
| 911 | rcu_read_unlock(); |
| 912 | return dev; |
| 913 | } |
| 914 | EXPORT_SYMBOL(dev_get_by_name); |
| 915 | |
| 916 | /** |
| 917 | * netdev_get_by_name() - find a device by its name |
| 918 | * @net: the applicable net namespace |
| 919 | * @name: name to find |
| 920 | * @tracker: tracking object for the acquired reference |
| 921 | * @gfp: allocation flags for the tracker |
| 922 | * |
| 923 | * Find an interface by name. This can be called from any |
| 924 | * context and does its own locking. The returned handle has |
| 925 | * the usage count incremented and the caller must use netdev_put() to |
| 926 | * release it when it is no longer needed. %NULL is returned if no |
| 927 | * matching device is found. |
| 928 | */ |
| 929 | struct net_device *netdev_get_by_name(struct net *net, const char *name, |
| 930 | netdevice_tracker *tracker, gfp_t gfp) |
| 931 | { |
| 932 | struct net_device *dev; |
| 933 | |
| 934 | dev = dev_get_by_name(net, name); |
| 935 | if (dev) |
| 936 | netdev_tracker_alloc(dev, tracker, gfp); |
| 937 | return dev; |
| 938 | } |
| 939 | EXPORT_SYMBOL(netdev_get_by_name); |
| 940 | |
| 941 | /** |
| 942 | * __dev_get_by_index - find a device by its ifindex |
| 943 | * @net: the applicable net namespace |
| 944 | * @ifindex: index of device |
| 945 | * |
| 946 | * Search for an interface by index. Returns %NULL if the device |
| 947 | * is not found or a pointer to the device. The device has not |
| 948 | * had its reference counter increased so the caller must be careful |
| 949 | * about locking. The caller must hold the RTNL semaphore. |
| 950 | */ |
| 951 | |
| 952 | struct net_device *__dev_get_by_index(struct net *net, int ifindex) |
| 953 | { |
| 954 | struct net_device *dev; |
| 955 | struct hlist_head *head = dev_index_hash(net, ifindex); |
| 956 | |
| 957 | hlist_for_each_entry(dev, head, index_hlist) |
| 958 | if (dev->ifindex == ifindex) |
| 959 | return dev; |
| 960 | |
| 961 | return NULL; |
| 962 | } |
| 963 | EXPORT_SYMBOL(__dev_get_by_index); |
| 964 | |
| 965 | /** |
| 966 | * dev_get_by_index_rcu - find a device by its ifindex |
| 967 | * @net: the applicable net namespace |
| 968 | * @ifindex: index of device |
| 969 | * |
| 970 | * Search for an interface by index. Returns %NULL if the device |
| 971 | * is not found or a pointer to the device. The device has not |
| 972 | * had its reference counter increased so the caller must be careful |
| 973 | * about locking. The caller must hold RCU lock. |
| 974 | */ |
| 975 | |
| 976 | struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) |
| 977 | { |
| 978 | struct net_device *dev; |
| 979 | struct hlist_head *head = dev_index_hash(net, ifindex); |
| 980 | |
| 981 | hlist_for_each_entry_rcu(dev, head, index_hlist) |
| 982 | if (dev->ifindex == ifindex) |
| 983 | return dev; |
| 984 | |
| 985 | return NULL; |
| 986 | } |
| 987 | EXPORT_SYMBOL(dev_get_by_index_rcu); |
| 988 | |
| 989 | /* Deprecated for new users, call netdev_get_by_index() instead */ |
| 990 | struct net_device *dev_get_by_index(struct net *net, int ifindex) |
| 991 | { |
| 992 | struct net_device *dev; |
| 993 | |
| 994 | rcu_read_lock(); |
| 995 | dev = dev_get_by_index_rcu(net, ifindex); |
| 996 | dev_hold(dev); |
| 997 | rcu_read_unlock(); |
| 998 | return dev; |
| 999 | } |
| 1000 | EXPORT_SYMBOL(dev_get_by_index); |
| 1001 | |
| 1002 | /** |
| 1003 | * netdev_get_by_index() - find a device by its ifindex |
| 1004 | * @net: the applicable net namespace |
| 1005 | * @ifindex: index of device |
| 1006 | * @tracker: tracking object for the acquired reference |
| 1007 | * @gfp: allocation flags for the tracker |
| 1008 | * |
| 1009 | * Search for an interface by index. Returns NULL if the device |
| 1010 | * is not found or a pointer to the device. The device returned has |
| 1011 | * had a reference added and the pointer is safe until the user calls |
| 1012 | * netdev_put() to indicate they have finished with it. |
| 1013 | */ |
| 1014 | struct net_device *netdev_get_by_index(struct net *net, int ifindex, |
| 1015 | netdevice_tracker *tracker, gfp_t gfp) |
| 1016 | { |
| 1017 | struct net_device *dev; |
| 1018 | |
| 1019 | dev = dev_get_by_index(net, ifindex); |
| 1020 | if (dev) |
| 1021 | netdev_tracker_alloc(dev, tracker, gfp); |
| 1022 | return dev; |
| 1023 | } |
| 1024 | EXPORT_SYMBOL(netdev_get_by_index); |
| 1025 | |
| 1026 | /** |
| 1027 | * dev_get_by_napi_id - find a device by napi_id |
| 1028 | * @napi_id: ID of the NAPI struct |
| 1029 | * |
| 1030 | * Search for an interface by NAPI ID. Returns %NULL if the device |
| 1031 | * is not found or a pointer to the device. The device has not had |
| 1032 | * its reference counter increased so the caller must be careful |
| 1033 | * about locking. The caller must hold RCU lock. |
| 1034 | */ |
| 1035 | struct net_device *dev_get_by_napi_id(unsigned int napi_id) |
| 1036 | { |
| 1037 | struct napi_struct *napi; |
| 1038 | |
| 1039 | WARN_ON_ONCE(!rcu_read_lock_held()); |
| 1040 | |
| 1041 | if (!napi_id_valid(napi_id)) |
| 1042 | return NULL; |
| 1043 | |
| 1044 | napi = napi_by_id(napi_id); |
| 1045 | |
| 1046 | return napi ? napi->dev : NULL; |
| 1047 | } |
| 1048 | |
| 1049 | /* Release the held reference on the net_device, and if the net_device |
| 1050 | * is still registered try to lock the instance lock. If device is being |
| 1051 | * unregistered NULL will be returned (but the reference has been released, |
| 1052 | * either way!) |
| 1053 | * |
| 1054 | * This helper is intended for locking net_device after it has been looked up |
| 1055 | * using a lockless lookup helper. Lock prevents the instance from going away. |
| 1056 | */ |
| 1057 | struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) |
| 1058 | { |
| 1059 | netdev_lock(dev); |
| 1060 | if (dev->reg_state > NETREG_REGISTERED || |
| 1061 | dev->moving_ns || !net_eq(net1: dev_net(dev), net2: net)) { |
| 1062 | netdev_unlock(dev); |
| 1063 | dev_put(dev); |
| 1064 | return NULL; |
| 1065 | } |
| 1066 | dev_put(dev); |
| 1067 | return dev; |
| 1068 | } |
| 1069 | |
| 1070 | static struct net_device * |
| 1071 | __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) |
| 1072 | { |
| 1073 | netdev_lock_ops_compat(dev); |
| 1074 | if (dev->reg_state > NETREG_REGISTERED || |
| 1075 | dev->moving_ns || !net_eq(net1: dev_net(dev), net2: net)) { |
| 1076 | netdev_unlock_ops_compat(dev); |
| 1077 | dev_put(dev); |
| 1078 | return NULL; |
| 1079 | } |
| 1080 | dev_put(dev); |
| 1081 | return dev; |
| 1082 | } |
| 1083 | |
| 1084 | /** |
| 1085 | * netdev_get_by_index_lock() - find a device by its ifindex |
| 1086 | * @net: the applicable net namespace |
| 1087 | * @ifindex: index of device |
| 1088 | * |
| 1089 | * Search for an interface by index. If a valid device |
| 1090 | * with @ifindex is found it will be returned with netdev->lock held. |
| 1091 | * netdev_unlock() must be called to release it. |
| 1092 | * |
| 1093 | * Return: pointer to a device with lock held, NULL if not found. |
| 1094 | */ |
| 1095 | struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) |
| 1096 | { |
| 1097 | struct net_device *dev; |
| 1098 | |
| 1099 | dev = dev_get_by_index(net, ifindex); |
| 1100 | if (!dev) |
| 1101 | return NULL; |
| 1102 | |
| 1103 | return __netdev_put_lock(dev, net); |
| 1104 | } |
| 1105 | |
| 1106 | struct net_device * |
| 1107 | netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) |
| 1108 | { |
| 1109 | struct net_device *dev; |
| 1110 | |
| 1111 | dev = dev_get_by_index(net, ifindex); |
| 1112 | if (!dev) |
| 1113 | return NULL; |
| 1114 | |
| 1115 | return __netdev_put_lock_ops_compat(dev, net); |
| 1116 | } |
| 1117 | |
| 1118 | struct net_device * |
| 1119 | netdev_xa_find_lock(struct net *net, struct net_device *dev, |
| 1120 | unsigned long *index) |
| 1121 | { |
| 1122 | if (dev) |
| 1123 | netdev_unlock(dev); |
| 1124 | |
| 1125 | do { |
| 1126 | rcu_read_lock(); |
| 1127 | dev = xa_find(xa: &net->dev_by_index, index, ULONG_MAX, XA_PRESENT); |
| 1128 | if (!dev) { |
| 1129 | rcu_read_unlock(); |
| 1130 | return NULL; |
| 1131 | } |
| 1132 | dev_hold(dev); |
| 1133 | rcu_read_unlock(); |
| 1134 | |
| 1135 | dev = __netdev_put_lock(dev, net); |
| 1136 | if (dev) |
| 1137 | return dev; |
| 1138 | |
| 1139 | (*index)++; |
| 1140 | } while (true); |
| 1141 | } |
| 1142 | |
| 1143 | struct net_device * |
| 1144 | netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, |
| 1145 | unsigned long *index) |
| 1146 | { |
| 1147 | if (dev) |
| 1148 | netdev_unlock_ops_compat(dev); |
| 1149 | |
| 1150 | do { |
| 1151 | rcu_read_lock(); |
| 1152 | dev = xa_find(xa: &net->dev_by_index, index, ULONG_MAX, XA_PRESENT); |
| 1153 | if (!dev) { |
| 1154 | rcu_read_unlock(); |
| 1155 | return NULL; |
| 1156 | } |
| 1157 | dev_hold(dev); |
| 1158 | rcu_read_unlock(); |
| 1159 | |
| 1160 | dev = __netdev_put_lock_ops_compat(dev, net); |
| 1161 | if (dev) |
| 1162 | return dev; |
| 1163 | |
| 1164 | (*index)++; |
| 1165 | } while (true); |
| 1166 | } |
| 1167 | |
| 1168 | static DEFINE_SEQLOCK(netdev_rename_lock); |
| 1169 | |
| 1170 | void netdev_copy_name(struct net_device *dev, char *name) |
| 1171 | { |
| 1172 | unsigned int seq; |
| 1173 | |
| 1174 | do { |
| 1175 | seq = read_seqbegin(sl: &netdev_rename_lock); |
| 1176 | strscpy(name, dev->name, IFNAMSIZ); |
| 1177 | } while (read_seqretry(sl: &netdev_rename_lock, start: seq)); |
| 1178 | } |
| 1179 | EXPORT_IPV6_MOD_GPL(netdev_copy_name); |
| 1180 | |
| 1181 | /** |
| 1182 | * netdev_get_name - get a netdevice name, knowing its ifindex. |
| 1183 | * @net: network namespace |
| 1184 | * @name: a pointer to the buffer where the name will be stored. |
| 1185 | * @ifindex: the ifindex of the interface to get the name from. |
| 1186 | */ |
| 1187 | int netdev_get_name(struct net *net, char *name, int ifindex) |
| 1188 | { |
| 1189 | struct net_device *dev; |
| 1190 | int ret; |
| 1191 | |
| 1192 | rcu_read_lock(); |
| 1193 | |
| 1194 | dev = dev_get_by_index_rcu(net, ifindex); |
| 1195 | if (!dev) { |
| 1196 | ret = -ENODEV; |
| 1197 | goto out; |
| 1198 | } |
| 1199 | |
| 1200 | netdev_copy_name(dev, name); |
| 1201 | |
| 1202 | ret = 0; |
| 1203 | out: |
| 1204 | rcu_read_unlock(); |
| 1205 | return ret; |
| 1206 | } |
| 1207 | |
| 1208 | static bool dev_addr_cmp(struct net_device *dev, unsigned short type, |
| 1209 | const char *ha) |
| 1210 | { |
| 1211 | return dev->type == type && !memcmp(p: dev->dev_addr, q: ha, size: dev->addr_len); |
| 1212 | } |
| 1213 | |
| 1214 | /** |
| 1215 | * dev_getbyhwaddr_rcu - find a device by its hardware address |
| 1216 | * @net: the applicable net namespace |
| 1217 | * @type: media type of device |
| 1218 | * @ha: hardware address |
| 1219 | * |
| 1220 | * Search for an interface by MAC address. Returns NULL if the device |
| 1221 | * is not found or a pointer to the device. |
| 1222 | * The caller must hold RCU. |
| 1223 | * The returned device has not had its ref count increased |
| 1224 | * and the caller must therefore be careful about locking |
| 1225 | * |
| 1226 | */ |
| 1227 | |
| 1228 | struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, |
| 1229 | const char *ha) |
| 1230 | { |
| 1231 | struct net_device *dev; |
| 1232 | |
| 1233 | for_each_netdev_rcu(net, dev) |
| 1234 | if (dev_addr_cmp(dev, type, ha)) |
| 1235 | return dev; |
| 1236 | |
| 1237 | return NULL; |
| 1238 | } |
| 1239 | EXPORT_SYMBOL(dev_getbyhwaddr_rcu); |
| 1240 | |
| 1241 | /** |
| 1242 | * dev_getbyhwaddr() - find a device by its hardware address |
| 1243 | * @net: the applicable net namespace |
| 1244 | * @type: media type of device |
| 1245 | * @ha: hardware address |
| 1246 | * |
| 1247 | * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold |
| 1248 | * rtnl_lock. |
| 1249 | * |
| 1250 | * Context: rtnl_lock() must be held. |
| 1251 | * Return: pointer to the net_device, or NULL if not found |
| 1252 | */ |
| 1253 | struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, |
| 1254 | const char *ha) |
| 1255 | { |
| 1256 | struct net_device *dev; |
| 1257 | |
| 1258 | ASSERT_RTNL(); |
| 1259 | for_each_netdev(net, dev) |
| 1260 | if (dev_addr_cmp(dev, type, ha)) |
| 1261 | return dev; |
| 1262 | |
| 1263 | return NULL; |
| 1264 | } |
| 1265 | EXPORT_SYMBOL(dev_getbyhwaddr); |
| 1266 | |
| 1267 | struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) |
| 1268 | { |
| 1269 | struct net_device *dev, *ret = NULL; |
| 1270 | |
| 1271 | rcu_read_lock(); |
| 1272 | for_each_netdev_rcu(net, dev) |
| 1273 | if (dev->type == type) { |
| 1274 | dev_hold(dev); |
| 1275 | ret = dev; |
| 1276 | break; |
| 1277 | } |
| 1278 | rcu_read_unlock(); |
| 1279 | return ret; |
| 1280 | } |
| 1281 | EXPORT_SYMBOL(dev_getfirstbyhwtype); |
| 1282 | |
| 1283 | /** |
| 1284 | * netdev_get_by_flags_rcu - find any device with given flags |
| 1285 | * @net: the applicable net namespace |
| 1286 | * @tracker: tracking object for the acquired reference |
| 1287 | * @if_flags: IFF_* values |
| 1288 | * @mask: bitmask of bits in if_flags to check |
| 1289 | * |
| 1290 | * Search for any interface with the given flags. |
| 1291 | * |
| 1292 | * Context: rcu_read_lock() must be held. |
| 1293 | * Returns: NULL if a device is not found or a pointer to the device. |
| 1294 | */ |
| 1295 | struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, |
| 1296 | unsigned short if_flags, unsigned short mask) |
| 1297 | { |
| 1298 | struct net_device *dev; |
| 1299 | |
| 1300 | for_each_netdev_rcu(net, dev) { |
| 1301 | if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { |
| 1302 | netdev_hold(dev, tracker, GFP_ATOMIC); |
| 1303 | return dev; |
| 1304 | } |
| 1305 | } |
| 1306 | |
| 1307 | return NULL; |
| 1308 | } |
| 1309 | EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); |
| 1310 | |
| 1311 | /** |
| 1312 | * dev_valid_name - check if name is okay for network device |
| 1313 | * @name: name string |
| 1314 | * |
| 1315 | * Network device names need to be valid file names to |
| 1316 | * allow sysfs to work. We also disallow any kind of |
| 1317 | * whitespace. |
| 1318 | */ |
| 1319 | bool dev_valid_name(const char *name) |
| 1320 | { |
| 1321 | if (*name == '\0') |
| 1322 | return false; |
| 1323 | if (strnlen(p: name, IFNAMSIZ) == IFNAMSIZ) |
| 1324 | return false; |
| 1325 | if (!strcmp(name, "." ) || !strcmp(name, ".." )) |
| 1326 | return false; |
| 1327 | |
| 1328 | while (*name) { |
| 1329 | if (*name == '/' || *name == ':' || isspace(*name)) |
| 1330 | return false; |
| 1331 | name++; |
| 1332 | } |
| 1333 | return true; |
| 1334 | } |
| 1335 | EXPORT_SYMBOL(dev_valid_name); |
| 1336 | |
| 1337 | /** |
| 1338 | * __dev_alloc_name - allocate a name for a device |
| 1339 | * @net: network namespace to allocate the device name in |
| 1340 | * @name: name format string |
| 1341 | * @res: result name string |
| 1342 | * |
| 1343 | * Passed a format string - eg "lt%d" it will try and find a suitable |
| 1344 | * id. It scans list of devices to build up a free map, then chooses |
| 1345 | * the first empty slot. The caller must hold the dev_base or rtnl lock |
| 1346 | * while allocating the name and adding the device in order to avoid |
| 1347 | * duplicates. |
| 1348 | * Limited to bits_per_byte * page size devices (ie 32K on most platforms). |
| 1349 | * Returns the number of the unit assigned or a negative errno code. |
| 1350 | */ |
| 1351 | |
| 1352 | static int __dev_alloc_name(struct net *net, const char *name, char *res) |
| 1353 | { |
| 1354 | int i = 0; |
| 1355 | const char *p; |
| 1356 | const int max_netdevices = 8*PAGE_SIZE; |
| 1357 | unsigned long *inuse; |
| 1358 | struct net_device *d; |
| 1359 | char buf[IFNAMSIZ]; |
| 1360 | |
| 1361 | /* Verify the string as this thing may have come from the user. |
| 1362 | * There must be one "%d" and no other "%" characters. |
| 1363 | */ |
| 1364 | p = strchr(name, '%'); |
| 1365 | if (!p || p[1] != 'd' || strchr(p + 2, '%')) |
| 1366 | return -EINVAL; |
| 1367 | |
| 1368 | /* Use one page as a bit array of possible slots */ |
| 1369 | inuse = bitmap_zalloc(nbits: max_netdevices, GFP_ATOMIC); |
| 1370 | if (!inuse) |
| 1371 | return -ENOMEM; |
| 1372 | |
| 1373 | for_each_netdev(net, d) { |
| 1374 | struct netdev_name_node *name_node; |
| 1375 | |
| 1376 | netdev_for_each_altname(d, name_node) { |
| 1377 | if (!sscanf(name_node->name, name, &i)) |
| 1378 | continue; |
| 1379 | if (i < 0 || i >= max_netdevices) |
| 1380 | continue; |
| 1381 | |
| 1382 | /* avoid cases where sscanf is not exact inverse of printf */ |
| 1383 | snprintf(buf, IFNAMSIZ, fmt: name, i); |
| 1384 | if (!strncmp(buf, name_node->name, IFNAMSIZ)) |
| 1385 | __set_bit(i, inuse); |
| 1386 | } |
| 1387 | if (!sscanf(d->name, name, &i)) |
| 1388 | continue; |
| 1389 | if (i < 0 || i >= max_netdevices) |
| 1390 | continue; |
| 1391 | |
| 1392 | /* avoid cases where sscanf is not exact inverse of printf */ |
| 1393 | snprintf(buf, IFNAMSIZ, fmt: name, i); |
| 1394 | if (!strncmp(buf, d->name, IFNAMSIZ)) |
| 1395 | __set_bit(i, inuse); |
| 1396 | } |
| 1397 | |
| 1398 | i = find_first_zero_bit(addr: inuse, size: max_netdevices); |
| 1399 | bitmap_free(bitmap: inuse); |
| 1400 | if (i == max_netdevices) |
| 1401 | return -ENFILE; |
| 1402 | |
| 1403 | /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ |
| 1404 | strscpy(buf, name, IFNAMSIZ); |
| 1405 | snprintf(buf: res, IFNAMSIZ, fmt: buf, i); |
| 1406 | return i; |
| 1407 | } |
| 1408 | |
| 1409 | /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ |
| 1410 | static int dev_prep_valid_name(struct net *net, struct net_device *dev, |
| 1411 | const char *want_name, char *out_name, |
| 1412 | int dup_errno) |
| 1413 | { |
| 1414 | if (!dev_valid_name(want_name)) |
| 1415 | return -EINVAL; |
| 1416 | |
| 1417 | if (strchr(want_name, '%')) |
| 1418 | return __dev_alloc_name(net, name: want_name, res: out_name); |
| 1419 | |
| 1420 | if (netdev_name_in_use(net, want_name)) |
| 1421 | return -dup_errno; |
| 1422 | if (out_name != want_name) |
| 1423 | strscpy(out_name, want_name, IFNAMSIZ); |
| 1424 | return 0; |
| 1425 | } |
| 1426 | |
| 1427 | /** |
| 1428 | * dev_alloc_name - allocate a name for a device |
| 1429 | * @dev: device |
| 1430 | * @name: name format string |
| 1431 | * |
| 1432 | * Passed a format string - eg "lt%d" it will try and find a suitable |
| 1433 | * id. It scans list of devices to build up a free map, then chooses |
| 1434 | * the first empty slot. The caller must hold the dev_base or rtnl lock |
| 1435 | * while allocating the name and adding the device in order to avoid |
| 1436 | * duplicates. |
| 1437 | * Limited to bits_per_byte * page size devices (ie 32K on most platforms). |
| 1438 | * Returns the number of the unit assigned or a negative errno code. |
| 1439 | */ |
| 1440 | |
| 1441 | int dev_alloc_name(struct net_device *dev, const char *name) |
| 1442 | { |
| 1443 | return dev_prep_valid_name(net: dev_net(dev), dev, want_name: name, out_name: dev->name, ENFILE); |
| 1444 | } |
| 1445 | EXPORT_SYMBOL(dev_alloc_name); |
| 1446 | |
| 1447 | static int dev_get_valid_name(struct net *net, struct net_device *dev, |
| 1448 | const char *name) |
| 1449 | { |
| 1450 | int ret; |
| 1451 | |
| 1452 | ret = dev_prep_valid_name(net, dev, want_name: name, out_name: dev->name, EEXIST); |
| 1453 | return ret < 0 ? ret : 0; |
| 1454 | } |
| 1455 | |
| 1456 | int netif_change_name(struct net_device *dev, const char *newname) |
| 1457 | { |
| 1458 | struct net *net = dev_net(dev); |
| 1459 | unsigned char old_assign_type; |
| 1460 | char oldname[IFNAMSIZ]; |
| 1461 | int err = 0; |
| 1462 | int ret; |
| 1463 | |
| 1464 | ASSERT_RTNL_NET(net); |
| 1465 | |
| 1466 | if (!strncmp(newname, dev->name, IFNAMSIZ)) |
| 1467 | return 0; |
| 1468 | |
| 1469 | memcpy(oldname, dev->name, IFNAMSIZ); |
| 1470 | |
| 1471 | write_seqlock_bh(sl: &netdev_rename_lock); |
| 1472 | err = dev_get_valid_name(net, dev, name: newname); |
| 1473 | write_sequnlock_bh(sl: &netdev_rename_lock); |
| 1474 | |
| 1475 | if (err < 0) |
| 1476 | return err; |
| 1477 | |
| 1478 | if (oldname[0] && !strchr(oldname, '%')) |
| 1479 | netdev_info(dev, format: "renamed from %s%s\n" , oldname, |
| 1480 | dev->flags & IFF_UP ? " (while UP)" : "" ); |
| 1481 | |
| 1482 | old_assign_type = dev->name_assign_type; |
| 1483 | WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); |
| 1484 | |
| 1485 | rollback: |
| 1486 | ret = device_rename(dev: &dev->dev, new_name: dev->name); |
| 1487 | if (ret) { |
| 1488 | write_seqlock_bh(sl: &netdev_rename_lock); |
| 1489 | memcpy(dev->name, oldname, IFNAMSIZ); |
| 1490 | write_sequnlock_bh(sl: &netdev_rename_lock); |
| 1491 | WRITE_ONCE(dev->name_assign_type, old_assign_type); |
| 1492 | return ret; |
| 1493 | } |
| 1494 | |
| 1495 | netdev_adjacent_rename_links(dev, oldname); |
| 1496 | |
| 1497 | netdev_name_node_del(name_node: dev->name_node); |
| 1498 | |
| 1499 | synchronize_net(); |
| 1500 | |
| 1501 | netdev_name_node_add(net, name_node: dev->name_node); |
| 1502 | |
| 1503 | ret = call_netdevice_notifiers(val: NETDEV_CHANGENAME, dev); |
| 1504 | ret = notifier_to_errno(ret); |
| 1505 | |
| 1506 | if (ret) { |
| 1507 | /* err >= 0 after dev_alloc_name() or stores the first errno */ |
| 1508 | if (err >= 0) { |
| 1509 | err = ret; |
| 1510 | write_seqlock_bh(sl: &netdev_rename_lock); |
| 1511 | memcpy(dev->name, oldname, IFNAMSIZ); |
| 1512 | write_sequnlock_bh(sl: &netdev_rename_lock); |
| 1513 | memcpy(oldname, newname, IFNAMSIZ); |
| 1514 | WRITE_ONCE(dev->name_assign_type, old_assign_type); |
| 1515 | old_assign_type = NET_NAME_RENAMED; |
| 1516 | goto rollback; |
| 1517 | } else { |
| 1518 | netdev_err(dev, format: "name change rollback failed: %d\n" , |
| 1519 | ret); |
| 1520 | } |
| 1521 | } |
| 1522 | |
| 1523 | return err; |
| 1524 | } |
| 1525 | |
| 1526 | int netif_set_alias(struct net_device *dev, const char *alias, size_t len) |
| 1527 | { |
| 1528 | struct dev_ifalias *new_alias = NULL; |
| 1529 | |
| 1530 | if (len >= IFALIASZ) |
| 1531 | return -EINVAL; |
| 1532 | |
| 1533 | if (len) { |
| 1534 | new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); |
| 1535 | if (!new_alias) |
| 1536 | return -ENOMEM; |
| 1537 | |
| 1538 | memcpy(new_alias->ifalias, alias, len); |
| 1539 | new_alias->ifalias[len] = 0; |
| 1540 | } |
| 1541 | |
| 1542 | mutex_lock(&ifalias_mutex); |
| 1543 | new_alias = rcu_replace_pointer(dev->ifalias, new_alias, |
| 1544 | mutex_is_locked(&ifalias_mutex)); |
| 1545 | mutex_unlock(lock: &ifalias_mutex); |
| 1546 | |
| 1547 | if (new_alias) |
| 1548 | kfree_rcu(new_alias, rcuhead); |
| 1549 | |
| 1550 | return len; |
| 1551 | } |
| 1552 | |
| 1553 | /** |
| 1554 | * dev_get_alias - get ifalias of a device |
| 1555 | * @dev: device |
| 1556 | * @name: buffer to store name of ifalias |
| 1557 | * @len: size of buffer |
| 1558 | * |
| 1559 | * get ifalias for a device. Caller must make sure dev cannot go |
| 1560 | * away, e.g. rcu read lock or own a reference count to device. |
| 1561 | */ |
| 1562 | int dev_get_alias(const struct net_device *dev, char *name, size_t len) |
| 1563 | { |
| 1564 | const struct dev_ifalias *alias; |
| 1565 | int ret = 0; |
| 1566 | |
| 1567 | rcu_read_lock(); |
| 1568 | alias = rcu_dereference(dev->ifalias); |
| 1569 | if (alias) |
| 1570 | ret = snprintf(buf: name, size: len, fmt: "%s" , alias->ifalias); |
| 1571 | rcu_read_unlock(); |
| 1572 | |
| 1573 | return ret; |
| 1574 | } |
| 1575 | |
| 1576 | /** |
| 1577 | * netdev_features_change - device changes features |
| 1578 | * @dev: device to cause notification |
| 1579 | * |
| 1580 | * Called to indicate a device has changed features. |
| 1581 | */ |
| 1582 | void netdev_features_change(struct net_device *dev) |
| 1583 | { |
| 1584 | call_netdevice_notifiers(val: NETDEV_FEAT_CHANGE, dev); |
| 1585 | } |
| 1586 | EXPORT_SYMBOL(netdev_features_change); |
| 1587 | |
| 1588 | void netif_state_change(struct net_device *dev) |
| 1589 | { |
| 1590 | netdev_ops_assert_locked_or_invisible(dev); |
| 1591 | |
| 1592 | if (dev->flags & IFF_UP) { |
| 1593 | struct netdev_notifier_change_info change_info = { |
| 1594 | .info.dev = dev, |
| 1595 | }; |
| 1596 | |
| 1597 | call_netdevice_notifiers_info(val: NETDEV_CHANGE, |
| 1598 | info: &change_info.info); |
| 1599 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: 0, GFP_KERNEL, portid: 0, NULL); |
| 1600 | } |
| 1601 | } |
| 1602 | |
| 1603 | /** |
| 1604 | * __netdev_notify_peers - notify network peers about existence of @dev, |
| 1605 | * to be called when rtnl lock is already held. |
| 1606 | * @dev: network device |
| 1607 | * |
| 1608 | * Generate traffic such that interested network peers are aware of |
| 1609 | * @dev, such as by generating a gratuitous ARP. This may be used when |
| 1610 | * a device wants to inform the rest of the network about some sort of |
| 1611 | * reconfiguration such as a failover event or virtual machine |
| 1612 | * migration. |
| 1613 | */ |
| 1614 | void __netdev_notify_peers(struct net_device *dev) |
| 1615 | { |
| 1616 | ASSERT_RTNL(); |
| 1617 | call_netdevice_notifiers(val: NETDEV_NOTIFY_PEERS, dev); |
| 1618 | call_netdevice_notifiers(val: NETDEV_RESEND_IGMP, dev); |
| 1619 | } |
| 1620 | EXPORT_SYMBOL(__netdev_notify_peers); |
| 1621 | |
| 1622 | /** |
| 1623 | * netdev_notify_peers - notify network peers about existence of @dev |
| 1624 | * @dev: network device |
| 1625 | * |
| 1626 | * Generate traffic such that interested network peers are aware of |
| 1627 | * @dev, such as by generating a gratuitous ARP. This may be used when |
| 1628 | * a device wants to inform the rest of the network about some sort of |
| 1629 | * reconfiguration such as a failover event or virtual machine |
| 1630 | * migration. |
| 1631 | */ |
| 1632 | void netdev_notify_peers(struct net_device *dev) |
| 1633 | { |
| 1634 | rtnl_lock(); |
| 1635 | __netdev_notify_peers(dev); |
| 1636 | rtnl_unlock(); |
| 1637 | } |
| 1638 | EXPORT_SYMBOL(netdev_notify_peers); |
| 1639 | |
| 1640 | static int napi_threaded_poll(void *data); |
| 1641 | |
| 1642 | static int napi_kthread_create(struct napi_struct *n) |
| 1643 | { |
| 1644 | int err = 0; |
| 1645 | |
| 1646 | /* Create and wake up the kthread once to put it in |
| 1647 | * TASK_INTERRUPTIBLE mode to avoid the blocked task |
| 1648 | * warning and work with loadavg. |
| 1649 | */ |
| 1650 | n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d" , |
| 1651 | n->dev->name, n->napi_id); |
| 1652 | if (IS_ERR(ptr: n->thread)) { |
| 1653 | err = PTR_ERR(ptr: n->thread); |
| 1654 | pr_err("kthread_run failed with err %d\n" , err); |
| 1655 | n->thread = NULL; |
| 1656 | } |
| 1657 | |
| 1658 | return err; |
| 1659 | } |
| 1660 | |
| 1661 | static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) |
| 1662 | { |
| 1663 | const struct net_device_ops *ops = dev->netdev_ops; |
| 1664 | int ret; |
| 1665 | |
| 1666 | ASSERT_RTNL(); |
| 1667 | dev_addr_check(dev); |
| 1668 | |
| 1669 | if (!netif_device_present(dev)) { |
| 1670 | /* may be detached because parent is runtime-suspended */ |
| 1671 | if (dev->dev.parent) |
| 1672 | pm_runtime_resume(dev: dev->dev.parent); |
| 1673 | if (!netif_device_present(dev)) |
| 1674 | return -ENODEV; |
| 1675 | } |
| 1676 | |
| 1677 | /* Block netpoll from trying to do any rx path servicing. |
| 1678 | * If we don't do this there is a chance ndo_poll_controller |
| 1679 | * or ndo_poll may be running while we open the device |
| 1680 | */ |
| 1681 | netpoll_poll_disable(dev); |
| 1682 | |
| 1683 | ret = call_netdevice_notifiers_extack(val: NETDEV_PRE_UP, dev, extack); |
| 1684 | ret = notifier_to_errno(ret); |
| 1685 | if (ret) |
| 1686 | return ret; |
| 1687 | |
| 1688 | set_bit(nr: __LINK_STATE_START, addr: &dev->state); |
| 1689 | |
| 1690 | netdev_ops_assert_locked(dev); |
| 1691 | |
| 1692 | if (ops->ndo_validate_addr) |
| 1693 | ret = ops->ndo_validate_addr(dev); |
| 1694 | |
| 1695 | if (!ret && ops->ndo_open) |
| 1696 | ret = ops->ndo_open(dev); |
| 1697 | |
| 1698 | netpoll_poll_enable(dev); |
| 1699 | |
| 1700 | if (ret) |
| 1701 | clear_bit(nr: __LINK_STATE_START, addr: &dev->state); |
| 1702 | else { |
| 1703 | netif_set_up(dev, value: true); |
| 1704 | dev_set_rx_mode(dev); |
| 1705 | dev_activate(dev); |
| 1706 | add_device_randomness(buf: dev->dev_addr, len: dev->addr_len); |
| 1707 | } |
| 1708 | |
| 1709 | return ret; |
| 1710 | } |
| 1711 | |
| 1712 | int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) |
| 1713 | { |
| 1714 | int ret; |
| 1715 | |
| 1716 | if (dev->flags & IFF_UP) |
| 1717 | return 0; |
| 1718 | |
| 1719 | ret = __dev_open(dev, extack); |
| 1720 | if (ret < 0) |
| 1721 | return ret; |
| 1722 | |
| 1723 | rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, portid: 0, NULL); |
| 1724 | call_netdevice_notifiers(val: NETDEV_UP, dev); |
| 1725 | |
| 1726 | return ret; |
| 1727 | } |
| 1728 | |
| 1729 | static void __dev_close_many(struct list_head *head) |
| 1730 | { |
| 1731 | struct net_device *dev; |
| 1732 | |
| 1733 | ASSERT_RTNL(); |
| 1734 | might_sleep(); |
| 1735 | |
| 1736 | list_for_each_entry(dev, head, close_list) { |
| 1737 | /* Temporarily disable netpoll until the interface is down */ |
| 1738 | netpoll_poll_disable(dev); |
| 1739 | |
| 1740 | call_netdevice_notifiers(val: NETDEV_GOING_DOWN, dev); |
| 1741 | |
| 1742 | clear_bit(nr: __LINK_STATE_START, addr: &dev->state); |
| 1743 | |
| 1744 | /* Synchronize to scheduled poll. We cannot touch poll list, it |
| 1745 | * can be even on different cpu. So just clear netif_running(). |
| 1746 | * |
| 1747 | * dev->stop() will invoke napi_disable() on all of it's |
| 1748 | * napi_struct instances on this device. |
| 1749 | */ |
| 1750 | smp_mb__after_atomic(); /* Commit netif_running(). */ |
| 1751 | } |
| 1752 | |
| 1753 | dev_deactivate_many(head); |
| 1754 | |
| 1755 | list_for_each_entry(dev, head, close_list) { |
| 1756 | const struct net_device_ops *ops = dev->netdev_ops; |
| 1757 | |
| 1758 | /* |
| 1759 | * Call the device specific close. This cannot fail. |
| 1760 | * Only if device is UP |
| 1761 | * |
| 1762 | * We allow it to be called even after a DETACH hot-plug |
| 1763 | * event. |
| 1764 | */ |
| 1765 | |
| 1766 | netdev_ops_assert_locked(dev); |
| 1767 | |
| 1768 | if (ops->ndo_stop) |
| 1769 | ops->ndo_stop(dev); |
| 1770 | |
| 1771 | netif_set_up(dev, value: false); |
| 1772 | netpoll_poll_enable(dev); |
| 1773 | } |
| 1774 | } |
| 1775 | |
| 1776 | static void __dev_close(struct net_device *dev) |
| 1777 | { |
| 1778 | LIST_HEAD(single); |
| 1779 | |
| 1780 | list_add(new: &dev->close_list, head: &single); |
| 1781 | __dev_close_many(head: &single); |
| 1782 | list_del(entry: &single); |
| 1783 | } |
| 1784 | |
| 1785 | void netif_close_many(struct list_head *head, bool unlink) |
| 1786 | { |
| 1787 | struct net_device *dev, *tmp; |
| 1788 | |
| 1789 | /* Remove the devices that don't need to be closed */ |
| 1790 | list_for_each_entry_safe(dev, tmp, head, close_list) |
| 1791 | if (!(dev->flags & IFF_UP)) |
| 1792 | list_del_init(entry: &dev->close_list); |
| 1793 | |
| 1794 | __dev_close_many(head); |
| 1795 | |
| 1796 | list_for_each_entry_safe(dev, tmp, head, close_list) { |
| 1797 | rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, portid: 0, NULL); |
| 1798 | call_netdevice_notifiers(val: NETDEV_DOWN, dev); |
| 1799 | if (unlink) |
| 1800 | list_del_init(entry: &dev->close_list); |
| 1801 | } |
| 1802 | } |
| 1803 | EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL" ); |
| 1804 | |
| 1805 | void netif_close(struct net_device *dev) |
| 1806 | { |
| 1807 | if (dev->flags & IFF_UP) { |
| 1808 | LIST_HEAD(single); |
| 1809 | |
| 1810 | list_add(new: &dev->close_list, head: &single); |
| 1811 | netif_close_many(&single, true); |
| 1812 | list_del(entry: &single); |
| 1813 | } |
| 1814 | } |
| 1815 | EXPORT_SYMBOL(netif_close); |
| 1816 | |
| 1817 | void netif_disable_lro(struct net_device *dev) |
| 1818 | { |
| 1819 | struct net_device *lower_dev; |
| 1820 | struct list_head *iter; |
| 1821 | |
| 1822 | dev->wanted_features &= ~NETIF_F_LRO; |
| 1823 | netdev_update_features(dev); |
| 1824 | |
| 1825 | if (unlikely(dev->features & NETIF_F_LRO)) |
| 1826 | netdev_WARN(dev, "failed to disable LRO!\n" ); |
| 1827 | |
| 1828 | netdev_for_each_lower_dev(dev, lower_dev, iter) { |
| 1829 | netdev_lock_ops(dev: lower_dev); |
| 1830 | netif_disable_lro(dev: lower_dev); |
| 1831 | netdev_unlock_ops(dev: lower_dev); |
| 1832 | } |
| 1833 | } |
| 1834 | EXPORT_IPV6_MOD(netif_disable_lro); |
| 1835 | |
| 1836 | /** |
| 1837 | * dev_disable_gro_hw - disable HW Generic Receive Offload on a device |
| 1838 | * @dev: device |
| 1839 | * |
| 1840 | * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be |
| 1841 | * called under RTNL. This is needed if Generic XDP is installed on |
| 1842 | * the device. |
| 1843 | */ |
| 1844 | static void dev_disable_gro_hw(struct net_device *dev) |
| 1845 | { |
| 1846 | dev->wanted_features &= ~NETIF_F_GRO_HW; |
| 1847 | netdev_update_features(dev); |
| 1848 | |
| 1849 | if (unlikely(dev->features & NETIF_F_GRO_HW)) |
| 1850 | netdev_WARN(dev, "failed to disable GRO_HW!\n" ); |
| 1851 | } |
| 1852 | |
| 1853 | const char *netdev_cmd_to_name(enum netdev_cmd cmd) |
| 1854 | { |
| 1855 | #define N(val) \ |
| 1856 | case NETDEV_##val: \ |
| 1857 | return "NETDEV_" __stringify(val); |
| 1858 | switch (cmd) { |
| 1859 | N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) |
| 1860 | N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) |
| 1861 | N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) |
| 1862 | N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) |
| 1863 | N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) |
| 1864 | N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) |
| 1865 | N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) |
| 1866 | N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) |
| 1867 | N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) |
| 1868 | N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) |
| 1869 | N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) |
| 1870 | N(XDP_FEAT_CHANGE) |
| 1871 | } |
| 1872 | #undef N |
| 1873 | return "UNKNOWN_NETDEV_EVENT" ; |
| 1874 | } |
| 1875 | EXPORT_SYMBOL_GPL(netdev_cmd_to_name); |
| 1876 | |
| 1877 | static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, |
| 1878 | struct net_device *dev) |
| 1879 | { |
| 1880 | struct netdev_notifier_info info = { |
| 1881 | .dev = dev, |
| 1882 | }; |
| 1883 | |
| 1884 | return nb->notifier_call(nb, val, &info); |
| 1885 | } |
| 1886 | |
| 1887 | static int call_netdevice_register_notifiers(struct notifier_block *nb, |
| 1888 | struct net_device *dev) |
| 1889 | { |
| 1890 | int err; |
| 1891 | |
| 1892 | err = call_netdevice_notifier(nb, val: NETDEV_REGISTER, dev); |
| 1893 | err = notifier_to_errno(ret: err); |
| 1894 | if (err) |
| 1895 | return err; |
| 1896 | |
| 1897 | if (!(dev->flags & IFF_UP)) |
| 1898 | return 0; |
| 1899 | |
| 1900 | call_netdevice_notifier(nb, val: NETDEV_UP, dev); |
| 1901 | return 0; |
| 1902 | } |
| 1903 | |
| 1904 | static void call_netdevice_unregister_notifiers(struct notifier_block *nb, |
| 1905 | struct net_device *dev) |
| 1906 | { |
| 1907 | if (dev->flags & IFF_UP) { |
| 1908 | call_netdevice_notifier(nb, val: NETDEV_GOING_DOWN, |
| 1909 | dev); |
| 1910 | call_netdevice_notifier(nb, val: NETDEV_DOWN, dev); |
| 1911 | } |
| 1912 | call_netdevice_notifier(nb, val: NETDEV_UNREGISTER, dev); |
| 1913 | } |
| 1914 | |
| 1915 | static int call_netdevice_register_net_notifiers(struct notifier_block *nb, |
| 1916 | struct net *net) |
| 1917 | { |
| 1918 | struct net_device *dev; |
| 1919 | int err; |
| 1920 | |
| 1921 | for_each_netdev(net, dev) { |
| 1922 | netdev_lock_ops(dev); |
| 1923 | err = call_netdevice_register_notifiers(nb, dev); |
| 1924 | netdev_unlock_ops(dev); |
| 1925 | if (err) |
| 1926 | goto rollback; |
| 1927 | } |
| 1928 | return 0; |
| 1929 | |
| 1930 | rollback: |
| 1931 | for_each_netdev_continue_reverse(net, dev) |
| 1932 | call_netdevice_unregister_notifiers(nb, dev); |
| 1933 | return err; |
| 1934 | } |
| 1935 | |
| 1936 | static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, |
| 1937 | struct net *net) |
| 1938 | { |
| 1939 | struct net_device *dev; |
| 1940 | |
| 1941 | for_each_netdev(net, dev) |
| 1942 | call_netdevice_unregister_notifiers(nb, dev); |
| 1943 | } |
| 1944 | |
| 1945 | static int dev_boot_phase = 1; |
| 1946 | |
| 1947 | /** |
| 1948 | * register_netdevice_notifier - register a network notifier block |
| 1949 | * @nb: notifier |
| 1950 | * |
| 1951 | * Register a notifier to be called when network device events occur. |
| 1952 | * The notifier passed is linked into the kernel structures and must |
| 1953 | * not be reused until it has been unregistered. A negative errno code |
| 1954 | * is returned on a failure. |
| 1955 | * |
| 1956 | * When registered all registration and up events are replayed |
| 1957 | * to the new notifier to allow device to have a race free |
| 1958 | * view of the network device list. |
| 1959 | */ |
| 1960 | |
| 1961 | int register_netdevice_notifier(struct notifier_block *nb) |
| 1962 | { |
| 1963 | struct net *net; |
| 1964 | int err; |
| 1965 | |
| 1966 | /* Close race with setup_net() and cleanup_net() */ |
| 1967 | down_write(sem: &pernet_ops_rwsem); |
| 1968 | |
| 1969 | /* When RTNL is removed, we need protection for netdev_chain. */ |
| 1970 | rtnl_lock(); |
| 1971 | |
| 1972 | err = raw_notifier_chain_register(nh: &netdev_chain, nb); |
| 1973 | if (err) |
| 1974 | goto unlock; |
| 1975 | if (dev_boot_phase) |
| 1976 | goto unlock; |
| 1977 | for_each_net(net) { |
| 1978 | __rtnl_net_lock(net); |
| 1979 | err = call_netdevice_register_net_notifiers(nb, net); |
| 1980 | __rtnl_net_unlock(net); |
| 1981 | if (err) |
| 1982 | goto rollback; |
| 1983 | } |
| 1984 | |
| 1985 | unlock: |
| 1986 | rtnl_unlock(); |
| 1987 | up_write(sem: &pernet_ops_rwsem); |
| 1988 | return err; |
| 1989 | |
| 1990 | rollback: |
| 1991 | for_each_net_continue_reverse(net) { |
| 1992 | __rtnl_net_lock(net); |
| 1993 | call_netdevice_unregister_net_notifiers(nb, net); |
| 1994 | __rtnl_net_unlock(net); |
| 1995 | } |
| 1996 | |
| 1997 | raw_notifier_chain_unregister(nh: &netdev_chain, nb); |
| 1998 | goto unlock; |
| 1999 | } |
| 2000 | EXPORT_SYMBOL(register_netdevice_notifier); |
| 2001 | |
| 2002 | /** |
| 2003 | * unregister_netdevice_notifier - unregister a network notifier block |
| 2004 | * @nb: notifier |
| 2005 | * |
| 2006 | * Unregister a notifier previously registered by |
| 2007 | * register_netdevice_notifier(). The notifier is unlinked into the |
| 2008 | * kernel structures and may then be reused. A negative errno code |
| 2009 | * is returned on a failure. |
| 2010 | * |
| 2011 | * After unregistering unregister and down device events are synthesized |
| 2012 | * for all devices on the device list to the removed notifier to remove |
| 2013 | * the need for special case cleanup code. |
| 2014 | */ |
| 2015 | |
| 2016 | int unregister_netdevice_notifier(struct notifier_block *nb) |
| 2017 | { |
| 2018 | struct net *net; |
| 2019 | int err; |
| 2020 | |
| 2021 | /* Close race with setup_net() and cleanup_net() */ |
| 2022 | down_write(sem: &pernet_ops_rwsem); |
| 2023 | rtnl_lock(); |
| 2024 | err = raw_notifier_chain_unregister(nh: &netdev_chain, nb); |
| 2025 | if (err) |
| 2026 | goto unlock; |
| 2027 | |
| 2028 | for_each_net(net) { |
| 2029 | __rtnl_net_lock(net); |
| 2030 | call_netdevice_unregister_net_notifiers(nb, net); |
| 2031 | __rtnl_net_unlock(net); |
| 2032 | } |
| 2033 | |
| 2034 | unlock: |
| 2035 | rtnl_unlock(); |
| 2036 | up_write(sem: &pernet_ops_rwsem); |
| 2037 | return err; |
| 2038 | } |
| 2039 | EXPORT_SYMBOL(unregister_netdevice_notifier); |
| 2040 | |
| 2041 | static int __register_netdevice_notifier_net(struct net *net, |
| 2042 | struct notifier_block *nb, |
| 2043 | bool ignore_call_fail) |
| 2044 | { |
| 2045 | int err; |
| 2046 | |
| 2047 | err = raw_notifier_chain_register(nh: &net->netdev_chain, nb); |
| 2048 | if (err) |
| 2049 | return err; |
| 2050 | if (dev_boot_phase) |
| 2051 | return 0; |
| 2052 | |
| 2053 | err = call_netdevice_register_net_notifiers(nb, net); |
| 2054 | if (err && !ignore_call_fail) |
| 2055 | goto chain_unregister; |
| 2056 | |
| 2057 | return 0; |
| 2058 | |
| 2059 | chain_unregister: |
| 2060 | raw_notifier_chain_unregister(nh: &net->netdev_chain, nb); |
| 2061 | return err; |
| 2062 | } |
| 2063 | |
| 2064 | static int __unregister_netdevice_notifier_net(struct net *net, |
| 2065 | struct notifier_block *nb) |
| 2066 | { |
| 2067 | int err; |
| 2068 | |
| 2069 | err = raw_notifier_chain_unregister(nh: &net->netdev_chain, nb); |
| 2070 | if (err) |
| 2071 | return err; |
| 2072 | |
| 2073 | call_netdevice_unregister_net_notifiers(nb, net); |
| 2074 | return 0; |
| 2075 | } |
| 2076 | |
| 2077 | /** |
| 2078 | * register_netdevice_notifier_net - register a per-netns network notifier block |
| 2079 | * @net: network namespace |
| 2080 | * @nb: notifier |
| 2081 | * |
| 2082 | * Register a notifier to be called when network device events occur. |
| 2083 | * The notifier passed is linked into the kernel structures and must |
| 2084 | * not be reused until it has been unregistered. A negative errno code |
| 2085 | * is returned on a failure. |
| 2086 | * |
| 2087 | * When registered all registration and up events are replayed |
| 2088 | * to the new notifier to allow device to have a race free |
| 2089 | * view of the network device list. |
| 2090 | */ |
| 2091 | |
| 2092 | int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) |
| 2093 | { |
| 2094 | int err; |
| 2095 | |
| 2096 | rtnl_net_lock(net); |
| 2097 | err = __register_netdevice_notifier_net(net, nb, ignore_call_fail: false); |
| 2098 | rtnl_net_unlock(net); |
| 2099 | |
| 2100 | return err; |
| 2101 | } |
| 2102 | EXPORT_SYMBOL(register_netdevice_notifier_net); |
| 2103 | |
| 2104 | /** |
| 2105 | * unregister_netdevice_notifier_net - unregister a per-netns |
| 2106 | * network notifier block |
| 2107 | * @net: network namespace |
| 2108 | * @nb: notifier |
| 2109 | * |
| 2110 | * Unregister a notifier previously registered by |
| 2111 | * register_netdevice_notifier_net(). The notifier is unlinked from the |
| 2112 | * kernel structures and may then be reused. A negative errno code |
| 2113 | * is returned on a failure. |
| 2114 | * |
| 2115 | * After unregistering unregister and down device events are synthesized |
| 2116 | * for all devices on the device list to the removed notifier to remove |
| 2117 | * the need for special case cleanup code. |
| 2118 | */ |
| 2119 | |
| 2120 | int unregister_netdevice_notifier_net(struct net *net, |
| 2121 | struct notifier_block *nb) |
| 2122 | { |
| 2123 | int err; |
| 2124 | |
| 2125 | rtnl_net_lock(net); |
| 2126 | err = __unregister_netdevice_notifier_net(net, nb); |
| 2127 | rtnl_net_unlock(net); |
| 2128 | |
| 2129 | return err; |
| 2130 | } |
| 2131 | EXPORT_SYMBOL(unregister_netdevice_notifier_net); |
| 2132 | |
| 2133 | static void __move_netdevice_notifier_net(struct net *src_net, |
| 2134 | struct net *dst_net, |
| 2135 | struct notifier_block *nb) |
| 2136 | { |
| 2137 | __unregister_netdevice_notifier_net(net: src_net, nb); |
| 2138 | __register_netdevice_notifier_net(net: dst_net, nb, ignore_call_fail: true); |
| 2139 | } |
| 2140 | |
| 2141 | static void rtnl_net_dev_lock(struct net_device *dev) |
| 2142 | { |
| 2143 | bool again; |
| 2144 | |
| 2145 | do { |
| 2146 | struct net *net; |
| 2147 | |
| 2148 | again = false; |
| 2149 | |
| 2150 | /* netns might be being dismantled. */ |
| 2151 | rcu_read_lock(); |
| 2152 | net = dev_net_rcu(dev); |
| 2153 | net_passive_inc(net); |
| 2154 | rcu_read_unlock(); |
| 2155 | |
| 2156 | rtnl_net_lock(net); |
| 2157 | |
| 2158 | #ifdef CONFIG_NET_NS |
| 2159 | /* dev might have been moved to another netns. */ |
| 2160 | if (!net_eq(net1: net, rcu_access_pointer(dev->nd_net.net))) { |
| 2161 | rtnl_net_unlock(net); |
| 2162 | net_passive_dec(net); |
| 2163 | again = true; |
| 2164 | } |
| 2165 | #endif |
| 2166 | } while (again); |
| 2167 | } |
| 2168 | |
| 2169 | static void rtnl_net_dev_unlock(struct net_device *dev) |
| 2170 | { |
| 2171 | struct net *net = dev_net(dev); |
| 2172 | |
| 2173 | rtnl_net_unlock(net); |
| 2174 | net_passive_dec(net); |
| 2175 | } |
| 2176 | |
| 2177 | int register_netdevice_notifier_dev_net(struct net_device *dev, |
| 2178 | struct notifier_block *nb, |
| 2179 | struct netdev_net_notifier *nn) |
| 2180 | { |
| 2181 | int err; |
| 2182 | |
| 2183 | rtnl_net_dev_lock(dev); |
| 2184 | err = __register_netdevice_notifier_net(net: dev_net(dev), nb, ignore_call_fail: false); |
| 2185 | if (!err) { |
| 2186 | nn->nb = nb; |
| 2187 | list_add(new: &nn->list, head: &dev->net_notifier_list); |
| 2188 | } |
| 2189 | rtnl_net_dev_unlock(dev); |
| 2190 | |
| 2191 | return err; |
| 2192 | } |
| 2193 | EXPORT_SYMBOL(register_netdevice_notifier_dev_net); |
| 2194 | |
| 2195 | int unregister_netdevice_notifier_dev_net(struct net_device *dev, |
| 2196 | struct notifier_block *nb, |
| 2197 | struct netdev_net_notifier *nn) |
| 2198 | { |
| 2199 | int err; |
| 2200 | |
| 2201 | rtnl_net_dev_lock(dev); |
| 2202 | list_del(entry: &nn->list); |
| 2203 | err = __unregister_netdevice_notifier_net(net: dev_net(dev), nb); |
| 2204 | rtnl_net_dev_unlock(dev); |
| 2205 | |
| 2206 | return err; |
| 2207 | } |
| 2208 | EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); |
| 2209 | |
| 2210 | static void move_netdevice_notifiers_dev_net(struct net_device *dev, |
| 2211 | struct net *net) |
| 2212 | { |
| 2213 | struct netdev_net_notifier *nn; |
| 2214 | |
| 2215 | list_for_each_entry(nn, &dev->net_notifier_list, list) |
| 2216 | __move_netdevice_notifier_net(src_net: dev_net(dev), dst_net: net, nb: nn->nb); |
| 2217 | } |
| 2218 | |
| 2219 | /** |
| 2220 | * call_netdevice_notifiers_info - call all network notifier blocks |
| 2221 | * @val: value passed unmodified to notifier function |
| 2222 | * @info: notifier information data |
| 2223 | * |
| 2224 | * Call all network notifier blocks. Parameters and return value |
| 2225 | * are as for raw_notifier_call_chain(). |
| 2226 | */ |
| 2227 | |
| 2228 | int call_netdevice_notifiers_info(unsigned long val, |
| 2229 | struct netdev_notifier_info *info) |
| 2230 | { |
| 2231 | struct net *net = dev_net(dev: info->dev); |
| 2232 | int ret; |
| 2233 | |
| 2234 | ASSERT_RTNL(); |
| 2235 | |
| 2236 | /* Run per-netns notifier block chain first, then run the global one. |
| 2237 | * Hopefully, one day, the global one is going to be removed after |
| 2238 | * all notifier block registrators get converted to be per-netns. |
| 2239 | */ |
| 2240 | ret = raw_notifier_call_chain(nh: &net->netdev_chain, val, v: info); |
| 2241 | if (ret & NOTIFY_STOP_MASK) |
| 2242 | return ret; |
| 2243 | return raw_notifier_call_chain(nh: &netdev_chain, val, v: info); |
| 2244 | } |
| 2245 | |
| 2246 | /** |
| 2247 | * call_netdevice_notifiers_info_robust - call per-netns notifier blocks |
| 2248 | * for and rollback on error |
| 2249 | * @val_up: value passed unmodified to notifier function |
| 2250 | * @val_down: value passed unmodified to the notifier function when |
| 2251 | * recovering from an error on @val_up |
| 2252 | * @info: notifier information data |
| 2253 | * |
| 2254 | * Call all per-netns network notifier blocks, but not notifier blocks on |
| 2255 | * the global notifier chain. Parameters and return value are as for |
| 2256 | * raw_notifier_call_chain_robust(). |
| 2257 | */ |
| 2258 | |
| 2259 | static int |
| 2260 | call_netdevice_notifiers_info_robust(unsigned long val_up, |
| 2261 | unsigned long val_down, |
| 2262 | struct netdev_notifier_info *info) |
| 2263 | { |
| 2264 | struct net *net = dev_net(dev: info->dev); |
| 2265 | |
| 2266 | ASSERT_RTNL(); |
| 2267 | |
| 2268 | return raw_notifier_call_chain_robust(nh: &net->netdev_chain, |
| 2269 | val_up, val_down, v: info); |
| 2270 | } |
| 2271 | |
| 2272 | static int call_netdevice_notifiers_extack(unsigned long val, |
| 2273 | struct net_device *dev, |
| 2274 | struct netlink_ext_ack *extack) |
| 2275 | { |
| 2276 | struct netdev_notifier_info info = { |
| 2277 | .dev = dev, |
| 2278 | .extack = extack, |
| 2279 | }; |
| 2280 | |
| 2281 | return call_netdevice_notifiers_info(val, info: &info); |
| 2282 | } |
| 2283 | |
| 2284 | /** |
| 2285 | * call_netdevice_notifiers - call all network notifier blocks |
| 2286 | * @val: value passed unmodified to notifier function |
| 2287 | * @dev: net_device pointer passed unmodified to notifier function |
| 2288 | * |
| 2289 | * Call all network notifier blocks. Parameters and return value |
| 2290 | * are as for raw_notifier_call_chain(). |
| 2291 | */ |
| 2292 | |
| 2293 | int call_netdevice_notifiers(unsigned long val, struct net_device *dev) |
| 2294 | { |
| 2295 | return call_netdevice_notifiers_extack(val, dev, NULL); |
| 2296 | } |
| 2297 | EXPORT_SYMBOL(call_netdevice_notifiers); |
| 2298 | |
| 2299 | /** |
| 2300 | * call_netdevice_notifiers_mtu - call all network notifier blocks |
| 2301 | * @val: value passed unmodified to notifier function |
| 2302 | * @dev: net_device pointer passed unmodified to notifier function |
| 2303 | * @arg: additional u32 argument passed to the notifier function |
| 2304 | * |
| 2305 | * Call all network notifier blocks. Parameters and return value |
| 2306 | * are as for raw_notifier_call_chain(). |
| 2307 | */ |
| 2308 | static int call_netdevice_notifiers_mtu(unsigned long val, |
| 2309 | struct net_device *dev, u32 arg) |
| 2310 | { |
| 2311 | struct netdev_notifier_info_ext info = { |
| 2312 | .info.dev = dev, |
| 2313 | .ext.mtu = arg, |
| 2314 | }; |
| 2315 | |
| 2316 | BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); |
| 2317 | |
| 2318 | return call_netdevice_notifiers_info(val, info: &info.info); |
| 2319 | } |
| 2320 | |
| 2321 | #ifdef CONFIG_NET_INGRESS |
| 2322 | static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); |
| 2323 | |
| 2324 | void net_inc_ingress_queue(void) |
| 2325 | { |
| 2326 | static_branch_inc(&ingress_needed_key); |
| 2327 | } |
| 2328 | EXPORT_SYMBOL_GPL(net_inc_ingress_queue); |
| 2329 | |
| 2330 | void net_dec_ingress_queue(void) |
| 2331 | { |
| 2332 | static_branch_dec(&ingress_needed_key); |
| 2333 | } |
| 2334 | EXPORT_SYMBOL_GPL(net_dec_ingress_queue); |
| 2335 | #endif |
| 2336 | |
| 2337 | #ifdef CONFIG_NET_EGRESS |
| 2338 | static DEFINE_STATIC_KEY_FALSE(egress_needed_key); |
| 2339 | |
| 2340 | void net_inc_egress_queue(void) |
| 2341 | { |
| 2342 | static_branch_inc(&egress_needed_key); |
| 2343 | } |
| 2344 | EXPORT_SYMBOL_GPL(net_inc_egress_queue); |
| 2345 | |
| 2346 | void net_dec_egress_queue(void) |
| 2347 | { |
| 2348 | static_branch_dec(&egress_needed_key); |
| 2349 | } |
| 2350 | EXPORT_SYMBOL_GPL(net_dec_egress_queue); |
| 2351 | #endif |
| 2352 | |
| 2353 | #ifdef CONFIG_NET_CLS_ACT |
| 2354 | DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); |
| 2355 | EXPORT_SYMBOL(tcf_sw_enabled_key); |
| 2356 | #endif |
| 2357 | |
| 2358 | DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); |
| 2359 | EXPORT_SYMBOL(netstamp_needed_key); |
| 2360 | #ifdef CONFIG_JUMP_LABEL |
| 2361 | static atomic_t netstamp_needed_deferred; |
| 2362 | static atomic_t netstamp_wanted; |
| 2363 | static void netstamp_clear(struct work_struct *work) |
| 2364 | { |
| 2365 | int deferred = atomic_xchg(v: &netstamp_needed_deferred, new: 0); |
| 2366 | int wanted; |
| 2367 | |
| 2368 | wanted = atomic_add_return(i: deferred, v: &netstamp_wanted); |
| 2369 | if (wanted > 0) |
| 2370 | static_branch_enable(&netstamp_needed_key); |
| 2371 | else |
| 2372 | static_branch_disable(&netstamp_needed_key); |
| 2373 | } |
| 2374 | static DECLARE_WORK(netstamp_work, netstamp_clear); |
| 2375 | #endif |
| 2376 | |
| 2377 | void net_enable_timestamp(void) |
| 2378 | { |
| 2379 | #ifdef CONFIG_JUMP_LABEL |
| 2380 | int wanted = atomic_read(v: &netstamp_wanted); |
| 2381 | |
| 2382 | while (wanted > 0) { |
| 2383 | if (atomic_try_cmpxchg(v: &netstamp_wanted, old: &wanted, new: wanted + 1)) |
| 2384 | return; |
| 2385 | } |
| 2386 | atomic_inc(v: &netstamp_needed_deferred); |
| 2387 | schedule_work(work: &netstamp_work); |
| 2388 | #else |
| 2389 | static_branch_inc(&netstamp_needed_key); |
| 2390 | #endif |
| 2391 | } |
| 2392 | EXPORT_SYMBOL(net_enable_timestamp); |
| 2393 | |
| 2394 | void net_disable_timestamp(void) |
| 2395 | { |
| 2396 | #ifdef CONFIG_JUMP_LABEL |
| 2397 | int wanted = atomic_read(v: &netstamp_wanted); |
| 2398 | |
| 2399 | while (wanted > 1) { |
| 2400 | if (atomic_try_cmpxchg(v: &netstamp_wanted, old: &wanted, new: wanted - 1)) |
| 2401 | return; |
| 2402 | } |
| 2403 | atomic_dec(v: &netstamp_needed_deferred); |
| 2404 | schedule_work(work: &netstamp_work); |
| 2405 | #else |
| 2406 | static_branch_dec(&netstamp_needed_key); |
| 2407 | #endif |
| 2408 | } |
| 2409 | EXPORT_SYMBOL(net_disable_timestamp); |
| 2410 | |
| 2411 | static inline void net_timestamp_set(struct sk_buff *skb) |
| 2412 | { |
| 2413 | skb->tstamp = 0; |
| 2414 | skb->tstamp_type = SKB_CLOCK_REALTIME; |
| 2415 | if (static_branch_unlikely(&netstamp_needed_key)) |
| 2416 | skb->tstamp = ktime_get_real(); |
| 2417 | } |
| 2418 | |
| 2419 | #define net_timestamp_check(COND, SKB) \ |
| 2420 | if (static_branch_unlikely(&netstamp_needed_key)) { \ |
| 2421 | if ((COND) && !(SKB)->tstamp) \ |
| 2422 | (SKB)->tstamp = ktime_get_real(); \ |
| 2423 | } \ |
| 2424 | |
| 2425 | bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) |
| 2426 | { |
| 2427 | return __is_skb_forwardable(dev, skb, check_mtu: true); |
| 2428 | } |
| 2429 | EXPORT_SYMBOL_GPL(is_skb_forwardable); |
| 2430 | |
| 2431 | static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, |
| 2432 | bool check_mtu) |
| 2433 | { |
| 2434 | int ret = ____dev_forward_skb(dev, skb, check_mtu); |
| 2435 | |
| 2436 | if (likely(!ret)) { |
| 2437 | skb->protocol = eth_type_trans(skb, dev); |
| 2438 | skb_postpull_rcsum(skb, start: eth_hdr(skb), ETH_HLEN); |
| 2439 | } |
| 2440 | |
| 2441 | return ret; |
| 2442 | } |
| 2443 | |
| 2444 | int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) |
| 2445 | { |
| 2446 | return __dev_forward_skb2(dev, skb, check_mtu: true); |
| 2447 | } |
| 2448 | EXPORT_SYMBOL_GPL(__dev_forward_skb); |
| 2449 | |
| 2450 | /** |
| 2451 | * dev_forward_skb - loopback an skb to another netif |
| 2452 | * |
| 2453 | * @dev: destination network device |
| 2454 | * @skb: buffer to forward |
| 2455 | * |
| 2456 | * return values: |
| 2457 | * NET_RX_SUCCESS (no congestion) |
| 2458 | * NET_RX_DROP (packet was dropped, but freed) |
| 2459 | * |
| 2460 | * dev_forward_skb can be used for injecting an skb from the |
| 2461 | * start_xmit function of one device into the receive queue |
| 2462 | * of another device. |
| 2463 | * |
| 2464 | * The receiving device may be in another namespace, so |
| 2465 | * we have to clear all information in the skb that could |
| 2466 | * impact namespace isolation. |
| 2467 | */ |
| 2468 | int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) |
| 2469 | { |
| 2470 | return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); |
| 2471 | } |
| 2472 | EXPORT_SYMBOL_GPL(dev_forward_skb); |
| 2473 | |
| 2474 | int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) |
| 2475 | { |
| 2476 | return __dev_forward_skb2(dev, skb, check_mtu: false) ?: netif_rx_internal(skb); |
| 2477 | } |
| 2478 | |
| 2479 | static int deliver_skb(struct sk_buff *skb, |
| 2480 | struct packet_type *pt_prev, |
| 2481 | struct net_device *orig_dev) |
| 2482 | { |
| 2483 | if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) |
| 2484 | return -ENOMEM; |
| 2485 | refcount_inc(r: &skb->users); |
| 2486 | return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); |
| 2487 | } |
| 2488 | |
| 2489 | static inline void deliver_ptype_list_skb(struct sk_buff *skb, |
| 2490 | struct packet_type **pt, |
| 2491 | struct net_device *orig_dev, |
| 2492 | __be16 type, |
| 2493 | struct list_head *ptype_list) |
| 2494 | { |
| 2495 | struct packet_type *ptype, *pt_prev = *pt; |
| 2496 | |
| 2497 | list_for_each_entry_rcu(ptype, ptype_list, list) { |
| 2498 | if (ptype->type != type) |
| 2499 | continue; |
| 2500 | if (unlikely(pt_prev)) |
| 2501 | deliver_skb(skb, pt_prev, orig_dev); |
| 2502 | pt_prev = ptype; |
| 2503 | } |
| 2504 | *pt = pt_prev; |
| 2505 | } |
| 2506 | |
| 2507 | static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) |
| 2508 | { |
| 2509 | if (!ptype->af_packet_priv || !skb->sk) |
| 2510 | return false; |
| 2511 | |
| 2512 | if (ptype->id_match) |
| 2513 | return ptype->id_match(ptype, skb->sk); |
| 2514 | else if ((struct sock *)ptype->af_packet_priv == skb->sk) |
| 2515 | return true; |
| 2516 | |
| 2517 | return false; |
| 2518 | } |
| 2519 | |
| 2520 | /** |
| 2521 | * dev_nit_active_rcu - return true if any network interface taps are in use |
| 2522 | * |
| 2523 | * The caller must hold the RCU lock |
| 2524 | * |
| 2525 | * @dev: network device to check for the presence of taps |
| 2526 | */ |
| 2527 | bool dev_nit_active_rcu(const struct net_device *dev) |
| 2528 | { |
| 2529 | /* Callers may hold either RCU or RCU BH lock */ |
| 2530 | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
| 2531 | |
| 2532 | return !list_empty(head: &dev_net(dev)->ptype_all) || |
| 2533 | !list_empty(head: &dev->ptype_all); |
| 2534 | } |
| 2535 | EXPORT_SYMBOL_GPL(dev_nit_active_rcu); |
| 2536 | |
| 2537 | /* |
| 2538 | * Support routine. Sends outgoing frames to any network |
| 2539 | * taps currently in use. |
| 2540 | */ |
| 2541 | |
| 2542 | void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) |
| 2543 | { |
| 2544 | struct packet_type *ptype, *pt_prev = NULL; |
| 2545 | struct list_head *ptype_list; |
| 2546 | struct sk_buff *skb2 = NULL; |
| 2547 | |
| 2548 | rcu_read_lock(); |
| 2549 | ptype_list = &dev_net_rcu(dev)->ptype_all; |
| 2550 | again: |
| 2551 | list_for_each_entry_rcu(ptype, ptype_list, list) { |
| 2552 | if (READ_ONCE(ptype->ignore_outgoing)) |
| 2553 | continue; |
| 2554 | |
| 2555 | /* Never send packets back to the socket |
| 2556 | * they originated from - MvS (miquels@drinkel.ow.org) |
| 2557 | */ |
| 2558 | if (skb_loop_sk(ptype, skb)) |
| 2559 | continue; |
| 2560 | |
| 2561 | if (unlikely(pt_prev)) { |
| 2562 | deliver_skb(skb: skb2, pt_prev, orig_dev: skb->dev); |
| 2563 | pt_prev = ptype; |
| 2564 | continue; |
| 2565 | } |
| 2566 | |
| 2567 | /* need to clone skb, done only once */ |
| 2568 | skb2 = skb_clone(skb, GFP_ATOMIC); |
| 2569 | if (!skb2) |
| 2570 | goto out_unlock; |
| 2571 | |
| 2572 | net_timestamp_set(skb: skb2); |
| 2573 | |
| 2574 | /* skb->nh should be correctly |
| 2575 | * set by sender, so that the second statement is |
| 2576 | * just protection against buggy protocols. |
| 2577 | */ |
| 2578 | skb_reset_mac_header(skb: skb2); |
| 2579 | |
| 2580 | if (skb_network_header(skb: skb2) < skb2->data || |
| 2581 | skb_network_header(skb: skb2) > skb_tail_pointer(skb: skb2)) { |
| 2582 | net_crit_ratelimited("protocol %04x is buggy, dev %s\n" , |
| 2583 | ntohs(skb2->protocol), |
| 2584 | dev->name); |
| 2585 | skb_reset_network_header(skb: skb2); |
| 2586 | } |
| 2587 | |
| 2588 | skb2->transport_header = skb2->network_header; |
| 2589 | skb2->pkt_type = PACKET_OUTGOING; |
| 2590 | pt_prev = ptype; |
| 2591 | } |
| 2592 | |
| 2593 | if (ptype_list != &dev->ptype_all) { |
| 2594 | ptype_list = &dev->ptype_all; |
| 2595 | goto again; |
| 2596 | } |
| 2597 | out_unlock: |
| 2598 | if (pt_prev) { |
| 2599 | if (!skb_orphan_frags_rx(skb: skb2, GFP_ATOMIC)) |
| 2600 | pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); |
| 2601 | else |
| 2602 | kfree_skb(skb: skb2); |
| 2603 | } |
| 2604 | rcu_read_unlock(); |
| 2605 | } |
| 2606 | EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); |
| 2607 | |
| 2608 | /** |
| 2609 | * netif_setup_tc - Handle tc mappings on real_num_tx_queues change |
| 2610 | * @dev: Network device |
| 2611 | * @txq: number of queues available |
| 2612 | * |
| 2613 | * If real_num_tx_queues is changed the tc mappings may no longer be |
| 2614 | * valid. To resolve this verify the tc mapping remains valid and if |
| 2615 | * not NULL the mapping. With no priorities mapping to this |
| 2616 | * offset/count pair it will no longer be used. In the worst case TC0 |
| 2617 | * is invalid nothing can be done so disable priority mappings. If is |
| 2618 | * expected that drivers will fix this mapping if they can before |
| 2619 | * calling netif_set_real_num_tx_queues. |
| 2620 | */ |
| 2621 | static void netif_setup_tc(struct net_device *dev, unsigned int txq) |
| 2622 | { |
| 2623 | int i; |
| 2624 | struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; |
| 2625 | |
| 2626 | /* If TC0 is invalidated disable TC mapping */ |
| 2627 | if (tc->offset + tc->count > txq) { |
| 2628 | netdev_warn(dev, format: "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n" ); |
| 2629 | dev->num_tc = 0; |
| 2630 | return; |
| 2631 | } |
| 2632 | |
| 2633 | /* Invalidated prio to tc mappings set to TC0 */ |
| 2634 | for (i = 1; i < TC_BITMASK + 1; i++) { |
| 2635 | int q = netdev_get_prio_tc_map(dev, prio: i); |
| 2636 | |
| 2637 | tc = &dev->tc_to_txq[q]; |
| 2638 | if (tc->offset + tc->count > txq) { |
| 2639 | netdev_warn(dev, format: "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n" , |
| 2640 | i, q); |
| 2641 | netdev_set_prio_tc_map(dev, prio: i, tc: 0); |
| 2642 | } |
| 2643 | } |
| 2644 | } |
| 2645 | |
| 2646 | int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) |
| 2647 | { |
| 2648 | if (dev->num_tc) { |
| 2649 | struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; |
| 2650 | int i; |
| 2651 | |
| 2652 | /* walk through the TCs and see if it falls into any of them */ |
| 2653 | for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { |
| 2654 | if ((txq - tc->offset) < tc->count) |
| 2655 | return i; |
| 2656 | } |
| 2657 | |
| 2658 | /* didn't find it, just return -1 to indicate no match */ |
| 2659 | return -1; |
| 2660 | } |
| 2661 | |
| 2662 | return 0; |
| 2663 | } |
| 2664 | EXPORT_SYMBOL(netdev_txq_to_tc); |
| 2665 | |
| 2666 | #ifdef CONFIG_XPS |
| 2667 | static struct static_key xps_needed __read_mostly; |
| 2668 | static struct static_key xps_rxqs_needed __read_mostly; |
| 2669 | static DEFINE_MUTEX(xps_map_mutex); |
| 2670 | #define xmap_dereference(P) \ |
| 2671 | rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) |
| 2672 | |
| 2673 | static bool remove_xps_queue(struct xps_dev_maps *dev_maps, |
| 2674 | struct xps_dev_maps *old_maps, int tci, u16 index) |
| 2675 | { |
| 2676 | struct xps_map *map = NULL; |
| 2677 | int pos; |
| 2678 | |
| 2679 | map = xmap_dereference(dev_maps->attr_map[tci]); |
| 2680 | if (!map) |
| 2681 | return false; |
| 2682 | |
| 2683 | for (pos = map->len; pos--;) { |
| 2684 | if (map->queues[pos] != index) |
| 2685 | continue; |
| 2686 | |
| 2687 | if (map->len > 1) { |
| 2688 | map->queues[pos] = map->queues[--map->len]; |
| 2689 | break; |
| 2690 | } |
| 2691 | |
| 2692 | if (old_maps) |
| 2693 | RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); |
| 2694 | RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); |
| 2695 | kfree_rcu(map, rcu); |
| 2696 | return false; |
| 2697 | } |
| 2698 | |
| 2699 | return true; |
| 2700 | } |
| 2701 | |
| 2702 | static bool remove_xps_queue_cpu(struct net_device *dev, |
| 2703 | struct xps_dev_maps *dev_maps, |
| 2704 | int cpu, u16 offset, u16 count) |
| 2705 | { |
| 2706 | int num_tc = dev_maps->num_tc; |
| 2707 | bool active = false; |
| 2708 | int tci; |
| 2709 | |
| 2710 | for (tci = cpu * num_tc; num_tc--; tci++) { |
| 2711 | int i, j; |
| 2712 | |
| 2713 | for (i = count, j = offset; i--; j++) { |
| 2714 | if (!remove_xps_queue(dev_maps, NULL, tci, index: j)) |
| 2715 | break; |
| 2716 | } |
| 2717 | |
| 2718 | active |= i < 0; |
| 2719 | } |
| 2720 | |
| 2721 | return active; |
| 2722 | } |
| 2723 | |
| 2724 | static void reset_xps_maps(struct net_device *dev, |
| 2725 | struct xps_dev_maps *dev_maps, |
| 2726 | enum xps_map_type type) |
| 2727 | { |
| 2728 | static_key_slow_dec_cpuslocked(key: &xps_needed); |
| 2729 | if (type == XPS_RXQS) |
| 2730 | static_key_slow_dec_cpuslocked(key: &xps_rxqs_needed); |
| 2731 | |
| 2732 | RCU_INIT_POINTER(dev->xps_maps[type], NULL); |
| 2733 | |
| 2734 | kfree_rcu(dev_maps, rcu); |
| 2735 | } |
| 2736 | |
| 2737 | static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, |
| 2738 | u16 offset, u16 count) |
| 2739 | { |
| 2740 | struct xps_dev_maps *dev_maps; |
| 2741 | bool active = false; |
| 2742 | int i, j; |
| 2743 | |
| 2744 | dev_maps = xmap_dereference(dev->xps_maps[type]); |
| 2745 | if (!dev_maps) |
| 2746 | return; |
| 2747 | |
| 2748 | for (j = 0; j < dev_maps->nr_ids; j++) |
| 2749 | active |= remove_xps_queue_cpu(dev, dev_maps, cpu: j, offset, count); |
| 2750 | if (!active) |
| 2751 | reset_xps_maps(dev, dev_maps, type); |
| 2752 | |
| 2753 | if (type == XPS_CPUS) { |
| 2754 | for (i = offset + (count - 1); count--; i--) |
| 2755 | netdev_queue_numa_node_write( |
| 2756 | q: netdev_get_tx_queue(dev, index: i), NUMA_NO_NODE); |
| 2757 | } |
| 2758 | } |
| 2759 | |
| 2760 | static void netif_reset_xps_queues(struct net_device *dev, u16 offset, |
| 2761 | u16 count) |
| 2762 | { |
| 2763 | if (!static_key_false(key: &xps_needed)) |
| 2764 | return; |
| 2765 | |
| 2766 | cpus_read_lock(); |
| 2767 | mutex_lock(&xps_map_mutex); |
| 2768 | |
| 2769 | if (static_key_false(key: &xps_rxqs_needed)) |
| 2770 | clean_xps_maps(dev, type: XPS_RXQS, offset, count); |
| 2771 | |
| 2772 | clean_xps_maps(dev, type: XPS_CPUS, offset, count); |
| 2773 | |
| 2774 | mutex_unlock(lock: &xps_map_mutex); |
| 2775 | cpus_read_unlock(); |
| 2776 | } |
| 2777 | |
| 2778 | static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) |
| 2779 | { |
| 2780 | netif_reset_xps_queues(dev, offset: index, count: dev->num_tx_queues - index); |
| 2781 | } |
| 2782 | |
| 2783 | static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, |
| 2784 | u16 index, bool is_rxqs_map) |
| 2785 | { |
| 2786 | struct xps_map *new_map; |
| 2787 | int alloc_len = XPS_MIN_MAP_ALLOC; |
| 2788 | int i, pos; |
| 2789 | |
| 2790 | for (pos = 0; map && pos < map->len; pos++) { |
| 2791 | if (map->queues[pos] != index) |
| 2792 | continue; |
| 2793 | return map; |
| 2794 | } |
| 2795 | |
| 2796 | /* Need to add tx-queue to this CPU's/rx-queue's existing map */ |
| 2797 | if (map) { |
| 2798 | if (pos < map->alloc_len) |
| 2799 | return map; |
| 2800 | |
| 2801 | alloc_len = map->alloc_len * 2; |
| 2802 | } |
| 2803 | |
| 2804 | /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's |
| 2805 | * map |
| 2806 | */ |
| 2807 | if (is_rxqs_map) |
| 2808 | new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); |
| 2809 | else |
| 2810 | new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, |
| 2811 | cpu_to_node(attr_index)); |
| 2812 | if (!new_map) |
| 2813 | return NULL; |
| 2814 | |
| 2815 | for (i = 0; i < pos; i++) |
| 2816 | new_map->queues[i] = map->queues[i]; |
| 2817 | new_map->alloc_len = alloc_len; |
| 2818 | new_map->len = pos; |
| 2819 | |
| 2820 | return new_map; |
| 2821 | } |
| 2822 | |
| 2823 | /* Copy xps maps at a given index */ |
| 2824 | static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, |
| 2825 | struct xps_dev_maps *new_dev_maps, int index, |
| 2826 | int tc, bool skip_tc) |
| 2827 | { |
| 2828 | int i, tci = index * dev_maps->num_tc; |
| 2829 | struct xps_map *map; |
| 2830 | |
| 2831 | /* copy maps belonging to foreign traffic classes */ |
| 2832 | for (i = 0; i < dev_maps->num_tc; i++, tci++) { |
| 2833 | if (i == tc && skip_tc) |
| 2834 | continue; |
| 2835 | |
| 2836 | /* fill in the new device map from the old device map */ |
| 2837 | map = xmap_dereference(dev_maps->attr_map[tci]); |
| 2838 | RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); |
| 2839 | } |
| 2840 | } |
| 2841 | |
| 2842 | /* Must be called under cpus_read_lock */ |
| 2843 | int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, |
| 2844 | u16 index, enum xps_map_type type) |
| 2845 | { |
| 2846 | struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; |
| 2847 | const unsigned long *online_mask = NULL; |
| 2848 | bool active = false, copy = false; |
| 2849 | int i, j, tci, numa_node_id = -2; |
| 2850 | int maps_sz, num_tc = 1, tc = 0; |
| 2851 | struct xps_map *map, *new_map; |
| 2852 | unsigned int nr_ids; |
| 2853 | |
| 2854 | WARN_ON_ONCE(index >= dev->num_tx_queues); |
| 2855 | |
| 2856 | if (dev->num_tc) { |
| 2857 | /* Do not allow XPS on subordinate device directly */ |
| 2858 | num_tc = dev->num_tc; |
| 2859 | if (num_tc < 0) |
| 2860 | return -EINVAL; |
| 2861 | |
| 2862 | /* If queue belongs to subordinate dev use its map */ |
| 2863 | dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; |
| 2864 | |
| 2865 | tc = netdev_txq_to_tc(dev, index); |
| 2866 | if (tc < 0) |
| 2867 | return -EINVAL; |
| 2868 | } |
| 2869 | |
| 2870 | mutex_lock(&xps_map_mutex); |
| 2871 | |
| 2872 | dev_maps = xmap_dereference(dev->xps_maps[type]); |
| 2873 | if (type == XPS_RXQS) { |
| 2874 | maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); |
| 2875 | nr_ids = dev->num_rx_queues; |
| 2876 | } else { |
| 2877 | maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); |
| 2878 | if (num_possible_cpus() > 1) |
| 2879 | online_mask = cpumask_bits(cpu_online_mask); |
| 2880 | nr_ids = nr_cpu_ids; |
| 2881 | } |
| 2882 | |
| 2883 | if (maps_sz < L1_CACHE_BYTES) |
| 2884 | maps_sz = L1_CACHE_BYTES; |
| 2885 | |
| 2886 | /* The old dev_maps could be larger or smaller than the one we're |
| 2887 | * setting up now, as dev->num_tc or nr_ids could have been updated in |
| 2888 | * between. We could try to be smart, but let's be safe instead and only |
| 2889 | * copy foreign traffic classes if the two map sizes match. |
| 2890 | */ |
| 2891 | if (dev_maps && |
| 2892 | dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) |
| 2893 | copy = true; |
| 2894 | |
| 2895 | /* allocate memory for queue storage */ |
| 2896 | for (j = -1; j = netif_attrmask_next_and(n: j, src1p: online_mask, src2p: mask, nr_bits: nr_ids), |
| 2897 | j < nr_ids;) { |
| 2898 | if (!new_dev_maps) { |
| 2899 | new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); |
| 2900 | if (!new_dev_maps) { |
| 2901 | mutex_unlock(lock: &xps_map_mutex); |
| 2902 | return -ENOMEM; |
| 2903 | } |
| 2904 | |
| 2905 | new_dev_maps->nr_ids = nr_ids; |
| 2906 | new_dev_maps->num_tc = num_tc; |
| 2907 | } |
| 2908 | |
| 2909 | tci = j * num_tc + tc; |
| 2910 | map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; |
| 2911 | |
| 2912 | map = expand_xps_map(map, attr_index: j, index, is_rxqs_map: type == XPS_RXQS); |
| 2913 | if (!map) |
| 2914 | goto error; |
| 2915 | |
| 2916 | RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); |
| 2917 | } |
| 2918 | |
| 2919 | if (!new_dev_maps) |
| 2920 | goto out_no_new_maps; |
| 2921 | |
| 2922 | if (!dev_maps) { |
| 2923 | /* Increment static keys at most once per type */ |
| 2924 | static_key_slow_inc_cpuslocked(key: &xps_needed); |
| 2925 | if (type == XPS_RXQS) |
| 2926 | static_key_slow_inc_cpuslocked(key: &xps_rxqs_needed); |
| 2927 | } |
| 2928 | |
| 2929 | for (j = 0; j < nr_ids; j++) { |
| 2930 | bool skip_tc = false; |
| 2931 | |
| 2932 | tci = j * num_tc + tc; |
| 2933 | if (netif_attr_test_mask(j, mask, nr_bits: nr_ids) && |
| 2934 | netif_attr_test_online(j, online_mask, nr_bits: nr_ids)) { |
| 2935 | /* add tx-queue to CPU/rx-queue maps */ |
| 2936 | int pos = 0; |
| 2937 | |
| 2938 | skip_tc = true; |
| 2939 | |
| 2940 | map = xmap_dereference(new_dev_maps->attr_map[tci]); |
| 2941 | while ((pos < map->len) && (map->queues[pos] != index)) |
| 2942 | pos++; |
| 2943 | |
| 2944 | if (pos == map->len) |
| 2945 | map->queues[map->len++] = index; |
| 2946 | #ifdef CONFIG_NUMA |
| 2947 | if (type == XPS_CPUS) { |
| 2948 | if (numa_node_id == -2) |
| 2949 | numa_node_id = cpu_to_node(cpu: j); |
| 2950 | else if (numa_node_id != cpu_to_node(cpu: j)) |
| 2951 | numa_node_id = -1; |
| 2952 | } |
| 2953 | #endif |
| 2954 | } |
| 2955 | |
| 2956 | if (copy) |
| 2957 | xps_copy_dev_maps(dev_maps, new_dev_maps, index: j, tc, |
| 2958 | skip_tc); |
| 2959 | } |
| 2960 | |
| 2961 | rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); |
| 2962 | |
| 2963 | /* Cleanup old maps */ |
| 2964 | if (!dev_maps) |
| 2965 | goto out_no_old_maps; |
| 2966 | |
| 2967 | for (j = 0; j < dev_maps->nr_ids; j++) { |
| 2968 | for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { |
| 2969 | map = xmap_dereference(dev_maps->attr_map[tci]); |
| 2970 | if (!map) |
| 2971 | continue; |
| 2972 | |
| 2973 | if (copy) { |
| 2974 | new_map = xmap_dereference(new_dev_maps->attr_map[tci]); |
| 2975 | if (map == new_map) |
| 2976 | continue; |
| 2977 | } |
| 2978 | |
| 2979 | RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); |
| 2980 | kfree_rcu(map, rcu); |
| 2981 | } |
| 2982 | } |
| 2983 | |
| 2984 | old_dev_maps = dev_maps; |
| 2985 | |
| 2986 | out_no_old_maps: |
| 2987 | dev_maps = new_dev_maps; |
| 2988 | active = true; |
| 2989 | |
| 2990 | out_no_new_maps: |
| 2991 | if (type == XPS_CPUS) |
| 2992 | /* update Tx queue numa node */ |
| 2993 | netdev_queue_numa_node_write(q: netdev_get_tx_queue(dev, index), |
| 2994 | node: (numa_node_id >= 0) ? |
| 2995 | numa_node_id : NUMA_NO_NODE); |
| 2996 | |
| 2997 | if (!dev_maps) |
| 2998 | goto out_no_maps; |
| 2999 | |
| 3000 | /* removes tx-queue from unused CPUs/rx-queues */ |
| 3001 | for (j = 0; j < dev_maps->nr_ids; j++) { |
| 3002 | tci = j * dev_maps->num_tc; |
| 3003 | |
| 3004 | for (i = 0; i < dev_maps->num_tc; i++, tci++) { |
| 3005 | if (i == tc && |
| 3006 | netif_attr_test_mask(j, mask, nr_bits: dev_maps->nr_ids) && |
| 3007 | netif_attr_test_online(j, online_mask, nr_bits: dev_maps->nr_ids)) |
| 3008 | continue; |
| 3009 | |
| 3010 | active |= remove_xps_queue(dev_maps, |
| 3011 | old_maps: copy ? old_dev_maps : NULL, |
| 3012 | tci, index); |
| 3013 | } |
| 3014 | } |
| 3015 | |
| 3016 | if (old_dev_maps) |
| 3017 | kfree_rcu(old_dev_maps, rcu); |
| 3018 | |
| 3019 | /* free map if not active */ |
| 3020 | if (!active) |
| 3021 | reset_xps_maps(dev, dev_maps, type); |
| 3022 | |
| 3023 | out_no_maps: |
| 3024 | mutex_unlock(lock: &xps_map_mutex); |
| 3025 | |
| 3026 | return 0; |
| 3027 | error: |
| 3028 | /* remove any maps that we added */ |
| 3029 | for (j = 0; j < nr_ids; j++) { |
| 3030 | for (i = num_tc, tci = j * num_tc; i--; tci++) { |
| 3031 | new_map = xmap_dereference(new_dev_maps->attr_map[tci]); |
| 3032 | map = copy ? |
| 3033 | xmap_dereference(dev_maps->attr_map[tci]) : |
| 3034 | NULL; |
| 3035 | if (new_map && new_map != map) |
| 3036 | kfree(objp: new_map); |
| 3037 | } |
| 3038 | } |
| 3039 | |
| 3040 | mutex_unlock(lock: &xps_map_mutex); |
| 3041 | |
| 3042 | kfree(objp: new_dev_maps); |
| 3043 | return -ENOMEM; |
| 3044 | } |
| 3045 | EXPORT_SYMBOL_GPL(__netif_set_xps_queue); |
| 3046 | |
| 3047 | int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, |
| 3048 | u16 index) |
| 3049 | { |
| 3050 | int ret; |
| 3051 | |
| 3052 | cpus_read_lock(); |
| 3053 | ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); |
| 3054 | cpus_read_unlock(); |
| 3055 | |
| 3056 | return ret; |
| 3057 | } |
| 3058 | EXPORT_SYMBOL(netif_set_xps_queue); |
| 3059 | |
| 3060 | #endif |
| 3061 | static void netdev_unbind_all_sb_channels(struct net_device *dev) |
| 3062 | { |
| 3063 | struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; |
| 3064 | |
| 3065 | /* Unbind any subordinate channels */ |
| 3066 | while (txq-- != &dev->_tx[0]) { |
| 3067 | if (txq->sb_dev) |
| 3068 | netdev_unbind_sb_channel(dev, sb_dev: txq->sb_dev); |
| 3069 | } |
| 3070 | } |
| 3071 | |
| 3072 | void netdev_reset_tc(struct net_device *dev) |
| 3073 | { |
| 3074 | #ifdef CONFIG_XPS |
| 3075 | netif_reset_xps_queues_gt(dev, index: 0); |
| 3076 | #endif |
| 3077 | netdev_unbind_all_sb_channels(dev); |
| 3078 | |
| 3079 | /* Reset TC configuration of device */ |
| 3080 | dev->num_tc = 0; |
| 3081 | memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); |
| 3082 | memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); |
| 3083 | } |
| 3084 | EXPORT_SYMBOL(netdev_reset_tc); |
| 3085 | |
| 3086 | int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) |
| 3087 | { |
| 3088 | if (tc >= dev->num_tc) |
| 3089 | return -EINVAL; |
| 3090 | |
| 3091 | #ifdef CONFIG_XPS |
| 3092 | netif_reset_xps_queues(dev, offset, count); |
| 3093 | #endif |
| 3094 | dev->tc_to_txq[tc].count = count; |
| 3095 | dev->tc_to_txq[tc].offset = offset; |
| 3096 | return 0; |
| 3097 | } |
| 3098 | EXPORT_SYMBOL(netdev_set_tc_queue); |
| 3099 | |
| 3100 | int netdev_set_num_tc(struct net_device *dev, u8 num_tc) |
| 3101 | { |
| 3102 | if (num_tc > TC_MAX_QUEUE) |
| 3103 | return -EINVAL; |
| 3104 | |
| 3105 | #ifdef CONFIG_XPS |
| 3106 | netif_reset_xps_queues_gt(dev, index: 0); |
| 3107 | #endif |
| 3108 | netdev_unbind_all_sb_channels(dev); |
| 3109 | |
| 3110 | dev->num_tc = num_tc; |
| 3111 | return 0; |
| 3112 | } |
| 3113 | EXPORT_SYMBOL(netdev_set_num_tc); |
| 3114 | |
| 3115 | void netdev_unbind_sb_channel(struct net_device *dev, |
| 3116 | struct net_device *sb_dev) |
| 3117 | { |
| 3118 | struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; |
| 3119 | |
| 3120 | #ifdef CONFIG_XPS |
| 3121 | netif_reset_xps_queues_gt(dev: sb_dev, index: 0); |
| 3122 | #endif |
| 3123 | memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); |
| 3124 | memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); |
| 3125 | |
| 3126 | while (txq-- != &dev->_tx[0]) { |
| 3127 | if (txq->sb_dev == sb_dev) |
| 3128 | txq->sb_dev = NULL; |
| 3129 | } |
| 3130 | } |
| 3131 | EXPORT_SYMBOL(netdev_unbind_sb_channel); |
| 3132 | |
| 3133 | int netdev_bind_sb_channel_queue(struct net_device *dev, |
| 3134 | struct net_device *sb_dev, |
| 3135 | u8 tc, u16 count, u16 offset) |
| 3136 | { |
| 3137 | /* Make certain the sb_dev and dev are already configured */ |
| 3138 | if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) |
| 3139 | return -EINVAL; |
| 3140 | |
| 3141 | /* We cannot hand out queues we don't have */ |
| 3142 | if ((offset + count) > dev->real_num_tx_queues) |
| 3143 | return -EINVAL; |
| 3144 | |
| 3145 | /* Record the mapping */ |
| 3146 | sb_dev->tc_to_txq[tc].count = count; |
| 3147 | sb_dev->tc_to_txq[tc].offset = offset; |
| 3148 | |
| 3149 | /* Provide a way for Tx queue to find the tc_to_txq map or |
| 3150 | * XPS map for itself. |
| 3151 | */ |
| 3152 | while (count--) |
| 3153 | netdev_get_tx_queue(dev, index: count + offset)->sb_dev = sb_dev; |
| 3154 | |
| 3155 | return 0; |
| 3156 | } |
| 3157 | EXPORT_SYMBOL(netdev_bind_sb_channel_queue); |
| 3158 | |
| 3159 | int netdev_set_sb_channel(struct net_device *dev, u16 channel) |
| 3160 | { |
| 3161 | /* Do not use a multiqueue device to represent a subordinate channel */ |
| 3162 | if (netif_is_multiqueue(dev)) |
| 3163 | return -ENODEV; |
| 3164 | |
| 3165 | /* We allow channels 1 - 32767 to be used for subordinate channels. |
| 3166 | * Channel 0 is meant to be "native" mode and used only to represent |
| 3167 | * the main root device. We allow writing 0 to reset the device back |
| 3168 | * to normal mode after being used as a subordinate channel. |
| 3169 | */ |
| 3170 | if (channel > S16_MAX) |
| 3171 | return -EINVAL; |
| 3172 | |
| 3173 | dev->num_tc = -channel; |
| 3174 | |
| 3175 | return 0; |
| 3176 | } |
| 3177 | EXPORT_SYMBOL(netdev_set_sb_channel); |
| 3178 | |
| 3179 | /* |
| 3180 | * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues |
| 3181 | * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. |
| 3182 | */ |
| 3183 | int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) |
| 3184 | { |
| 3185 | bool disabling; |
| 3186 | int rc; |
| 3187 | |
| 3188 | disabling = txq < dev->real_num_tx_queues; |
| 3189 | |
| 3190 | if (txq < 1 || txq > dev->num_tx_queues) |
| 3191 | return -EINVAL; |
| 3192 | |
| 3193 | if (dev->reg_state == NETREG_REGISTERED || |
| 3194 | dev->reg_state == NETREG_UNREGISTERING) { |
| 3195 | netdev_ops_assert_locked(dev); |
| 3196 | |
| 3197 | rc = netdev_queue_update_kobjects(net: dev, old_num: dev->real_num_tx_queues, |
| 3198 | new_num: txq); |
| 3199 | if (rc) |
| 3200 | return rc; |
| 3201 | |
| 3202 | if (dev->num_tc) |
| 3203 | netif_setup_tc(dev, txq); |
| 3204 | |
| 3205 | net_shaper_set_real_num_tx_queues(dev, txq); |
| 3206 | |
| 3207 | dev_qdisc_change_real_num_tx(dev, new_real_tx: txq); |
| 3208 | |
| 3209 | dev->real_num_tx_queues = txq; |
| 3210 | |
| 3211 | if (disabling) { |
| 3212 | synchronize_net(); |
| 3213 | qdisc_reset_all_tx_gt(dev, i: txq); |
| 3214 | #ifdef CONFIG_XPS |
| 3215 | netif_reset_xps_queues_gt(dev, index: txq); |
| 3216 | #endif |
| 3217 | } |
| 3218 | } else { |
| 3219 | dev->real_num_tx_queues = txq; |
| 3220 | } |
| 3221 | |
| 3222 | return 0; |
| 3223 | } |
| 3224 | EXPORT_SYMBOL(netif_set_real_num_tx_queues); |
| 3225 | |
| 3226 | /** |
| 3227 | * netif_set_real_num_rx_queues - set actual number of RX queues used |
| 3228 | * @dev: Network device |
| 3229 | * @rxq: Actual number of RX queues |
| 3230 | * |
| 3231 | * This must be called either with the rtnl_lock held or before |
| 3232 | * registration of the net device. Returns 0 on success, or a |
| 3233 | * negative error code. If called before registration, it always |
| 3234 | * succeeds. |
| 3235 | */ |
| 3236 | int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) |
| 3237 | { |
| 3238 | int rc; |
| 3239 | |
| 3240 | if (rxq < 1 || rxq > dev->num_rx_queues) |
| 3241 | return -EINVAL; |
| 3242 | |
| 3243 | if (dev->reg_state == NETREG_REGISTERED) { |
| 3244 | netdev_ops_assert_locked(dev); |
| 3245 | |
| 3246 | rc = net_rx_queue_update_kobjects(dev, old_num: dev->real_num_rx_queues, |
| 3247 | new_num: rxq); |
| 3248 | if (rc) |
| 3249 | return rc; |
| 3250 | } |
| 3251 | |
| 3252 | dev->real_num_rx_queues = rxq; |
| 3253 | return 0; |
| 3254 | } |
| 3255 | EXPORT_SYMBOL(netif_set_real_num_rx_queues); |
| 3256 | |
| 3257 | /** |
| 3258 | * netif_set_real_num_queues - set actual number of RX and TX queues used |
| 3259 | * @dev: Network device |
| 3260 | * @txq: Actual number of TX queues |
| 3261 | * @rxq: Actual number of RX queues |
| 3262 | * |
| 3263 | * Set the real number of both TX and RX queues. |
| 3264 | * Does nothing if the number of queues is already correct. |
| 3265 | */ |
| 3266 | int netif_set_real_num_queues(struct net_device *dev, |
| 3267 | unsigned int txq, unsigned int rxq) |
| 3268 | { |
| 3269 | unsigned int old_rxq = dev->real_num_rx_queues; |
| 3270 | int err; |
| 3271 | |
| 3272 | if (txq < 1 || txq > dev->num_tx_queues || |
| 3273 | rxq < 1 || rxq > dev->num_rx_queues) |
| 3274 | return -EINVAL; |
| 3275 | |
| 3276 | /* Start from increases, so the error path only does decreases - |
| 3277 | * decreases can't fail. |
| 3278 | */ |
| 3279 | if (rxq > dev->real_num_rx_queues) { |
| 3280 | err = netif_set_real_num_rx_queues(dev, rxq); |
| 3281 | if (err) |
| 3282 | return err; |
| 3283 | } |
| 3284 | if (txq > dev->real_num_tx_queues) { |
| 3285 | err = netif_set_real_num_tx_queues(dev, txq); |
| 3286 | if (err) |
| 3287 | goto undo_rx; |
| 3288 | } |
| 3289 | if (rxq < dev->real_num_rx_queues) |
| 3290 | WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); |
| 3291 | if (txq < dev->real_num_tx_queues) |
| 3292 | WARN_ON(netif_set_real_num_tx_queues(dev, txq)); |
| 3293 | |
| 3294 | return 0; |
| 3295 | undo_rx: |
| 3296 | WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); |
| 3297 | return err; |
| 3298 | } |
| 3299 | EXPORT_SYMBOL(netif_set_real_num_queues); |
| 3300 | |
| 3301 | /** |
| 3302 | * netif_set_tso_max_size() - set the max size of TSO frames supported |
| 3303 | * @dev: netdev to update |
| 3304 | * @size: max skb->len of a TSO frame |
| 3305 | * |
| 3306 | * Set the limit on the size of TSO super-frames the device can handle. |
| 3307 | * Unless explicitly set the stack will assume the value of |
| 3308 | * %GSO_LEGACY_MAX_SIZE. |
| 3309 | */ |
| 3310 | void netif_set_tso_max_size(struct net_device *dev, unsigned int size) |
| 3311 | { |
| 3312 | dev->tso_max_size = min(GSO_MAX_SIZE, size); |
| 3313 | if (size < READ_ONCE(dev->gso_max_size)) |
| 3314 | netif_set_gso_max_size(dev, size); |
| 3315 | if (size < READ_ONCE(dev->gso_ipv4_max_size)) |
| 3316 | netif_set_gso_ipv4_max_size(dev, size); |
| 3317 | } |
| 3318 | EXPORT_SYMBOL(netif_set_tso_max_size); |
| 3319 | |
| 3320 | /** |
| 3321 | * netif_set_tso_max_segs() - set the max number of segs supported for TSO |
| 3322 | * @dev: netdev to update |
| 3323 | * @segs: max number of TCP segments |
| 3324 | * |
| 3325 | * Set the limit on the number of TCP segments the device can generate from |
| 3326 | * a single TSO super-frame. |
| 3327 | * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. |
| 3328 | */ |
| 3329 | void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) |
| 3330 | { |
| 3331 | dev->tso_max_segs = segs; |
| 3332 | if (segs < READ_ONCE(dev->gso_max_segs)) |
| 3333 | netif_set_gso_max_segs(dev, segs); |
| 3334 | } |
| 3335 | EXPORT_SYMBOL(netif_set_tso_max_segs); |
| 3336 | |
| 3337 | /** |
| 3338 | * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper |
| 3339 | * @to: netdev to update |
| 3340 | * @from: netdev from which to copy the limits |
| 3341 | */ |
| 3342 | void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) |
| 3343 | { |
| 3344 | netif_set_tso_max_size(to, from->tso_max_size); |
| 3345 | netif_set_tso_max_segs(to, from->tso_max_segs); |
| 3346 | } |
| 3347 | EXPORT_SYMBOL(netif_inherit_tso_max); |
| 3348 | |
| 3349 | /** |
| 3350 | * netif_get_num_default_rss_queues - default number of RSS queues |
| 3351 | * |
| 3352 | * Default value is the number of physical cores if there are only 1 or 2, or |
| 3353 | * divided by 2 if there are more. |
| 3354 | */ |
| 3355 | int (void) |
| 3356 | { |
| 3357 | cpumask_var_t cpus; |
| 3358 | int cpu, count = 0; |
| 3359 | |
| 3360 | if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) |
| 3361 | return 1; |
| 3362 | |
| 3363 | cpumask_copy(dstp: cpus, cpu_online_mask); |
| 3364 | for_each_cpu(cpu, cpus) { |
| 3365 | ++count; |
| 3366 | cpumask_andnot(dstp: cpus, src1p: cpus, topology_sibling_cpumask(cpu)); |
| 3367 | } |
| 3368 | free_cpumask_var(mask: cpus); |
| 3369 | |
| 3370 | return count > 2 ? DIV_ROUND_UP(count, 2) : count; |
| 3371 | } |
| 3372 | EXPORT_SYMBOL(netif_get_num_default_rss_queues); |
| 3373 | |
| 3374 | static void __netif_reschedule(struct Qdisc *q) |
| 3375 | { |
| 3376 | struct softnet_data *sd; |
| 3377 | unsigned long flags; |
| 3378 | |
| 3379 | local_irq_save(flags); |
| 3380 | sd = this_cpu_ptr(&softnet_data); |
| 3381 | q->next_sched = NULL; |
| 3382 | *sd->output_queue_tailp = q; |
| 3383 | sd->output_queue_tailp = &q->next_sched; |
| 3384 | raise_softirq_irqoff(nr: NET_TX_SOFTIRQ); |
| 3385 | local_irq_restore(flags); |
| 3386 | } |
| 3387 | |
| 3388 | void __netif_schedule(struct Qdisc *q) |
| 3389 | { |
| 3390 | /* If q->defer_list is not empty, at least one thread is |
| 3391 | * in __dev_xmit_skb() before llist_del_all(&q->defer_list). |
| 3392 | * This thread will attempt to run the queue. |
| 3393 | */ |
| 3394 | if (!llist_empty(head: &q->defer_list)) |
| 3395 | return; |
| 3396 | |
| 3397 | if (!test_and_set_bit(nr: __QDISC_STATE_SCHED, addr: &q->state)) |
| 3398 | __netif_reschedule(q); |
| 3399 | } |
| 3400 | EXPORT_SYMBOL(__netif_schedule); |
| 3401 | |
| 3402 | struct dev_kfree_skb_cb { |
| 3403 | enum skb_drop_reason reason; |
| 3404 | }; |
| 3405 | |
| 3406 | static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) |
| 3407 | { |
| 3408 | return (struct dev_kfree_skb_cb *)skb->cb; |
| 3409 | } |
| 3410 | |
| 3411 | void netif_schedule_queue(struct netdev_queue *txq) |
| 3412 | { |
| 3413 | rcu_read_lock(); |
| 3414 | if (!netif_xmit_stopped(dev_queue: txq)) { |
| 3415 | struct Qdisc *q = rcu_dereference(txq->qdisc); |
| 3416 | |
| 3417 | __netif_schedule(q); |
| 3418 | } |
| 3419 | rcu_read_unlock(); |
| 3420 | } |
| 3421 | EXPORT_SYMBOL(netif_schedule_queue); |
| 3422 | |
| 3423 | void netif_tx_wake_queue(struct netdev_queue *dev_queue) |
| 3424 | { |
| 3425 | if (test_and_clear_bit(nr: __QUEUE_STATE_DRV_XOFF, addr: &dev_queue->state)) { |
| 3426 | struct Qdisc *q; |
| 3427 | |
| 3428 | rcu_read_lock(); |
| 3429 | q = rcu_dereference(dev_queue->qdisc); |
| 3430 | __netif_schedule(q); |
| 3431 | rcu_read_unlock(); |
| 3432 | } |
| 3433 | } |
| 3434 | EXPORT_SYMBOL(netif_tx_wake_queue); |
| 3435 | |
| 3436 | void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) |
| 3437 | { |
| 3438 | unsigned long flags; |
| 3439 | |
| 3440 | if (unlikely(!skb)) |
| 3441 | return; |
| 3442 | |
| 3443 | if (likely(refcount_read(&skb->users) == 1)) { |
| 3444 | smp_rmb(); |
| 3445 | refcount_set(r: &skb->users, n: 0); |
| 3446 | } else if (likely(!refcount_dec_and_test(&skb->users))) { |
| 3447 | return; |
| 3448 | } |
| 3449 | get_kfree_skb_cb(skb)->reason = reason; |
| 3450 | local_irq_save(flags); |
| 3451 | skb->next = __this_cpu_read(softnet_data.completion_queue); |
| 3452 | __this_cpu_write(softnet_data.completion_queue, skb); |
| 3453 | raise_softirq_irqoff(nr: NET_TX_SOFTIRQ); |
| 3454 | local_irq_restore(flags); |
| 3455 | } |
| 3456 | EXPORT_SYMBOL(dev_kfree_skb_irq_reason); |
| 3457 | |
| 3458 | void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) |
| 3459 | { |
| 3460 | if (in_hardirq() || irqs_disabled()) |
| 3461 | dev_kfree_skb_irq_reason(skb, reason); |
| 3462 | else |
| 3463 | kfree_skb_reason(skb, reason); |
| 3464 | } |
| 3465 | EXPORT_SYMBOL(dev_kfree_skb_any_reason); |
| 3466 | |
| 3467 | |
| 3468 | /** |
| 3469 | * netif_device_detach - mark device as removed |
| 3470 | * @dev: network device |
| 3471 | * |
| 3472 | * Mark device as removed from system and therefore no longer available. |
| 3473 | */ |
| 3474 | void netif_device_detach(struct net_device *dev) |
| 3475 | { |
| 3476 | if (test_and_clear_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state) && |
| 3477 | netif_running(dev)) { |
| 3478 | netif_tx_stop_all_queues(dev); |
| 3479 | } |
| 3480 | } |
| 3481 | EXPORT_SYMBOL(netif_device_detach); |
| 3482 | |
| 3483 | /** |
| 3484 | * netif_device_attach - mark device as attached |
| 3485 | * @dev: network device |
| 3486 | * |
| 3487 | * Mark device as attached from system and restart if needed. |
| 3488 | */ |
| 3489 | void netif_device_attach(struct net_device *dev) |
| 3490 | { |
| 3491 | if (!test_and_set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state) && |
| 3492 | netif_running(dev)) { |
| 3493 | netif_tx_wake_all_queues(dev); |
| 3494 | netdev_watchdog_up(dev); |
| 3495 | } |
| 3496 | } |
| 3497 | EXPORT_SYMBOL(netif_device_attach); |
| 3498 | |
| 3499 | /* |
| 3500 | * Returns a Tx hash based on the given packet descriptor a Tx queues' number |
| 3501 | * to be used as a distribution range. |
| 3502 | */ |
| 3503 | static u16 skb_tx_hash(const struct net_device *dev, |
| 3504 | const struct net_device *sb_dev, |
| 3505 | struct sk_buff *skb) |
| 3506 | { |
| 3507 | u32 hash; |
| 3508 | u16 qoffset = 0; |
| 3509 | u16 qcount = dev->real_num_tx_queues; |
| 3510 | |
| 3511 | if (dev->num_tc) { |
| 3512 | u8 tc = netdev_get_prio_tc_map(dev, prio: skb->priority); |
| 3513 | |
| 3514 | qoffset = sb_dev->tc_to_txq[tc].offset; |
| 3515 | qcount = sb_dev->tc_to_txq[tc].count; |
| 3516 | if (unlikely(!qcount)) { |
| 3517 | net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n" , |
| 3518 | sb_dev->name, qoffset, tc); |
| 3519 | qoffset = 0; |
| 3520 | qcount = dev->real_num_tx_queues; |
| 3521 | } |
| 3522 | } |
| 3523 | |
| 3524 | if (skb_rx_queue_recorded(skb)) { |
| 3525 | DEBUG_NET_WARN_ON_ONCE(qcount == 0); |
| 3526 | hash = skb_get_rx_queue(skb); |
| 3527 | if (hash >= qoffset) |
| 3528 | hash -= qoffset; |
| 3529 | while (unlikely(hash >= qcount)) |
| 3530 | hash -= qcount; |
| 3531 | return hash + qoffset; |
| 3532 | } |
| 3533 | |
| 3534 | return (u16) reciprocal_scale(val: skb_get_hash(skb), ep_ro: qcount) + qoffset; |
| 3535 | } |
| 3536 | |
| 3537 | void skb_warn_bad_offload(const struct sk_buff *skb) |
| 3538 | { |
| 3539 | static const netdev_features_t null_features; |
| 3540 | struct net_device *dev = skb->dev; |
| 3541 | const char *name = "" ; |
| 3542 | |
| 3543 | if (!net_ratelimit()) |
| 3544 | return; |
| 3545 | |
| 3546 | if (dev) { |
| 3547 | if (dev->dev.parent) |
| 3548 | name = dev_driver_string(dev: dev->dev.parent); |
| 3549 | else |
| 3550 | name = netdev_name(dev); |
| 3551 | } |
| 3552 | skb_dump(KERN_WARNING, skb, full_pkt: false); |
| 3553 | WARN(1, "%s: caps=(%pNF, %pNF)\n" , |
| 3554 | name, dev ? &dev->features : &null_features, |
| 3555 | skb->sk ? &skb->sk->sk_route_caps : &null_features); |
| 3556 | } |
| 3557 | |
| 3558 | /* |
| 3559 | * Invalidate hardware checksum when packet is to be mangled, and |
| 3560 | * complete checksum manually on outgoing path. |
| 3561 | */ |
| 3562 | int skb_checksum_help(struct sk_buff *skb) |
| 3563 | { |
| 3564 | __wsum csum; |
| 3565 | int ret = 0, offset; |
| 3566 | |
| 3567 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
| 3568 | goto out_set_summed; |
| 3569 | |
| 3570 | if (unlikely(skb_is_gso(skb))) { |
| 3571 | skb_warn_bad_offload(skb); |
| 3572 | return -EINVAL; |
| 3573 | } |
| 3574 | |
| 3575 | if (!skb_frags_readable(skb)) { |
| 3576 | return -EFAULT; |
| 3577 | } |
| 3578 | |
| 3579 | /* Before computing a checksum, we should make sure no frag could |
| 3580 | * be modified by an external entity : checksum could be wrong. |
| 3581 | */ |
| 3582 | if (skb_has_shared_frag(skb)) { |
| 3583 | ret = __skb_linearize(skb); |
| 3584 | if (ret) |
| 3585 | goto out; |
| 3586 | } |
| 3587 | |
| 3588 | offset = skb_checksum_start_offset(skb); |
| 3589 | ret = -EINVAL; |
| 3590 | if (unlikely(offset >= skb_headlen(skb))) { |
| 3591 | DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); |
| 3592 | WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n" , |
| 3593 | offset, skb_headlen(skb)); |
| 3594 | goto out; |
| 3595 | } |
| 3596 | csum = skb_checksum(skb, offset, len: skb->len - offset, csum: 0); |
| 3597 | |
| 3598 | offset += skb->csum_offset; |
| 3599 | if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { |
| 3600 | DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); |
| 3601 | WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n" , |
| 3602 | offset + sizeof(__sum16), skb_headlen(skb)); |
| 3603 | goto out; |
| 3604 | } |
| 3605 | ret = skb_ensure_writable(skb, write_len: offset + sizeof(__sum16)); |
| 3606 | if (ret) |
| 3607 | goto out; |
| 3608 | |
| 3609 | *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; |
| 3610 | out_set_summed: |
| 3611 | skb->ip_summed = CHECKSUM_NONE; |
| 3612 | out: |
| 3613 | return ret; |
| 3614 | } |
| 3615 | EXPORT_SYMBOL(skb_checksum_help); |
| 3616 | |
| 3617 | #ifdef CONFIG_NET_CRC32C |
| 3618 | int skb_crc32c_csum_help(struct sk_buff *skb) |
| 3619 | { |
| 3620 | u32 crc; |
| 3621 | int ret = 0, offset, start; |
| 3622 | |
| 3623 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
| 3624 | goto out; |
| 3625 | |
| 3626 | if (unlikely(skb_is_gso(skb))) |
| 3627 | goto out; |
| 3628 | |
| 3629 | /* Before computing a checksum, we should make sure no frag could |
| 3630 | * be modified by an external entity : checksum could be wrong. |
| 3631 | */ |
| 3632 | if (unlikely(skb_has_shared_frag(skb))) { |
| 3633 | ret = __skb_linearize(skb); |
| 3634 | if (ret) |
| 3635 | goto out; |
| 3636 | } |
| 3637 | start = skb_checksum_start_offset(skb); |
| 3638 | offset = start + offsetof(struct sctphdr, checksum); |
| 3639 | if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { |
| 3640 | ret = -EINVAL; |
| 3641 | goto out; |
| 3642 | } |
| 3643 | |
| 3644 | ret = skb_ensure_writable(skb, write_len: offset + sizeof(__le32)); |
| 3645 | if (ret) |
| 3646 | goto out; |
| 3647 | |
| 3648 | crc = ~skb_crc32c(skb, offset: start, len: skb->len - start, crc: ~0); |
| 3649 | *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); |
| 3650 | skb_reset_csum_not_inet(skb); |
| 3651 | out: |
| 3652 | return ret; |
| 3653 | } |
| 3654 | EXPORT_SYMBOL(skb_crc32c_csum_help); |
| 3655 | #endif /* CONFIG_NET_CRC32C */ |
| 3656 | |
| 3657 | __be16 skb_network_protocol(struct sk_buff *skb, int *depth) |
| 3658 | { |
| 3659 | __be16 type = skb->protocol; |
| 3660 | |
| 3661 | /* Tunnel gso handlers can set protocol to ethernet. */ |
| 3662 | if (type == htons(ETH_P_TEB)) { |
| 3663 | struct ethhdr *eth; |
| 3664 | |
| 3665 | if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) |
| 3666 | return 0; |
| 3667 | |
| 3668 | eth = (struct ethhdr *)skb->data; |
| 3669 | type = eth->h_proto; |
| 3670 | } |
| 3671 | |
| 3672 | return vlan_get_protocol_and_depth(skb, type, depth); |
| 3673 | } |
| 3674 | |
| 3675 | |
| 3676 | /* Take action when hardware reception checksum errors are detected. */ |
| 3677 | #ifdef CONFIG_BUG |
| 3678 | static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) |
| 3679 | { |
| 3680 | netdev_err(dev, format: "hw csum failure\n" ); |
| 3681 | skb_dump(KERN_ERR, skb, full_pkt: true); |
| 3682 | dump_stack(); |
| 3683 | } |
| 3684 | |
| 3685 | void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) |
| 3686 | { |
| 3687 | DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); |
| 3688 | } |
| 3689 | EXPORT_SYMBOL(netdev_rx_csum_fault); |
| 3690 | #endif |
| 3691 | |
| 3692 | /* XXX: check that highmem exists at all on the given machine. */ |
| 3693 | static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) |
| 3694 | { |
| 3695 | #ifdef CONFIG_HIGHMEM |
| 3696 | int i; |
| 3697 | |
| 3698 | if (!(dev->features & NETIF_F_HIGHDMA)) { |
| 3699 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| 3700 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| 3701 | struct page *page = skb_frag_page(frag); |
| 3702 | |
| 3703 | if (page && PageHighMem(page)) |
| 3704 | return 1; |
| 3705 | } |
| 3706 | } |
| 3707 | #endif |
| 3708 | return 0; |
| 3709 | } |
| 3710 | |
| 3711 | /* If MPLS offload request, verify we are testing hardware MPLS features |
| 3712 | * instead of standard features for the netdev. |
| 3713 | */ |
| 3714 | #if IS_ENABLED(CONFIG_NET_MPLS_GSO) |
| 3715 | static netdev_features_t net_mpls_features(struct sk_buff *skb, |
| 3716 | netdev_features_t features, |
| 3717 | __be16 type) |
| 3718 | { |
| 3719 | if (eth_p_mpls(eth_type: type)) |
| 3720 | features &= skb->dev->mpls_features; |
| 3721 | |
| 3722 | return features; |
| 3723 | } |
| 3724 | #else |
| 3725 | static netdev_features_t net_mpls_features(struct sk_buff *skb, |
| 3726 | netdev_features_t features, |
| 3727 | __be16 type) |
| 3728 | { |
| 3729 | return features; |
| 3730 | } |
| 3731 | #endif |
| 3732 | |
| 3733 | static netdev_features_t harmonize_features(struct sk_buff *skb, |
| 3734 | netdev_features_t features) |
| 3735 | { |
| 3736 | __be16 type; |
| 3737 | |
| 3738 | type = skb_network_protocol(skb, NULL); |
| 3739 | features = net_mpls_features(skb, features, type); |
| 3740 | |
| 3741 | if (skb->ip_summed != CHECKSUM_NONE && |
| 3742 | !can_checksum_protocol(features, protocol: type)) { |
| 3743 | features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
| 3744 | } |
| 3745 | if (illegal_highdma(dev: skb->dev, skb)) |
| 3746 | features &= ~NETIF_F_SG; |
| 3747 | |
| 3748 | return features; |
| 3749 | } |
| 3750 | |
| 3751 | netdev_features_t passthru_features_check(struct sk_buff *skb, |
| 3752 | struct net_device *dev, |
| 3753 | netdev_features_t features) |
| 3754 | { |
| 3755 | return features; |
| 3756 | } |
| 3757 | EXPORT_SYMBOL(passthru_features_check); |
| 3758 | |
| 3759 | static netdev_features_t dflt_features_check(struct sk_buff *skb, |
| 3760 | struct net_device *dev, |
| 3761 | netdev_features_t features) |
| 3762 | { |
| 3763 | return vlan_features_check(skb, features); |
| 3764 | } |
| 3765 | |
| 3766 | static netdev_features_t gso_features_check(const struct sk_buff *skb, |
| 3767 | struct net_device *dev, |
| 3768 | netdev_features_t features) |
| 3769 | { |
| 3770 | u16 gso_segs = skb_shinfo(skb)->gso_segs; |
| 3771 | |
| 3772 | if (gso_segs > READ_ONCE(dev->gso_max_segs)) |
| 3773 | return features & ~NETIF_F_GSO_MASK; |
| 3774 | |
| 3775 | if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) |
| 3776 | return features & ~NETIF_F_GSO_MASK; |
| 3777 | |
| 3778 | if (!skb_shinfo(skb)->gso_type) { |
| 3779 | skb_warn_bad_offload(skb); |
| 3780 | return features & ~NETIF_F_GSO_MASK; |
| 3781 | } |
| 3782 | |
| 3783 | /* Support for GSO partial features requires software |
| 3784 | * intervention before we can actually process the packets |
| 3785 | * so we need to strip support for any partial features now |
| 3786 | * and we can pull them back in after we have partially |
| 3787 | * segmented the frame. |
| 3788 | */ |
| 3789 | if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) |
| 3790 | features &= ~dev->gso_partial_features; |
| 3791 | |
| 3792 | /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header |
| 3793 | * has the potential to be fragmented so that TSO does not generate |
| 3794 | * segments with the same ID. For encapsulated packets, the ID mangling |
| 3795 | * feature is guaranteed not to use the same ID for the outer IPv4 |
| 3796 | * headers of the generated segments if the headers have the potential |
| 3797 | * to be fragmented, so there is no need to clear the IPv4 ID mangling |
| 3798 | * feature (see the section about NETIF_F_TSO_MANGLEID in |
| 3799 | * segmentation-offloads.rst). |
| 3800 | */ |
| 3801 | if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { |
| 3802 | struct iphdr *iph = skb->encapsulation ? |
| 3803 | inner_ip_hdr(skb) : ip_hdr(skb); |
| 3804 | |
| 3805 | if (!(iph->frag_off & htons(IP_DF))) |
| 3806 | features &= ~NETIF_F_TSO_MANGLEID; |
| 3807 | } |
| 3808 | |
| 3809 | /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers, |
| 3810 | * so neither does TSO that depends on it. |
| 3811 | */ |
| 3812 | if (features & NETIF_F_IPV6_CSUM && |
| 3813 | (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 || |
| 3814 | (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && |
| 3815 | vlan_get_protocol(skb) == htons(ETH_P_IPV6))) && |
| 3816 | skb_transport_header_was_set(skb) && |
| 3817 | skb_network_header_len(skb) != sizeof(struct ipv6hdr) && |
| 3818 | !ipv6_has_hopopt_jumbo(skb)) |
| 3819 | features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4); |
| 3820 | |
| 3821 | return features; |
| 3822 | } |
| 3823 | |
| 3824 | netdev_features_t netif_skb_features(struct sk_buff *skb) |
| 3825 | { |
| 3826 | struct net_device *dev = skb->dev; |
| 3827 | netdev_features_t features = dev->features; |
| 3828 | |
| 3829 | if (skb_is_gso(skb)) |
| 3830 | features = gso_features_check(skb, dev, features); |
| 3831 | |
| 3832 | /* If encapsulation offload request, verify we are testing |
| 3833 | * hardware encapsulation features instead of standard |
| 3834 | * features for the netdev |
| 3835 | */ |
| 3836 | if (skb->encapsulation) |
| 3837 | features &= dev->hw_enc_features; |
| 3838 | |
| 3839 | if (skb_vlan_tagged(skb)) |
| 3840 | features = netdev_intersect_features(f1: features, |
| 3841 | f2: dev->vlan_features | |
| 3842 | NETIF_F_HW_VLAN_CTAG_TX | |
| 3843 | NETIF_F_HW_VLAN_STAG_TX); |
| 3844 | |
| 3845 | if (dev->netdev_ops->ndo_features_check) |
| 3846 | features &= dev->netdev_ops->ndo_features_check(skb, dev, |
| 3847 | features); |
| 3848 | else |
| 3849 | features &= dflt_features_check(skb, dev, features); |
| 3850 | |
| 3851 | return harmonize_features(skb, features); |
| 3852 | } |
| 3853 | EXPORT_SYMBOL(netif_skb_features); |
| 3854 | |
| 3855 | static int xmit_one(struct sk_buff *skb, struct net_device *dev, |
| 3856 | struct netdev_queue *txq, bool more) |
| 3857 | { |
| 3858 | unsigned int len; |
| 3859 | int rc; |
| 3860 | |
| 3861 | if (dev_nit_active_rcu(dev)) |
| 3862 | dev_queue_xmit_nit(skb, dev); |
| 3863 | |
| 3864 | len = skb->len; |
| 3865 | trace_net_dev_start_xmit(skb, dev); |
| 3866 | rc = netdev_start_xmit(skb, dev, txq, more); |
| 3867 | trace_net_dev_xmit(skb, rc, dev, skb_len: len); |
| 3868 | |
| 3869 | return rc; |
| 3870 | } |
| 3871 | |
| 3872 | struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, |
| 3873 | struct netdev_queue *txq, int *ret) |
| 3874 | { |
| 3875 | struct sk_buff *skb = first; |
| 3876 | int rc = NETDEV_TX_OK; |
| 3877 | |
| 3878 | while (skb) { |
| 3879 | struct sk_buff *next = skb->next; |
| 3880 | |
| 3881 | skb_mark_not_on_list(skb); |
| 3882 | rc = xmit_one(skb, dev, txq, more: next != NULL); |
| 3883 | if (unlikely(!dev_xmit_complete(rc))) { |
| 3884 | skb->next = next; |
| 3885 | goto out; |
| 3886 | } |
| 3887 | |
| 3888 | skb = next; |
| 3889 | if (netif_tx_queue_stopped(dev_queue: txq) && skb) { |
| 3890 | rc = NETDEV_TX_BUSY; |
| 3891 | break; |
| 3892 | } |
| 3893 | } |
| 3894 | |
| 3895 | out: |
| 3896 | *ret = rc; |
| 3897 | return skb; |
| 3898 | } |
| 3899 | |
| 3900 | static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, |
| 3901 | netdev_features_t features) |
| 3902 | { |
| 3903 | if (skb_vlan_tag_present(skb) && |
| 3904 | !vlan_hw_offload_capable(features, proto: skb->vlan_proto)) |
| 3905 | skb = __vlan_hwaccel_push_inside(skb); |
| 3906 | return skb; |
| 3907 | } |
| 3908 | |
| 3909 | int skb_csum_hwoffload_help(struct sk_buff *skb, |
| 3910 | const netdev_features_t features) |
| 3911 | { |
| 3912 | if (unlikely(skb_csum_is_sctp(skb))) |
| 3913 | return !!(features & NETIF_F_SCTP_CRC) ? 0 : |
| 3914 | skb_crc32c_csum_help(skb); |
| 3915 | |
| 3916 | if (features & NETIF_F_HW_CSUM) |
| 3917 | return 0; |
| 3918 | |
| 3919 | if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { |
| 3920 | if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && |
| 3921 | skb_network_header_len(skb) != sizeof(struct ipv6hdr) && |
| 3922 | !ipv6_has_hopopt_jumbo(skb)) |
| 3923 | goto sw_checksum; |
| 3924 | |
| 3925 | switch (skb->csum_offset) { |
| 3926 | case offsetof(struct tcphdr, check): |
| 3927 | case offsetof(struct udphdr, check): |
| 3928 | return 0; |
| 3929 | } |
| 3930 | } |
| 3931 | |
| 3932 | sw_checksum: |
| 3933 | return skb_checksum_help(skb); |
| 3934 | } |
| 3935 | EXPORT_SYMBOL(skb_csum_hwoffload_help); |
| 3936 | |
| 3937 | /* Checks if this SKB belongs to an HW offloaded socket |
| 3938 | * and whether any SW fallbacks are required based on dev. |
| 3939 | * Check decrypted mark in case skb_orphan() cleared socket. |
| 3940 | */ |
| 3941 | static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, |
| 3942 | struct net_device *dev) |
| 3943 | { |
| 3944 | #ifdef CONFIG_SOCK_VALIDATE_XMIT |
| 3945 | struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev, |
| 3946 | struct sk_buff *skb); |
| 3947 | struct sock *sk = skb->sk; |
| 3948 | |
| 3949 | sk_validate = NULL; |
| 3950 | if (sk) { |
| 3951 | if (sk_fullsock(sk)) |
| 3952 | sk_validate = sk->sk_validate_xmit_skb; |
| 3953 | else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT) |
| 3954 | sk_validate = inet_twsk(sk)->tw_validate_xmit_skb; |
| 3955 | } |
| 3956 | |
| 3957 | if (sk_validate) { |
| 3958 | skb = sk_validate(sk, dev, skb); |
| 3959 | } else if (unlikely(skb_is_decrypted(skb))) { |
| 3960 | pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n" ); |
| 3961 | kfree_skb(skb); |
| 3962 | skb = NULL; |
| 3963 | } |
| 3964 | #endif |
| 3965 | |
| 3966 | return skb; |
| 3967 | } |
| 3968 | |
| 3969 | static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, |
| 3970 | struct net_device *dev) |
| 3971 | { |
| 3972 | struct skb_shared_info *shinfo; |
| 3973 | struct net_iov *niov; |
| 3974 | |
| 3975 | if (likely(skb_frags_readable(skb))) |
| 3976 | goto out; |
| 3977 | |
| 3978 | if (!dev->netmem_tx) |
| 3979 | goto out_free; |
| 3980 | |
| 3981 | shinfo = skb_shinfo(skb); |
| 3982 | |
| 3983 | if (shinfo->nr_frags > 0) { |
| 3984 | niov = netmem_to_net_iov(netmem: skb_frag_netmem(frag: &shinfo->frags[0])); |
| 3985 | if (net_is_devmem_iov(niov) && |
| 3986 | net_devmem_iov_binding(niov)->dev != dev) |
| 3987 | goto out_free; |
| 3988 | } |
| 3989 | |
| 3990 | out: |
| 3991 | return skb; |
| 3992 | |
| 3993 | out_free: |
| 3994 | kfree_skb(skb); |
| 3995 | return NULL; |
| 3996 | } |
| 3997 | |
| 3998 | static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) |
| 3999 | { |
| 4000 | netdev_features_t features; |
| 4001 | |
| 4002 | skb = validate_xmit_unreadable_skb(skb, dev); |
| 4003 | if (unlikely(!skb)) |
| 4004 | goto out_null; |
| 4005 | |
| 4006 | features = netif_skb_features(skb); |
| 4007 | skb = validate_xmit_vlan(skb, features); |
| 4008 | if (unlikely(!skb)) |
| 4009 | goto out_null; |
| 4010 | |
| 4011 | skb = sk_validate_xmit_skb(skb, dev); |
| 4012 | if (unlikely(!skb)) |
| 4013 | goto out_null; |
| 4014 | |
| 4015 | if (netif_needs_gso(skb, features)) { |
| 4016 | struct sk_buff *segs; |
| 4017 | |
| 4018 | segs = skb_gso_segment(skb, features); |
| 4019 | if (IS_ERR(ptr: segs)) { |
| 4020 | goto out_kfree_skb; |
| 4021 | } else if (segs) { |
| 4022 | consume_skb(skb); |
| 4023 | skb = segs; |
| 4024 | } |
| 4025 | } else { |
| 4026 | if (skb_needs_linearize(skb, features) && |
| 4027 | __skb_linearize(skb)) |
| 4028 | goto out_kfree_skb; |
| 4029 | |
| 4030 | /* If packet is not checksummed and device does not |
| 4031 | * support checksumming for this protocol, complete |
| 4032 | * checksumming here. |
| 4033 | */ |
| 4034 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| 4035 | if (skb->encapsulation) |
| 4036 | skb_set_inner_transport_header(skb, |
| 4037 | offset: skb_checksum_start_offset(skb)); |
| 4038 | else |
| 4039 | skb_set_transport_header(skb, |
| 4040 | offset: skb_checksum_start_offset(skb)); |
| 4041 | if (skb_csum_hwoffload_help(skb, features)) |
| 4042 | goto out_kfree_skb; |
| 4043 | } |
| 4044 | } |
| 4045 | |
| 4046 | skb = validate_xmit_xfrm(skb, features, again); |
| 4047 | |
| 4048 | return skb; |
| 4049 | |
| 4050 | out_kfree_skb: |
| 4051 | kfree_skb(skb); |
| 4052 | out_null: |
| 4053 | dev_core_stats_tx_dropped_inc(dev); |
| 4054 | return NULL; |
| 4055 | } |
| 4056 | |
| 4057 | struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) |
| 4058 | { |
| 4059 | struct sk_buff *next, *head = NULL, *tail; |
| 4060 | |
| 4061 | for (; skb != NULL; skb = next) { |
| 4062 | next = skb->next; |
| 4063 | skb_mark_not_on_list(skb); |
| 4064 | |
| 4065 | /* in case skb won't be segmented, point to itself */ |
| 4066 | skb->prev = skb; |
| 4067 | |
| 4068 | skb = validate_xmit_skb(skb, dev, again); |
| 4069 | if (!skb) |
| 4070 | continue; |
| 4071 | |
| 4072 | if (!head) |
| 4073 | head = skb; |
| 4074 | else |
| 4075 | tail->next = skb; |
| 4076 | /* If skb was segmented, skb->prev points to |
| 4077 | * the last segment. If not, it still contains skb. |
| 4078 | */ |
| 4079 | tail = skb->prev; |
| 4080 | } |
| 4081 | return head; |
| 4082 | } |
| 4083 | EXPORT_SYMBOL_GPL(validate_xmit_skb_list); |
| 4084 | |
| 4085 | static void qdisc_pkt_len_segs_init(struct sk_buff *skb) |
| 4086 | { |
| 4087 | struct skb_shared_info *shinfo = skb_shinfo(skb); |
| 4088 | u16 gso_segs; |
| 4089 | |
| 4090 | qdisc_skb_cb(skb)->pkt_len = skb->len; |
| 4091 | if (!shinfo->gso_size) { |
| 4092 | qdisc_skb_cb(skb)->pkt_segs = 1; |
| 4093 | return; |
| 4094 | } |
| 4095 | |
| 4096 | qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs; |
| 4097 | |
| 4098 | /* To get more precise estimation of bytes sent on wire, |
| 4099 | * we add to pkt_len the headers size of all segments |
| 4100 | */ |
| 4101 | if (skb_transport_header_was_set(skb)) { |
| 4102 | unsigned int hdr_len; |
| 4103 | |
| 4104 | /* mac layer + network layer */ |
| 4105 | if (!skb->encapsulation) |
| 4106 | hdr_len = skb_transport_offset(skb); |
| 4107 | else |
| 4108 | hdr_len = skb_inner_transport_offset(skb); |
| 4109 | |
| 4110 | /* + transport layer */ |
| 4111 | if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { |
| 4112 | const struct tcphdr *th; |
| 4113 | struct tcphdr _tcphdr; |
| 4114 | |
| 4115 | th = skb_header_pointer(skb, offset: hdr_len, |
| 4116 | len: sizeof(_tcphdr), buffer: &_tcphdr); |
| 4117 | if (likely(th)) |
| 4118 | hdr_len += __tcp_hdrlen(th); |
| 4119 | } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { |
| 4120 | struct udphdr _udphdr; |
| 4121 | |
| 4122 | if (skb_header_pointer(skb, offset: hdr_len, |
| 4123 | len: sizeof(_udphdr), buffer: &_udphdr)) |
| 4124 | hdr_len += sizeof(struct udphdr); |
| 4125 | } |
| 4126 | |
| 4127 | if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { |
| 4128 | int payload = skb->len - hdr_len; |
| 4129 | |
| 4130 | /* Malicious packet. */ |
| 4131 | if (payload <= 0) |
| 4132 | return; |
| 4133 | gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); |
| 4134 | shinfo->gso_segs = gso_segs; |
| 4135 | qdisc_skb_cb(skb)->pkt_segs = gso_segs; |
| 4136 | } |
| 4137 | qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; |
| 4138 | } |
| 4139 | } |
| 4140 | |
| 4141 | static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, |
| 4142 | struct sk_buff **to_free, |
| 4143 | struct netdev_queue *txq) |
| 4144 | { |
| 4145 | int rc; |
| 4146 | |
| 4147 | rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; |
| 4148 | if (rc == NET_XMIT_SUCCESS) |
| 4149 | trace_qdisc_enqueue(qdisc: q, txq, skb); |
| 4150 | return rc; |
| 4151 | } |
| 4152 | |
| 4153 | static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, |
| 4154 | struct net_device *dev, |
| 4155 | struct netdev_queue *txq) |
| 4156 | { |
| 4157 | struct sk_buff *next, *to_free = NULL, *to_free2 = NULL; |
| 4158 | spinlock_t *root_lock = qdisc_lock(qdisc: q); |
| 4159 | struct llist_node *ll_list, *first_n; |
| 4160 | unsigned long defer_count = 0; |
| 4161 | int rc; |
| 4162 | |
| 4163 | qdisc_calculate_pkt_len(skb, sch: q); |
| 4164 | |
| 4165 | tcf_set_drop_reason(skb, reason: SKB_DROP_REASON_QDISC_DROP); |
| 4166 | |
| 4167 | if (q->flags & TCQ_F_NOLOCK) { |
| 4168 | if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(qdisc: q) && |
| 4169 | qdisc_run_begin(qdisc: q)) { |
| 4170 | /* Retest nolock_qdisc_is_empty() within the protection |
| 4171 | * of q->seqlock to protect from racing with requeuing. |
| 4172 | */ |
| 4173 | if (unlikely(!nolock_qdisc_is_empty(q))) { |
| 4174 | rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq); |
| 4175 | __qdisc_run(q); |
| 4176 | to_free2 = qdisc_run_end(qdisc: q); |
| 4177 | |
| 4178 | goto free_skbs; |
| 4179 | } |
| 4180 | |
| 4181 | qdisc_bstats_cpu_update(sch: q, skb); |
| 4182 | if (sch_direct_xmit(skb, q, dev, txq, NULL, validate: true) && |
| 4183 | !nolock_qdisc_is_empty(qdisc: q)) |
| 4184 | __qdisc_run(q); |
| 4185 | |
| 4186 | to_free2 = qdisc_run_end(qdisc: q); |
| 4187 | rc = NET_XMIT_SUCCESS; |
| 4188 | goto free_skbs; |
| 4189 | } |
| 4190 | |
| 4191 | rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq); |
| 4192 | to_free2 = qdisc_run(q); |
| 4193 | goto free_skbs; |
| 4194 | } |
| 4195 | |
| 4196 | /* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit. |
| 4197 | * In the try_cmpxchg() loop, we want to increment q->defer_count |
| 4198 | * at most once to limit the number of skbs in defer_list. |
| 4199 | * We perform the defer_count increment only if the list is not empty, |
| 4200 | * because some arches have slow atomic_long_inc_return(). |
| 4201 | */ |
| 4202 | first_n = READ_ONCE(q->defer_list.first); |
| 4203 | do { |
| 4204 | if (first_n && !defer_count) { |
| 4205 | defer_count = atomic_long_inc_return(v: &q->defer_count); |
| 4206 | if (unlikely(defer_count > READ_ONCE(net_hotdata.qdisc_max_burst))) { |
| 4207 | kfree_skb_reason(skb, reason: SKB_DROP_REASON_QDISC_BURST_DROP); |
| 4208 | return NET_XMIT_DROP; |
| 4209 | } |
| 4210 | } |
| 4211 | skb->ll_node.next = first_n; |
| 4212 | } while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node)); |
| 4213 | |
| 4214 | /* If defer_list was not empty, we know the cpu which queued |
| 4215 | * the first skb will process the whole list for us. |
| 4216 | */ |
| 4217 | if (first_n) |
| 4218 | return NET_XMIT_SUCCESS; |
| 4219 | |
| 4220 | spin_lock(lock: root_lock); |
| 4221 | |
| 4222 | ll_list = llist_del_all(head: &q->defer_list); |
| 4223 | /* There is a small race because we clear defer_count not atomically |
| 4224 | * with the prior llist_del_all(). This means defer_list could grow |
| 4225 | * over qdisc_max_burst. |
| 4226 | */ |
| 4227 | atomic_long_set(v: &q->defer_count, i: 0); |
| 4228 | |
| 4229 | ll_list = llist_reverse_order(head: ll_list); |
| 4230 | |
| 4231 | if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { |
| 4232 | llist_for_each_entry_safe(skb, next, ll_list, ll_node) |
| 4233 | __qdisc_drop(skb, to_free: &to_free); |
| 4234 | rc = NET_XMIT_DROP; |
| 4235 | goto unlock; |
| 4236 | } |
| 4237 | if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && |
| 4238 | !llist_next(node: ll_list) && qdisc_run_begin(qdisc: q)) { |
| 4239 | /* |
| 4240 | * This is a work-conserving queue; there are no old skbs |
| 4241 | * waiting to be sent out; and the qdisc is not running - |
| 4242 | * xmit the skb directly. |
| 4243 | */ |
| 4244 | |
| 4245 | DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list, |
| 4246 | struct sk_buff, |
| 4247 | ll_node)); |
| 4248 | qdisc_bstats_update(sch: q, skb); |
| 4249 | if (sch_direct_xmit(skb, q, dev, txq, root_lock, validate: true)) |
| 4250 | __qdisc_run(q); |
| 4251 | to_free2 = qdisc_run_end(qdisc: q); |
| 4252 | rc = NET_XMIT_SUCCESS; |
| 4253 | } else { |
| 4254 | int count = 0; |
| 4255 | |
| 4256 | llist_for_each_entry_safe(skb, next, ll_list, ll_node) { |
| 4257 | if (next) { |
| 4258 | prefetch(next); |
| 4259 | prefetch(&next->priority); |
| 4260 | skb_mark_not_on_list(skb); |
| 4261 | } |
| 4262 | rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq); |
| 4263 | count++; |
| 4264 | } |
| 4265 | to_free2 = qdisc_run(q); |
| 4266 | if (count != 1) |
| 4267 | rc = NET_XMIT_SUCCESS; |
| 4268 | } |
| 4269 | unlock: |
| 4270 | spin_unlock(lock: root_lock); |
| 4271 | |
| 4272 | free_skbs: |
| 4273 | tcf_kfree_skb_list(skb: to_free); |
| 4274 | tcf_kfree_skb_list(skb: to_free2); |
| 4275 | return rc; |
| 4276 | } |
| 4277 | |
| 4278 | #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) |
| 4279 | static void skb_update_prio(struct sk_buff *skb) |
| 4280 | { |
| 4281 | const struct netprio_map *map; |
| 4282 | const struct sock *sk; |
| 4283 | unsigned int prioidx; |
| 4284 | |
| 4285 | if (skb->priority) |
| 4286 | return; |
| 4287 | map = rcu_dereference_bh(skb->dev->priomap); |
| 4288 | if (!map) |
| 4289 | return; |
| 4290 | sk = skb_to_full_sk(skb); |
| 4291 | if (!sk) |
| 4292 | return; |
| 4293 | |
| 4294 | prioidx = sock_cgroup_prioidx(skcd: &sk->sk_cgrp_data); |
| 4295 | |
| 4296 | if (prioidx < map->priomap_len) |
| 4297 | skb->priority = map->priomap[prioidx]; |
| 4298 | } |
| 4299 | #else |
| 4300 | #define skb_update_prio(skb) |
| 4301 | #endif |
| 4302 | |
| 4303 | /** |
| 4304 | * dev_loopback_xmit - loop back @skb |
| 4305 | * @net: network namespace this loopback is happening in |
| 4306 | * @sk: sk needed to be a netfilter okfn |
| 4307 | * @skb: buffer to transmit |
| 4308 | */ |
| 4309 | int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 4310 | { |
| 4311 | skb_reset_mac_header(skb); |
| 4312 | __skb_pull(skb, len: skb_network_offset(skb)); |
| 4313 | skb->pkt_type = PACKET_LOOPBACK; |
| 4314 | if (skb->ip_summed == CHECKSUM_NONE) |
| 4315 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 4316 | DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); |
| 4317 | skb_dst_force(skb); |
| 4318 | netif_rx(skb); |
| 4319 | return 0; |
| 4320 | } |
| 4321 | EXPORT_SYMBOL(dev_loopback_xmit); |
| 4322 | |
| 4323 | #ifdef CONFIG_NET_EGRESS |
| 4324 | static struct netdev_queue * |
| 4325 | netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) |
| 4326 | { |
| 4327 | int qm = skb_get_queue_mapping(skb); |
| 4328 | |
| 4329 | return netdev_get_tx_queue(dev, index: netdev_cap_txqueue(dev, queue_index: qm)); |
| 4330 | } |
| 4331 | |
| 4332 | #ifndef CONFIG_PREEMPT_RT |
| 4333 | static bool netdev_xmit_txqueue_skipped(void) |
| 4334 | { |
| 4335 | return __this_cpu_read(softnet_data.xmit.skip_txqueue); |
| 4336 | } |
| 4337 | |
| 4338 | void netdev_xmit_skip_txqueue(bool skip) |
| 4339 | { |
| 4340 | __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); |
| 4341 | } |
| 4342 | EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); |
| 4343 | |
| 4344 | #else |
| 4345 | static bool netdev_xmit_txqueue_skipped(void) |
| 4346 | { |
| 4347 | return current->net_xmit.skip_txqueue; |
| 4348 | } |
| 4349 | |
| 4350 | void netdev_xmit_skip_txqueue(bool skip) |
| 4351 | { |
| 4352 | current->net_xmit.skip_txqueue = skip; |
| 4353 | } |
| 4354 | EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); |
| 4355 | #endif |
| 4356 | #endif /* CONFIG_NET_EGRESS */ |
| 4357 | |
| 4358 | #ifdef CONFIG_NET_XGRESS |
| 4359 | static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, |
| 4360 | enum skb_drop_reason *drop_reason) |
| 4361 | { |
| 4362 | int ret = TC_ACT_UNSPEC; |
| 4363 | #ifdef CONFIG_NET_CLS_ACT |
| 4364 | struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); |
| 4365 | struct tcf_result res; |
| 4366 | |
| 4367 | if (!miniq) |
| 4368 | return ret; |
| 4369 | |
| 4370 | /* Global bypass */ |
| 4371 | if (!static_branch_likely(&tcf_sw_enabled_key)) |
| 4372 | return ret; |
| 4373 | |
| 4374 | /* Block-wise bypass */ |
| 4375 | if (tcf_block_bypass_sw(block: miniq->block)) |
| 4376 | return ret; |
| 4377 | |
| 4378 | tc_skb_cb(skb)->mru = 0; |
| 4379 | qdisc_skb_cb(skb)->post_ct = false; |
| 4380 | tcf_set_drop_reason(skb, reason: *drop_reason); |
| 4381 | |
| 4382 | mini_qdisc_bstats_cpu_update(miniq, skb); |
| 4383 | ret = tcf_classify(skb, block: miniq->block, tp: miniq->filter_list, res: &res, compat_mode: false); |
| 4384 | /* Only tcf related quirks below. */ |
| 4385 | switch (ret) { |
| 4386 | case TC_ACT_SHOT: |
| 4387 | *drop_reason = tcf_get_drop_reason(skb); |
| 4388 | mini_qdisc_qstats_cpu_drop(miniq); |
| 4389 | break; |
| 4390 | case TC_ACT_OK: |
| 4391 | case TC_ACT_RECLASSIFY: |
| 4392 | skb->tc_index = TC_H_MIN(res.classid); |
| 4393 | break; |
| 4394 | } |
| 4395 | #endif /* CONFIG_NET_CLS_ACT */ |
| 4396 | return ret; |
| 4397 | } |
| 4398 | |
| 4399 | static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); |
| 4400 | |
| 4401 | void tcx_inc(void) |
| 4402 | { |
| 4403 | static_branch_inc(&tcx_needed_key); |
| 4404 | } |
| 4405 | |
| 4406 | void tcx_dec(void) |
| 4407 | { |
| 4408 | static_branch_dec(&tcx_needed_key); |
| 4409 | } |
| 4410 | |
| 4411 | static __always_inline enum tcx_action_base |
| 4412 | tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, |
| 4413 | const bool needs_mac) |
| 4414 | { |
| 4415 | const struct bpf_mprog_fp *fp; |
| 4416 | const struct bpf_prog *prog; |
| 4417 | int ret = TCX_NEXT; |
| 4418 | |
| 4419 | if (needs_mac) |
| 4420 | __skb_push(skb, len: skb->mac_len); |
| 4421 | bpf_mprog_foreach_prog(entry, fp, prog) { |
| 4422 | bpf_compute_data_pointers(skb); |
| 4423 | ret = bpf_prog_run(prog, ctx: skb); |
| 4424 | if (ret != TCX_NEXT) |
| 4425 | break; |
| 4426 | } |
| 4427 | if (needs_mac) |
| 4428 | __skb_pull(skb, len: skb->mac_len); |
| 4429 | return tcx_action_code(skb, code: ret); |
| 4430 | } |
| 4431 | |
| 4432 | static __always_inline struct sk_buff * |
| 4433 | sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, |
| 4434 | struct net_device *orig_dev, bool *another) |
| 4435 | { |
| 4436 | struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); |
| 4437 | enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; |
| 4438 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
| 4439 | int sch_ret; |
| 4440 | |
| 4441 | if (!entry) |
| 4442 | return skb; |
| 4443 | |
| 4444 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
| 4445 | if (unlikely(*pt_prev)) { |
| 4446 | *ret = deliver_skb(skb, pt_prev: *pt_prev, orig_dev); |
| 4447 | *pt_prev = NULL; |
| 4448 | } |
| 4449 | |
| 4450 | qdisc_pkt_len_segs_init(skb); |
| 4451 | tcx_set_ingress(skb, ingress: true); |
| 4452 | |
| 4453 | if (static_branch_unlikely(&tcx_needed_key)) { |
| 4454 | sch_ret = tcx_run(entry, skb, needs_mac: true); |
| 4455 | if (sch_ret != TC_ACT_UNSPEC) |
| 4456 | goto ingress_verdict; |
| 4457 | } |
| 4458 | sch_ret = tc_run(entry: tcx_entry(entry), skb, drop_reason: &drop_reason); |
| 4459 | ingress_verdict: |
| 4460 | switch (sch_ret) { |
| 4461 | case TC_ACT_REDIRECT: |
| 4462 | /* skb_mac_header check was done by BPF, so we can safely |
| 4463 | * push the L2 header back before redirecting to another |
| 4464 | * netdev. |
| 4465 | */ |
| 4466 | __skb_push(skb, len: skb->mac_len); |
| 4467 | if (skb_do_redirect(skb) == -EAGAIN) { |
| 4468 | __skb_pull(skb, len: skb->mac_len); |
| 4469 | *another = true; |
| 4470 | break; |
| 4471 | } |
| 4472 | *ret = NET_RX_SUCCESS; |
| 4473 | bpf_net_ctx_clear(bpf_net_ctx); |
| 4474 | return NULL; |
| 4475 | case TC_ACT_SHOT: |
| 4476 | kfree_skb_reason(skb, reason: drop_reason); |
| 4477 | *ret = NET_RX_DROP; |
| 4478 | bpf_net_ctx_clear(bpf_net_ctx); |
| 4479 | return NULL; |
| 4480 | /* used by tc_run */ |
| 4481 | case TC_ACT_STOLEN: |
| 4482 | case TC_ACT_QUEUED: |
| 4483 | case TC_ACT_TRAP: |
| 4484 | consume_skb(skb); |
| 4485 | fallthrough; |
| 4486 | case TC_ACT_CONSUMED: |
| 4487 | *ret = NET_RX_SUCCESS; |
| 4488 | bpf_net_ctx_clear(bpf_net_ctx); |
| 4489 | return NULL; |
| 4490 | } |
| 4491 | bpf_net_ctx_clear(bpf_net_ctx); |
| 4492 | |
| 4493 | return skb; |
| 4494 | } |
| 4495 | |
| 4496 | static __always_inline struct sk_buff * |
| 4497 | sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) |
| 4498 | { |
| 4499 | struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); |
| 4500 | enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; |
| 4501 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
| 4502 | int sch_ret; |
| 4503 | |
| 4504 | if (!entry) |
| 4505 | return skb; |
| 4506 | |
| 4507 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
| 4508 | |
| 4509 | /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was |
| 4510 | * already set by the caller. |
| 4511 | */ |
| 4512 | if (static_branch_unlikely(&tcx_needed_key)) { |
| 4513 | sch_ret = tcx_run(entry, skb, needs_mac: false); |
| 4514 | if (sch_ret != TC_ACT_UNSPEC) |
| 4515 | goto egress_verdict; |
| 4516 | } |
| 4517 | sch_ret = tc_run(entry: tcx_entry(entry), skb, drop_reason: &drop_reason); |
| 4518 | egress_verdict: |
| 4519 | switch (sch_ret) { |
| 4520 | case TC_ACT_REDIRECT: |
| 4521 | /* No need to push/pop skb's mac_header here on egress! */ |
| 4522 | skb_do_redirect(skb); |
| 4523 | *ret = NET_XMIT_SUCCESS; |
| 4524 | bpf_net_ctx_clear(bpf_net_ctx); |
| 4525 | return NULL; |
| 4526 | case TC_ACT_SHOT: |
| 4527 | kfree_skb_reason(skb, reason: drop_reason); |
| 4528 | *ret = NET_XMIT_DROP; |
| 4529 | bpf_net_ctx_clear(bpf_net_ctx); |
| 4530 | return NULL; |
| 4531 | /* used by tc_run */ |
| 4532 | case TC_ACT_STOLEN: |
| 4533 | case TC_ACT_QUEUED: |
| 4534 | case TC_ACT_TRAP: |
| 4535 | consume_skb(skb); |
| 4536 | fallthrough; |
| 4537 | case TC_ACT_CONSUMED: |
| 4538 | *ret = NET_XMIT_SUCCESS; |
| 4539 | bpf_net_ctx_clear(bpf_net_ctx); |
| 4540 | return NULL; |
| 4541 | } |
| 4542 | bpf_net_ctx_clear(bpf_net_ctx); |
| 4543 | |
| 4544 | return skb; |
| 4545 | } |
| 4546 | #else |
| 4547 | static __always_inline struct sk_buff * |
| 4548 | sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, |
| 4549 | struct net_device *orig_dev, bool *another) |
| 4550 | { |
| 4551 | return skb; |
| 4552 | } |
| 4553 | |
| 4554 | static __always_inline struct sk_buff * |
| 4555 | sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) |
| 4556 | { |
| 4557 | return skb; |
| 4558 | } |
| 4559 | #endif /* CONFIG_NET_XGRESS */ |
| 4560 | |
| 4561 | #ifdef CONFIG_XPS |
| 4562 | static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, |
| 4563 | struct xps_dev_maps *dev_maps, unsigned int tci) |
| 4564 | { |
| 4565 | int tc = netdev_get_prio_tc_map(dev, prio: skb->priority); |
| 4566 | struct xps_map *map; |
| 4567 | int queue_index = -1; |
| 4568 | |
| 4569 | if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) |
| 4570 | return queue_index; |
| 4571 | |
| 4572 | tci *= dev_maps->num_tc; |
| 4573 | tci += tc; |
| 4574 | |
| 4575 | map = rcu_dereference(dev_maps->attr_map[tci]); |
| 4576 | if (map) { |
| 4577 | if (map->len == 1) |
| 4578 | queue_index = map->queues[0]; |
| 4579 | else |
| 4580 | queue_index = map->queues[reciprocal_scale( |
| 4581 | val: skb_get_hash(skb), ep_ro: map->len)]; |
| 4582 | if (unlikely(queue_index >= dev->real_num_tx_queues)) |
| 4583 | queue_index = -1; |
| 4584 | } |
| 4585 | return queue_index; |
| 4586 | } |
| 4587 | #endif |
| 4588 | |
| 4589 | static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, |
| 4590 | struct sk_buff *skb) |
| 4591 | { |
| 4592 | #ifdef CONFIG_XPS |
| 4593 | struct xps_dev_maps *dev_maps; |
| 4594 | struct sock *sk = skb->sk; |
| 4595 | int queue_index = -1; |
| 4596 | |
| 4597 | if (!static_key_false(key: &xps_needed)) |
| 4598 | return -1; |
| 4599 | |
| 4600 | rcu_read_lock(); |
| 4601 | if (!static_key_false(key: &xps_rxqs_needed)) |
| 4602 | goto get_cpus_map; |
| 4603 | |
| 4604 | dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); |
| 4605 | if (dev_maps) { |
| 4606 | int tci = sk_rx_queue_get(sk); |
| 4607 | |
| 4608 | if (tci >= 0) |
| 4609 | queue_index = __get_xps_queue_idx(dev, skb, dev_maps, |
| 4610 | tci); |
| 4611 | } |
| 4612 | |
| 4613 | get_cpus_map: |
| 4614 | if (queue_index < 0) { |
| 4615 | dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); |
| 4616 | if (dev_maps) { |
| 4617 | unsigned int tci = skb->sender_cpu - 1; |
| 4618 | |
| 4619 | queue_index = __get_xps_queue_idx(dev, skb, dev_maps, |
| 4620 | tci); |
| 4621 | } |
| 4622 | } |
| 4623 | rcu_read_unlock(); |
| 4624 | |
| 4625 | return queue_index; |
| 4626 | #else |
| 4627 | return -1; |
| 4628 | #endif |
| 4629 | } |
| 4630 | |
| 4631 | u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, |
| 4632 | struct net_device *sb_dev) |
| 4633 | { |
| 4634 | return 0; |
| 4635 | } |
| 4636 | EXPORT_SYMBOL(dev_pick_tx_zero); |
| 4637 | |
| 4638 | int sk_tx_queue_get(const struct sock *sk) |
| 4639 | { |
| 4640 | int resel, val; |
| 4641 | |
| 4642 | if (!sk) |
| 4643 | return -1; |
| 4644 | /* Paired with WRITE_ONCE() in sk_tx_queue_clear() |
| 4645 | * and sk_tx_queue_set(). |
| 4646 | */ |
| 4647 | val = READ_ONCE(sk->sk_tx_queue_mapping); |
| 4648 | |
| 4649 | if (val == NO_QUEUE_MAPPING) |
| 4650 | return -1; |
| 4651 | |
| 4652 | if (!sk_fullsock(sk)) |
| 4653 | return val; |
| 4654 | |
| 4655 | resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection); |
| 4656 | if (resel && time_is_before_jiffies( |
| 4657 | READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel)) |
| 4658 | return -1; |
| 4659 | |
| 4660 | return val; |
| 4661 | } |
| 4662 | EXPORT_SYMBOL(sk_tx_queue_get); |
| 4663 | |
| 4664 | u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, |
| 4665 | struct net_device *sb_dev) |
| 4666 | { |
| 4667 | struct sock *sk = skb->sk; |
| 4668 | int queue_index = sk_tx_queue_get(sk); |
| 4669 | |
| 4670 | sb_dev = sb_dev ? : dev; |
| 4671 | |
| 4672 | if (queue_index < 0 || skb->ooo_okay || |
| 4673 | queue_index >= dev->real_num_tx_queues) { |
| 4674 | int new_index = get_xps_queue(dev, sb_dev, skb); |
| 4675 | |
| 4676 | if (new_index < 0) |
| 4677 | new_index = skb_tx_hash(dev, sb_dev, skb); |
| 4678 | |
| 4679 | if (sk && sk_fullsock(sk) && |
| 4680 | rcu_access_pointer(sk->sk_dst_cache)) |
| 4681 | sk_tx_queue_set(sk, tx_queue: new_index); |
| 4682 | |
| 4683 | queue_index = new_index; |
| 4684 | } |
| 4685 | |
| 4686 | return queue_index; |
| 4687 | } |
| 4688 | EXPORT_SYMBOL(netdev_pick_tx); |
| 4689 | |
| 4690 | struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, |
| 4691 | struct sk_buff *skb, |
| 4692 | struct net_device *sb_dev) |
| 4693 | { |
| 4694 | int queue_index = 0; |
| 4695 | |
| 4696 | #ifdef CONFIG_XPS |
| 4697 | u32 sender_cpu = skb->sender_cpu - 1; |
| 4698 | |
| 4699 | if (sender_cpu >= (u32)NR_CPUS) |
| 4700 | skb->sender_cpu = raw_smp_processor_id() + 1; |
| 4701 | #endif |
| 4702 | |
| 4703 | if (dev->real_num_tx_queues != 1) { |
| 4704 | const struct net_device_ops *ops = dev->netdev_ops; |
| 4705 | |
| 4706 | if (ops->ndo_select_queue) |
| 4707 | queue_index = ops->ndo_select_queue(dev, skb, sb_dev); |
| 4708 | else |
| 4709 | queue_index = netdev_pick_tx(dev, skb, sb_dev); |
| 4710 | |
| 4711 | queue_index = netdev_cap_txqueue(dev, queue_index); |
| 4712 | } |
| 4713 | |
| 4714 | skb_set_queue_mapping(skb, queue_mapping: queue_index); |
| 4715 | return netdev_get_tx_queue(dev, index: queue_index); |
| 4716 | } |
| 4717 | |
| 4718 | /** |
| 4719 | * __dev_queue_xmit() - transmit a buffer |
| 4720 | * @skb: buffer to transmit |
| 4721 | * @sb_dev: suboordinate device used for L2 forwarding offload |
| 4722 | * |
| 4723 | * Queue a buffer for transmission to a network device. The caller must |
| 4724 | * have set the device and priority and built the buffer before calling |
| 4725 | * this function. The function can be called from an interrupt. |
| 4726 | * |
| 4727 | * When calling this method, interrupts MUST be enabled. This is because |
| 4728 | * the BH enable code must have IRQs enabled so that it will not deadlock. |
| 4729 | * |
| 4730 | * Regardless of the return value, the skb is consumed, so it is currently |
| 4731 | * difficult to retry a send to this method. (You can bump the ref count |
| 4732 | * before sending to hold a reference for retry if you are careful.) |
| 4733 | * |
| 4734 | * Return: |
| 4735 | * * 0 - buffer successfully transmitted |
| 4736 | * * positive qdisc return code - NET_XMIT_DROP etc. |
| 4737 | * * negative errno - other errors |
| 4738 | */ |
| 4739 | int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) |
| 4740 | { |
| 4741 | struct net_device *dev = skb->dev; |
| 4742 | struct netdev_queue *txq = NULL; |
| 4743 | struct Qdisc *q; |
| 4744 | int rc = -ENOMEM; |
| 4745 | bool again = false; |
| 4746 | |
| 4747 | skb_reset_mac_header(skb); |
| 4748 | skb_assert_len(skb); |
| 4749 | |
| 4750 | if (unlikely(skb_shinfo(skb)->tx_flags & |
| 4751 | (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) |
| 4752 | __skb_tstamp_tx(orig_skb: skb, NULL, NULL, sk: skb->sk, tstype: SCM_TSTAMP_SCHED); |
| 4753 | |
| 4754 | /* Disable soft irqs for various locks below. Also |
| 4755 | * stops preemption for RCU. |
| 4756 | */ |
| 4757 | rcu_read_lock_bh(); |
| 4758 | |
| 4759 | skb_update_prio(skb); |
| 4760 | |
| 4761 | qdisc_pkt_len_segs_init(skb); |
| 4762 | tcx_set_ingress(skb, ingress: false); |
| 4763 | #ifdef CONFIG_NET_EGRESS |
| 4764 | if (static_branch_unlikely(&egress_needed_key)) { |
| 4765 | if (nf_hook_egress_active()) { |
| 4766 | skb = nf_hook_egress(skb, rc: &rc, dev); |
| 4767 | if (!skb) |
| 4768 | goto out; |
| 4769 | } |
| 4770 | |
| 4771 | netdev_xmit_skip_txqueue(false); |
| 4772 | |
| 4773 | nf_skip_egress(skb, skip: true); |
| 4774 | skb = sch_handle_egress(skb, ret: &rc, dev); |
| 4775 | if (!skb) |
| 4776 | goto out; |
| 4777 | nf_skip_egress(skb, skip: false); |
| 4778 | |
| 4779 | if (netdev_xmit_txqueue_skipped()) |
| 4780 | txq = netdev_tx_queue_mapping(dev, skb); |
| 4781 | } |
| 4782 | #endif |
| 4783 | /* If device/qdisc don't need skb->dst, release it right now while |
| 4784 | * its hot in this cpu cache. |
| 4785 | */ |
| 4786 | if (dev->priv_flags & IFF_XMIT_DST_RELEASE) |
| 4787 | skb_dst_drop(skb); |
| 4788 | else |
| 4789 | skb_dst_force(skb); |
| 4790 | |
| 4791 | if (!txq) |
| 4792 | txq = netdev_core_pick_tx(dev, skb, sb_dev); |
| 4793 | |
| 4794 | q = rcu_dereference_bh(txq->qdisc); |
| 4795 | |
| 4796 | trace_net_dev_queue(skb); |
| 4797 | if (q->enqueue) { |
| 4798 | rc = __dev_xmit_skb(skb, q, dev, txq); |
| 4799 | goto out; |
| 4800 | } |
| 4801 | |
| 4802 | /* The device has no queue. Common case for software devices: |
| 4803 | * loopback, all the sorts of tunnels... |
| 4804 | |
| 4805 | * Really, it is unlikely that netif_tx_lock protection is necessary |
| 4806 | * here. (f.e. loopback and IP tunnels are clean ignoring statistics |
| 4807 | * counters.) |
| 4808 | * However, it is possible, that they rely on protection |
| 4809 | * made by us here. |
| 4810 | |
| 4811 | * Check this and shot the lock. It is not prone from deadlocks. |
| 4812 | *Either shot noqueue qdisc, it is even simpler 8) |
| 4813 | */ |
| 4814 | if (dev->flags & IFF_UP) { |
| 4815 | int cpu = smp_processor_id(); /* ok because BHs are off */ |
| 4816 | |
| 4817 | /* Other cpus might concurrently change txq->xmit_lock_owner |
| 4818 | * to -1 or to their cpu id, but not to our id. |
| 4819 | */ |
| 4820 | if (READ_ONCE(txq->xmit_lock_owner) != cpu) { |
| 4821 | if (dev_xmit_recursion()) |
| 4822 | goto recursion_alert; |
| 4823 | |
| 4824 | skb = validate_xmit_skb(skb, dev, again: &again); |
| 4825 | if (!skb) |
| 4826 | goto out; |
| 4827 | |
| 4828 | HARD_TX_LOCK(dev, txq, cpu); |
| 4829 | |
| 4830 | if (!netif_xmit_stopped(dev_queue: txq)) { |
| 4831 | dev_xmit_recursion_inc(); |
| 4832 | skb = dev_hard_start_xmit(first: skb, dev, txq, ret: &rc); |
| 4833 | dev_xmit_recursion_dec(); |
| 4834 | if (dev_xmit_complete(rc)) { |
| 4835 | HARD_TX_UNLOCK(dev, txq); |
| 4836 | goto out; |
| 4837 | } |
| 4838 | } |
| 4839 | HARD_TX_UNLOCK(dev, txq); |
| 4840 | net_crit_ratelimited("Virtual device %s asks to queue packet!\n" , |
| 4841 | dev->name); |
| 4842 | } else { |
| 4843 | /* Recursion is detected! It is possible, |
| 4844 | * unfortunately |
| 4845 | */ |
| 4846 | recursion_alert: |
| 4847 | net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n" , |
| 4848 | dev->name); |
| 4849 | } |
| 4850 | } |
| 4851 | |
| 4852 | rc = -ENETDOWN; |
| 4853 | rcu_read_unlock_bh(); |
| 4854 | |
| 4855 | dev_core_stats_tx_dropped_inc(dev); |
| 4856 | kfree_skb_list(segs: skb); |
| 4857 | return rc; |
| 4858 | out: |
| 4859 | rcu_read_unlock_bh(); |
| 4860 | return rc; |
| 4861 | } |
| 4862 | EXPORT_SYMBOL(__dev_queue_xmit); |
| 4863 | |
| 4864 | int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) |
| 4865 | { |
| 4866 | struct net_device *dev = skb->dev; |
| 4867 | struct sk_buff *orig_skb = skb; |
| 4868 | struct netdev_queue *txq; |
| 4869 | int ret = NETDEV_TX_BUSY; |
| 4870 | bool again = false; |
| 4871 | |
| 4872 | if (unlikely(!netif_running(dev) || |
| 4873 | !netif_carrier_ok(dev))) |
| 4874 | goto drop; |
| 4875 | |
| 4876 | skb = validate_xmit_skb_list(skb, dev, &again); |
| 4877 | if (skb != orig_skb) |
| 4878 | goto drop; |
| 4879 | |
| 4880 | skb_set_queue_mapping(skb, queue_mapping: queue_id); |
| 4881 | txq = skb_get_tx_queue(dev, skb); |
| 4882 | |
| 4883 | local_bh_disable(); |
| 4884 | |
| 4885 | dev_xmit_recursion_inc(); |
| 4886 | HARD_TX_LOCK(dev, txq, smp_processor_id()); |
| 4887 | if (!netif_xmit_frozen_or_drv_stopped(dev_queue: txq)) |
| 4888 | ret = netdev_start_xmit(skb, dev, txq, more: false); |
| 4889 | HARD_TX_UNLOCK(dev, txq); |
| 4890 | dev_xmit_recursion_dec(); |
| 4891 | |
| 4892 | local_bh_enable(); |
| 4893 | return ret; |
| 4894 | drop: |
| 4895 | dev_core_stats_tx_dropped_inc(dev); |
| 4896 | kfree_skb_list(segs: skb); |
| 4897 | return NET_XMIT_DROP; |
| 4898 | } |
| 4899 | EXPORT_SYMBOL(__dev_direct_xmit); |
| 4900 | |
| 4901 | /************************************************************************* |
| 4902 | * Receiver routines |
| 4903 | *************************************************************************/ |
| 4904 | static DEFINE_PER_CPU(struct task_struct *, backlog_napi); |
| 4905 | |
| 4906 | int weight_p __read_mostly = 64; /* old backlog weight */ |
| 4907 | int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ |
| 4908 | int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ |
| 4909 | |
| 4910 | /* Called with irq disabled */ |
| 4911 | static inline void ____napi_schedule(struct softnet_data *sd, |
| 4912 | struct napi_struct *napi) |
| 4913 | { |
| 4914 | struct task_struct *thread; |
| 4915 | |
| 4916 | lockdep_assert_irqs_disabled(); |
| 4917 | |
| 4918 | if (test_bit(NAPI_STATE_THREADED, &napi->state)) { |
| 4919 | /* Paired with smp_mb__before_atomic() in |
| 4920 | * napi_enable()/netif_set_threaded(). |
| 4921 | * Use READ_ONCE() to guarantee a complete |
| 4922 | * read on napi->thread. Only call |
| 4923 | * wake_up_process() when it's not NULL. |
| 4924 | */ |
| 4925 | thread = READ_ONCE(napi->thread); |
| 4926 | if (thread) { |
| 4927 | if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) |
| 4928 | goto use_local_napi; |
| 4929 | |
| 4930 | set_bit(nr: NAPI_STATE_SCHED_THREADED, addr: &napi->state); |
| 4931 | wake_up_process(tsk: thread); |
| 4932 | return; |
| 4933 | } |
| 4934 | } |
| 4935 | |
| 4936 | use_local_napi: |
| 4937 | DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); |
| 4938 | list_add_tail(new: &napi->poll_list, head: &sd->poll_list); |
| 4939 | WRITE_ONCE(napi->list_owner, smp_processor_id()); |
| 4940 | /* If not called from net_rx_action() |
| 4941 | * we have to raise NET_RX_SOFTIRQ. |
| 4942 | */ |
| 4943 | if (!sd->in_net_rx_action) |
| 4944 | raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
| 4945 | } |
| 4946 | |
| 4947 | #ifdef CONFIG_RPS |
| 4948 | |
| 4949 | struct static_key_false rps_needed __read_mostly; |
| 4950 | EXPORT_SYMBOL(rps_needed); |
| 4951 | struct static_key_false rfs_needed __read_mostly; |
| 4952 | EXPORT_SYMBOL(rfs_needed); |
| 4953 | |
| 4954 | static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) |
| 4955 | { |
| 4956 | return hash_32(val: hash, bits: flow_table->log); |
| 4957 | } |
| 4958 | |
| 4959 | #ifdef CONFIG_RFS_ACCEL |
| 4960 | /** |
| 4961 | * rps_flow_is_active - check whether the flow is recently active. |
| 4962 | * @rflow: Specific flow to check activity. |
| 4963 | * @flow_table: per-queue flowtable that @rflow belongs to. |
| 4964 | * @cpu: CPU saved in @rflow. |
| 4965 | * |
| 4966 | * If the CPU has processed many packets since the flow's last activity |
| 4967 | * (beyond 10 times the table size), the flow is considered stale. |
| 4968 | * |
| 4969 | * Return: true if flow was recently active. |
| 4970 | */ |
| 4971 | static bool rps_flow_is_active(struct rps_dev_flow *rflow, |
| 4972 | struct rps_dev_flow_table *flow_table, |
| 4973 | unsigned int cpu) |
| 4974 | { |
| 4975 | unsigned int flow_last_active; |
| 4976 | unsigned int sd_input_head; |
| 4977 | |
| 4978 | if (cpu >= nr_cpu_ids) |
| 4979 | return false; |
| 4980 | |
| 4981 | sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head); |
| 4982 | flow_last_active = READ_ONCE(rflow->last_qtail); |
| 4983 | |
| 4984 | return (int)(sd_input_head - flow_last_active) < |
| 4985 | (int)(10 << flow_table->log); |
| 4986 | } |
| 4987 | #endif |
| 4988 | |
| 4989 | static struct rps_dev_flow * |
| 4990 | set_rps_cpu(struct net_device *dev, struct sk_buff *skb, |
| 4991 | struct rps_dev_flow *rflow, u16 next_cpu, u32 hash, |
| 4992 | u32 flow_id) |
| 4993 | { |
| 4994 | if (next_cpu < nr_cpu_ids) { |
| 4995 | u32 head; |
| 4996 | #ifdef CONFIG_RFS_ACCEL |
| 4997 | struct netdev_rx_queue *rxqueue; |
| 4998 | struct rps_dev_flow_table *flow_table; |
| 4999 | struct rps_dev_flow *old_rflow; |
| 5000 | struct rps_dev_flow *tmp_rflow; |
| 5001 | unsigned int tmp_cpu; |
| 5002 | u16 rxq_index; |
| 5003 | int rc; |
| 5004 | |
| 5005 | /* Should we steer this flow to a different hardware queue? */ |
| 5006 | if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || |
| 5007 | !(dev->features & NETIF_F_NTUPLE)) |
| 5008 | goto out; |
| 5009 | rxq_index = cpu_rmap_lookup_index(rmap: dev->rx_cpu_rmap, cpu: next_cpu); |
| 5010 | if (rxq_index == skb_get_rx_queue(skb)) |
| 5011 | goto out; |
| 5012 | |
| 5013 | rxqueue = dev->_rx + rxq_index; |
| 5014 | flow_table = rcu_dereference(rxqueue->rps_flow_table); |
| 5015 | if (!flow_table) |
| 5016 | goto out; |
| 5017 | |
| 5018 | tmp_rflow = &flow_table->flows[flow_id]; |
| 5019 | tmp_cpu = READ_ONCE(tmp_rflow->cpu); |
| 5020 | |
| 5021 | if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) { |
| 5022 | if (rps_flow_is_active(rflow: tmp_rflow, flow_table, |
| 5023 | cpu: tmp_cpu)) { |
| 5024 | if (hash != READ_ONCE(tmp_rflow->hash) || |
| 5025 | next_cpu == tmp_cpu) |
| 5026 | goto out; |
| 5027 | } |
| 5028 | } |
| 5029 | |
| 5030 | rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, |
| 5031 | rxq_index, flow_id); |
| 5032 | if (rc < 0) |
| 5033 | goto out; |
| 5034 | |
| 5035 | old_rflow = rflow; |
| 5036 | rflow = tmp_rflow; |
| 5037 | WRITE_ONCE(rflow->filter, rc); |
| 5038 | WRITE_ONCE(rflow->hash, hash); |
| 5039 | |
| 5040 | if (old_rflow->filter == rc) |
| 5041 | WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); |
| 5042 | out: |
| 5043 | #endif |
| 5044 | head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); |
| 5045 | rps_input_queue_tail_save(dest: &rflow->last_qtail, tail: head); |
| 5046 | } |
| 5047 | |
| 5048 | WRITE_ONCE(rflow->cpu, next_cpu); |
| 5049 | return rflow; |
| 5050 | } |
| 5051 | |
| 5052 | /* |
| 5053 | * get_rps_cpu is called from netif_receive_skb and returns the target |
| 5054 | * CPU from the RPS map of the receiving queue for a given skb. |
| 5055 | * rcu_read_lock must be held on entry. |
| 5056 | */ |
| 5057 | static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, |
| 5058 | struct rps_dev_flow **rflowp) |
| 5059 | { |
| 5060 | const struct rps_sock_flow_table *sock_flow_table; |
| 5061 | struct netdev_rx_queue *rxqueue = dev->_rx; |
| 5062 | struct rps_dev_flow_table *flow_table; |
| 5063 | struct rps_map *map; |
| 5064 | int cpu = -1; |
| 5065 | u32 flow_id; |
| 5066 | u32 tcpu; |
| 5067 | u32 hash; |
| 5068 | |
| 5069 | if (skb_rx_queue_recorded(skb)) { |
| 5070 | u16 index = skb_get_rx_queue(skb); |
| 5071 | |
| 5072 | if (unlikely(index >= dev->real_num_rx_queues)) { |
| 5073 | WARN_ONCE(dev->real_num_rx_queues > 1, |
| 5074 | "%s received packet on queue %u, but number " |
| 5075 | "of RX queues is %u\n" , |
| 5076 | dev->name, index, dev->real_num_rx_queues); |
| 5077 | goto done; |
| 5078 | } |
| 5079 | rxqueue += index; |
| 5080 | } |
| 5081 | |
| 5082 | /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ |
| 5083 | |
| 5084 | flow_table = rcu_dereference(rxqueue->rps_flow_table); |
| 5085 | map = rcu_dereference(rxqueue->rps_map); |
| 5086 | if (!flow_table && !map) |
| 5087 | goto done; |
| 5088 | |
| 5089 | skb_reset_network_header(skb); |
| 5090 | hash = skb_get_hash(skb); |
| 5091 | if (!hash) |
| 5092 | goto done; |
| 5093 | |
| 5094 | sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); |
| 5095 | if (flow_table && sock_flow_table) { |
| 5096 | struct rps_dev_flow *rflow; |
| 5097 | u32 next_cpu; |
| 5098 | u32 ident; |
| 5099 | |
| 5100 | /* First check into global flow table if there is a match. |
| 5101 | * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). |
| 5102 | */ |
| 5103 | ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); |
| 5104 | if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) |
| 5105 | goto try_rps; |
| 5106 | |
| 5107 | next_cpu = ident & net_hotdata.rps_cpu_mask; |
| 5108 | |
| 5109 | /* OK, now we know there is a match, |
| 5110 | * we can look at the local (per receive queue) flow table |
| 5111 | */ |
| 5112 | flow_id = rfs_slot(hash, flow_table); |
| 5113 | rflow = &flow_table->flows[flow_id]; |
| 5114 | tcpu = rflow->cpu; |
| 5115 | |
| 5116 | /* |
| 5117 | * If the desired CPU (where last recvmsg was done) is |
| 5118 | * different from current CPU (one in the rx-queue flow |
| 5119 | * table entry), switch if one of the following holds: |
| 5120 | * - Current CPU is unset (>= nr_cpu_ids). |
| 5121 | * - Current CPU is offline. |
| 5122 | * - The current CPU's queue tail has advanced beyond the |
| 5123 | * last packet that was enqueued using this table entry. |
| 5124 | * This guarantees that all previous packets for the flow |
| 5125 | * have been dequeued, thus preserving in order delivery. |
| 5126 | */ |
| 5127 | if (unlikely(tcpu != next_cpu) && |
| 5128 | (tcpu >= nr_cpu_ids || !cpu_online(cpu: tcpu) || |
| 5129 | ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - |
| 5130 | rflow->last_qtail)) >= 0)) { |
| 5131 | tcpu = next_cpu; |
| 5132 | rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash, |
| 5133 | flow_id); |
| 5134 | } |
| 5135 | |
| 5136 | if (tcpu < nr_cpu_ids && cpu_online(cpu: tcpu)) { |
| 5137 | *rflowp = rflow; |
| 5138 | cpu = tcpu; |
| 5139 | goto done; |
| 5140 | } |
| 5141 | } |
| 5142 | |
| 5143 | try_rps: |
| 5144 | |
| 5145 | if (map) { |
| 5146 | tcpu = map->cpus[reciprocal_scale(val: hash, ep_ro: map->len)]; |
| 5147 | if (cpu_online(cpu: tcpu)) { |
| 5148 | cpu = tcpu; |
| 5149 | goto done; |
| 5150 | } |
| 5151 | } |
| 5152 | |
| 5153 | done: |
| 5154 | return cpu; |
| 5155 | } |
| 5156 | |
| 5157 | #ifdef CONFIG_RFS_ACCEL |
| 5158 | |
| 5159 | /** |
| 5160 | * rps_may_expire_flow - check whether an RFS hardware filter may be removed |
| 5161 | * @dev: Device on which the filter was set |
| 5162 | * @rxq_index: RX queue index |
| 5163 | * @flow_id: Flow ID passed to ndo_rx_flow_steer() |
| 5164 | * @filter_id: Filter ID returned by ndo_rx_flow_steer() |
| 5165 | * |
| 5166 | * Drivers that implement ndo_rx_flow_steer() should periodically call |
| 5167 | * this function for each installed filter and remove the filters for |
| 5168 | * which it returns %true. |
| 5169 | */ |
| 5170 | bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, |
| 5171 | u32 flow_id, u16 filter_id) |
| 5172 | { |
| 5173 | struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; |
| 5174 | struct rps_dev_flow_table *flow_table; |
| 5175 | struct rps_dev_flow *rflow; |
| 5176 | bool expire = true; |
| 5177 | |
| 5178 | rcu_read_lock(); |
| 5179 | flow_table = rcu_dereference(rxqueue->rps_flow_table); |
| 5180 | if (flow_table && flow_id < (1UL << flow_table->log)) { |
| 5181 | unsigned int cpu; |
| 5182 | |
| 5183 | rflow = &flow_table->flows[flow_id]; |
| 5184 | cpu = READ_ONCE(rflow->cpu); |
| 5185 | if (READ_ONCE(rflow->filter) == filter_id && |
| 5186 | rps_flow_is_active(rflow, flow_table, cpu)) |
| 5187 | expire = false; |
| 5188 | } |
| 5189 | rcu_read_unlock(); |
| 5190 | return expire; |
| 5191 | } |
| 5192 | EXPORT_SYMBOL(rps_may_expire_flow); |
| 5193 | |
| 5194 | #endif /* CONFIG_RFS_ACCEL */ |
| 5195 | |
| 5196 | /* Called from hardirq (IPI) context */ |
| 5197 | static void rps_trigger_softirq(void *data) |
| 5198 | { |
| 5199 | struct softnet_data *sd = data; |
| 5200 | |
| 5201 | ____napi_schedule(sd, napi: &sd->backlog); |
| 5202 | /* Pairs with READ_ONCE() in softnet_seq_show() */ |
| 5203 | WRITE_ONCE(sd->received_rps, sd->received_rps + 1); |
| 5204 | } |
| 5205 | |
| 5206 | #endif /* CONFIG_RPS */ |
| 5207 | |
| 5208 | /* Called from hardirq (IPI) context */ |
| 5209 | static void trigger_rx_softirq(void *data) |
| 5210 | { |
| 5211 | struct softnet_data *sd = data; |
| 5212 | |
| 5213 | __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
| 5214 | smp_store_release(&sd->defer_ipi_scheduled, 0); |
| 5215 | } |
| 5216 | |
| 5217 | /* |
| 5218 | * After we queued a packet into sd->input_pkt_queue, |
| 5219 | * we need to make sure this queue is serviced soon. |
| 5220 | * |
| 5221 | * - If this is another cpu queue, link it to our rps_ipi_list, |
| 5222 | * and make sure we will process rps_ipi_list from net_rx_action(). |
| 5223 | * |
| 5224 | * - If this is our own queue, NAPI schedule our backlog. |
| 5225 | * Note that this also raises NET_RX_SOFTIRQ. |
| 5226 | */ |
| 5227 | static void napi_schedule_rps(struct softnet_data *sd) |
| 5228 | { |
| 5229 | struct softnet_data *mysd = this_cpu_ptr(&softnet_data); |
| 5230 | |
| 5231 | #ifdef CONFIG_RPS |
| 5232 | if (sd != mysd) { |
| 5233 | if (use_backlog_threads()) { |
| 5234 | __napi_schedule_irqoff(n: &sd->backlog); |
| 5235 | return; |
| 5236 | } |
| 5237 | |
| 5238 | sd->rps_ipi_next = mysd->rps_ipi_list; |
| 5239 | mysd->rps_ipi_list = sd; |
| 5240 | |
| 5241 | /* If not called from net_rx_action() or napi_threaded_poll() |
| 5242 | * we have to raise NET_RX_SOFTIRQ. |
| 5243 | */ |
| 5244 | if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) |
| 5245 | __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
| 5246 | return; |
| 5247 | } |
| 5248 | #endif /* CONFIG_RPS */ |
| 5249 | __napi_schedule_irqoff(n: &mysd->backlog); |
| 5250 | } |
| 5251 | |
| 5252 | void kick_defer_list_purge(unsigned int cpu) |
| 5253 | { |
| 5254 | struct softnet_data *sd = &per_cpu(softnet_data, cpu); |
| 5255 | unsigned long flags; |
| 5256 | |
| 5257 | if (use_backlog_threads()) { |
| 5258 | backlog_lock_irq_save(sd, flags: &flags); |
| 5259 | |
| 5260 | if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) |
| 5261 | __napi_schedule_irqoff(n: &sd->backlog); |
| 5262 | |
| 5263 | backlog_unlock_irq_restore(sd, flags: &flags); |
| 5264 | |
| 5265 | } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { |
| 5266 | smp_call_function_single_async(cpu, csd: &sd->defer_csd); |
| 5267 | } |
| 5268 | } |
| 5269 | |
| 5270 | #ifdef CONFIG_NET_FLOW_LIMIT |
| 5271 | int netdev_flow_limit_table_len __read_mostly = (1 << 12); |
| 5272 | #endif |
| 5273 | |
| 5274 | static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen, |
| 5275 | int max_backlog) |
| 5276 | { |
| 5277 | #ifdef CONFIG_NET_FLOW_LIMIT |
| 5278 | unsigned int old_flow, new_flow; |
| 5279 | const struct softnet_data *sd; |
| 5280 | struct sd_flow_limit *fl; |
| 5281 | |
| 5282 | if (likely(qlen < (max_backlog >> 1))) |
| 5283 | return false; |
| 5284 | |
| 5285 | sd = this_cpu_ptr(&softnet_data); |
| 5286 | |
| 5287 | rcu_read_lock(); |
| 5288 | fl = rcu_dereference(sd->flow_limit); |
| 5289 | if (fl) { |
| 5290 | new_flow = hash_32(val: skb_get_hash(skb), bits: fl->log_buckets); |
| 5291 | old_flow = fl->history[fl->history_head]; |
| 5292 | fl->history[fl->history_head] = new_flow; |
| 5293 | |
| 5294 | fl->history_head++; |
| 5295 | fl->history_head &= FLOW_LIMIT_HISTORY - 1; |
| 5296 | |
| 5297 | if (likely(fl->buckets[old_flow])) |
| 5298 | fl->buckets[old_flow]--; |
| 5299 | |
| 5300 | if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { |
| 5301 | /* Pairs with READ_ONCE() in softnet_seq_show() */ |
| 5302 | WRITE_ONCE(fl->count, fl->count + 1); |
| 5303 | rcu_read_unlock(); |
| 5304 | return true; |
| 5305 | } |
| 5306 | } |
| 5307 | rcu_read_unlock(); |
| 5308 | #endif |
| 5309 | return false; |
| 5310 | } |
| 5311 | |
| 5312 | /* |
| 5313 | * enqueue_to_backlog is called to queue an skb to a per CPU backlog |
| 5314 | * queue (may be a remote CPU queue). |
| 5315 | */ |
| 5316 | static int enqueue_to_backlog(struct sk_buff *skb, int cpu, |
| 5317 | unsigned int *qtail) |
| 5318 | { |
| 5319 | enum skb_drop_reason reason; |
| 5320 | struct softnet_data *sd; |
| 5321 | unsigned long flags; |
| 5322 | unsigned int qlen; |
| 5323 | int max_backlog; |
| 5324 | u32 tail; |
| 5325 | |
| 5326 | reason = SKB_DROP_REASON_DEV_READY; |
| 5327 | if (unlikely(!netif_running(skb->dev))) |
| 5328 | goto bad_dev; |
| 5329 | |
| 5330 | sd = &per_cpu(softnet_data, cpu); |
| 5331 | |
| 5332 | qlen = skb_queue_len_lockless(list_: &sd->input_pkt_queue); |
| 5333 | max_backlog = READ_ONCE(net_hotdata.max_backlog); |
| 5334 | if (unlikely(qlen > max_backlog) || |
| 5335 | skb_flow_limit(skb, qlen, max_backlog)) |
| 5336 | goto cpu_backlog_drop; |
| 5337 | backlog_lock_irq_save(sd, flags: &flags); |
| 5338 | qlen = skb_queue_len(list_: &sd->input_pkt_queue); |
| 5339 | if (likely(qlen <= max_backlog)) { |
| 5340 | if (!qlen) { |
| 5341 | /* Schedule NAPI for backlog device. We can use |
| 5342 | * non atomic operation as we own the queue lock. |
| 5343 | */ |
| 5344 | if (!__test_and_set_bit(NAPI_STATE_SCHED, |
| 5345 | &sd->backlog.state)) |
| 5346 | napi_schedule_rps(sd); |
| 5347 | } |
| 5348 | __skb_queue_tail(list: &sd->input_pkt_queue, newsk: skb); |
| 5349 | tail = rps_input_queue_tail_incr(sd); |
| 5350 | backlog_unlock_irq_restore(sd, flags: &flags); |
| 5351 | |
| 5352 | /* save the tail outside of the critical section */ |
| 5353 | rps_input_queue_tail_save(dest: qtail, tail); |
| 5354 | return NET_RX_SUCCESS; |
| 5355 | } |
| 5356 | |
| 5357 | backlog_unlock_irq_restore(sd, flags: &flags); |
| 5358 | |
| 5359 | cpu_backlog_drop: |
| 5360 | reason = SKB_DROP_REASON_CPU_BACKLOG; |
| 5361 | numa_drop_add(ndc: &sd->drop_counters, val: 1); |
| 5362 | bad_dev: |
| 5363 | dev_core_stats_rx_dropped_inc(dev: skb->dev); |
| 5364 | kfree_skb_reason(skb, reason); |
| 5365 | return NET_RX_DROP; |
| 5366 | } |
| 5367 | |
| 5368 | static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) |
| 5369 | { |
| 5370 | struct net_device *dev = skb->dev; |
| 5371 | struct netdev_rx_queue *rxqueue; |
| 5372 | |
| 5373 | rxqueue = dev->_rx; |
| 5374 | |
| 5375 | if (skb_rx_queue_recorded(skb)) { |
| 5376 | u16 index = skb_get_rx_queue(skb); |
| 5377 | |
| 5378 | if (unlikely(index >= dev->real_num_rx_queues)) { |
| 5379 | WARN_ONCE(dev->real_num_rx_queues > 1, |
| 5380 | "%s received packet on queue %u, but number " |
| 5381 | "of RX queues is %u\n" , |
| 5382 | dev->name, index, dev->real_num_rx_queues); |
| 5383 | |
| 5384 | return rxqueue; /* Return first rxqueue */ |
| 5385 | } |
| 5386 | rxqueue += index; |
| 5387 | } |
| 5388 | return rxqueue; |
| 5389 | } |
| 5390 | |
| 5391 | u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, |
| 5392 | const struct bpf_prog *xdp_prog) |
| 5393 | { |
| 5394 | void *orig_data, *orig_data_end, *hard_start; |
| 5395 | struct netdev_rx_queue *rxqueue; |
| 5396 | bool orig_bcast, orig_host; |
| 5397 | u32 mac_len, frame_sz; |
| 5398 | __be16 orig_eth_type; |
| 5399 | struct ethhdr *eth; |
| 5400 | u32 metalen, act; |
| 5401 | int off; |
| 5402 | |
| 5403 | /* The XDP program wants to see the packet starting at the MAC |
| 5404 | * header. |
| 5405 | */ |
| 5406 | mac_len = skb->data - skb_mac_header(skb); |
| 5407 | hard_start = skb->data - skb_headroom(skb); |
| 5408 | |
| 5409 | /* SKB "head" area always have tailroom for skb_shared_info */ |
| 5410 | frame_sz = (void *)skb_end_pointer(skb) - hard_start; |
| 5411 | frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| 5412 | |
| 5413 | rxqueue = netif_get_rxqueue(skb); |
| 5414 | xdp_init_buff(xdp, frame_sz, rxq: &rxqueue->xdp_rxq); |
| 5415 | xdp_prepare_buff(xdp, hard_start, headroom: skb_headroom(skb) - mac_len, |
| 5416 | data_len: skb_headlen(skb) + mac_len, meta_valid: true); |
| 5417 | if (skb_is_nonlinear(skb)) { |
| 5418 | skb_shinfo(skb)->xdp_frags_size = skb->data_len; |
| 5419 | xdp_buff_set_frags_flag(xdp); |
| 5420 | } else { |
| 5421 | xdp_buff_clear_frags_flag(xdp); |
| 5422 | } |
| 5423 | |
| 5424 | orig_data_end = xdp->data_end; |
| 5425 | orig_data = xdp->data; |
| 5426 | eth = (struct ethhdr *)xdp->data; |
| 5427 | orig_host = ether_addr_equal_64bits(addr1: eth->h_dest, addr2: skb->dev->dev_addr); |
| 5428 | orig_bcast = is_multicast_ether_addr_64bits(addr: eth->h_dest); |
| 5429 | orig_eth_type = eth->h_proto; |
| 5430 | |
| 5431 | act = bpf_prog_run_xdp(prog: xdp_prog, xdp); |
| 5432 | |
| 5433 | /* check if bpf_xdp_adjust_head was used */ |
| 5434 | off = xdp->data - orig_data; |
| 5435 | if (off) { |
| 5436 | if (off > 0) |
| 5437 | __skb_pull(skb, len: off); |
| 5438 | else if (off < 0) |
| 5439 | __skb_push(skb, len: -off); |
| 5440 | |
| 5441 | skb->mac_header += off; |
| 5442 | skb_reset_network_header(skb); |
| 5443 | } |
| 5444 | |
| 5445 | /* check if bpf_xdp_adjust_tail was used */ |
| 5446 | off = xdp->data_end - orig_data_end; |
| 5447 | if (off != 0) { |
| 5448 | skb_set_tail_pointer(skb, offset: xdp->data_end - xdp->data); |
| 5449 | skb->len += off; /* positive on grow, negative on shrink */ |
| 5450 | } |
| 5451 | |
| 5452 | /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers |
| 5453 | * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. |
| 5454 | */ |
| 5455 | if (xdp_buff_has_frags(xdp)) |
| 5456 | skb->data_len = skb_shinfo(skb)->xdp_frags_size; |
| 5457 | else |
| 5458 | skb->data_len = 0; |
| 5459 | |
| 5460 | /* check if XDP changed eth hdr such SKB needs update */ |
| 5461 | eth = (struct ethhdr *)xdp->data; |
| 5462 | if ((orig_eth_type != eth->h_proto) || |
| 5463 | (orig_host != ether_addr_equal_64bits(addr1: eth->h_dest, |
| 5464 | addr2: skb->dev->dev_addr)) || |
| 5465 | (orig_bcast != is_multicast_ether_addr_64bits(addr: eth->h_dest))) { |
| 5466 | __skb_push(skb, ETH_HLEN); |
| 5467 | skb->pkt_type = PACKET_HOST; |
| 5468 | skb->protocol = eth_type_trans(skb, dev: skb->dev); |
| 5469 | } |
| 5470 | |
| 5471 | /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull |
| 5472 | * before calling us again on redirect path. We do not call do_redirect |
| 5473 | * as we leave that up to the caller. |
| 5474 | * |
| 5475 | * Caller is responsible for managing lifetime of skb (i.e. calling |
| 5476 | * kfree_skb in response to actions it cannot handle/XDP_DROP). |
| 5477 | */ |
| 5478 | switch (act) { |
| 5479 | case XDP_REDIRECT: |
| 5480 | case XDP_TX: |
| 5481 | __skb_push(skb, len: mac_len); |
| 5482 | break; |
| 5483 | case XDP_PASS: |
| 5484 | metalen = xdp->data - xdp->data_meta; |
| 5485 | if (metalen) |
| 5486 | skb_metadata_set(skb, meta_len: metalen); |
| 5487 | break; |
| 5488 | } |
| 5489 | |
| 5490 | return act; |
| 5491 | } |
| 5492 | |
| 5493 | static int |
| 5494 | netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) |
| 5495 | { |
| 5496 | struct sk_buff *skb = *pskb; |
| 5497 | int err, hroom, troom; |
| 5498 | |
| 5499 | local_lock_nested_bh(&system_page_pool.bh_lock); |
| 5500 | err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); |
| 5501 | local_unlock_nested_bh(&system_page_pool.bh_lock); |
| 5502 | if (!err) |
| 5503 | return 0; |
| 5504 | |
| 5505 | /* In case we have to go down the path and also linearize, |
| 5506 | * then lets do the pskb_expand_head() work just once here. |
| 5507 | */ |
| 5508 | hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); |
| 5509 | troom = skb->tail + skb->data_len - skb->end; |
| 5510 | err = pskb_expand_head(skb, |
| 5511 | nhead: hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, |
| 5512 | ntail: troom > 0 ? troom + 128 : 0, GFP_ATOMIC); |
| 5513 | if (err) |
| 5514 | return err; |
| 5515 | |
| 5516 | return skb_linearize(skb); |
| 5517 | } |
| 5518 | |
| 5519 | static u32 netif_receive_generic_xdp(struct sk_buff **pskb, |
| 5520 | struct xdp_buff *xdp, |
| 5521 | const struct bpf_prog *xdp_prog) |
| 5522 | { |
| 5523 | struct sk_buff *skb = *pskb; |
| 5524 | u32 mac_len, act = XDP_DROP; |
| 5525 | |
| 5526 | /* Reinjected packets coming from act_mirred or similar should |
| 5527 | * not get XDP generic processing. |
| 5528 | */ |
| 5529 | if (skb_is_redirected(skb)) |
| 5530 | return XDP_PASS; |
| 5531 | |
| 5532 | /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM |
| 5533 | * bytes. This is the guarantee that also native XDP provides, |
| 5534 | * thus we need to do it here as well. |
| 5535 | */ |
| 5536 | mac_len = skb->data - skb_mac_header(skb); |
| 5537 | __skb_push(skb, len: mac_len); |
| 5538 | |
| 5539 | if (skb_cloned(skb) || skb_is_nonlinear(skb) || |
| 5540 | skb_headroom(skb) < XDP_PACKET_HEADROOM) { |
| 5541 | if (netif_skb_check_for_xdp(pskb, prog: xdp_prog)) |
| 5542 | goto do_drop; |
| 5543 | } |
| 5544 | |
| 5545 | __skb_pull(skb: *pskb, len: mac_len); |
| 5546 | |
| 5547 | act = bpf_prog_run_generic_xdp(skb: *pskb, xdp, xdp_prog); |
| 5548 | switch (act) { |
| 5549 | case XDP_REDIRECT: |
| 5550 | case XDP_TX: |
| 5551 | case XDP_PASS: |
| 5552 | break; |
| 5553 | default: |
| 5554 | bpf_warn_invalid_xdp_action(dev: (*pskb)->dev, prog: xdp_prog, act); |
| 5555 | fallthrough; |
| 5556 | case XDP_ABORTED: |
| 5557 | trace_xdp_exception(dev: (*pskb)->dev, xdp: xdp_prog, act); |
| 5558 | fallthrough; |
| 5559 | case XDP_DROP: |
| 5560 | do_drop: |
| 5561 | kfree_skb(skb: *pskb); |
| 5562 | break; |
| 5563 | } |
| 5564 | |
| 5565 | return act; |
| 5566 | } |
| 5567 | |
| 5568 | /* When doing generic XDP we have to bypass the qdisc layer and the |
| 5569 | * network taps in order to match in-driver-XDP behavior. This also means |
| 5570 | * that XDP packets are able to starve other packets going through a qdisc, |
| 5571 | * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX |
| 5572 | * queues, so they do not have this starvation issue. |
| 5573 | */ |
| 5574 | void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) |
| 5575 | { |
| 5576 | struct net_device *dev = skb->dev; |
| 5577 | struct netdev_queue *txq; |
| 5578 | bool free_skb = true; |
| 5579 | int cpu, rc; |
| 5580 | |
| 5581 | txq = netdev_core_pick_tx(dev, skb, NULL); |
| 5582 | cpu = smp_processor_id(); |
| 5583 | HARD_TX_LOCK(dev, txq, cpu); |
| 5584 | if (!netif_xmit_frozen_or_drv_stopped(dev_queue: txq)) { |
| 5585 | rc = netdev_start_xmit(skb, dev, txq, more: 0); |
| 5586 | if (dev_xmit_complete(rc)) |
| 5587 | free_skb = false; |
| 5588 | } |
| 5589 | HARD_TX_UNLOCK(dev, txq); |
| 5590 | if (free_skb) { |
| 5591 | trace_xdp_exception(dev, xdp: xdp_prog, act: XDP_TX); |
| 5592 | dev_core_stats_tx_dropped_inc(dev); |
| 5593 | kfree_skb(skb); |
| 5594 | } |
| 5595 | } |
| 5596 | |
| 5597 | static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); |
| 5598 | |
| 5599 | int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) |
| 5600 | { |
| 5601 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
| 5602 | |
| 5603 | if (xdp_prog) { |
| 5604 | struct xdp_buff xdp; |
| 5605 | u32 act; |
| 5606 | int err; |
| 5607 | |
| 5608 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
| 5609 | act = netif_receive_generic_xdp(pskb, xdp: &xdp, xdp_prog); |
| 5610 | if (act != XDP_PASS) { |
| 5611 | switch (act) { |
| 5612 | case XDP_REDIRECT: |
| 5613 | err = xdp_do_generic_redirect(dev: (*pskb)->dev, skb: *pskb, |
| 5614 | xdp: &xdp, prog: xdp_prog); |
| 5615 | if (err) |
| 5616 | goto out_redir; |
| 5617 | break; |
| 5618 | case XDP_TX: |
| 5619 | generic_xdp_tx(skb: *pskb, xdp_prog); |
| 5620 | break; |
| 5621 | } |
| 5622 | bpf_net_ctx_clear(bpf_net_ctx); |
| 5623 | return XDP_DROP; |
| 5624 | } |
| 5625 | bpf_net_ctx_clear(bpf_net_ctx); |
| 5626 | } |
| 5627 | return XDP_PASS; |
| 5628 | out_redir: |
| 5629 | bpf_net_ctx_clear(bpf_net_ctx); |
| 5630 | kfree_skb_reason(skb: *pskb, reason: SKB_DROP_REASON_XDP); |
| 5631 | return XDP_DROP; |
| 5632 | } |
| 5633 | EXPORT_SYMBOL_GPL(do_xdp_generic); |
| 5634 | |
| 5635 | static int netif_rx_internal(struct sk_buff *skb) |
| 5636 | { |
| 5637 | int ret; |
| 5638 | |
| 5639 | net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); |
| 5640 | |
| 5641 | trace_netif_rx(skb); |
| 5642 | |
| 5643 | #ifdef CONFIG_RPS |
| 5644 | if (static_branch_unlikely(&rps_needed)) { |
| 5645 | struct rps_dev_flow voidflow, *rflow = &voidflow; |
| 5646 | int cpu; |
| 5647 | |
| 5648 | rcu_read_lock(); |
| 5649 | |
| 5650 | cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow); |
| 5651 | if (cpu < 0) |
| 5652 | cpu = smp_processor_id(); |
| 5653 | |
| 5654 | ret = enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail); |
| 5655 | |
| 5656 | rcu_read_unlock(); |
| 5657 | } else |
| 5658 | #endif |
| 5659 | { |
| 5660 | unsigned int qtail; |
| 5661 | |
| 5662 | ret = enqueue_to_backlog(skb, smp_processor_id(), qtail: &qtail); |
| 5663 | } |
| 5664 | return ret; |
| 5665 | } |
| 5666 | |
| 5667 | /** |
| 5668 | * __netif_rx - Slightly optimized version of netif_rx |
| 5669 | * @skb: buffer to post |
| 5670 | * |
| 5671 | * This behaves as netif_rx except that it does not disable bottom halves. |
| 5672 | * As a result this function may only be invoked from the interrupt context |
| 5673 | * (either hard or soft interrupt). |
| 5674 | */ |
| 5675 | int __netif_rx(struct sk_buff *skb) |
| 5676 | { |
| 5677 | int ret; |
| 5678 | |
| 5679 | lockdep_assert_once(hardirq_count() | softirq_count()); |
| 5680 | |
| 5681 | trace_netif_rx_entry(skb); |
| 5682 | ret = netif_rx_internal(skb); |
| 5683 | trace_netif_rx_exit(ret); |
| 5684 | return ret; |
| 5685 | } |
| 5686 | EXPORT_SYMBOL(__netif_rx); |
| 5687 | |
| 5688 | /** |
| 5689 | * netif_rx - post buffer to the network code |
| 5690 | * @skb: buffer to post |
| 5691 | * |
| 5692 | * This function receives a packet from a device driver and queues it for |
| 5693 | * the upper (protocol) levels to process via the backlog NAPI device. It |
| 5694 | * always succeeds. The buffer may be dropped during processing for |
| 5695 | * congestion control or by the protocol layers. |
| 5696 | * The network buffer is passed via the backlog NAPI device. Modern NIC |
| 5697 | * driver should use NAPI and GRO. |
| 5698 | * This function can used from interrupt and from process context. The |
| 5699 | * caller from process context must not disable interrupts before invoking |
| 5700 | * this function. |
| 5701 | * |
| 5702 | * return values: |
| 5703 | * NET_RX_SUCCESS (no congestion) |
| 5704 | * NET_RX_DROP (packet was dropped) |
| 5705 | * |
| 5706 | */ |
| 5707 | int netif_rx(struct sk_buff *skb) |
| 5708 | { |
| 5709 | bool need_bh_off = !(hardirq_count() | softirq_count()); |
| 5710 | int ret; |
| 5711 | |
| 5712 | if (need_bh_off) |
| 5713 | local_bh_disable(); |
| 5714 | trace_netif_rx_entry(skb); |
| 5715 | ret = netif_rx_internal(skb); |
| 5716 | trace_netif_rx_exit(ret); |
| 5717 | if (need_bh_off) |
| 5718 | local_bh_enable(); |
| 5719 | return ret; |
| 5720 | } |
| 5721 | EXPORT_SYMBOL(netif_rx); |
| 5722 | |
| 5723 | static __latent_entropy void net_tx_action(void) |
| 5724 | { |
| 5725 | struct softnet_data *sd = this_cpu_ptr(&softnet_data); |
| 5726 | |
| 5727 | if (sd->completion_queue) { |
| 5728 | struct sk_buff *clist; |
| 5729 | |
| 5730 | local_irq_disable(); |
| 5731 | clist = sd->completion_queue; |
| 5732 | sd->completion_queue = NULL; |
| 5733 | local_irq_enable(); |
| 5734 | |
| 5735 | while (clist) { |
| 5736 | struct sk_buff *skb = clist; |
| 5737 | |
| 5738 | clist = clist->next; |
| 5739 | |
| 5740 | WARN_ON(refcount_read(&skb->users)); |
| 5741 | if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) |
| 5742 | trace_consume_skb(skb, location: net_tx_action); |
| 5743 | else |
| 5744 | trace_kfree_skb(skb, location: net_tx_action, |
| 5745 | reason: get_kfree_skb_cb(skb)->reason, NULL); |
| 5746 | |
| 5747 | if (skb->fclone != SKB_FCLONE_UNAVAILABLE) |
| 5748 | __kfree_skb(skb); |
| 5749 | else |
| 5750 | __napi_kfree_skb(skb, |
| 5751 | reason: get_kfree_skb_cb(skb)->reason); |
| 5752 | } |
| 5753 | } |
| 5754 | |
| 5755 | if (sd->output_queue) { |
| 5756 | struct Qdisc *head; |
| 5757 | |
| 5758 | local_irq_disable(); |
| 5759 | head = sd->output_queue; |
| 5760 | sd->output_queue = NULL; |
| 5761 | sd->output_queue_tailp = &sd->output_queue; |
| 5762 | local_irq_enable(); |
| 5763 | |
| 5764 | rcu_read_lock(); |
| 5765 | |
| 5766 | while (head) { |
| 5767 | spinlock_t *root_lock = NULL; |
| 5768 | struct sk_buff *to_free; |
| 5769 | struct Qdisc *q = head; |
| 5770 | |
| 5771 | head = head->next_sched; |
| 5772 | |
| 5773 | /* We need to make sure head->next_sched is read |
| 5774 | * before clearing __QDISC_STATE_SCHED |
| 5775 | */ |
| 5776 | smp_mb__before_atomic(); |
| 5777 | |
| 5778 | if (!(q->flags & TCQ_F_NOLOCK)) { |
| 5779 | root_lock = qdisc_lock(qdisc: q); |
| 5780 | spin_lock(lock: root_lock); |
| 5781 | } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, |
| 5782 | &q->state))) { |
| 5783 | /* There is a synchronize_net() between |
| 5784 | * STATE_DEACTIVATED flag being set and |
| 5785 | * qdisc_reset()/some_qdisc_is_busy() in |
| 5786 | * dev_deactivate(), so we can safely bail out |
| 5787 | * early here to avoid data race between |
| 5788 | * qdisc_deactivate() and some_qdisc_is_busy() |
| 5789 | * for lockless qdisc. |
| 5790 | */ |
| 5791 | clear_bit(nr: __QDISC_STATE_SCHED, addr: &q->state); |
| 5792 | continue; |
| 5793 | } |
| 5794 | |
| 5795 | clear_bit(nr: __QDISC_STATE_SCHED, addr: &q->state); |
| 5796 | to_free = qdisc_run(q); |
| 5797 | if (root_lock) |
| 5798 | spin_unlock(lock: root_lock); |
| 5799 | tcf_kfree_skb_list(skb: to_free); |
| 5800 | } |
| 5801 | |
| 5802 | rcu_read_unlock(); |
| 5803 | } |
| 5804 | |
| 5805 | xfrm_dev_backlog(sd); |
| 5806 | } |
| 5807 | |
| 5808 | #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) |
| 5809 | /* This hook is defined here for ATM LANE */ |
| 5810 | int (*br_fdb_test_addr_hook)(struct net_device *dev, |
| 5811 | unsigned char *addr) __read_mostly; |
| 5812 | EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); |
| 5813 | #endif |
| 5814 | |
| 5815 | /** |
| 5816 | * netdev_is_rx_handler_busy - check if receive handler is registered |
| 5817 | * @dev: device to check |
| 5818 | * |
| 5819 | * Check if a receive handler is already registered for a given device. |
| 5820 | * Return true if there one. |
| 5821 | * |
| 5822 | * The caller must hold the rtnl_mutex. |
| 5823 | */ |
| 5824 | bool netdev_is_rx_handler_busy(struct net_device *dev) |
| 5825 | { |
| 5826 | ASSERT_RTNL(); |
| 5827 | return dev && rtnl_dereference(dev->rx_handler); |
| 5828 | } |
| 5829 | EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); |
| 5830 | |
| 5831 | /** |
| 5832 | * netdev_rx_handler_register - register receive handler |
| 5833 | * @dev: device to register a handler for |
| 5834 | * @rx_handler: receive handler to register |
| 5835 | * @rx_handler_data: data pointer that is used by rx handler |
| 5836 | * |
| 5837 | * Register a receive handler for a device. This handler will then be |
| 5838 | * called from __netif_receive_skb. A negative errno code is returned |
| 5839 | * on a failure. |
| 5840 | * |
| 5841 | * The caller must hold the rtnl_mutex. |
| 5842 | * |
| 5843 | * For a general description of rx_handler, see enum rx_handler_result. |
| 5844 | */ |
| 5845 | int netdev_rx_handler_register(struct net_device *dev, |
| 5846 | rx_handler_func_t *rx_handler, |
| 5847 | void *rx_handler_data) |
| 5848 | { |
| 5849 | if (netdev_is_rx_handler_busy(dev)) |
| 5850 | return -EBUSY; |
| 5851 | |
| 5852 | if (dev->priv_flags & IFF_NO_RX_HANDLER) |
| 5853 | return -EINVAL; |
| 5854 | |
| 5855 | /* Note: rx_handler_data must be set before rx_handler */ |
| 5856 | rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); |
| 5857 | rcu_assign_pointer(dev->rx_handler, rx_handler); |
| 5858 | |
| 5859 | return 0; |
| 5860 | } |
| 5861 | EXPORT_SYMBOL_GPL(netdev_rx_handler_register); |
| 5862 | |
| 5863 | /** |
| 5864 | * netdev_rx_handler_unregister - unregister receive handler |
| 5865 | * @dev: device to unregister a handler from |
| 5866 | * |
| 5867 | * Unregister a receive handler from a device. |
| 5868 | * |
| 5869 | * The caller must hold the rtnl_mutex. |
| 5870 | */ |
| 5871 | void netdev_rx_handler_unregister(struct net_device *dev) |
| 5872 | { |
| 5873 | |
| 5874 | ASSERT_RTNL(); |
| 5875 | RCU_INIT_POINTER(dev->rx_handler, NULL); |
| 5876 | /* a reader seeing a non NULL rx_handler in a rcu_read_lock() |
| 5877 | * section has a guarantee to see a non NULL rx_handler_data |
| 5878 | * as well. |
| 5879 | */ |
| 5880 | synchronize_net(); |
| 5881 | RCU_INIT_POINTER(dev->rx_handler_data, NULL); |
| 5882 | } |
| 5883 | EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); |
| 5884 | |
| 5885 | /* |
| 5886 | * Limit the use of PFMEMALLOC reserves to those protocols that implement |
| 5887 | * the special handling of PFMEMALLOC skbs. |
| 5888 | */ |
| 5889 | static bool skb_pfmemalloc_protocol(struct sk_buff *skb) |
| 5890 | { |
| 5891 | switch (skb->protocol) { |
| 5892 | case htons(ETH_P_ARP): |
| 5893 | case htons(ETH_P_IP): |
| 5894 | case htons(ETH_P_IPV6): |
| 5895 | case htons(ETH_P_8021Q): |
| 5896 | case htons(ETH_P_8021AD): |
| 5897 | return true; |
| 5898 | default: |
| 5899 | return false; |
| 5900 | } |
| 5901 | } |
| 5902 | |
| 5903 | static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, |
| 5904 | int *ret, struct net_device *orig_dev) |
| 5905 | { |
| 5906 | if (nf_hook_ingress_active(skb)) { |
| 5907 | int ingress_retval; |
| 5908 | |
| 5909 | if (unlikely(*pt_prev)) { |
| 5910 | *ret = deliver_skb(skb, pt_prev: *pt_prev, orig_dev); |
| 5911 | *pt_prev = NULL; |
| 5912 | } |
| 5913 | |
| 5914 | rcu_read_lock(); |
| 5915 | ingress_retval = nf_hook_ingress(skb); |
| 5916 | rcu_read_unlock(); |
| 5917 | return ingress_retval; |
| 5918 | } |
| 5919 | return 0; |
| 5920 | } |
| 5921 | |
| 5922 | static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, |
| 5923 | struct packet_type **ppt_prev) |
| 5924 | { |
| 5925 | enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; |
| 5926 | struct packet_type *ptype, *pt_prev; |
| 5927 | rx_handler_func_t *rx_handler; |
| 5928 | struct sk_buff *skb = *pskb; |
| 5929 | struct net_device *orig_dev; |
| 5930 | bool deliver_exact = false; |
| 5931 | int ret = NET_RX_DROP; |
| 5932 | __be16 type; |
| 5933 | |
| 5934 | net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); |
| 5935 | |
| 5936 | trace_netif_receive_skb(skb); |
| 5937 | |
| 5938 | orig_dev = skb->dev; |
| 5939 | |
| 5940 | skb_reset_network_header(skb); |
| 5941 | #if !defined(CONFIG_DEBUG_NET) |
| 5942 | /* We plan to no longer reset the transport header here. |
| 5943 | * Give some time to fuzzers and dev build to catch bugs |
| 5944 | * in network stacks. |
| 5945 | */ |
| 5946 | if (!skb_transport_header_was_set(skb)) |
| 5947 | skb_reset_transport_header(skb); |
| 5948 | #endif |
| 5949 | skb_reset_mac_len(skb); |
| 5950 | |
| 5951 | pt_prev = NULL; |
| 5952 | |
| 5953 | another_round: |
| 5954 | skb->skb_iif = skb->dev->ifindex; |
| 5955 | |
| 5956 | __this_cpu_inc(softnet_data.processed); |
| 5957 | |
| 5958 | if (static_branch_unlikely(&generic_xdp_needed_key)) { |
| 5959 | int ret2; |
| 5960 | |
| 5961 | migrate_disable(); |
| 5962 | ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), |
| 5963 | &skb); |
| 5964 | migrate_enable(); |
| 5965 | |
| 5966 | if (ret2 != XDP_PASS) { |
| 5967 | ret = NET_RX_DROP; |
| 5968 | goto out; |
| 5969 | } |
| 5970 | } |
| 5971 | |
| 5972 | if (eth_type_vlan(ethertype: skb->protocol)) { |
| 5973 | skb = skb_vlan_untag(skb); |
| 5974 | if (unlikely(!skb)) |
| 5975 | goto out; |
| 5976 | } |
| 5977 | |
| 5978 | if (skb_skip_tc_classify(skb)) |
| 5979 | goto skip_classify; |
| 5980 | |
| 5981 | if (pfmemalloc) |
| 5982 | goto skip_taps; |
| 5983 | |
| 5984 | list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, |
| 5985 | list) { |
| 5986 | if (unlikely(pt_prev)) |
| 5987 | ret = deliver_skb(skb, pt_prev, orig_dev); |
| 5988 | pt_prev = ptype; |
| 5989 | } |
| 5990 | |
| 5991 | list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { |
| 5992 | if (unlikely(pt_prev)) |
| 5993 | ret = deliver_skb(skb, pt_prev, orig_dev); |
| 5994 | pt_prev = ptype; |
| 5995 | } |
| 5996 | |
| 5997 | skip_taps: |
| 5998 | #ifdef CONFIG_NET_INGRESS |
| 5999 | if (static_branch_unlikely(&ingress_needed_key)) { |
| 6000 | bool another = false; |
| 6001 | |
| 6002 | nf_skip_egress(skb, skip: true); |
| 6003 | skb = sch_handle_ingress(skb, pt_prev: &pt_prev, ret: &ret, orig_dev, |
| 6004 | another: &another); |
| 6005 | if (another) |
| 6006 | goto another_round; |
| 6007 | if (!skb) |
| 6008 | goto out; |
| 6009 | |
| 6010 | nf_skip_egress(skb, skip: false); |
| 6011 | if (nf_ingress(skb, pt_prev: &pt_prev, ret: &ret, orig_dev) < 0) |
| 6012 | goto out; |
| 6013 | } |
| 6014 | #endif |
| 6015 | skb_reset_redirect(skb); |
| 6016 | skip_classify: |
| 6017 | if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { |
| 6018 | drop_reason = SKB_DROP_REASON_PFMEMALLOC; |
| 6019 | goto drop; |
| 6020 | } |
| 6021 | |
| 6022 | if (skb_vlan_tag_present(skb)) { |
| 6023 | if (unlikely(pt_prev)) { |
| 6024 | ret = deliver_skb(skb, pt_prev, orig_dev); |
| 6025 | pt_prev = NULL; |
| 6026 | } |
| 6027 | if (vlan_do_receive(skb: &skb)) |
| 6028 | goto another_round; |
| 6029 | else if (unlikely(!skb)) |
| 6030 | goto out; |
| 6031 | } |
| 6032 | |
| 6033 | rx_handler = rcu_dereference(skb->dev->rx_handler); |
| 6034 | if (rx_handler) { |
| 6035 | if (unlikely(pt_prev)) { |
| 6036 | ret = deliver_skb(skb, pt_prev, orig_dev); |
| 6037 | pt_prev = NULL; |
| 6038 | } |
| 6039 | switch (rx_handler(&skb)) { |
| 6040 | case RX_HANDLER_CONSUMED: |
| 6041 | ret = NET_RX_SUCCESS; |
| 6042 | goto out; |
| 6043 | case RX_HANDLER_ANOTHER: |
| 6044 | goto another_round; |
| 6045 | case RX_HANDLER_EXACT: |
| 6046 | deliver_exact = true; |
| 6047 | break; |
| 6048 | case RX_HANDLER_PASS: |
| 6049 | break; |
| 6050 | default: |
| 6051 | BUG(); |
| 6052 | } |
| 6053 | } |
| 6054 | |
| 6055 | if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(dev: skb->dev)) { |
| 6056 | check_vlan_id: |
| 6057 | if (skb_vlan_tag_get_id(skb)) { |
| 6058 | /* Vlan id is non 0 and vlan_do_receive() above couldn't |
| 6059 | * find vlan device. |
| 6060 | */ |
| 6061 | skb->pkt_type = PACKET_OTHERHOST; |
| 6062 | } else if (eth_type_vlan(ethertype: skb->protocol)) { |
| 6063 | /* Outer header is 802.1P with vlan 0, inner header is |
| 6064 | * 802.1Q or 802.1AD and vlan_do_receive() above could |
| 6065 | * not find vlan dev for vlan id 0. |
| 6066 | */ |
| 6067 | __vlan_hwaccel_clear_tag(skb); |
| 6068 | skb = skb_vlan_untag(skb); |
| 6069 | if (unlikely(!skb)) |
| 6070 | goto out; |
| 6071 | if (vlan_do_receive(skb: &skb)) |
| 6072 | /* After stripping off 802.1P header with vlan 0 |
| 6073 | * vlan dev is found for inner header. |
| 6074 | */ |
| 6075 | goto another_round; |
| 6076 | else if (unlikely(!skb)) |
| 6077 | goto out; |
| 6078 | else |
| 6079 | /* We have stripped outer 802.1P vlan 0 header. |
| 6080 | * But could not find vlan dev. |
| 6081 | * check again for vlan id to set OTHERHOST. |
| 6082 | */ |
| 6083 | goto check_vlan_id; |
| 6084 | } |
| 6085 | /* Note: we might in the future use prio bits |
| 6086 | * and set skb->priority like in vlan_do_receive() |
| 6087 | * For the time being, just ignore Priority Code Point |
| 6088 | */ |
| 6089 | __vlan_hwaccel_clear_tag(skb); |
| 6090 | } |
| 6091 | |
| 6092 | type = skb->protocol; |
| 6093 | |
| 6094 | /* deliver only exact match when indicated */ |
| 6095 | if (likely(!deliver_exact)) { |
| 6096 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
| 6097 | ptype_list: &ptype_base[ntohs(type) & |
| 6098 | PTYPE_HASH_MASK]); |
| 6099 | |
| 6100 | /* orig_dev and skb->dev could belong to different netns; |
| 6101 | * Even in such case we need to traverse only the list |
| 6102 | * coming from skb->dev, as the ptype owner (packet socket) |
| 6103 | * will use dev_net(skb->dev) to do namespace filtering. |
| 6104 | */ |
| 6105 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
| 6106 | ptype_list: &dev_net_rcu(dev: skb->dev)->ptype_specific); |
| 6107 | } |
| 6108 | |
| 6109 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
| 6110 | ptype_list: &orig_dev->ptype_specific); |
| 6111 | |
| 6112 | if (unlikely(skb->dev != orig_dev)) { |
| 6113 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
| 6114 | ptype_list: &skb->dev->ptype_specific); |
| 6115 | } |
| 6116 | |
| 6117 | if (pt_prev) { |
| 6118 | *ppt_prev = pt_prev; |
| 6119 | } else { |
| 6120 | drop: |
| 6121 | if (!deliver_exact) |
| 6122 | dev_core_stats_rx_dropped_inc(dev: skb->dev); |
| 6123 | else |
| 6124 | dev_core_stats_rx_nohandler_inc(dev: skb->dev); |
| 6125 | |
| 6126 | kfree_skb_reason(skb, reason: drop_reason); |
| 6127 | /* Jamal, now you will not able to escape explaining |
| 6128 | * me how you were going to use this. :-) |
| 6129 | */ |
| 6130 | ret = NET_RX_DROP; |
| 6131 | } |
| 6132 | |
| 6133 | out: |
| 6134 | /* The invariant here is that if *ppt_prev is not NULL |
| 6135 | * then skb should also be non-NULL. |
| 6136 | * |
| 6137 | * Apparently *ppt_prev assignment above holds this invariant due to |
| 6138 | * skb dereferencing near it. |
| 6139 | */ |
| 6140 | *pskb = skb; |
| 6141 | return ret; |
| 6142 | } |
| 6143 | |
| 6144 | static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) |
| 6145 | { |
| 6146 | struct net_device *orig_dev = skb->dev; |
| 6147 | struct packet_type *pt_prev = NULL; |
| 6148 | int ret; |
| 6149 | |
| 6150 | ret = __netif_receive_skb_core(pskb: &skb, pfmemalloc, ppt_prev: &pt_prev); |
| 6151 | if (pt_prev) |
| 6152 | ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, |
| 6153 | skb->dev, pt_prev, orig_dev); |
| 6154 | return ret; |
| 6155 | } |
| 6156 | |
| 6157 | /** |
| 6158 | * netif_receive_skb_core - special purpose version of netif_receive_skb |
| 6159 | * @skb: buffer to process |
| 6160 | * |
| 6161 | * More direct receive version of netif_receive_skb(). It should |
| 6162 | * only be used by callers that have a need to skip RPS and Generic XDP. |
| 6163 | * Caller must also take care of handling if ``(page_is_)pfmemalloc``. |
| 6164 | * |
| 6165 | * This function may only be called from softirq context and interrupts |
| 6166 | * should be enabled. |
| 6167 | * |
| 6168 | * Return values (usually ignored): |
| 6169 | * NET_RX_SUCCESS: no congestion |
| 6170 | * NET_RX_DROP: packet was dropped |
| 6171 | */ |
| 6172 | int netif_receive_skb_core(struct sk_buff *skb) |
| 6173 | { |
| 6174 | int ret; |
| 6175 | |
| 6176 | rcu_read_lock(); |
| 6177 | ret = __netif_receive_skb_one_core(skb, pfmemalloc: false); |
| 6178 | rcu_read_unlock(); |
| 6179 | |
| 6180 | return ret; |
| 6181 | } |
| 6182 | EXPORT_SYMBOL(netif_receive_skb_core); |
| 6183 | |
| 6184 | static inline void __netif_receive_skb_list_ptype(struct list_head *head, |
| 6185 | struct packet_type *pt_prev, |
| 6186 | struct net_device *orig_dev) |
| 6187 | { |
| 6188 | struct sk_buff *skb, *next; |
| 6189 | |
| 6190 | if (!pt_prev) |
| 6191 | return; |
| 6192 | if (list_empty(head)) |
| 6193 | return; |
| 6194 | if (pt_prev->list_func != NULL) |
| 6195 | INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, |
| 6196 | ip_list_rcv, head, pt_prev, orig_dev); |
| 6197 | else |
| 6198 | list_for_each_entry_safe(skb, next, head, list) { |
| 6199 | skb_list_del_init(skb); |
| 6200 | pt_prev->func(skb, skb->dev, pt_prev, orig_dev); |
| 6201 | } |
| 6202 | } |
| 6203 | |
| 6204 | static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) |
| 6205 | { |
| 6206 | /* Fast-path assumptions: |
| 6207 | * - There is no RX handler. |
| 6208 | * - Only one packet_type matches. |
| 6209 | * If either of these fails, we will end up doing some per-packet |
| 6210 | * processing in-line, then handling the 'last ptype' for the whole |
| 6211 | * sublist. This can't cause out-of-order delivery to any single ptype, |
| 6212 | * because the 'last ptype' must be constant across the sublist, and all |
| 6213 | * other ptypes are handled per-packet. |
| 6214 | */ |
| 6215 | /* Current (common) ptype of sublist */ |
| 6216 | struct packet_type *pt_curr = NULL; |
| 6217 | /* Current (common) orig_dev of sublist */ |
| 6218 | struct net_device *od_curr = NULL; |
| 6219 | struct sk_buff *skb, *next; |
| 6220 | LIST_HEAD(sublist); |
| 6221 | |
| 6222 | list_for_each_entry_safe(skb, next, head, list) { |
| 6223 | struct net_device *orig_dev = skb->dev; |
| 6224 | struct packet_type *pt_prev = NULL; |
| 6225 | |
| 6226 | skb_list_del_init(skb); |
| 6227 | __netif_receive_skb_core(pskb: &skb, pfmemalloc, ppt_prev: &pt_prev); |
| 6228 | if (!pt_prev) |
| 6229 | continue; |
| 6230 | if (pt_curr != pt_prev || od_curr != orig_dev) { |
| 6231 | /* dispatch old sublist */ |
| 6232 | __netif_receive_skb_list_ptype(head: &sublist, pt_prev: pt_curr, orig_dev: od_curr); |
| 6233 | /* start new sublist */ |
| 6234 | INIT_LIST_HEAD(list: &sublist); |
| 6235 | pt_curr = pt_prev; |
| 6236 | od_curr = orig_dev; |
| 6237 | } |
| 6238 | list_add_tail(new: &skb->list, head: &sublist); |
| 6239 | } |
| 6240 | |
| 6241 | /* dispatch final sublist */ |
| 6242 | __netif_receive_skb_list_ptype(head: &sublist, pt_prev: pt_curr, orig_dev: od_curr); |
| 6243 | } |
| 6244 | |
| 6245 | static int __netif_receive_skb(struct sk_buff *skb) |
| 6246 | { |
| 6247 | int ret; |
| 6248 | |
| 6249 | if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { |
| 6250 | unsigned int noreclaim_flag; |
| 6251 | |
| 6252 | /* |
| 6253 | * PFMEMALLOC skbs are special, they should |
| 6254 | * - be delivered to SOCK_MEMALLOC sockets only |
| 6255 | * - stay away from userspace |
| 6256 | * - have bounded memory usage |
| 6257 | * |
| 6258 | * Use PF_MEMALLOC as this saves us from propagating the allocation |
| 6259 | * context down to all allocation sites. |
| 6260 | */ |
| 6261 | noreclaim_flag = memalloc_noreclaim_save(); |
| 6262 | ret = __netif_receive_skb_one_core(skb, pfmemalloc: true); |
| 6263 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
| 6264 | } else |
| 6265 | ret = __netif_receive_skb_one_core(skb, pfmemalloc: false); |
| 6266 | |
| 6267 | return ret; |
| 6268 | } |
| 6269 | |
| 6270 | static void __netif_receive_skb_list(struct list_head *head) |
| 6271 | { |
| 6272 | unsigned long noreclaim_flag = 0; |
| 6273 | struct sk_buff *skb, *next; |
| 6274 | bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ |
| 6275 | |
| 6276 | list_for_each_entry_safe(skb, next, head, list) { |
| 6277 | if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { |
| 6278 | struct list_head sublist; |
| 6279 | |
| 6280 | /* Handle the previous sublist */ |
| 6281 | list_cut_before(list: &sublist, head, entry: &skb->list); |
| 6282 | if (!list_empty(head: &sublist)) |
| 6283 | __netif_receive_skb_list_core(head: &sublist, pfmemalloc); |
| 6284 | pfmemalloc = !pfmemalloc; |
| 6285 | /* See comments in __netif_receive_skb */ |
| 6286 | if (pfmemalloc) |
| 6287 | noreclaim_flag = memalloc_noreclaim_save(); |
| 6288 | else |
| 6289 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
| 6290 | } |
| 6291 | } |
| 6292 | /* Handle the remaining sublist */ |
| 6293 | if (!list_empty(head)) |
| 6294 | __netif_receive_skb_list_core(head, pfmemalloc); |
| 6295 | /* Restore pflags */ |
| 6296 | if (pfmemalloc) |
| 6297 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
| 6298 | } |
| 6299 | |
| 6300 | static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) |
| 6301 | { |
| 6302 | struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); |
| 6303 | struct bpf_prog *new = xdp->prog; |
| 6304 | int ret = 0; |
| 6305 | |
| 6306 | switch (xdp->command) { |
| 6307 | case XDP_SETUP_PROG: |
| 6308 | rcu_assign_pointer(dev->xdp_prog, new); |
| 6309 | if (old) |
| 6310 | bpf_prog_put(prog: old); |
| 6311 | |
| 6312 | if (old && !new) { |
| 6313 | static_branch_dec(&generic_xdp_needed_key); |
| 6314 | } else if (new && !old) { |
| 6315 | static_branch_inc(&generic_xdp_needed_key); |
| 6316 | netif_disable_lro(dev); |
| 6317 | dev_disable_gro_hw(dev); |
| 6318 | } |
| 6319 | break; |
| 6320 | |
| 6321 | default: |
| 6322 | ret = -EINVAL; |
| 6323 | break; |
| 6324 | } |
| 6325 | |
| 6326 | return ret; |
| 6327 | } |
| 6328 | |
| 6329 | static int netif_receive_skb_internal(struct sk_buff *skb) |
| 6330 | { |
| 6331 | int ret; |
| 6332 | |
| 6333 | net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); |
| 6334 | |
| 6335 | if (skb_defer_rx_timestamp(skb)) |
| 6336 | return NET_RX_SUCCESS; |
| 6337 | |
| 6338 | rcu_read_lock(); |
| 6339 | #ifdef CONFIG_RPS |
| 6340 | if (static_branch_unlikely(&rps_needed)) { |
| 6341 | struct rps_dev_flow voidflow, *rflow = &voidflow; |
| 6342 | int cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow); |
| 6343 | |
| 6344 | if (cpu >= 0) { |
| 6345 | ret = enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail); |
| 6346 | rcu_read_unlock(); |
| 6347 | return ret; |
| 6348 | } |
| 6349 | } |
| 6350 | #endif |
| 6351 | ret = __netif_receive_skb(skb); |
| 6352 | rcu_read_unlock(); |
| 6353 | return ret; |
| 6354 | } |
| 6355 | |
| 6356 | void netif_receive_skb_list_internal(struct list_head *head) |
| 6357 | { |
| 6358 | struct sk_buff *skb, *next; |
| 6359 | LIST_HEAD(sublist); |
| 6360 | |
| 6361 | list_for_each_entry_safe(skb, next, head, list) { |
| 6362 | net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), |
| 6363 | skb); |
| 6364 | skb_list_del_init(skb); |
| 6365 | if (!skb_defer_rx_timestamp(skb)) |
| 6366 | list_add_tail(new: &skb->list, head: &sublist); |
| 6367 | } |
| 6368 | list_splice_init(list: &sublist, head); |
| 6369 | |
| 6370 | rcu_read_lock(); |
| 6371 | #ifdef CONFIG_RPS |
| 6372 | if (static_branch_unlikely(&rps_needed)) { |
| 6373 | list_for_each_entry_safe(skb, next, head, list) { |
| 6374 | struct rps_dev_flow voidflow, *rflow = &voidflow; |
| 6375 | int cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow); |
| 6376 | |
| 6377 | if (cpu >= 0) { |
| 6378 | /* Will be handled, remove from list */ |
| 6379 | skb_list_del_init(skb); |
| 6380 | enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail); |
| 6381 | } |
| 6382 | } |
| 6383 | } |
| 6384 | #endif |
| 6385 | __netif_receive_skb_list(head); |
| 6386 | rcu_read_unlock(); |
| 6387 | } |
| 6388 | |
| 6389 | /** |
| 6390 | * netif_receive_skb - process receive buffer from network |
| 6391 | * @skb: buffer to process |
| 6392 | * |
| 6393 | * netif_receive_skb() is the main receive data processing function. |
| 6394 | * It always succeeds. The buffer may be dropped during processing |
| 6395 | * for congestion control or by the protocol layers. |
| 6396 | * |
| 6397 | * This function may only be called from softirq context and interrupts |
| 6398 | * should be enabled. |
| 6399 | * |
| 6400 | * Return values (usually ignored): |
| 6401 | * NET_RX_SUCCESS: no congestion |
| 6402 | * NET_RX_DROP: packet was dropped |
| 6403 | */ |
| 6404 | int netif_receive_skb(struct sk_buff *skb) |
| 6405 | { |
| 6406 | int ret; |
| 6407 | |
| 6408 | trace_netif_receive_skb_entry(skb); |
| 6409 | |
| 6410 | ret = netif_receive_skb_internal(skb); |
| 6411 | trace_netif_receive_skb_exit(ret); |
| 6412 | |
| 6413 | return ret; |
| 6414 | } |
| 6415 | EXPORT_SYMBOL(netif_receive_skb); |
| 6416 | |
| 6417 | /** |
| 6418 | * netif_receive_skb_list - process many receive buffers from network |
| 6419 | * @head: list of skbs to process. |
| 6420 | * |
| 6421 | * Since return value of netif_receive_skb() is normally ignored, and |
| 6422 | * wouldn't be meaningful for a list, this function returns void. |
| 6423 | * |
| 6424 | * This function may only be called from softirq context and interrupts |
| 6425 | * should be enabled. |
| 6426 | */ |
| 6427 | void netif_receive_skb_list(struct list_head *head) |
| 6428 | { |
| 6429 | struct sk_buff *skb; |
| 6430 | |
| 6431 | if (list_empty(head)) |
| 6432 | return; |
| 6433 | if (trace_netif_receive_skb_list_entry_enabled()) { |
| 6434 | list_for_each_entry(skb, head, list) |
| 6435 | trace_netif_receive_skb_list_entry(skb); |
| 6436 | } |
| 6437 | netif_receive_skb_list_internal(head); |
| 6438 | trace_netif_receive_skb_list_exit(ret: 0); |
| 6439 | } |
| 6440 | EXPORT_SYMBOL(netif_receive_skb_list); |
| 6441 | |
| 6442 | /* Network device is going away, flush any packets still pending */ |
| 6443 | static void flush_backlog(struct work_struct *work) |
| 6444 | { |
| 6445 | struct sk_buff *skb, *tmp; |
| 6446 | struct sk_buff_head list; |
| 6447 | struct softnet_data *sd; |
| 6448 | |
| 6449 | __skb_queue_head_init(list: &list); |
| 6450 | local_bh_disable(); |
| 6451 | sd = this_cpu_ptr(&softnet_data); |
| 6452 | |
| 6453 | backlog_lock_irq_disable(sd); |
| 6454 | skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { |
| 6455 | if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { |
| 6456 | __skb_unlink(skb, list: &sd->input_pkt_queue); |
| 6457 | __skb_queue_tail(list: &list, newsk: skb); |
| 6458 | rps_input_queue_head_incr(sd); |
| 6459 | } |
| 6460 | } |
| 6461 | backlog_unlock_irq_enable(sd); |
| 6462 | |
| 6463 | local_lock_nested_bh(&softnet_data.process_queue_bh_lock); |
| 6464 | skb_queue_walk_safe(&sd->process_queue, skb, tmp) { |
| 6465 | if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { |
| 6466 | __skb_unlink(skb, list: &sd->process_queue); |
| 6467 | __skb_queue_tail(list: &list, newsk: skb); |
| 6468 | rps_input_queue_head_incr(sd); |
| 6469 | } |
| 6470 | } |
| 6471 | local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); |
| 6472 | local_bh_enable(); |
| 6473 | |
| 6474 | __skb_queue_purge_reason(list: &list, reason: SKB_DROP_REASON_DEV_READY); |
| 6475 | } |
| 6476 | |
| 6477 | static bool flush_required(int cpu) |
| 6478 | { |
| 6479 | #if IS_ENABLED(CONFIG_RPS) |
| 6480 | struct softnet_data *sd = &per_cpu(softnet_data, cpu); |
| 6481 | bool do_flush; |
| 6482 | |
| 6483 | backlog_lock_irq_disable(sd); |
| 6484 | |
| 6485 | /* as insertion into process_queue happens with the rps lock held, |
| 6486 | * process_queue access may race only with dequeue |
| 6487 | */ |
| 6488 | do_flush = !skb_queue_empty(list: &sd->input_pkt_queue) || |
| 6489 | !skb_queue_empty_lockless(list: &sd->process_queue); |
| 6490 | backlog_unlock_irq_enable(sd); |
| 6491 | |
| 6492 | return do_flush; |
| 6493 | #endif |
| 6494 | /* without RPS we can't safely check input_pkt_queue: during a |
| 6495 | * concurrent remote skb_queue_splice() we can detect as empty both |
| 6496 | * input_pkt_queue and process_queue even if the latter could end-up |
| 6497 | * containing a lot of packets. |
| 6498 | */ |
| 6499 | return true; |
| 6500 | } |
| 6501 | |
| 6502 | struct flush_backlogs { |
| 6503 | cpumask_t flush_cpus; |
| 6504 | struct work_struct w[]; |
| 6505 | }; |
| 6506 | |
| 6507 | static struct flush_backlogs *flush_backlogs_alloc(void) |
| 6508 | { |
| 6509 | return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), |
| 6510 | GFP_KERNEL); |
| 6511 | } |
| 6512 | |
| 6513 | static struct flush_backlogs *flush_backlogs_fallback; |
| 6514 | static DEFINE_MUTEX(flush_backlogs_mutex); |
| 6515 | |
| 6516 | static void flush_all_backlogs(void) |
| 6517 | { |
| 6518 | struct flush_backlogs *ptr = flush_backlogs_alloc(); |
| 6519 | unsigned int cpu; |
| 6520 | |
| 6521 | if (!ptr) { |
| 6522 | mutex_lock(&flush_backlogs_mutex); |
| 6523 | ptr = flush_backlogs_fallback; |
| 6524 | } |
| 6525 | cpumask_clear(dstp: &ptr->flush_cpus); |
| 6526 | |
| 6527 | cpus_read_lock(); |
| 6528 | |
| 6529 | for_each_online_cpu(cpu) { |
| 6530 | if (flush_required(cpu)) { |
| 6531 | INIT_WORK(&ptr->w[cpu], flush_backlog); |
| 6532 | queue_work_on(cpu, wq: system_highpri_wq, work: &ptr->w[cpu]); |
| 6533 | __cpumask_set_cpu(cpu, dstp: &ptr->flush_cpus); |
| 6534 | } |
| 6535 | } |
| 6536 | |
| 6537 | /* we can have in flight packet[s] on the cpus we are not flushing, |
| 6538 | * synchronize_net() in unregister_netdevice_many() will take care of |
| 6539 | * them. |
| 6540 | */ |
| 6541 | for_each_cpu(cpu, &ptr->flush_cpus) |
| 6542 | flush_work(work: &ptr->w[cpu]); |
| 6543 | |
| 6544 | cpus_read_unlock(); |
| 6545 | |
| 6546 | if (ptr != flush_backlogs_fallback) |
| 6547 | kfree(objp: ptr); |
| 6548 | else |
| 6549 | mutex_unlock(lock: &flush_backlogs_mutex); |
| 6550 | } |
| 6551 | |
| 6552 | static void net_rps_send_ipi(struct softnet_data *remsd) |
| 6553 | { |
| 6554 | #ifdef CONFIG_RPS |
| 6555 | while (remsd) { |
| 6556 | struct softnet_data *next = remsd->rps_ipi_next; |
| 6557 | |
| 6558 | if (cpu_online(cpu: remsd->cpu)) |
| 6559 | smp_call_function_single_async(cpu: remsd->cpu, csd: &remsd->csd); |
| 6560 | remsd = next; |
| 6561 | } |
| 6562 | #endif |
| 6563 | } |
| 6564 | |
| 6565 | /* |
| 6566 | * net_rps_action_and_irq_enable sends any pending IPI's for rps. |
| 6567 | * Note: called with local irq disabled, but exits with local irq enabled. |
| 6568 | */ |
| 6569 | static void net_rps_action_and_irq_enable(struct softnet_data *sd) |
| 6570 | { |
| 6571 | #ifdef CONFIG_RPS |
| 6572 | struct softnet_data *remsd = sd->rps_ipi_list; |
| 6573 | |
| 6574 | if (!use_backlog_threads() && remsd) { |
| 6575 | sd->rps_ipi_list = NULL; |
| 6576 | |
| 6577 | local_irq_enable(); |
| 6578 | |
| 6579 | /* Send pending IPI's to kick RPS processing on remote cpus. */ |
| 6580 | net_rps_send_ipi(remsd); |
| 6581 | } else |
| 6582 | #endif |
| 6583 | local_irq_enable(); |
| 6584 | } |
| 6585 | |
| 6586 | static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) |
| 6587 | { |
| 6588 | #ifdef CONFIG_RPS |
| 6589 | return !use_backlog_threads() && sd->rps_ipi_list; |
| 6590 | #else |
| 6591 | return false; |
| 6592 | #endif |
| 6593 | } |
| 6594 | |
| 6595 | static int process_backlog(struct napi_struct *napi, int quota) |
| 6596 | { |
| 6597 | struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); |
| 6598 | bool again = true; |
| 6599 | int work = 0; |
| 6600 | |
| 6601 | /* Check if we have pending ipi, its better to send them now, |
| 6602 | * not waiting net_rx_action() end. |
| 6603 | */ |
| 6604 | if (sd_has_rps_ipi_waiting(sd)) { |
| 6605 | local_irq_disable(); |
| 6606 | net_rps_action_and_irq_enable(sd); |
| 6607 | } |
| 6608 | |
| 6609 | napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); |
| 6610 | while (again) { |
| 6611 | struct sk_buff *skb; |
| 6612 | |
| 6613 | local_lock_nested_bh(&softnet_data.process_queue_bh_lock); |
| 6614 | while ((skb = __skb_dequeue(list: &sd->process_queue))) { |
| 6615 | local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); |
| 6616 | rcu_read_lock(); |
| 6617 | __netif_receive_skb(skb); |
| 6618 | rcu_read_unlock(); |
| 6619 | if (++work >= quota) { |
| 6620 | rps_input_queue_head_add(sd, val: work); |
| 6621 | return work; |
| 6622 | } |
| 6623 | |
| 6624 | local_lock_nested_bh(&softnet_data.process_queue_bh_lock); |
| 6625 | } |
| 6626 | local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); |
| 6627 | |
| 6628 | backlog_lock_irq_disable(sd); |
| 6629 | if (skb_queue_empty(list: &sd->input_pkt_queue)) { |
| 6630 | /* |
| 6631 | * Inline a custom version of __napi_complete(). |
| 6632 | * only current cpu owns and manipulates this napi, |
| 6633 | * and NAPI_STATE_SCHED is the only possible flag set |
| 6634 | * on backlog. |
| 6635 | * We can use a plain write instead of clear_bit(), |
| 6636 | * and we dont need an smp_mb() memory barrier. |
| 6637 | */ |
| 6638 | napi->state &= NAPIF_STATE_THREADED; |
| 6639 | again = false; |
| 6640 | } else { |
| 6641 | local_lock_nested_bh(&softnet_data.process_queue_bh_lock); |
| 6642 | skb_queue_splice_tail_init(list: &sd->input_pkt_queue, |
| 6643 | head: &sd->process_queue); |
| 6644 | local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); |
| 6645 | } |
| 6646 | backlog_unlock_irq_enable(sd); |
| 6647 | } |
| 6648 | |
| 6649 | if (work) |
| 6650 | rps_input_queue_head_add(sd, val: work); |
| 6651 | return work; |
| 6652 | } |
| 6653 | |
| 6654 | /** |
| 6655 | * __napi_schedule - schedule for receive |
| 6656 | * @n: entry to schedule |
| 6657 | * |
| 6658 | * The entry's receive function will be scheduled to run. |
| 6659 | * Consider using __napi_schedule_irqoff() if hard irqs are masked. |
| 6660 | */ |
| 6661 | void __napi_schedule(struct napi_struct *n) |
| 6662 | { |
| 6663 | unsigned long flags; |
| 6664 | |
| 6665 | local_irq_save(flags); |
| 6666 | ____napi_schedule(this_cpu_ptr(&softnet_data), napi: n); |
| 6667 | local_irq_restore(flags); |
| 6668 | } |
| 6669 | EXPORT_SYMBOL(__napi_schedule); |
| 6670 | |
| 6671 | /** |
| 6672 | * napi_schedule_prep - check if napi can be scheduled |
| 6673 | * @n: napi context |
| 6674 | * |
| 6675 | * Test if NAPI routine is already running, and if not mark |
| 6676 | * it as running. This is used as a condition variable to |
| 6677 | * insure only one NAPI poll instance runs. We also make |
| 6678 | * sure there is no pending NAPI disable. |
| 6679 | */ |
| 6680 | bool napi_schedule_prep(struct napi_struct *n) |
| 6681 | { |
| 6682 | unsigned long new, val = READ_ONCE(n->state); |
| 6683 | |
| 6684 | do { |
| 6685 | if (unlikely(val & NAPIF_STATE_DISABLE)) |
| 6686 | return false; |
| 6687 | new = val | NAPIF_STATE_SCHED; |
| 6688 | |
| 6689 | /* Sets STATE_MISSED bit if STATE_SCHED was already set |
| 6690 | * This was suggested by Alexander Duyck, as compiler |
| 6691 | * emits better code than : |
| 6692 | * if (val & NAPIF_STATE_SCHED) |
| 6693 | * new |= NAPIF_STATE_MISSED; |
| 6694 | */ |
| 6695 | new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * |
| 6696 | NAPIF_STATE_MISSED; |
| 6697 | } while (!try_cmpxchg(&n->state, &val, new)); |
| 6698 | |
| 6699 | return !(val & NAPIF_STATE_SCHED); |
| 6700 | } |
| 6701 | EXPORT_SYMBOL(napi_schedule_prep); |
| 6702 | |
| 6703 | /** |
| 6704 | * __napi_schedule_irqoff - schedule for receive |
| 6705 | * @n: entry to schedule |
| 6706 | * |
| 6707 | * Variant of __napi_schedule() assuming hard irqs are masked. |
| 6708 | * |
| 6709 | * On PREEMPT_RT enabled kernels this maps to __napi_schedule() |
| 6710 | * because the interrupt disabled assumption might not be true |
| 6711 | * due to force-threaded interrupts and spinlock substitution. |
| 6712 | */ |
| 6713 | void __napi_schedule_irqoff(struct napi_struct *n) |
| 6714 | { |
| 6715 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| 6716 | ____napi_schedule(this_cpu_ptr(&softnet_data), napi: n); |
| 6717 | else |
| 6718 | __napi_schedule(n); |
| 6719 | } |
| 6720 | EXPORT_SYMBOL(__napi_schedule_irqoff); |
| 6721 | |
| 6722 | bool napi_complete_done(struct napi_struct *n, int work_done) |
| 6723 | { |
| 6724 | unsigned long flags, val, new, timeout = 0; |
| 6725 | bool ret = true; |
| 6726 | |
| 6727 | /* |
| 6728 | * 1) Don't let napi dequeue from the cpu poll list |
| 6729 | * just in case its running on a different cpu. |
| 6730 | * 2) If we are busy polling, do nothing here, we have |
| 6731 | * the guarantee we will be called later. |
| 6732 | */ |
| 6733 | if (unlikely(n->state & (NAPIF_STATE_NPSVC | |
| 6734 | NAPIF_STATE_IN_BUSY_POLL))) |
| 6735 | return false; |
| 6736 | |
| 6737 | if (work_done) { |
| 6738 | if (n->gro.bitmask) |
| 6739 | timeout = napi_get_gro_flush_timeout(n); |
| 6740 | n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); |
| 6741 | } |
| 6742 | if (n->defer_hard_irqs_count > 0) { |
| 6743 | n->defer_hard_irqs_count--; |
| 6744 | timeout = napi_get_gro_flush_timeout(n); |
| 6745 | if (timeout) |
| 6746 | ret = false; |
| 6747 | } |
| 6748 | |
| 6749 | /* |
| 6750 | * When the NAPI instance uses a timeout and keeps postponing |
| 6751 | * it, we need to bound somehow the time packets are kept in |
| 6752 | * the GRO layer. |
| 6753 | */ |
| 6754 | gro_flush_normal(gro: &n->gro, flush_old: !!timeout); |
| 6755 | |
| 6756 | if (unlikely(!list_empty(&n->poll_list))) { |
| 6757 | /* If n->poll_list is not empty, we need to mask irqs */ |
| 6758 | local_irq_save(flags); |
| 6759 | list_del_init(entry: &n->poll_list); |
| 6760 | local_irq_restore(flags); |
| 6761 | } |
| 6762 | WRITE_ONCE(n->list_owner, -1); |
| 6763 | |
| 6764 | val = READ_ONCE(n->state); |
| 6765 | do { |
| 6766 | WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); |
| 6767 | |
| 6768 | new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | |
| 6769 | NAPIF_STATE_SCHED_THREADED | |
| 6770 | NAPIF_STATE_PREFER_BUSY_POLL); |
| 6771 | |
| 6772 | /* If STATE_MISSED was set, leave STATE_SCHED set, |
| 6773 | * because we will call napi->poll() one more time. |
| 6774 | * This C code was suggested by Alexander Duyck to help gcc. |
| 6775 | */ |
| 6776 | new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * |
| 6777 | NAPIF_STATE_SCHED; |
| 6778 | } while (!try_cmpxchg(&n->state, &val, new)); |
| 6779 | |
| 6780 | if (unlikely(val & NAPIF_STATE_MISSED)) { |
| 6781 | __napi_schedule(n); |
| 6782 | return false; |
| 6783 | } |
| 6784 | |
| 6785 | if (timeout) |
| 6786 | hrtimer_start(timer: &n->timer, tim: ns_to_ktime(ns: timeout), |
| 6787 | mode: HRTIMER_MODE_REL_PINNED); |
| 6788 | return ret; |
| 6789 | } |
| 6790 | EXPORT_SYMBOL(napi_complete_done); |
| 6791 | |
| 6792 | static void skb_defer_free_flush(void) |
| 6793 | { |
| 6794 | struct llist_node *free_list; |
| 6795 | struct sk_buff *skb, *next; |
| 6796 | struct skb_defer_node *sdn; |
| 6797 | int node; |
| 6798 | |
| 6799 | for_each_node(node) { |
| 6800 | sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node; |
| 6801 | |
| 6802 | if (llist_empty(head: &sdn->defer_list)) |
| 6803 | continue; |
| 6804 | atomic_long_set(v: &sdn->defer_count, i: 0); |
| 6805 | free_list = llist_del_all(head: &sdn->defer_list); |
| 6806 | |
| 6807 | llist_for_each_entry_safe(skb, next, free_list, ll_node) { |
| 6808 | prefetch(next); |
| 6809 | napi_consume_skb(skb, budget: 1); |
| 6810 | } |
| 6811 | } |
| 6812 | } |
| 6813 | |
| 6814 | #if defined(CONFIG_NET_RX_BUSY_POLL) |
| 6815 | |
| 6816 | static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) |
| 6817 | { |
| 6818 | if (!skip_schedule) { |
| 6819 | gro_normal_list(gro: &napi->gro); |
| 6820 | __napi_schedule(napi); |
| 6821 | return; |
| 6822 | } |
| 6823 | |
| 6824 | /* Flush too old packets. If HZ < 1000, flush all packets */ |
| 6825 | gro_flush_normal(gro: &napi->gro, HZ >= 1000); |
| 6826 | |
| 6827 | clear_bit(nr: NAPI_STATE_SCHED, addr: &napi->state); |
| 6828 | } |
| 6829 | |
| 6830 | enum { |
| 6831 | NAPI_F_PREFER_BUSY_POLL = 1, |
| 6832 | NAPI_F_END_ON_RESCHED = 2, |
| 6833 | }; |
| 6834 | |
| 6835 | static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, |
| 6836 | unsigned flags, u16 budget) |
| 6837 | { |
| 6838 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
| 6839 | bool skip_schedule = false; |
| 6840 | unsigned long timeout; |
| 6841 | int rc; |
| 6842 | |
| 6843 | /* Busy polling means there is a high chance device driver hard irq |
| 6844 | * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was |
| 6845 | * set in napi_schedule_prep(). |
| 6846 | * Since we are about to call napi->poll() once more, we can safely |
| 6847 | * clear NAPI_STATE_MISSED. |
| 6848 | * |
| 6849 | * Note: x86 could use a single "lock and ..." instruction |
| 6850 | * to perform these two clear_bit() |
| 6851 | */ |
| 6852 | clear_bit(nr: NAPI_STATE_MISSED, addr: &napi->state); |
| 6853 | clear_bit(nr: NAPI_STATE_IN_BUSY_POLL, addr: &napi->state); |
| 6854 | |
| 6855 | local_bh_disable(); |
| 6856 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
| 6857 | |
| 6858 | if (flags & NAPI_F_PREFER_BUSY_POLL) { |
| 6859 | napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(n: napi); |
| 6860 | timeout = napi_get_gro_flush_timeout(n: napi); |
| 6861 | if (napi->defer_hard_irqs_count && timeout) { |
| 6862 | hrtimer_start(timer: &napi->timer, tim: ns_to_ktime(ns: timeout), mode: HRTIMER_MODE_REL_PINNED); |
| 6863 | skip_schedule = true; |
| 6864 | } |
| 6865 | } |
| 6866 | |
| 6867 | /* All we really want here is to re-enable device interrupts. |
| 6868 | * Ideally, a new ndo_busy_poll_stop() could avoid another round. |
| 6869 | */ |
| 6870 | rc = napi->poll(napi, budget); |
| 6871 | /* We can't gro_normal_list() here, because napi->poll() might have |
| 6872 | * rearmed the napi (napi_complete_done()) in which case it could |
| 6873 | * already be running on another CPU. |
| 6874 | */ |
| 6875 | trace_napi_poll(napi, work: rc, budget); |
| 6876 | netpoll_poll_unlock(have: have_poll_lock); |
| 6877 | if (rc == budget) |
| 6878 | __busy_poll_stop(napi, skip_schedule); |
| 6879 | bpf_net_ctx_clear(bpf_net_ctx); |
| 6880 | local_bh_enable(); |
| 6881 | } |
| 6882 | |
| 6883 | static void __napi_busy_loop(unsigned int napi_id, |
| 6884 | bool (*loop_end)(void *, unsigned long), |
| 6885 | void *loop_end_arg, unsigned flags, u16 budget) |
| 6886 | { |
| 6887 | unsigned long start_time = loop_end ? busy_loop_current_time() : 0; |
| 6888 | int (*napi_poll)(struct napi_struct *napi, int budget); |
| 6889 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
| 6890 | void *have_poll_lock = NULL; |
| 6891 | struct napi_struct *napi; |
| 6892 | |
| 6893 | WARN_ON_ONCE(!rcu_read_lock_held()); |
| 6894 | |
| 6895 | restart: |
| 6896 | napi_poll = NULL; |
| 6897 | |
| 6898 | napi = napi_by_id(napi_id); |
| 6899 | if (!napi) |
| 6900 | return; |
| 6901 | |
| 6902 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| 6903 | preempt_disable(); |
| 6904 | for (;;) { |
| 6905 | int work = 0; |
| 6906 | |
| 6907 | local_bh_disable(); |
| 6908 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
| 6909 | if (!napi_poll) { |
| 6910 | unsigned long val = READ_ONCE(napi->state); |
| 6911 | |
| 6912 | /* If multiple threads are competing for this napi, |
| 6913 | * we avoid dirtying napi->state as much as we can. |
| 6914 | */ |
| 6915 | if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | |
| 6916 | NAPIF_STATE_IN_BUSY_POLL)) { |
| 6917 | if (flags & NAPI_F_PREFER_BUSY_POLL) |
| 6918 | set_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state); |
| 6919 | goto count; |
| 6920 | } |
| 6921 | if (cmpxchg(&napi->state, val, |
| 6922 | val | NAPIF_STATE_IN_BUSY_POLL | |
| 6923 | NAPIF_STATE_SCHED) != val) { |
| 6924 | if (flags & NAPI_F_PREFER_BUSY_POLL) |
| 6925 | set_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state); |
| 6926 | goto count; |
| 6927 | } |
| 6928 | have_poll_lock = netpoll_poll_lock(napi); |
| 6929 | napi_poll = napi->poll; |
| 6930 | } |
| 6931 | work = napi_poll(napi, budget); |
| 6932 | trace_napi_poll(napi, work, budget); |
| 6933 | gro_normal_list(gro: &napi->gro); |
| 6934 | count: |
| 6935 | if (work > 0) |
| 6936 | __NET_ADD_STATS(dev_net(napi->dev), |
| 6937 | LINUX_MIB_BUSYPOLLRXPACKETS, work); |
| 6938 | skb_defer_free_flush(); |
| 6939 | bpf_net_ctx_clear(bpf_net_ctx); |
| 6940 | local_bh_enable(); |
| 6941 | |
| 6942 | if (!loop_end || loop_end(loop_end_arg, start_time)) |
| 6943 | break; |
| 6944 | |
| 6945 | if (unlikely(need_resched())) { |
| 6946 | if (flags & NAPI_F_END_ON_RESCHED) |
| 6947 | break; |
| 6948 | if (napi_poll) |
| 6949 | busy_poll_stop(napi, have_poll_lock, flags, budget); |
| 6950 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| 6951 | preempt_enable(); |
| 6952 | rcu_read_unlock(); |
| 6953 | cond_resched(); |
| 6954 | rcu_read_lock(); |
| 6955 | if (loop_end(loop_end_arg, start_time)) |
| 6956 | return; |
| 6957 | goto restart; |
| 6958 | } |
| 6959 | cpu_relax(); |
| 6960 | } |
| 6961 | if (napi_poll) |
| 6962 | busy_poll_stop(napi, have_poll_lock, flags, budget); |
| 6963 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
| 6964 | preempt_enable(); |
| 6965 | } |
| 6966 | |
| 6967 | void napi_busy_loop_rcu(unsigned int napi_id, |
| 6968 | bool (*loop_end)(void *, unsigned long), |
| 6969 | void *loop_end_arg, bool prefer_busy_poll, u16 budget) |
| 6970 | { |
| 6971 | unsigned flags = NAPI_F_END_ON_RESCHED; |
| 6972 | |
| 6973 | if (prefer_busy_poll) |
| 6974 | flags |= NAPI_F_PREFER_BUSY_POLL; |
| 6975 | |
| 6976 | __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); |
| 6977 | } |
| 6978 | |
| 6979 | void napi_busy_loop(unsigned int napi_id, |
| 6980 | bool (*loop_end)(void *, unsigned long), |
| 6981 | void *loop_end_arg, bool prefer_busy_poll, u16 budget) |
| 6982 | { |
| 6983 | unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; |
| 6984 | |
| 6985 | rcu_read_lock(); |
| 6986 | __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); |
| 6987 | rcu_read_unlock(); |
| 6988 | } |
| 6989 | EXPORT_SYMBOL(napi_busy_loop); |
| 6990 | |
| 6991 | void napi_suspend_irqs(unsigned int napi_id) |
| 6992 | { |
| 6993 | struct napi_struct *napi; |
| 6994 | |
| 6995 | rcu_read_lock(); |
| 6996 | napi = napi_by_id(napi_id); |
| 6997 | if (napi) { |
| 6998 | unsigned long timeout = napi_get_irq_suspend_timeout(n: napi); |
| 6999 | |
| 7000 | if (timeout) |
| 7001 | hrtimer_start(timer: &napi->timer, tim: ns_to_ktime(ns: timeout), |
| 7002 | mode: HRTIMER_MODE_REL_PINNED); |
| 7003 | } |
| 7004 | rcu_read_unlock(); |
| 7005 | } |
| 7006 | |
| 7007 | void napi_resume_irqs(unsigned int napi_id) |
| 7008 | { |
| 7009 | struct napi_struct *napi; |
| 7010 | |
| 7011 | rcu_read_lock(); |
| 7012 | napi = napi_by_id(napi_id); |
| 7013 | if (napi) { |
| 7014 | /* If irq_suspend_timeout is set to 0 between the call to |
| 7015 | * napi_suspend_irqs and now, the original value still |
| 7016 | * determines the safety timeout as intended and napi_watchdog |
| 7017 | * will resume irq processing. |
| 7018 | */ |
| 7019 | if (napi_get_irq_suspend_timeout(n: napi)) { |
| 7020 | local_bh_disable(); |
| 7021 | napi_schedule(n: napi); |
| 7022 | local_bh_enable(); |
| 7023 | } |
| 7024 | } |
| 7025 | rcu_read_unlock(); |
| 7026 | } |
| 7027 | |
| 7028 | #endif /* CONFIG_NET_RX_BUSY_POLL */ |
| 7029 | |
| 7030 | static void __napi_hash_add_with_id(struct napi_struct *napi, |
| 7031 | unsigned int napi_id) |
| 7032 | { |
| 7033 | napi->gro.cached_napi_id = napi_id; |
| 7034 | |
| 7035 | WRITE_ONCE(napi->napi_id, napi_id); |
| 7036 | hlist_add_head_rcu(n: &napi->napi_hash_node, |
| 7037 | h: &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); |
| 7038 | } |
| 7039 | |
| 7040 | static void napi_hash_add_with_id(struct napi_struct *napi, |
| 7041 | unsigned int napi_id) |
| 7042 | { |
| 7043 | unsigned long flags; |
| 7044 | |
| 7045 | spin_lock_irqsave(&napi_hash_lock, flags); |
| 7046 | WARN_ON_ONCE(napi_by_id(napi_id)); |
| 7047 | __napi_hash_add_with_id(napi, napi_id); |
| 7048 | spin_unlock_irqrestore(lock: &napi_hash_lock, flags); |
| 7049 | } |
| 7050 | |
| 7051 | static void napi_hash_add(struct napi_struct *napi) |
| 7052 | { |
| 7053 | unsigned long flags; |
| 7054 | |
| 7055 | if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) |
| 7056 | return; |
| 7057 | |
| 7058 | spin_lock_irqsave(&napi_hash_lock, flags); |
| 7059 | |
| 7060 | /* 0..NR_CPUS range is reserved for sender_cpu use */ |
| 7061 | do { |
| 7062 | if (unlikely(!napi_id_valid(++napi_gen_id))) |
| 7063 | napi_gen_id = MIN_NAPI_ID; |
| 7064 | } while (napi_by_id(napi_id: napi_gen_id)); |
| 7065 | |
| 7066 | __napi_hash_add_with_id(napi, napi_id: napi_gen_id); |
| 7067 | |
| 7068 | spin_unlock_irqrestore(lock: &napi_hash_lock, flags); |
| 7069 | } |
| 7070 | |
| 7071 | /* Warning : caller is responsible to make sure rcu grace period |
| 7072 | * is respected before freeing memory containing @napi |
| 7073 | */ |
| 7074 | static void napi_hash_del(struct napi_struct *napi) |
| 7075 | { |
| 7076 | unsigned long flags; |
| 7077 | |
| 7078 | spin_lock_irqsave(&napi_hash_lock, flags); |
| 7079 | |
| 7080 | hlist_del_init_rcu(n: &napi->napi_hash_node); |
| 7081 | |
| 7082 | spin_unlock_irqrestore(lock: &napi_hash_lock, flags); |
| 7083 | } |
| 7084 | |
| 7085 | static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) |
| 7086 | { |
| 7087 | struct napi_struct *napi; |
| 7088 | |
| 7089 | napi = container_of(timer, struct napi_struct, timer); |
| 7090 | |
| 7091 | /* Note : we use a relaxed variant of napi_schedule_prep() not setting |
| 7092 | * NAPI_STATE_MISSED, since we do not react to a device IRQ. |
| 7093 | */ |
| 7094 | if (!napi_disable_pending(n: napi) && |
| 7095 | !test_and_set_bit(nr: NAPI_STATE_SCHED, addr: &napi->state)) { |
| 7096 | clear_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state); |
| 7097 | __napi_schedule_irqoff(napi); |
| 7098 | } |
| 7099 | |
| 7100 | return HRTIMER_NORESTART; |
| 7101 | } |
| 7102 | |
| 7103 | static void napi_stop_kthread(struct napi_struct *napi) |
| 7104 | { |
| 7105 | unsigned long val, new; |
| 7106 | |
| 7107 | /* Wait until the napi STATE_THREADED is unset. */ |
| 7108 | while (true) { |
| 7109 | val = READ_ONCE(napi->state); |
| 7110 | |
| 7111 | /* If napi kthread own this napi or the napi is idle, |
| 7112 | * STATE_THREADED can be unset here. |
| 7113 | */ |
| 7114 | if ((val & NAPIF_STATE_SCHED_THREADED) || |
| 7115 | !(val & NAPIF_STATE_SCHED)) { |
| 7116 | new = val & (~(NAPIF_STATE_THREADED | |
| 7117 | NAPIF_STATE_THREADED_BUSY_POLL)); |
| 7118 | } else { |
| 7119 | msleep(msecs: 20); |
| 7120 | continue; |
| 7121 | } |
| 7122 | |
| 7123 | if (try_cmpxchg(&napi->state, &val, new)) |
| 7124 | break; |
| 7125 | } |
| 7126 | |
| 7127 | /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by |
| 7128 | * the kthread. |
| 7129 | */ |
| 7130 | while (true) { |
| 7131 | if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) |
| 7132 | break; |
| 7133 | |
| 7134 | msleep(msecs: 20); |
| 7135 | } |
| 7136 | |
| 7137 | kthread_stop(k: napi->thread); |
| 7138 | napi->thread = NULL; |
| 7139 | } |
| 7140 | |
| 7141 | static void napi_set_threaded_state(struct napi_struct *napi, |
| 7142 | enum netdev_napi_threaded threaded_mode) |
| 7143 | { |
| 7144 | bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED; |
| 7145 | bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL; |
| 7146 | |
| 7147 | assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); |
| 7148 | assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll); |
| 7149 | } |
| 7150 | |
| 7151 | int napi_set_threaded(struct napi_struct *napi, |
| 7152 | enum netdev_napi_threaded threaded) |
| 7153 | { |
| 7154 | if (threaded) { |
| 7155 | if (!napi->thread) { |
| 7156 | int err = napi_kthread_create(n: napi); |
| 7157 | |
| 7158 | if (err) |
| 7159 | return err; |
| 7160 | } |
| 7161 | } |
| 7162 | |
| 7163 | if (napi->config) |
| 7164 | napi->config->threaded = threaded; |
| 7165 | |
| 7166 | /* Setting/unsetting threaded mode on a napi might not immediately |
| 7167 | * take effect, if the current napi instance is actively being |
| 7168 | * polled. In this case, the switch between threaded mode and |
| 7169 | * softirq mode will happen in the next round of napi_schedule(). |
| 7170 | * This should not cause hiccups/stalls to the live traffic. |
| 7171 | */ |
| 7172 | if (!threaded && napi->thread) { |
| 7173 | napi_stop_kthread(napi); |
| 7174 | } else { |
| 7175 | /* Make sure kthread is created before THREADED bit is set. */ |
| 7176 | smp_mb__before_atomic(); |
| 7177 | napi_set_threaded_state(napi, threaded_mode: threaded); |
| 7178 | } |
| 7179 | |
| 7180 | return 0; |
| 7181 | } |
| 7182 | |
| 7183 | int netif_set_threaded(struct net_device *dev, |
| 7184 | enum netdev_napi_threaded threaded) |
| 7185 | { |
| 7186 | struct napi_struct *napi; |
| 7187 | int i, err = 0; |
| 7188 | |
| 7189 | netdev_assert_locked_or_invisible(dev); |
| 7190 | |
| 7191 | if (threaded) { |
| 7192 | list_for_each_entry(napi, &dev->napi_list, dev_list) { |
| 7193 | if (!napi->thread) { |
| 7194 | err = napi_kthread_create(n: napi); |
| 7195 | if (err) { |
| 7196 | threaded = NETDEV_NAPI_THREADED_DISABLED; |
| 7197 | break; |
| 7198 | } |
| 7199 | } |
| 7200 | } |
| 7201 | } |
| 7202 | |
| 7203 | WRITE_ONCE(dev->threaded, threaded); |
| 7204 | |
| 7205 | /* The error should not occur as the kthreads are already created. */ |
| 7206 | list_for_each_entry(napi, &dev->napi_list, dev_list) |
| 7207 | WARN_ON_ONCE(napi_set_threaded(napi, threaded)); |
| 7208 | |
| 7209 | /* Override the config for all NAPIs even if currently not listed */ |
| 7210 | for (i = 0; i < dev->num_napi_configs; i++) |
| 7211 | dev->napi_config[i].threaded = threaded; |
| 7212 | |
| 7213 | return err; |
| 7214 | } |
| 7215 | |
| 7216 | /** |
| 7217 | * netif_threaded_enable() - enable threaded NAPIs |
| 7218 | * @dev: net_device instance |
| 7219 | * |
| 7220 | * Enable threaded mode for the NAPI instances of the device. This may be useful |
| 7221 | * for devices where multiple NAPI instances get scheduled by a single |
| 7222 | * interrupt. Threaded NAPI allows moving the NAPI processing to cores other |
| 7223 | * than the core where IRQ is mapped. |
| 7224 | * |
| 7225 | * This function should be called before @dev is registered. |
| 7226 | */ |
| 7227 | void netif_threaded_enable(struct net_device *dev) |
| 7228 | { |
| 7229 | WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED)); |
| 7230 | } |
| 7231 | EXPORT_SYMBOL(netif_threaded_enable); |
| 7232 | |
| 7233 | /** |
| 7234 | * netif_queue_set_napi - Associate queue with the napi |
| 7235 | * @dev: device to which NAPI and queue belong |
| 7236 | * @queue_index: Index of queue |
| 7237 | * @type: queue type as RX or TX |
| 7238 | * @napi: NAPI context, pass NULL to clear previously set NAPI |
| 7239 | * |
| 7240 | * Set queue with its corresponding napi context. This should be done after |
| 7241 | * registering the NAPI handler for the queue-vector and the queues have been |
| 7242 | * mapped to the corresponding interrupt vector. |
| 7243 | */ |
| 7244 | void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, |
| 7245 | enum netdev_queue_type type, struct napi_struct *napi) |
| 7246 | { |
| 7247 | struct netdev_rx_queue *rxq; |
| 7248 | struct netdev_queue *txq; |
| 7249 | |
| 7250 | if (WARN_ON_ONCE(napi && !napi->dev)) |
| 7251 | return; |
| 7252 | netdev_ops_assert_locked_or_invisible(dev); |
| 7253 | |
| 7254 | switch (type) { |
| 7255 | case NETDEV_QUEUE_TYPE_RX: |
| 7256 | rxq = __netif_get_rx_queue(dev, rxq: queue_index); |
| 7257 | rxq->napi = napi; |
| 7258 | return; |
| 7259 | case NETDEV_QUEUE_TYPE_TX: |
| 7260 | txq = netdev_get_tx_queue(dev, index: queue_index); |
| 7261 | txq->napi = napi; |
| 7262 | return; |
| 7263 | default: |
| 7264 | return; |
| 7265 | } |
| 7266 | } |
| 7267 | EXPORT_SYMBOL(netif_queue_set_napi); |
| 7268 | |
| 7269 | static void |
| 7270 | netif_napi_irq_notify(struct irq_affinity_notify *notify, |
| 7271 | const cpumask_t *mask) |
| 7272 | { |
| 7273 | struct napi_struct *napi = |
| 7274 | container_of(notify, struct napi_struct, notify); |
| 7275 | #ifdef CONFIG_RFS_ACCEL |
| 7276 | struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; |
| 7277 | int err; |
| 7278 | #endif |
| 7279 | |
| 7280 | if (napi->config && napi->dev->irq_affinity_auto) |
| 7281 | cpumask_copy(dstp: &napi->config->affinity_mask, srcp: mask); |
| 7282 | |
| 7283 | #ifdef CONFIG_RFS_ACCEL |
| 7284 | if (napi->dev->rx_cpu_rmap_auto) { |
| 7285 | err = cpu_rmap_update(rmap, index: napi->napi_rmap_idx, affinity: mask); |
| 7286 | if (err) |
| 7287 | netdev_warn(dev: napi->dev, format: "RMAP update failed (%d)\n" , |
| 7288 | err); |
| 7289 | } |
| 7290 | #endif |
| 7291 | } |
| 7292 | |
| 7293 | #ifdef CONFIG_RFS_ACCEL |
| 7294 | static void netif_napi_affinity_release(struct kref *ref) |
| 7295 | { |
| 7296 | struct napi_struct *napi = |
| 7297 | container_of(ref, struct napi_struct, notify.kref); |
| 7298 | struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; |
| 7299 | |
| 7300 | netdev_assert_locked(dev: napi->dev); |
| 7301 | WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, |
| 7302 | &napi->state)); |
| 7303 | |
| 7304 | if (!napi->dev->rx_cpu_rmap_auto) |
| 7305 | return; |
| 7306 | rmap->obj[napi->napi_rmap_idx] = NULL; |
| 7307 | napi->napi_rmap_idx = -1; |
| 7308 | cpu_rmap_put(rmap); |
| 7309 | } |
| 7310 | |
| 7311 | int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) |
| 7312 | { |
| 7313 | if (dev->rx_cpu_rmap_auto) |
| 7314 | return 0; |
| 7315 | |
| 7316 | dev->rx_cpu_rmap = alloc_irq_cpu_rmap(size: num_irqs); |
| 7317 | if (!dev->rx_cpu_rmap) |
| 7318 | return -ENOMEM; |
| 7319 | |
| 7320 | dev->rx_cpu_rmap_auto = true; |
| 7321 | return 0; |
| 7322 | } |
| 7323 | EXPORT_SYMBOL(netif_enable_cpu_rmap); |
| 7324 | |
| 7325 | static void netif_del_cpu_rmap(struct net_device *dev) |
| 7326 | { |
| 7327 | struct cpu_rmap *rmap = dev->rx_cpu_rmap; |
| 7328 | |
| 7329 | if (!dev->rx_cpu_rmap_auto) |
| 7330 | return; |
| 7331 | |
| 7332 | /* Free the rmap */ |
| 7333 | cpu_rmap_put(rmap); |
| 7334 | dev->rx_cpu_rmap = NULL; |
| 7335 | dev->rx_cpu_rmap_auto = false; |
| 7336 | } |
| 7337 | |
| 7338 | #else |
| 7339 | static void netif_napi_affinity_release(struct kref *ref) |
| 7340 | { |
| 7341 | } |
| 7342 | |
| 7343 | int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) |
| 7344 | { |
| 7345 | return 0; |
| 7346 | } |
| 7347 | EXPORT_SYMBOL(netif_enable_cpu_rmap); |
| 7348 | |
| 7349 | static void netif_del_cpu_rmap(struct net_device *dev) |
| 7350 | { |
| 7351 | } |
| 7352 | #endif |
| 7353 | |
| 7354 | void netif_set_affinity_auto(struct net_device *dev) |
| 7355 | { |
| 7356 | unsigned int i, maxqs, numa; |
| 7357 | |
| 7358 | maxqs = max(dev->num_tx_queues, dev->num_rx_queues); |
| 7359 | numa = dev_to_node(dev: &dev->dev); |
| 7360 | |
| 7361 | for (i = 0; i < maxqs; i++) |
| 7362 | cpumask_set_cpu(cpu: cpumask_local_spread(i, node: numa), |
| 7363 | dstp: &dev->napi_config[i].affinity_mask); |
| 7364 | |
| 7365 | dev->irq_affinity_auto = true; |
| 7366 | } |
| 7367 | EXPORT_SYMBOL(netif_set_affinity_auto); |
| 7368 | |
| 7369 | void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) |
| 7370 | { |
| 7371 | int rc; |
| 7372 | |
| 7373 | netdev_assert_locked_or_invisible(dev: napi->dev); |
| 7374 | |
| 7375 | if (napi->irq == irq) |
| 7376 | return; |
| 7377 | |
| 7378 | /* Remove existing resources */ |
| 7379 | if (test_and_clear_bit(nr: NAPI_STATE_HAS_NOTIFIER, addr: &napi->state)) |
| 7380 | irq_set_affinity_notifier(irq: napi->irq, NULL); |
| 7381 | |
| 7382 | napi->irq = irq; |
| 7383 | if (irq < 0 || |
| 7384 | (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) |
| 7385 | return; |
| 7386 | |
| 7387 | /* Abort for buggy drivers */ |
| 7388 | if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) |
| 7389 | return; |
| 7390 | |
| 7391 | #ifdef CONFIG_RFS_ACCEL |
| 7392 | if (napi->dev->rx_cpu_rmap_auto) { |
| 7393 | rc = cpu_rmap_add(rmap: napi->dev->rx_cpu_rmap, obj: napi); |
| 7394 | if (rc < 0) |
| 7395 | return; |
| 7396 | |
| 7397 | cpu_rmap_get(rmap: napi->dev->rx_cpu_rmap); |
| 7398 | napi->napi_rmap_idx = rc; |
| 7399 | } |
| 7400 | #endif |
| 7401 | |
| 7402 | /* Use core IRQ notifier */ |
| 7403 | napi->notify.notify = netif_napi_irq_notify; |
| 7404 | napi->notify.release = netif_napi_affinity_release; |
| 7405 | rc = irq_set_affinity_notifier(irq, notify: &napi->notify); |
| 7406 | if (rc) { |
| 7407 | netdev_warn(dev: napi->dev, format: "Unable to set IRQ notifier (%d)\n" , |
| 7408 | rc); |
| 7409 | goto put_rmap; |
| 7410 | } |
| 7411 | |
| 7412 | set_bit(nr: NAPI_STATE_HAS_NOTIFIER, addr: &napi->state); |
| 7413 | return; |
| 7414 | |
| 7415 | put_rmap: |
| 7416 | #ifdef CONFIG_RFS_ACCEL |
| 7417 | if (napi->dev->rx_cpu_rmap_auto) { |
| 7418 | napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; |
| 7419 | cpu_rmap_put(rmap: napi->dev->rx_cpu_rmap); |
| 7420 | napi->napi_rmap_idx = -1; |
| 7421 | } |
| 7422 | #endif |
| 7423 | napi->notify.notify = NULL; |
| 7424 | napi->notify.release = NULL; |
| 7425 | } |
| 7426 | EXPORT_SYMBOL(netif_napi_set_irq_locked); |
| 7427 | |
| 7428 | static void napi_restore_config(struct napi_struct *n) |
| 7429 | { |
| 7430 | n->defer_hard_irqs = n->config->defer_hard_irqs; |
| 7431 | n->gro_flush_timeout = n->config->gro_flush_timeout; |
| 7432 | n->irq_suspend_timeout = n->config->irq_suspend_timeout; |
| 7433 | |
| 7434 | if (n->dev->irq_affinity_auto && |
| 7435 | test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) |
| 7436 | irq_set_affinity(irq: n->irq, cpumask: &n->config->affinity_mask); |
| 7437 | |
| 7438 | /* a NAPI ID might be stored in the config, if so use it. if not, use |
| 7439 | * napi_hash_add to generate one for us. |
| 7440 | */ |
| 7441 | if (n->config->napi_id) { |
| 7442 | napi_hash_add_with_id(napi: n, napi_id: n->config->napi_id); |
| 7443 | } else { |
| 7444 | napi_hash_add(napi: n); |
| 7445 | n->config->napi_id = n->napi_id; |
| 7446 | } |
| 7447 | |
| 7448 | WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); |
| 7449 | } |
| 7450 | |
| 7451 | static void napi_save_config(struct napi_struct *n) |
| 7452 | { |
| 7453 | n->config->defer_hard_irqs = n->defer_hard_irqs; |
| 7454 | n->config->gro_flush_timeout = n->gro_flush_timeout; |
| 7455 | n->config->irq_suspend_timeout = n->irq_suspend_timeout; |
| 7456 | napi_hash_del(napi: n); |
| 7457 | } |
| 7458 | |
| 7459 | /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will |
| 7460 | * inherit an existing ID try to insert it at the right position. |
| 7461 | */ |
| 7462 | static void |
| 7463 | netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) |
| 7464 | { |
| 7465 | unsigned int new_id, pos_id; |
| 7466 | struct list_head *higher; |
| 7467 | struct napi_struct *pos; |
| 7468 | |
| 7469 | new_id = UINT_MAX; |
| 7470 | if (napi->config && napi->config->napi_id) |
| 7471 | new_id = napi->config->napi_id; |
| 7472 | |
| 7473 | higher = &dev->napi_list; |
| 7474 | list_for_each_entry(pos, &dev->napi_list, dev_list) { |
| 7475 | if (napi_id_valid(napi_id: pos->napi_id)) |
| 7476 | pos_id = pos->napi_id; |
| 7477 | else if (pos->config) |
| 7478 | pos_id = pos->config->napi_id; |
| 7479 | else |
| 7480 | pos_id = UINT_MAX; |
| 7481 | |
| 7482 | if (pos_id <= new_id) |
| 7483 | break; |
| 7484 | higher = &pos->dev_list; |
| 7485 | } |
| 7486 | list_add_rcu(new: &napi->dev_list, head: higher); /* adds after higher */ |
| 7487 | } |
| 7488 | |
| 7489 | /* Double check that napi_get_frags() allocates skbs with |
| 7490 | * skb->head being backed by slab, not a page fragment. |
| 7491 | * This is to make sure bug fixed in 3226b158e67c |
| 7492 | * ("net: avoid 32 x truesize under-estimation for tiny skbs") |
| 7493 | * does not accidentally come back. |
| 7494 | */ |
| 7495 | static void napi_get_frags_check(struct napi_struct *napi) |
| 7496 | { |
| 7497 | struct sk_buff *skb; |
| 7498 | |
| 7499 | local_bh_disable(); |
| 7500 | skb = napi_get_frags(napi); |
| 7501 | WARN_ON_ONCE(skb && skb->head_frag); |
| 7502 | napi_free_frags(napi); |
| 7503 | local_bh_enable(); |
| 7504 | } |
| 7505 | |
| 7506 | void netif_napi_add_weight_locked(struct net_device *dev, |
| 7507 | struct napi_struct *napi, |
| 7508 | int (*poll)(struct napi_struct *, int), |
| 7509 | int weight) |
| 7510 | { |
| 7511 | netdev_assert_locked(dev); |
| 7512 | if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) |
| 7513 | return; |
| 7514 | |
| 7515 | INIT_LIST_HEAD(list: &napi->poll_list); |
| 7516 | INIT_HLIST_NODE(h: &napi->napi_hash_node); |
| 7517 | hrtimer_setup(timer: &napi->timer, function: napi_watchdog, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_PINNED); |
| 7518 | gro_init(gro: &napi->gro); |
| 7519 | napi->skb = NULL; |
| 7520 | napi->poll = poll; |
| 7521 | if (weight > NAPI_POLL_WEIGHT) |
| 7522 | netdev_err_once(dev, "%s() called with weight %d\n" , __func__, |
| 7523 | weight); |
| 7524 | napi->weight = weight; |
| 7525 | napi->dev = dev; |
| 7526 | #ifdef CONFIG_NETPOLL |
| 7527 | napi->poll_owner = -1; |
| 7528 | #endif |
| 7529 | napi->list_owner = -1; |
| 7530 | set_bit(nr: NAPI_STATE_SCHED, addr: &napi->state); |
| 7531 | set_bit(nr: NAPI_STATE_NPSVC, addr: &napi->state); |
| 7532 | netif_napi_dev_list_add(dev, napi); |
| 7533 | |
| 7534 | /* default settings from sysfs are applied to all NAPIs. any per-NAPI |
| 7535 | * configuration will be loaded in napi_enable |
| 7536 | */ |
| 7537 | napi_set_defer_hard_irqs(n: napi, READ_ONCE(dev->napi_defer_hard_irqs)); |
| 7538 | napi_set_gro_flush_timeout(n: napi, READ_ONCE(dev->gro_flush_timeout)); |
| 7539 | |
| 7540 | napi_get_frags_check(napi); |
| 7541 | /* Create kthread for this napi if dev->threaded is set. |
| 7542 | * Clear dev->threaded if kthread creation failed so that |
| 7543 | * threaded mode will not be enabled in napi_enable(). |
| 7544 | */ |
| 7545 | if (napi_get_threaded_config(dev, n: napi)) |
| 7546 | if (napi_kthread_create(n: napi)) |
| 7547 | dev->threaded = NETDEV_NAPI_THREADED_DISABLED; |
| 7548 | netif_napi_set_irq_locked(napi, -1); |
| 7549 | } |
| 7550 | EXPORT_SYMBOL(netif_napi_add_weight_locked); |
| 7551 | |
| 7552 | void napi_disable_locked(struct napi_struct *n) |
| 7553 | { |
| 7554 | unsigned long val, new; |
| 7555 | |
| 7556 | might_sleep(); |
| 7557 | netdev_assert_locked(dev: n->dev); |
| 7558 | |
| 7559 | set_bit(nr: NAPI_STATE_DISABLE, addr: &n->state); |
| 7560 | |
| 7561 | val = READ_ONCE(n->state); |
| 7562 | do { |
| 7563 | while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { |
| 7564 | usleep_range(min: 20, max: 200); |
| 7565 | val = READ_ONCE(n->state); |
| 7566 | } |
| 7567 | |
| 7568 | new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; |
| 7569 | new &= ~(NAPIF_STATE_THREADED | |
| 7570 | NAPIF_STATE_THREADED_BUSY_POLL | |
| 7571 | NAPIF_STATE_PREFER_BUSY_POLL); |
| 7572 | } while (!try_cmpxchg(&n->state, &val, new)); |
| 7573 | |
| 7574 | hrtimer_cancel(timer: &n->timer); |
| 7575 | |
| 7576 | if (n->config) |
| 7577 | napi_save_config(n); |
| 7578 | else |
| 7579 | napi_hash_del(napi: n); |
| 7580 | |
| 7581 | clear_bit(nr: NAPI_STATE_DISABLE, addr: &n->state); |
| 7582 | } |
| 7583 | EXPORT_SYMBOL(napi_disable_locked); |
| 7584 | |
| 7585 | /** |
| 7586 | * napi_disable() - prevent NAPI from scheduling |
| 7587 | * @n: NAPI context |
| 7588 | * |
| 7589 | * Stop NAPI from being scheduled on this context. |
| 7590 | * Waits till any outstanding processing completes. |
| 7591 | * Takes netdev_lock() for associated net_device. |
| 7592 | */ |
| 7593 | void napi_disable(struct napi_struct *n) |
| 7594 | { |
| 7595 | netdev_lock(dev: n->dev); |
| 7596 | napi_disable_locked(n); |
| 7597 | netdev_unlock(dev: n->dev); |
| 7598 | } |
| 7599 | EXPORT_SYMBOL(napi_disable); |
| 7600 | |
| 7601 | void napi_enable_locked(struct napi_struct *n) |
| 7602 | { |
| 7603 | unsigned long new, val = READ_ONCE(n->state); |
| 7604 | |
| 7605 | if (n->config) |
| 7606 | napi_restore_config(n); |
| 7607 | else |
| 7608 | napi_hash_add(napi: n); |
| 7609 | |
| 7610 | do { |
| 7611 | BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); |
| 7612 | |
| 7613 | new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); |
| 7614 | if (n->dev->threaded && n->thread) |
| 7615 | new |= NAPIF_STATE_THREADED; |
| 7616 | } while (!try_cmpxchg(&n->state, &val, new)); |
| 7617 | } |
| 7618 | EXPORT_SYMBOL(napi_enable_locked); |
| 7619 | |
| 7620 | /** |
| 7621 | * napi_enable() - enable NAPI scheduling |
| 7622 | * @n: NAPI context |
| 7623 | * |
| 7624 | * Enable scheduling of a NAPI instance. |
| 7625 | * Must be paired with napi_disable(). |
| 7626 | * Takes netdev_lock() for associated net_device. |
| 7627 | */ |
| 7628 | void napi_enable(struct napi_struct *n) |
| 7629 | { |
| 7630 | netdev_lock(dev: n->dev); |
| 7631 | napi_enable_locked(n); |
| 7632 | netdev_unlock(dev: n->dev); |
| 7633 | } |
| 7634 | EXPORT_SYMBOL(napi_enable); |
| 7635 | |
| 7636 | /* Must be called in process context */ |
| 7637 | void __netif_napi_del_locked(struct napi_struct *napi) |
| 7638 | { |
| 7639 | netdev_assert_locked(dev: napi->dev); |
| 7640 | |
| 7641 | if (!test_and_clear_bit(nr: NAPI_STATE_LISTED, addr: &napi->state)) |
| 7642 | return; |
| 7643 | |
| 7644 | /* Make sure NAPI is disabled (or was never enabled). */ |
| 7645 | WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); |
| 7646 | |
| 7647 | if (test_and_clear_bit(nr: NAPI_STATE_HAS_NOTIFIER, addr: &napi->state)) |
| 7648 | irq_set_affinity_notifier(irq: napi->irq, NULL); |
| 7649 | |
| 7650 | if (napi->config) { |
| 7651 | napi->index = -1; |
| 7652 | napi->config = NULL; |
| 7653 | } |
| 7654 | |
| 7655 | list_del_rcu(entry: &napi->dev_list); |
| 7656 | napi_free_frags(napi); |
| 7657 | |
| 7658 | gro_cleanup(gro: &napi->gro); |
| 7659 | |
| 7660 | if (napi->thread) { |
| 7661 | kthread_stop(k: napi->thread); |
| 7662 | napi->thread = NULL; |
| 7663 | } |
| 7664 | } |
| 7665 | EXPORT_SYMBOL(__netif_napi_del_locked); |
| 7666 | |
| 7667 | static int __napi_poll(struct napi_struct *n, bool *repoll) |
| 7668 | { |
| 7669 | int work, weight; |
| 7670 | |
| 7671 | weight = n->weight; |
| 7672 | |
| 7673 | /* This NAPI_STATE_SCHED test is for avoiding a race |
| 7674 | * with netpoll's poll_napi(). Only the entity which |
| 7675 | * obtains the lock and sees NAPI_STATE_SCHED set will |
| 7676 | * actually make the ->poll() call. Therefore we avoid |
| 7677 | * accidentally calling ->poll() when NAPI is not scheduled. |
| 7678 | */ |
| 7679 | work = 0; |
| 7680 | if (napi_is_scheduled(n)) { |
| 7681 | work = n->poll(n, weight); |
| 7682 | trace_napi_poll(napi: n, work, budget: weight); |
| 7683 | |
| 7684 | xdp_do_check_flushed(napi: n); |
| 7685 | } |
| 7686 | |
| 7687 | if (unlikely(work > weight)) |
| 7688 | netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n" , |
| 7689 | n->poll, work, weight); |
| 7690 | |
| 7691 | if (likely(work < weight)) |
| 7692 | return work; |
| 7693 | |
| 7694 | /* Drivers must not modify the NAPI state if they |
| 7695 | * consume the entire weight. In such cases this code |
| 7696 | * still "owns" the NAPI instance and therefore can |
| 7697 | * move the instance around on the list at-will. |
| 7698 | */ |
| 7699 | if (unlikely(napi_disable_pending(n))) { |
| 7700 | napi_complete(n); |
| 7701 | return work; |
| 7702 | } |
| 7703 | |
| 7704 | /* The NAPI context has more processing work, but busy-polling |
| 7705 | * is preferred. Exit early. |
| 7706 | */ |
| 7707 | if (napi_prefer_busy_poll(n)) { |
| 7708 | if (napi_complete_done(n, work)) { |
| 7709 | /* If timeout is not set, we need to make sure |
| 7710 | * that the NAPI is re-scheduled. |
| 7711 | */ |
| 7712 | napi_schedule(n); |
| 7713 | } |
| 7714 | return work; |
| 7715 | } |
| 7716 | |
| 7717 | /* Flush too old packets. If HZ < 1000, flush all packets */ |
| 7718 | gro_flush_normal(gro: &n->gro, HZ >= 1000); |
| 7719 | |
| 7720 | /* Some drivers may have called napi_schedule |
| 7721 | * prior to exhausting their budget. |
| 7722 | */ |
| 7723 | if (unlikely(!list_empty(&n->poll_list))) { |
| 7724 | pr_warn_once("%s: Budget exhausted after napi rescheduled\n" , |
| 7725 | n->dev ? n->dev->name : "backlog" ); |
| 7726 | return work; |
| 7727 | } |
| 7728 | |
| 7729 | *repoll = true; |
| 7730 | |
| 7731 | return work; |
| 7732 | } |
| 7733 | |
| 7734 | static int napi_poll(struct napi_struct *n, struct list_head *repoll) |
| 7735 | { |
| 7736 | bool do_repoll = false; |
| 7737 | void *have; |
| 7738 | int work; |
| 7739 | |
| 7740 | list_del_init(entry: &n->poll_list); |
| 7741 | |
| 7742 | have = netpoll_poll_lock(napi: n); |
| 7743 | |
| 7744 | work = __napi_poll(n, repoll: &do_repoll); |
| 7745 | |
| 7746 | if (do_repoll) { |
| 7747 | #if defined(CONFIG_DEBUG_NET) |
| 7748 | if (unlikely(!napi_is_scheduled(n))) |
| 7749 | pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n" , |
| 7750 | n->dev->name, n->poll); |
| 7751 | #endif |
| 7752 | list_add_tail(new: &n->poll_list, head: repoll); |
| 7753 | } |
| 7754 | netpoll_poll_unlock(have); |
| 7755 | |
| 7756 | return work; |
| 7757 | } |
| 7758 | |
| 7759 | static int napi_thread_wait(struct napi_struct *napi) |
| 7760 | { |
| 7761 | set_current_state(TASK_INTERRUPTIBLE); |
| 7762 | |
| 7763 | while (!kthread_should_stop()) { |
| 7764 | /* Testing SCHED_THREADED bit here to make sure the current |
| 7765 | * kthread owns this napi and could poll on this napi. |
| 7766 | * Testing SCHED bit is not enough because SCHED bit might be |
| 7767 | * set by some other busy poll thread or by napi_disable(). |
| 7768 | */ |
| 7769 | if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { |
| 7770 | WARN_ON(!list_empty(&napi->poll_list)); |
| 7771 | __set_current_state(TASK_RUNNING); |
| 7772 | return 0; |
| 7773 | } |
| 7774 | |
| 7775 | schedule(); |
| 7776 | set_current_state(TASK_INTERRUPTIBLE); |
| 7777 | } |
| 7778 | __set_current_state(TASK_RUNNING); |
| 7779 | |
| 7780 | return -1; |
| 7781 | } |
| 7782 | |
| 7783 | static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll) |
| 7784 | { |
| 7785 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
| 7786 | struct softnet_data *sd; |
| 7787 | unsigned long last_qs = jiffies; |
| 7788 | |
| 7789 | for (;;) { |
| 7790 | bool repoll = false; |
| 7791 | void *have; |
| 7792 | |
| 7793 | local_bh_disable(); |
| 7794 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
| 7795 | |
| 7796 | sd = this_cpu_ptr(&softnet_data); |
| 7797 | sd->in_napi_threaded_poll = true; |
| 7798 | |
| 7799 | have = netpoll_poll_lock(napi); |
| 7800 | __napi_poll(n: napi, repoll: &repoll); |
| 7801 | netpoll_poll_unlock(have); |
| 7802 | |
| 7803 | sd->in_napi_threaded_poll = false; |
| 7804 | barrier(); |
| 7805 | |
| 7806 | if (sd_has_rps_ipi_waiting(sd)) { |
| 7807 | local_irq_disable(); |
| 7808 | net_rps_action_and_irq_enable(sd); |
| 7809 | } |
| 7810 | skb_defer_free_flush(); |
| 7811 | bpf_net_ctx_clear(bpf_net_ctx); |
| 7812 | |
| 7813 | /* When busy poll is enabled, the old packets are not flushed in |
| 7814 | * napi_complete_done. So flush them here. |
| 7815 | */ |
| 7816 | if (busy_poll) |
| 7817 | gro_flush_normal(gro: &napi->gro, HZ >= 1000); |
| 7818 | local_bh_enable(); |
| 7819 | |
| 7820 | /* Call cond_resched here to avoid watchdog warnings. */ |
| 7821 | if (repoll || busy_poll) { |
| 7822 | rcu_softirq_qs_periodic(last_qs); |
| 7823 | cond_resched(); |
| 7824 | } |
| 7825 | |
| 7826 | if (!repoll) |
| 7827 | break; |
| 7828 | } |
| 7829 | } |
| 7830 | |
| 7831 | static int napi_threaded_poll(void *data) |
| 7832 | { |
| 7833 | struct napi_struct *napi = data; |
| 7834 | bool want_busy_poll; |
| 7835 | bool in_busy_poll; |
| 7836 | unsigned long val; |
| 7837 | |
| 7838 | while (!napi_thread_wait(napi)) { |
| 7839 | val = READ_ONCE(napi->state); |
| 7840 | |
| 7841 | want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL; |
| 7842 | in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL; |
| 7843 | |
| 7844 | if (unlikely(val & NAPIF_STATE_DISABLE)) |
| 7845 | want_busy_poll = false; |
| 7846 | |
| 7847 | if (want_busy_poll != in_busy_poll) |
| 7848 | assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state, |
| 7849 | want_busy_poll); |
| 7850 | |
| 7851 | napi_threaded_poll_loop(napi, busy_poll: want_busy_poll); |
| 7852 | } |
| 7853 | |
| 7854 | return 0; |
| 7855 | } |
| 7856 | |
| 7857 | static __latent_entropy void net_rx_action(void) |
| 7858 | { |
| 7859 | struct softnet_data *sd = this_cpu_ptr(&softnet_data); |
| 7860 | unsigned long time_limit = jiffies + |
| 7861 | usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); |
| 7862 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
| 7863 | int budget = READ_ONCE(net_hotdata.netdev_budget); |
| 7864 | LIST_HEAD(list); |
| 7865 | LIST_HEAD(repoll); |
| 7866 | |
| 7867 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
| 7868 | start: |
| 7869 | sd->in_net_rx_action = true; |
| 7870 | local_irq_disable(); |
| 7871 | list_splice_init(list: &sd->poll_list, head: &list); |
| 7872 | local_irq_enable(); |
| 7873 | |
| 7874 | for (;;) { |
| 7875 | struct napi_struct *n; |
| 7876 | |
| 7877 | skb_defer_free_flush(); |
| 7878 | |
| 7879 | if (list_empty(head: &list)) { |
| 7880 | if (list_empty(head: &repoll)) { |
| 7881 | sd->in_net_rx_action = false; |
| 7882 | barrier(); |
| 7883 | /* We need to check if ____napi_schedule() |
| 7884 | * had refilled poll_list while |
| 7885 | * sd->in_net_rx_action was true. |
| 7886 | */ |
| 7887 | if (!list_empty(head: &sd->poll_list)) |
| 7888 | goto start; |
| 7889 | if (!sd_has_rps_ipi_waiting(sd)) |
| 7890 | goto end; |
| 7891 | } |
| 7892 | break; |
| 7893 | } |
| 7894 | |
| 7895 | n = list_first_entry(&list, struct napi_struct, poll_list); |
| 7896 | budget -= napi_poll(n, repoll: &repoll); |
| 7897 | |
| 7898 | /* If softirq window is exhausted then punt. |
| 7899 | * Allow this to run for 2 jiffies since which will allow |
| 7900 | * an average latency of 1.5/HZ. |
| 7901 | */ |
| 7902 | if (unlikely(budget <= 0 || |
| 7903 | time_after_eq(jiffies, time_limit))) { |
| 7904 | /* Pairs with READ_ONCE() in softnet_seq_show() */ |
| 7905 | WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); |
| 7906 | break; |
| 7907 | } |
| 7908 | } |
| 7909 | |
| 7910 | local_irq_disable(); |
| 7911 | |
| 7912 | list_splice_tail_init(list: &sd->poll_list, head: &list); |
| 7913 | list_splice_tail(list: &repoll, head: &list); |
| 7914 | list_splice(list: &list, head: &sd->poll_list); |
| 7915 | if (!list_empty(head: &sd->poll_list)) |
| 7916 | __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
| 7917 | else |
| 7918 | sd->in_net_rx_action = false; |
| 7919 | |
| 7920 | net_rps_action_and_irq_enable(sd); |
| 7921 | end: |
| 7922 | bpf_net_ctx_clear(bpf_net_ctx); |
| 7923 | } |
| 7924 | |
| 7925 | struct netdev_adjacent { |
| 7926 | struct net_device *dev; |
| 7927 | netdevice_tracker dev_tracker; |
| 7928 | |
| 7929 | /* upper master flag, there can only be one master device per list */ |
| 7930 | bool master; |
| 7931 | |
| 7932 | /* lookup ignore flag */ |
| 7933 | bool ignore; |
| 7934 | |
| 7935 | /* counter for the number of times this device was added to us */ |
| 7936 | u16 ref_nr; |
| 7937 | |
| 7938 | /* private field for the users */ |
| 7939 | void *private; |
| 7940 | |
| 7941 | struct list_head list; |
| 7942 | struct rcu_head rcu; |
| 7943 | }; |
| 7944 | |
| 7945 | static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, |
| 7946 | struct list_head *adj_list) |
| 7947 | { |
| 7948 | struct netdev_adjacent *adj; |
| 7949 | |
| 7950 | list_for_each_entry(adj, adj_list, list) { |
| 7951 | if (adj->dev == adj_dev) |
| 7952 | return adj; |
| 7953 | } |
| 7954 | return NULL; |
| 7955 | } |
| 7956 | |
| 7957 | static int ____netdev_has_upper_dev(struct net_device *upper_dev, |
| 7958 | struct netdev_nested_priv *priv) |
| 7959 | { |
| 7960 | struct net_device *dev = (struct net_device *)priv->data; |
| 7961 | |
| 7962 | return upper_dev == dev; |
| 7963 | } |
| 7964 | |
| 7965 | /** |
| 7966 | * netdev_has_upper_dev - Check if device is linked to an upper device |
| 7967 | * @dev: device |
| 7968 | * @upper_dev: upper device to check |
| 7969 | * |
| 7970 | * Find out if a device is linked to specified upper device and return true |
| 7971 | * in case it is. Note that this checks only immediate upper device, |
| 7972 | * not through a complete stack of devices. The caller must hold the RTNL lock. |
| 7973 | */ |
| 7974 | bool netdev_has_upper_dev(struct net_device *dev, |
| 7975 | struct net_device *upper_dev) |
| 7976 | { |
| 7977 | struct netdev_nested_priv priv = { |
| 7978 | .data = (void *)upper_dev, |
| 7979 | }; |
| 7980 | |
| 7981 | ASSERT_RTNL(); |
| 7982 | |
| 7983 | return netdev_walk_all_upper_dev_rcu(dev, fn: ____netdev_has_upper_dev, |
| 7984 | priv: &priv); |
| 7985 | } |
| 7986 | EXPORT_SYMBOL(netdev_has_upper_dev); |
| 7987 | |
| 7988 | /** |
| 7989 | * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device |
| 7990 | * @dev: device |
| 7991 | * @upper_dev: upper device to check |
| 7992 | * |
| 7993 | * Find out if a device is linked to specified upper device and return true |
| 7994 | * in case it is. Note that this checks the entire upper device chain. |
| 7995 | * The caller must hold rcu lock. |
| 7996 | */ |
| 7997 | |
| 7998 | bool netdev_has_upper_dev_all_rcu(struct net_device *dev, |
| 7999 | struct net_device *upper_dev) |
| 8000 | { |
| 8001 | struct netdev_nested_priv priv = { |
| 8002 | .data = (void *)upper_dev, |
| 8003 | }; |
| 8004 | |
| 8005 | return !!netdev_walk_all_upper_dev_rcu(dev, fn: ____netdev_has_upper_dev, |
| 8006 | priv: &priv); |
| 8007 | } |
| 8008 | EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); |
| 8009 | |
| 8010 | /** |
| 8011 | * netdev_has_any_upper_dev - Check if device is linked to some device |
| 8012 | * @dev: device |
| 8013 | * |
| 8014 | * Find out if a device is linked to an upper device and return true in case |
| 8015 | * it is. The caller must hold the RTNL lock. |
| 8016 | */ |
| 8017 | bool netdev_has_any_upper_dev(struct net_device *dev) |
| 8018 | { |
| 8019 | ASSERT_RTNL(); |
| 8020 | |
| 8021 | return !list_empty(head: &dev->adj_list.upper); |
| 8022 | } |
| 8023 | EXPORT_SYMBOL(netdev_has_any_upper_dev); |
| 8024 | |
| 8025 | /** |
| 8026 | * netdev_master_upper_dev_get - Get master upper device |
| 8027 | * @dev: device |
| 8028 | * |
| 8029 | * Find a master upper device and return pointer to it or NULL in case |
| 8030 | * it's not there. The caller must hold the RTNL lock. |
| 8031 | */ |
| 8032 | struct net_device *netdev_master_upper_dev_get(struct net_device *dev) |
| 8033 | { |
| 8034 | struct netdev_adjacent *upper; |
| 8035 | |
| 8036 | ASSERT_RTNL(); |
| 8037 | |
| 8038 | if (list_empty(head: &dev->adj_list.upper)) |
| 8039 | return NULL; |
| 8040 | |
| 8041 | upper = list_first_entry(&dev->adj_list.upper, |
| 8042 | struct netdev_adjacent, list); |
| 8043 | if (likely(upper->master)) |
| 8044 | return upper->dev; |
| 8045 | return NULL; |
| 8046 | } |
| 8047 | EXPORT_SYMBOL(netdev_master_upper_dev_get); |
| 8048 | |
| 8049 | static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) |
| 8050 | { |
| 8051 | struct netdev_adjacent *upper; |
| 8052 | |
| 8053 | ASSERT_RTNL(); |
| 8054 | |
| 8055 | if (list_empty(head: &dev->adj_list.upper)) |
| 8056 | return NULL; |
| 8057 | |
| 8058 | upper = list_first_entry(&dev->adj_list.upper, |
| 8059 | struct netdev_adjacent, list); |
| 8060 | if (likely(upper->master) && !upper->ignore) |
| 8061 | return upper->dev; |
| 8062 | return NULL; |
| 8063 | } |
| 8064 | |
| 8065 | /** |
| 8066 | * netdev_has_any_lower_dev - Check if device is linked to some device |
| 8067 | * @dev: device |
| 8068 | * |
| 8069 | * Find out if a device is linked to a lower device and return true in case |
| 8070 | * it is. The caller must hold the RTNL lock. |
| 8071 | */ |
| 8072 | static bool netdev_has_any_lower_dev(struct net_device *dev) |
| 8073 | { |
| 8074 | ASSERT_RTNL(); |
| 8075 | |
| 8076 | return !list_empty(head: &dev->adj_list.lower); |
| 8077 | } |
| 8078 | |
| 8079 | void *netdev_adjacent_get_private(struct list_head *adj_list) |
| 8080 | { |
| 8081 | struct netdev_adjacent *adj; |
| 8082 | |
| 8083 | adj = list_entry(adj_list, struct netdev_adjacent, list); |
| 8084 | |
| 8085 | return adj->private; |
| 8086 | } |
| 8087 | EXPORT_SYMBOL(netdev_adjacent_get_private); |
| 8088 | |
| 8089 | /** |
| 8090 | * netdev_upper_get_next_dev_rcu - Get the next dev from upper list |
| 8091 | * @dev: device |
| 8092 | * @iter: list_head ** of the current position |
| 8093 | * |
| 8094 | * Gets the next device from the dev's upper list, starting from iter |
| 8095 | * position. The caller must hold RCU read lock. |
| 8096 | */ |
| 8097 | struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, |
| 8098 | struct list_head **iter) |
| 8099 | { |
| 8100 | struct netdev_adjacent *upper; |
| 8101 | |
| 8102 | WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); |
| 8103 | |
| 8104 | upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
| 8105 | |
| 8106 | if (&upper->list == &dev->adj_list.upper) |
| 8107 | return NULL; |
| 8108 | |
| 8109 | *iter = &upper->list; |
| 8110 | |
| 8111 | return upper->dev; |
| 8112 | } |
| 8113 | EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); |
| 8114 | |
| 8115 | static struct net_device *__netdev_next_upper_dev(struct net_device *dev, |
| 8116 | struct list_head **iter, |
| 8117 | bool *ignore) |
| 8118 | { |
| 8119 | struct netdev_adjacent *upper; |
| 8120 | |
| 8121 | upper = list_entry((*iter)->next, struct netdev_adjacent, list); |
| 8122 | |
| 8123 | if (&upper->list == &dev->adj_list.upper) |
| 8124 | return NULL; |
| 8125 | |
| 8126 | *iter = &upper->list; |
| 8127 | *ignore = upper->ignore; |
| 8128 | |
| 8129 | return upper->dev; |
| 8130 | } |
| 8131 | |
| 8132 | static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, |
| 8133 | struct list_head **iter) |
| 8134 | { |
| 8135 | struct netdev_adjacent *upper; |
| 8136 | |
| 8137 | WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); |
| 8138 | |
| 8139 | upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
| 8140 | |
| 8141 | if (&upper->list == &dev->adj_list.upper) |
| 8142 | return NULL; |
| 8143 | |
| 8144 | *iter = &upper->list; |
| 8145 | |
| 8146 | return upper->dev; |
| 8147 | } |
| 8148 | |
| 8149 | static int __netdev_walk_all_upper_dev(struct net_device *dev, |
| 8150 | int (*fn)(struct net_device *dev, |
| 8151 | struct netdev_nested_priv *priv), |
| 8152 | struct netdev_nested_priv *priv) |
| 8153 | { |
| 8154 | struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
| 8155 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
| 8156 | int ret, cur = 0; |
| 8157 | bool ignore; |
| 8158 | |
| 8159 | now = dev; |
| 8160 | iter = &dev->adj_list.upper; |
| 8161 | |
| 8162 | while (1) { |
| 8163 | if (now != dev) { |
| 8164 | ret = fn(now, priv); |
| 8165 | if (ret) |
| 8166 | return ret; |
| 8167 | } |
| 8168 | |
| 8169 | next = NULL; |
| 8170 | while (1) { |
| 8171 | udev = __netdev_next_upper_dev(dev: now, iter: &iter, ignore: &ignore); |
| 8172 | if (!udev) |
| 8173 | break; |
| 8174 | if (ignore) |
| 8175 | continue; |
| 8176 | |
| 8177 | next = udev; |
| 8178 | niter = &udev->adj_list.upper; |
| 8179 | dev_stack[cur] = now; |
| 8180 | iter_stack[cur++] = iter; |
| 8181 | break; |
| 8182 | } |
| 8183 | |
| 8184 | if (!next) { |
| 8185 | if (!cur) |
| 8186 | return 0; |
| 8187 | next = dev_stack[--cur]; |
| 8188 | niter = iter_stack[cur]; |
| 8189 | } |
| 8190 | |
| 8191 | now = next; |
| 8192 | iter = niter; |
| 8193 | } |
| 8194 | |
| 8195 | return 0; |
| 8196 | } |
| 8197 | |
| 8198 | int netdev_walk_all_upper_dev_rcu(struct net_device *dev, |
| 8199 | int (*fn)(struct net_device *dev, |
| 8200 | struct netdev_nested_priv *priv), |
| 8201 | struct netdev_nested_priv *priv) |
| 8202 | { |
| 8203 | struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
| 8204 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
| 8205 | int ret, cur = 0; |
| 8206 | |
| 8207 | now = dev; |
| 8208 | iter = &dev->adj_list.upper; |
| 8209 | |
| 8210 | while (1) { |
| 8211 | if (now != dev) { |
| 8212 | ret = fn(now, priv); |
| 8213 | if (ret) |
| 8214 | return ret; |
| 8215 | } |
| 8216 | |
| 8217 | next = NULL; |
| 8218 | while (1) { |
| 8219 | udev = netdev_next_upper_dev_rcu(dev: now, iter: &iter); |
| 8220 | if (!udev) |
| 8221 | break; |
| 8222 | |
| 8223 | next = udev; |
| 8224 | niter = &udev->adj_list.upper; |
| 8225 | dev_stack[cur] = now; |
| 8226 | iter_stack[cur++] = iter; |
| 8227 | break; |
| 8228 | } |
| 8229 | |
| 8230 | if (!next) { |
| 8231 | if (!cur) |
| 8232 | return 0; |
| 8233 | next = dev_stack[--cur]; |
| 8234 | niter = iter_stack[cur]; |
| 8235 | } |
| 8236 | |
| 8237 | now = next; |
| 8238 | iter = niter; |
| 8239 | } |
| 8240 | |
| 8241 | return 0; |
| 8242 | } |
| 8243 | EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); |
| 8244 | |
| 8245 | static bool __netdev_has_upper_dev(struct net_device *dev, |
| 8246 | struct net_device *upper_dev) |
| 8247 | { |
| 8248 | struct netdev_nested_priv priv = { |
| 8249 | .flags = 0, |
| 8250 | .data = (void *)upper_dev, |
| 8251 | }; |
| 8252 | |
| 8253 | ASSERT_RTNL(); |
| 8254 | |
| 8255 | return __netdev_walk_all_upper_dev(dev, fn: ____netdev_has_upper_dev, |
| 8256 | priv: &priv); |
| 8257 | } |
| 8258 | |
| 8259 | /** |
| 8260 | * netdev_lower_get_next_private - Get the next ->private from the |
| 8261 | * lower neighbour list |
| 8262 | * @dev: device |
| 8263 | * @iter: list_head ** of the current position |
| 8264 | * |
| 8265 | * Gets the next netdev_adjacent->private from the dev's lower neighbour |
| 8266 | * list, starting from iter position. The caller must hold either hold the |
| 8267 | * RTNL lock or its own locking that guarantees that the neighbour lower |
| 8268 | * list will remain unchanged. |
| 8269 | */ |
| 8270 | void *netdev_lower_get_next_private(struct net_device *dev, |
| 8271 | struct list_head **iter) |
| 8272 | { |
| 8273 | struct netdev_adjacent *lower; |
| 8274 | |
| 8275 | lower = list_entry(*iter, struct netdev_adjacent, list); |
| 8276 | |
| 8277 | if (&lower->list == &dev->adj_list.lower) |
| 8278 | return NULL; |
| 8279 | |
| 8280 | *iter = lower->list.next; |
| 8281 | |
| 8282 | return lower->private; |
| 8283 | } |
| 8284 | EXPORT_SYMBOL(netdev_lower_get_next_private); |
| 8285 | |
| 8286 | /** |
| 8287 | * netdev_lower_get_next_private_rcu - Get the next ->private from the |
| 8288 | * lower neighbour list, RCU |
| 8289 | * variant |
| 8290 | * @dev: device |
| 8291 | * @iter: list_head ** of the current position |
| 8292 | * |
| 8293 | * Gets the next netdev_adjacent->private from the dev's lower neighbour |
| 8294 | * list, starting from iter position. The caller must hold RCU read lock. |
| 8295 | */ |
| 8296 | void *netdev_lower_get_next_private_rcu(struct net_device *dev, |
| 8297 | struct list_head **iter) |
| 8298 | { |
| 8299 | struct netdev_adjacent *lower; |
| 8300 | |
| 8301 | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
| 8302 | |
| 8303 | lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
| 8304 | |
| 8305 | if (&lower->list == &dev->adj_list.lower) |
| 8306 | return NULL; |
| 8307 | |
| 8308 | *iter = &lower->list; |
| 8309 | |
| 8310 | return lower->private; |
| 8311 | } |
| 8312 | EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); |
| 8313 | |
| 8314 | /** |
| 8315 | * netdev_lower_get_next - Get the next device from the lower neighbour |
| 8316 | * list |
| 8317 | * @dev: device |
| 8318 | * @iter: list_head ** of the current position |
| 8319 | * |
| 8320 | * Gets the next netdev_adjacent from the dev's lower neighbour |
| 8321 | * list, starting from iter position. The caller must hold RTNL lock or |
| 8322 | * its own locking that guarantees that the neighbour lower |
| 8323 | * list will remain unchanged. |
| 8324 | */ |
| 8325 | void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) |
| 8326 | { |
| 8327 | struct netdev_adjacent *lower; |
| 8328 | |
| 8329 | lower = list_entry(*iter, struct netdev_adjacent, list); |
| 8330 | |
| 8331 | if (&lower->list == &dev->adj_list.lower) |
| 8332 | return NULL; |
| 8333 | |
| 8334 | *iter = lower->list.next; |
| 8335 | |
| 8336 | return lower->dev; |
| 8337 | } |
| 8338 | EXPORT_SYMBOL(netdev_lower_get_next); |
| 8339 | |
| 8340 | static struct net_device *netdev_next_lower_dev(struct net_device *dev, |
| 8341 | struct list_head **iter) |
| 8342 | { |
| 8343 | struct netdev_adjacent *lower; |
| 8344 | |
| 8345 | lower = list_entry((*iter)->next, struct netdev_adjacent, list); |
| 8346 | |
| 8347 | if (&lower->list == &dev->adj_list.lower) |
| 8348 | return NULL; |
| 8349 | |
| 8350 | *iter = &lower->list; |
| 8351 | |
| 8352 | return lower->dev; |
| 8353 | } |
| 8354 | |
| 8355 | static struct net_device *__netdev_next_lower_dev(struct net_device *dev, |
| 8356 | struct list_head **iter, |
| 8357 | bool *ignore) |
| 8358 | { |
| 8359 | struct netdev_adjacent *lower; |
| 8360 | |
| 8361 | lower = list_entry((*iter)->next, struct netdev_adjacent, list); |
| 8362 | |
| 8363 | if (&lower->list == &dev->adj_list.lower) |
| 8364 | return NULL; |
| 8365 | |
| 8366 | *iter = &lower->list; |
| 8367 | *ignore = lower->ignore; |
| 8368 | |
| 8369 | return lower->dev; |
| 8370 | } |
| 8371 | |
| 8372 | int netdev_walk_all_lower_dev(struct net_device *dev, |
| 8373 | int (*fn)(struct net_device *dev, |
| 8374 | struct netdev_nested_priv *priv), |
| 8375 | struct netdev_nested_priv *priv) |
| 8376 | { |
| 8377 | struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
| 8378 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
| 8379 | int ret, cur = 0; |
| 8380 | |
| 8381 | now = dev; |
| 8382 | iter = &dev->adj_list.lower; |
| 8383 | |
| 8384 | while (1) { |
| 8385 | if (now != dev) { |
| 8386 | ret = fn(now, priv); |
| 8387 | if (ret) |
| 8388 | return ret; |
| 8389 | } |
| 8390 | |
| 8391 | next = NULL; |
| 8392 | while (1) { |
| 8393 | ldev = netdev_next_lower_dev(dev: now, iter: &iter); |
| 8394 | if (!ldev) |
| 8395 | break; |
| 8396 | |
| 8397 | next = ldev; |
| 8398 | niter = &ldev->adj_list.lower; |
| 8399 | dev_stack[cur] = now; |
| 8400 | iter_stack[cur++] = iter; |
| 8401 | break; |
| 8402 | } |
| 8403 | |
| 8404 | if (!next) { |
| 8405 | if (!cur) |
| 8406 | return 0; |
| 8407 | next = dev_stack[--cur]; |
| 8408 | niter = iter_stack[cur]; |
| 8409 | } |
| 8410 | |
| 8411 | now = next; |
| 8412 | iter = niter; |
| 8413 | } |
| 8414 | |
| 8415 | return 0; |
| 8416 | } |
| 8417 | EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); |
| 8418 | |
| 8419 | static int __netdev_walk_all_lower_dev(struct net_device *dev, |
| 8420 | int (*fn)(struct net_device *dev, |
| 8421 | struct netdev_nested_priv *priv), |
| 8422 | struct netdev_nested_priv *priv) |
| 8423 | { |
| 8424 | struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
| 8425 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
| 8426 | int ret, cur = 0; |
| 8427 | bool ignore; |
| 8428 | |
| 8429 | now = dev; |
| 8430 | iter = &dev->adj_list.lower; |
| 8431 | |
| 8432 | while (1) { |
| 8433 | if (now != dev) { |
| 8434 | ret = fn(now, priv); |
| 8435 | if (ret) |
| 8436 | return ret; |
| 8437 | } |
| 8438 | |
| 8439 | next = NULL; |
| 8440 | while (1) { |
| 8441 | ldev = __netdev_next_lower_dev(dev: now, iter: &iter, ignore: &ignore); |
| 8442 | if (!ldev) |
| 8443 | break; |
| 8444 | if (ignore) |
| 8445 | continue; |
| 8446 | |
| 8447 | next = ldev; |
| 8448 | niter = &ldev->adj_list.lower; |
| 8449 | dev_stack[cur] = now; |
| 8450 | iter_stack[cur++] = iter; |
| 8451 | break; |
| 8452 | } |
| 8453 | |
| 8454 | if (!next) { |
| 8455 | if (!cur) |
| 8456 | return 0; |
| 8457 | next = dev_stack[--cur]; |
| 8458 | niter = iter_stack[cur]; |
| 8459 | } |
| 8460 | |
| 8461 | now = next; |
| 8462 | iter = niter; |
| 8463 | } |
| 8464 | |
| 8465 | return 0; |
| 8466 | } |
| 8467 | |
| 8468 | struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, |
| 8469 | struct list_head **iter) |
| 8470 | { |
| 8471 | struct netdev_adjacent *lower; |
| 8472 | |
| 8473 | lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
| 8474 | if (&lower->list == &dev->adj_list.lower) |
| 8475 | return NULL; |
| 8476 | |
| 8477 | *iter = &lower->list; |
| 8478 | |
| 8479 | return lower->dev; |
| 8480 | } |
| 8481 | EXPORT_SYMBOL(netdev_next_lower_dev_rcu); |
| 8482 | |
| 8483 | static u8 __netdev_upper_depth(struct net_device *dev) |
| 8484 | { |
| 8485 | struct net_device *udev; |
| 8486 | struct list_head *iter; |
| 8487 | u8 max_depth = 0; |
| 8488 | bool ignore; |
| 8489 | |
| 8490 | for (iter = &dev->adj_list.upper, |
| 8491 | udev = __netdev_next_upper_dev(dev, iter: &iter, ignore: &ignore); |
| 8492 | udev; |
| 8493 | udev = __netdev_next_upper_dev(dev, iter: &iter, ignore: &ignore)) { |
| 8494 | if (ignore) |
| 8495 | continue; |
| 8496 | if (max_depth < udev->upper_level) |
| 8497 | max_depth = udev->upper_level; |
| 8498 | } |
| 8499 | |
| 8500 | return max_depth; |
| 8501 | } |
| 8502 | |
| 8503 | static u8 __netdev_lower_depth(struct net_device *dev) |
| 8504 | { |
| 8505 | struct net_device *ldev; |
| 8506 | struct list_head *iter; |
| 8507 | u8 max_depth = 0; |
| 8508 | bool ignore; |
| 8509 | |
| 8510 | for (iter = &dev->adj_list.lower, |
| 8511 | ldev = __netdev_next_lower_dev(dev, iter: &iter, ignore: &ignore); |
| 8512 | ldev; |
| 8513 | ldev = __netdev_next_lower_dev(dev, iter: &iter, ignore: &ignore)) { |
| 8514 | if (ignore) |
| 8515 | continue; |
| 8516 | if (max_depth < ldev->lower_level) |
| 8517 | max_depth = ldev->lower_level; |
| 8518 | } |
| 8519 | |
| 8520 | return max_depth; |
| 8521 | } |
| 8522 | |
| 8523 | static int __netdev_update_upper_level(struct net_device *dev, |
| 8524 | struct netdev_nested_priv *__unused) |
| 8525 | { |
| 8526 | dev->upper_level = __netdev_upper_depth(dev) + 1; |
| 8527 | return 0; |
| 8528 | } |
| 8529 | |
| 8530 | #ifdef CONFIG_LOCKDEP |
| 8531 | static LIST_HEAD(net_unlink_list); |
| 8532 | |
| 8533 | static void net_unlink_todo(struct net_device *dev) |
| 8534 | { |
| 8535 | if (list_empty(head: &dev->unlink_list)) |
| 8536 | list_add_tail(new: &dev->unlink_list, head: &net_unlink_list); |
| 8537 | } |
| 8538 | #endif |
| 8539 | |
| 8540 | static int __netdev_update_lower_level(struct net_device *dev, |
| 8541 | struct netdev_nested_priv *priv) |
| 8542 | { |
| 8543 | dev->lower_level = __netdev_lower_depth(dev) + 1; |
| 8544 | |
| 8545 | #ifdef CONFIG_LOCKDEP |
| 8546 | if (!priv) |
| 8547 | return 0; |
| 8548 | |
| 8549 | if (priv->flags & NESTED_SYNC_IMM) |
| 8550 | dev->nested_level = dev->lower_level - 1; |
| 8551 | if (priv->flags & NESTED_SYNC_TODO) |
| 8552 | net_unlink_todo(dev); |
| 8553 | #endif |
| 8554 | return 0; |
| 8555 | } |
| 8556 | |
| 8557 | int netdev_walk_all_lower_dev_rcu(struct net_device *dev, |
| 8558 | int (*fn)(struct net_device *dev, |
| 8559 | struct netdev_nested_priv *priv), |
| 8560 | struct netdev_nested_priv *priv) |
| 8561 | { |
| 8562 | struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
| 8563 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
| 8564 | int ret, cur = 0; |
| 8565 | |
| 8566 | now = dev; |
| 8567 | iter = &dev->adj_list.lower; |
| 8568 | |
| 8569 | while (1) { |
| 8570 | if (now != dev) { |
| 8571 | ret = fn(now, priv); |
| 8572 | if (ret) |
| 8573 | return ret; |
| 8574 | } |
| 8575 | |
| 8576 | next = NULL; |
| 8577 | while (1) { |
| 8578 | ldev = netdev_next_lower_dev_rcu(now, &iter); |
| 8579 | if (!ldev) |
| 8580 | break; |
| 8581 | |
| 8582 | next = ldev; |
| 8583 | niter = &ldev->adj_list.lower; |
| 8584 | dev_stack[cur] = now; |
| 8585 | iter_stack[cur++] = iter; |
| 8586 | break; |
| 8587 | } |
| 8588 | |
| 8589 | if (!next) { |
| 8590 | if (!cur) |
| 8591 | return 0; |
| 8592 | next = dev_stack[--cur]; |
| 8593 | niter = iter_stack[cur]; |
| 8594 | } |
| 8595 | |
| 8596 | now = next; |
| 8597 | iter = niter; |
| 8598 | } |
| 8599 | |
| 8600 | return 0; |
| 8601 | } |
| 8602 | EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); |
| 8603 | |
| 8604 | /** |
| 8605 | * netdev_lower_get_first_private_rcu - Get the first ->private from the |
| 8606 | * lower neighbour list, RCU |
| 8607 | * variant |
| 8608 | * @dev: device |
| 8609 | * |
| 8610 | * Gets the first netdev_adjacent->private from the dev's lower neighbour |
| 8611 | * list. The caller must hold RCU read lock. |
| 8612 | */ |
| 8613 | void *netdev_lower_get_first_private_rcu(struct net_device *dev) |
| 8614 | { |
| 8615 | struct netdev_adjacent *lower; |
| 8616 | |
| 8617 | lower = list_first_or_null_rcu(&dev->adj_list.lower, |
| 8618 | struct netdev_adjacent, list); |
| 8619 | if (lower) |
| 8620 | return lower->private; |
| 8621 | return NULL; |
| 8622 | } |
| 8623 | EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); |
| 8624 | |
| 8625 | /** |
| 8626 | * netdev_master_upper_dev_get_rcu - Get master upper device |
| 8627 | * @dev: device |
| 8628 | * |
| 8629 | * Find a master upper device and return pointer to it or NULL in case |
| 8630 | * it's not there. The caller must hold the RCU read lock. |
| 8631 | */ |
| 8632 | struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) |
| 8633 | { |
| 8634 | struct netdev_adjacent *upper; |
| 8635 | |
| 8636 | upper = list_first_or_null_rcu(&dev->adj_list.upper, |
| 8637 | struct netdev_adjacent, list); |
| 8638 | if (upper && likely(upper->master)) |
| 8639 | return upper->dev; |
| 8640 | return NULL; |
| 8641 | } |
| 8642 | EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); |
| 8643 | |
| 8644 | static int netdev_adjacent_sysfs_add(struct net_device *dev, |
| 8645 | struct net_device *adj_dev, |
| 8646 | struct list_head *dev_list) |
| 8647 | { |
| 8648 | char linkname[IFNAMSIZ+7]; |
| 8649 | |
| 8650 | sprintf(buf: linkname, fmt: dev_list == &dev->adj_list.upper ? |
| 8651 | "upper_%s" : "lower_%s" , adj_dev->name); |
| 8652 | return sysfs_create_link(kobj: &(dev->dev.kobj), target: &(adj_dev->dev.kobj), |
| 8653 | name: linkname); |
| 8654 | } |
| 8655 | static void netdev_adjacent_sysfs_del(struct net_device *dev, |
| 8656 | char *name, |
| 8657 | struct list_head *dev_list) |
| 8658 | { |
| 8659 | char linkname[IFNAMSIZ+7]; |
| 8660 | |
| 8661 | sprintf(buf: linkname, fmt: dev_list == &dev->adj_list.upper ? |
| 8662 | "upper_%s" : "lower_%s" , name); |
| 8663 | sysfs_remove_link(kobj: &(dev->dev.kobj), name: linkname); |
| 8664 | } |
| 8665 | |
| 8666 | static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, |
| 8667 | struct net_device *adj_dev, |
| 8668 | struct list_head *dev_list) |
| 8669 | { |
| 8670 | return (dev_list == &dev->adj_list.upper || |
| 8671 | dev_list == &dev->adj_list.lower) && |
| 8672 | net_eq(net1: dev_net(dev), net2: dev_net(dev: adj_dev)); |
| 8673 | } |
| 8674 | |
| 8675 | static int __netdev_adjacent_dev_insert(struct net_device *dev, |
| 8676 | struct net_device *adj_dev, |
| 8677 | struct list_head *dev_list, |
| 8678 | void *private, bool master) |
| 8679 | { |
| 8680 | struct netdev_adjacent *adj; |
| 8681 | int ret; |
| 8682 | |
| 8683 | adj = __netdev_find_adj(adj_dev, adj_list: dev_list); |
| 8684 | |
| 8685 | if (adj) { |
| 8686 | adj->ref_nr += 1; |
| 8687 | pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n" , |
| 8688 | dev->name, adj_dev->name, adj->ref_nr); |
| 8689 | |
| 8690 | return 0; |
| 8691 | } |
| 8692 | |
| 8693 | adj = kmalloc(sizeof(*adj), GFP_KERNEL); |
| 8694 | if (!adj) |
| 8695 | return -ENOMEM; |
| 8696 | |
| 8697 | adj->dev = adj_dev; |
| 8698 | adj->master = master; |
| 8699 | adj->ref_nr = 1; |
| 8700 | adj->private = private; |
| 8701 | adj->ignore = false; |
| 8702 | netdev_hold(dev: adj_dev, tracker: &adj->dev_tracker, GFP_KERNEL); |
| 8703 | |
| 8704 | pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n" , |
| 8705 | dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); |
| 8706 | |
| 8707 | if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { |
| 8708 | ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); |
| 8709 | if (ret) |
| 8710 | goto free_adj; |
| 8711 | } |
| 8712 | |
| 8713 | /* Ensure that master link is always the first item in list. */ |
| 8714 | if (master) { |
| 8715 | ret = sysfs_create_link(kobj: &(dev->dev.kobj), |
| 8716 | target: &(adj_dev->dev.kobj), name: "master" ); |
| 8717 | if (ret) |
| 8718 | goto remove_symlinks; |
| 8719 | |
| 8720 | list_add_rcu(new: &adj->list, head: dev_list); |
| 8721 | } else { |
| 8722 | list_add_tail_rcu(new: &adj->list, head: dev_list); |
| 8723 | } |
| 8724 | |
| 8725 | return 0; |
| 8726 | |
| 8727 | remove_symlinks: |
| 8728 | if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) |
| 8729 | netdev_adjacent_sysfs_del(dev, name: adj_dev->name, dev_list); |
| 8730 | free_adj: |
| 8731 | netdev_put(dev: adj_dev, tracker: &adj->dev_tracker); |
| 8732 | kfree(objp: adj); |
| 8733 | |
| 8734 | return ret; |
| 8735 | } |
| 8736 | |
| 8737 | static void __netdev_adjacent_dev_remove(struct net_device *dev, |
| 8738 | struct net_device *adj_dev, |
| 8739 | u16 ref_nr, |
| 8740 | struct list_head *dev_list) |
| 8741 | { |
| 8742 | struct netdev_adjacent *adj; |
| 8743 | |
| 8744 | pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n" , |
| 8745 | dev->name, adj_dev->name, ref_nr); |
| 8746 | |
| 8747 | adj = __netdev_find_adj(adj_dev, adj_list: dev_list); |
| 8748 | |
| 8749 | if (!adj) { |
| 8750 | pr_err("Adjacency does not exist for device %s from %s\n" , |
| 8751 | dev->name, adj_dev->name); |
| 8752 | WARN_ON(1); |
| 8753 | return; |
| 8754 | } |
| 8755 | |
| 8756 | if (adj->ref_nr > ref_nr) { |
| 8757 | pr_debug("adjacency: %s to %s ref_nr - %d = %d\n" , |
| 8758 | dev->name, adj_dev->name, ref_nr, |
| 8759 | adj->ref_nr - ref_nr); |
| 8760 | adj->ref_nr -= ref_nr; |
| 8761 | return; |
| 8762 | } |
| 8763 | |
| 8764 | if (adj->master) |
| 8765 | sysfs_remove_link(kobj: &(dev->dev.kobj), name: "master" ); |
| 8766 | |
| 8767 | if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) |
| 8768 | netdev_adjacent_sysfs_del(dev, name: adj_dev->name, dev_list); |
| 8769 | |
| 8770 | list_del_rcu(entry: &adj->list); |
| 8771 | pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n" , |
| 8772 | adj_dev->name, dev->name, adj_dev->name); |
| 8773 | netdev_put(dev: adj_dev, tracker: &adj->dev_tracker); |
| 8774 | kfree_rcu(adj, rcu); |
| 8775 | } |
| 8776 | |
| 8777 | static int __netdev_adjacent_dev_link_lists(struct net_device *dev, |
| 8778 | struct net_device *upper_dev, |
| 8779 | struct list_head *up_list, |
| 8780 | struct list_head *down_list, |
| 8781 | void *private, bool master) |
| 8782 | { |
| 8783 | int ret; |
| 8784 | |
| 8785 | ret = __netdev_adjacent_dev_insert(dev, adj_dev: upper_dev, dev_list: up_list, |
| 8786 | private, master); |
| 8787 | if (ret) |
| 8788 | return ret; |
| 8789 | |
| 8790 | ret = __netdev_adjacent_dev_insert(dev: upper_dev, adj_dev: dev, dev_list: down_list, |
| 8791 | private, master: false); |
| 8792 | if (ret) { |
| 8793 | __netdev_adjacent_dev_remove(dev, adj_dev: upper_dev, ref_nr: 1, dev_list: up_list); |
| 8794 | return ret; |
| 8795 | } |
| 8796 | |
| 8797 | return 0; |
| 8798 | } |
| 8799 | |
| 8800 | static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, |
| 8801 | struct net_device *upper_dev, |
| 8802 | u16 ref_nr, |
| 8803 | struct list_head *up_list, |
| 8804 | struct list_head *down_list) |
| 8805 | { |
| 8806 | __netdev_adjacent_dev_remove(dev, adj_dev: upper_dev, ref_nr, dev_list: up_list); |
| 8807 | __netdev_adjacent_dev_remove(dev: upper_dev, adj_dev: dev, ref_nr, dev_list: down_list); |
| 8808 | } |
| 8809 | |
| 8810 | static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, |
| 8811 | struct net_device *upper_dev, |
| 8812 | void *private, bool master) |
| 8813 | { |
| 8814 | return __netdev_adjacent_dev_link_lists(dev, upper_dev, |
| 8815 | up_list: &dev->adj_list.upper, |
| 8816 | down_list: &upper_dev->adj_list.lower, |
| 8817 | private, master); |
| 8818 | } |
| 8819 | |
| 8820 | static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, |
| 8821 | struct net_device *upper_dev) |
| 8822 | { |
| 8823 | __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr: 1, |
| 8824 | up_list: &dev->adj_list.upper, |
| 8825 | down_list: &upper_dev->adj_list.lower); |
| 8826 | } |
| 8827 | |
| 8828 | static int __netdev_upper_dev_link(struct net_device *dev, |
| 8829 | struct net_device *upper_dev, bool master, |
| 8830 | void *upper_priv, void *upper_info, |
| 8831 | struct netdev_nested_priv *priv, |
| 8832 | struct netlink_ext_ack *extack) |
| 8833 | { |
| 8834 | struct netdev_notifier_changeupper_info changeupper_info = { |
| 8835 | .info = { |
| 8836 | .dev = dev, |
| 8837 | .extack = extack, |
| 8838 | }, |
| 8839 | .upper_dev = upper_dev, |
| 8840 | .master = master, |
| 8841 | .linking = true, |
| 8842 | .upper_info = upper_info, |
| 8843 | }; |
| 8844 | struct net_device *master_dev; |
| 8845 | int ret = 0; |
| 8846 | |
| 8847 | ASSERT_RTNL(); |
| 8848 | |
| 8849 | if (dev == upper_dev) |
| 8850 | return -EBUSY; |
| 8851 | |
| 8852 | /* To prevent loops, check if dev is not upper device to upper_dev. */ |
| 8853 | if (__netdev_has_upper_dev(dev: upper_dev, upper_dev: dev)) |
| 8854 | return -EBUSY; |
| 8855 | |
| 8856 | if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) |
| 8857 | return -EMLINK; |
| 8858 | |
| 8859 | if (!master) { |
| 8860 | if (__netdev_has_upper_dev(dev, upper_dev)) |
| 8861 | return -EEXIST; |
| 8862 | } else { |
| 8863 | master_dev = __netdev_master_upper_dev_get(dev); |
| 8864 | if (master_dev) |
| 8865 | return master_dev == upper_dev ? -EEXIST : -EBUSY; |
| 8866 | } |
| 8867 | |
| 8868 | ret = call_netdevice_notifiers_info(val: NETDEV_PRECHANGEUPPER, |
| 8869 | info: &changeupper_info.info); |
| 8870 | ret = notifier_to_errno(ret); |
| 8871 | if (ret) |
| 8872 | return ret; |
| 8873 | |
| 8874 | ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private: upper_priv, |
| 8875 | master); |
| 8876 | if (ret) |
| 8877 | return ret; |
| 8878 | |
| 8879 | ret = call_netdevice_notifiers_info(val: NETDEV_CHANGEUPPER, |
| 8880 | info: &changeupper_info.info); |
| 8881 | ret = notifier_to_errno(ret); |
| 8882 | if (ret) |
| 8883 | goto rollback; |
| 8884 | |
| 8885 | __netdev_update_upper_level(dev, NULL); |
| 8886 | __netdev_walk_all_lower_dev(dev, fn: __netdev_update_upper_level, NULL); |
| 8887 | |
| 8888 | __netdev_update_lower_level(dev: upper_dev, priv); |
| 8889 | __netdev_walk_all_upper_dev(dev: upper_dev, fn: __netdev_update_lower_level, |
| 8890 | priv); |
| 8891 | |
| 8892 | return 0; |
| 8893 | |
| 8894 | rollback: |
| 8895 | __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); |
| 8896 | |
| 8897 | return ret; |
| 8898 | } |
| 8899 | |
| 8900 | /** |
| 8901 | * netdev_upper_dev_link - Add a link to the upper device |
| 8902 | * @dev: device |
| 8903 | * @upper_dev: new upper device |
| 8904 | * @extack: netlink extended ack |
| 8905 | * |
| 8906 | * Adds a link to device which is upper to this one. The caller must hold |
| 8907 | * the RTNL lock. On a failure a negative errno code is returned. |
| 8908 | * On success the reference counts are adjusted and the function |
| 8909 | * returns zero. |
| 8910 | */ |
| 8911 | int netdev_upper_dev_link(struct net_device *dev, |
| 8912 | struct net_device *upper_dev, |
| 8913 | struct netlink_ext_ack *extack) |
| 8914 | { |
| 8915 | struct netdev_nested_priv priv = { |
| 8916 | .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, |
| 8917 | .data = NULL, |
| 8918 | }; |
| 8919 | |
| 8920 | return __netdev_upper_dev_link(dev, upper_dev, master: false, |
| 8921 | NULL, NULL, priv: &priv, extack); |
| 8922 | } |
| 8923 | EXPORT_SYMBOL(netdev_upper_dev_link); |
| 8924 | |
| 8925 | /** |
| 8926 | * netdev_master_upper_dev_link - Add a master link to the upper device |
| 8927 | * @dev: device |
| 8928 | * @upper_dev: new upper device |
| 8929 | * @upper_priv: upper device private |
| 8930 | * @upper_info: upper info to be passed down via notifier |
| 8931 | * @extack: netlink extended ack |
| 8932 | * |
| 8933 | * Adds a link to device which is upper to this one. In this case, only |
| 8934 | * one master upper device can be linked, although other non-master devices |
| 8935 | * might be linked as well. The caller must hold the RTNL lock. |
| 8936 | * On a failure a negative errno code is returned. On success the reference |
| 8937 | * counts are adjusted and the function returns zero. |
| 8938 | */ |
| 8939 | int netdev_master_upper_dev_link(struct net_device *dev, |
| 8940 | struct net_device *upper_dev, |
| 8941 | void *upper_priv, void *upper_info, |
| 8942 | struct netlink_ext_ack *extack) |
| 8943 | { |
| 8944 | struct netdev_nested_priv priv = { |
| 8945 | .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, |
| 8946 | .data = NULL, |
| 8947 | }; |
| 8948 | |
| 8949 | return __netdev_upper_dev_link(dev, upper_dev, master: true, |
| 8950 | upper_priv, upper_info, priv: &priv, extack); |
| 8951 | } |
| 8952 | EXPORT_SYMBOL(netdev_master_upper_dev_link); |
| 8953 | |
| 8954 | static void __netdev_upper_dev_unlink(struct net_device *dev, |
| 8955 | struct net_device *upper_dev, |
| 8956 | struct netdev_nested_priv *priv) |
| 8957 | { |
| 8958 | struct netdev_notifier_changeupper_info changeupper_info = { |
| 8959 | .info = { |
| 8960 | .dev = dev, |
| 8961 | }, |
| 8962 | .upper_dev = upper_dev, |
| 8963 | .linking = false, |
| 8964 | }; |
| 8965 | |
| 8966 | ASSERT_RTNL(); |
| 8967 | |
| 8968 | changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; |
| 8969 | |
| 8970 | call_netdevice_notifiers_info(val: NETDEV_PRECHANGEUPPER, |
| 8971 | info: &changeupper_info.info); |
| 8972 | |
| 8973 | __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); |
| 8974 | |
| 8975 | call_netdevice_notifiers_info(val: NETDEV_CHANGEUPPER, |
| 8976 | info: &changeupper_info.info); |
| 8977 | |
| 8978 | __netdev_update_upper_level(dev, NULL); |
| 8979 | __netdev_walk_all_lower_dev(dev, fn: __netdev_update_upper_level, NULL); |
| 8980 | |
| 8981 | __netdev_update_lower_level(dev: upper_dev, priv); |
| 8982 | __netdev_walk_all_upper_dev(dev: upper_dev, fn: __netdev_update_lower_level, |
| 8983 | priv); |
| 8984 | } |
| 8985 | |
| 8986 | /** |
| 8987 | * netdev_upper_dev_unlink - Removes a link to upper device |
| 8988 | * @dev: device |
| 8989 | * @upper_dev: new upper device |
| 8990 | * |
| 8991 | * Removes a link to device which is upper to this one. The caller must hold |
| 8992 | * the RTNL lock. |
| 8993 | */ |
| 8994 | void netdev_upper_dev_unlink(struct net_device *dev, |
| 8995 | struct net_device *upper_dev) |
| 8996 | { |
| 8997 | struct netdev_nested_priv priv = { |
| 8998 | .flags = NESTED_SYNC_TODO, |
| 8999 | .data = NULL, |
| 9000 | }; |
| 9001 | |
| 9002 | __netdev_upper_dev_unlink(dev, upper_dev, priv: &priv); |
| 9003 | } |
| 9004 | EXPORT_SYMBOL(netdev_upper_dev_unlink); |
| 9005 | |
| 9006 | static void __netdev_adjacent_dev_set(struct net_device *upper_dev, |
| 9007 | struct net_device *lower_dev, |
| 9008 | bool val) |
| 9009 | { |
| 9010 | struct netdev_adjacent *adj; |
| 9011 | |
| 9012 | adj = __netdev_find_adj(adj_dev: lower_dev, adj_list: &upper_dev->adj_list.lower); |
| 9013 | if (adj) |
| 9014 | adj->ignore = val; |
| 9015 | |
| 9016 | adj = __netdev_find_adj(adj_dev: upper_dev, adj_list: &lower_dev->adj_list.upper); |
| 9017 | if (adj) |
| 9018 | adj->ignore = val; |
| 9019 | } |
| 9020 | |
| 9021 | static void netdev_adjacent_dev_disable(struct net_device *upper_dev, |
| 9022 | struct net_device *lower_dev) |
| 9023 | { |
| 9024 | __netdev_adjacent_dev_set(upper_dev, lower_dev, val: true); |
| 9025 | } |
| 9026 | |
| 9027 | static void netdev_adjacent_dev_enable(struct net_device *upper_dev, |
| 9028 | struct net_device *lower_dev) |
| 9029 | { |
| 9030 | __netdev_adjacent_dev_set(upper_dev, lower_dev, val: false); |
| 9031 | } |
| 9032 | |
| 9033 | int netdev_adjacent_change_prepare(struct net_device *old_dev, |
| 9034 | struct net_device *new_dev, |
| 9035 | struct net_device *dev, |
| 9036 | struct netlink_ext_ack *extack) |
| 9037 | { |
| 9038 | struct netdev_nested_priv priv = { |
| 9039 | .flags = 0, |
| 9040 | .data = NULL, |
| 9041 | }; |
| 9042 | int err; |
| 9043 | |
| 9044 | if (!new_dev) |
| 9045 | return 0; |
| 9046 | |
| 9047 | if (old_dev && new_dev != old_dev) |
| 9048 | netdev_adjacent_dev_disable(upper_dev: dev, lower_dev: old_dev); |
| 9049 | err = __netdev_upper_dev_link(dev: new_dev, upper_dev: dev, master: false, NULL, NULL, priv: &priv, |
| 9050 | extack); |
| 9051 | if (err) { |
| 9052 | if (old_dev && new_dev != old_dev) |
| 9053 | netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev); |
| 9054 | return err; |
| 9055 | } |
| 9056 | |
| 9057 | return 0; |
| 9058 | } |
| 9059 | EXPORT_SYMBOL(netdev_adjacent_change_prepare); |
| 9060 | |
| 9061 | void netdev_adjacent_change_commit(struct net_device *old_dev, |
| 9062 | struct net_device *new_dev, |
| 9063 | struct net_device *dev) |
| 9064 | { |
| 9065 | struct netdev_nested_priv priv = { |
| 9066 | .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, |
| 9067 | .data = NULL, |
| 9068 | }; |
| 9069 | |
| 9070 | if (!new_dev || !old_dev) |
| 9071 | return; |
| 9072 | |
| 9073 | if (new_dev == old_dev) |
| 9074 | return; |
| 9075 | |
| 9076 | netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev); |
| 9077 | __netdev_upper_dev_unlink(dev: old_dev, upper_dev: dev, priv: &priv); |
| 9078 | } |
| 9079 | EXPORT_SYMBOL(netdev_adjacent_change_commit); |
| 9080 | |
| 9081 | void netdev_adjacent_change_abort(struct net_device *old_dev, |
| 9082 | struct net_device *new_dev, |
| 9083 | struct net_device *dev) |
| 9084 | { |
| 9085 | struct netdev_nested_priv priv = { |
| 9086 | .flags = 0, |
| 9087 | .data = NULL, |
| 9088 | }; |
| 9089 | |
| 9090 | if (!new_dev) |
| 9091 | return; |
| 9092 | |
| 9093 | if (old_dev && new_dev != old_dev) |
| 9094 | netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev); |
| 9095 | |
| 9096 | __netdev_upper_dev_unlink(dev: new_dev, upper_dev: dev, priv: &priv); |
| 9097 | } |
| 9098 | EXPORT_SYMBOL(netdev_adjacent_change_abort); |
| 9099 | |
| 9100 | /** |
| 9101 | * netdev_bonding_info_change - Dispatch event about slave change |
| 9102 | * @dev: device |
| 9103 | * @bonding_info: info to dispatch |
| 9104 | * |
| 9105 | * Send NETDEV_BONDING_INFO to netdev notifiers with info. |
| 9106 | * The caller must hold the RTNL lock. |
| 9107 | */ |
| 9108 | void netdev_bonding_info_change(struct net_device *dev, |
| 9109 | struct netdev_bonding_info *bonding_info) |
| 9110 | { |
| 9111 | struct netdev_notifier_bonding_info info = { |
| 9112 | .info.dev = dev, |
| 9113 | }; |
| 9114 | |
| 9115 | memcpy(&info.bonding_info, bonding_info, |
| 9116 | sizeof(struct netdev_bonding_info)); |
| 9117 | call_netdevice_notifiers_info(val: NETDEV_BONDING_INFO, |
| 9118 | info: &info.info); |
| 9119 | } |
| 9120 | EXPORT_SYMBOL(netdev_bonding_info_change); |
| 9121 | |
| 9122 | static int netdev_offload_xstats_enable_l3(struct net_device *dev, |
| 9123 | struct netlink_ext_ack *extack) |
| 9124 | { |
| 9125 | struct netdev_notifier_offload_xstats_info info = { |
| 9126 | .info.dev = dev, |
| 9127 | .info.extack = extack, |
| 9128 | .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, |
| 9129 | }; |
| 9130 | int err; |
| 9131 | int rc; |
| 9132 | |
| 9133 | dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), |
| 9134 | GFP_KERNEL); |
| 9135 | if (!dev->offload_xstats_l3) |
| 9136 | return -ENOMEM; |
| 9137 | |
| 9138 | rc = call_netdevice_notifiers_info_robust(val_up: NETDEV_OFFLOAD_XSTATS_ENABLE, |
| 9139 | val_down: NETDEV_OFFLOAD_XSTATS_DISABLE, |
| 9140 | info: &info.info); |
| 9141 | err = notifier_to_errno(ret: rc); |
| 9142 | if (err) |
| 9143 | goto free_stats; |
| 9144 | |
| 9145 | return 0; |
| 9146 | |
| 9147 | free_stats: |
| 9148 | kfree(objp: dev->offload_xstats_l3); |
| 9149 | dev->offload_xstats_l3 = NULL; |
| 9150 | return err; |
| 9151 | } |
| 9152 | |
| 9153 | int netdev_offload_xstats_enable(struct net_device *dev, |
| 9154 | enum netdev_offload_xstats_type type, |
| 9155 | struct netlink_ext_ack *extack) |
| 9156 | { |
| 9157 | ASSERT_RTNL(); |
| 9158 | |
| 9159 | if (netdev_offload_xstats_enabled(dev, type)) |
| 9160 | return -EALREADY; |
| 9161 | |
| 9162 | switch (type) { |
| 9163 | case NETDEV_OFFLOAD_XSTATS_TYPE_L3: |
| 9164 | return netdev_offload_xstats_enable_l3(dev, extack); |
| 9165 | } |
| 9166 | |
| 9167 | WARN_ON(1); |
| 9168 | return -EINVAL; |
| 9169 | } |
| 9170 | EXPORT_SYMBOL(netdev_offload_xstats_enable); |
| 9171 | |
| 9172 | static void netdev_offload_xstats_disable_l3(struct net_device *dev) |
| 9173 | { |
| 9174 | struct netdev_notifier_offload_xstats_info info = { |
| 9175 | .info.dev = dev, |
| 9176 | .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, |
| 9177 | }; |
| 9178 | |
| 9179 | call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_DISABLE, |
| 9180 | info: &info.info); |
| 9181 | kfree(objp: dev->offload_xstats_l3); |
| 9182 | dev->offload_xstats_l3 = NULL; |
| 9183 | } |
| 9184 | |
| 9185 | int netdev_offload_xstats_disable(struct net_device *dev, |
| 9186 | enum netdev_offload_xstats_type type) |
| 9187 | { |
| 9188 | ASSERT_RTNL(); |
| 9189 | |
| 9190 | if (!netdev_offload_xstats_enabled(dev, type)) |
| 9191 | return -EALREADY; |
| 9192 | |
| 9193 | switch (type) { |
| 9194 | case NETDEV_OFFLOAD_XSTATS_TYPE_L3: |
| 9195 | netdev_offload_xstats_disable_l3(dev); |
| 9196 | return 0; |
| 9197 | } |
| 9198 | |
| 9199 | WARN_ON(1); |
| 9200 | return -EINVAL; |
| 9201 | } |
| 9202 | EXPORT_SYMBOL(netdev_offload_xstats_disable); |
| 9203 | |
| 9204 | static void netdev_offload_xstats_disable_all(struct net_device *dev) |
| 9205 | { |
| 9206 | netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); |
| 9207 | } |
| 9208 | |
| 9209 | static struct rtnl_hw_stats64 * |
| 9210 | netdev_offload_xstats_get_ptr(const struct net_device *dev, |
| 9211 | enum netdev_offload_xstats_type type) |
| 9212 | { |
| 9213 | switch (type) { |
| 9214 | case NETDEV_OFFLOAD_XSTATS_TYPE_L3: |
| 9215 | return dev->offload_xstats_l3; |
| 9216 | } |
| 9217 | |
| 9218 | WARN_ON(1); |
| 9219 | return NULL; |
| 9220 | } |
| 9221 | |
| 9222 | bool netdev_offload_xstats_enabled(const struct net_device *dev, |
| 9223 | enum netdev_offload_xstats_type type) |
| 9224 | { |
| 9225 | ASSERT_RTNL(); |
| 9226 | |
| 9227 | return netdev_offload_xstats_get_ptr(dev, type); |
| 9228 | } |
| 9229 | EXPORT_SYMBOL(netdev_offload_xstats_enabled); |
| 9230 | |
| 9231 | struct netdev_notifier_offload_xstats_ru { |
| 9232 | bool used; |
| 9233 | }; |
| 9234 | |
| 9235 | struct netdev_notifier_offload_xstats_rd { |
| 9236 | struct rtnl_hw_stats64 stats; |
| 9237 | bool used; |
| 9238 | }; |
| 9239 | |
| 9240 | static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, |
| 9241 | const struct rtnl_hw_stats64 *src) |
| 9242 | { |
| 9243 | dest->rx_packets += src->rx_packets; |
| 9244 | dest->tx_packets += src->tx_packets; |
| 9245 | dest->rx_bytes += src->rx_bytes; |
| 9246 | dest->tx_bytes += src->tx_bytes; |
| 9247 | dest->rx_errors += src->rx_errors; |
| 9248 | dest->tx_errors += src->tx_errors; |
| 9249 | dest->rx_dropped += src->rx_dropped; |
| 9250 | dest->tx_dropped += src->tx_dropped; |
| 9251 | dest->multicast += src->multicast; |
| 9252 | } |
| 9253 | |
| 9254 | static int netdev_offload_xstats_get_used(struct net_device *dev, |
| 9255 | enum netdev_offload_xstats_type type, |
| 9256 | bool *p_used, |
| 9257 | struct netlink_ext_ack *extack) |
| 9258 | { |
| 9259 | struct netdev_notifier_offload_xstats_ru report_used = {}; |
| 9260 | struct netdev_notifier_offload_xstats_info info = { |
| 9261 | .info.dev = dev, |
| 9262 | .info.extack = extack, |
| 9263 | .type = type, |
| 9264 | .report_used = &report_used, |
| 9265 | }; |
| 9266 | int rc; |
| 9267 | |
| 9268 | WARN_ON(!netdev_offload_xstats_enabled(dev, type)); |
| 9269 | rc = call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_REPORT_USED, |
| 9270 | info: &info.info); |
| 9271 | *p_used = report_used.used; |
| 9272 | return notifier_to_errno(ret: rc); |
| 9273 | } |
| 9274 | |
| 9275 | static int netdev_offload_xstats_get_stats(struct net_device *dev, |
| 9276 | enum netdev_offload_xstats_type type, |
| 9277 | struct rtnl_hw_stats64 *p_stats, |
| 9278 | bool *p_used, |
| 9279 | struct netlink_ext_ack *extack) |
| 9280 | { |
| 9281 | struct netdev_notifier_offload_xstats_rd report_delta = {}; |
| 9282 | struct netdev_notifier_offload_xstats_info info = { |
| 9283 | .info.dev = dev, |
| 9284 | .info.extack = extack, |
| 9285 | .type = type, |
| 9286 | .report_delta = &report_delta, |
| 9287 | }; |
| 9288 | struct rtnl_hw_stats64 *stats; |
| 9289 | int rc; |
| 9290 | |
| 9291 | stats = netdev_offload_xstats_get_ptr(dev, type); |
| 9292 | if (WARN_ON(!stats)) |
| 9293 | return -EINVAL; |
| 9294 | |
| 9295 | rc = call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, |
| 9296 | info: &info.info); |
| 9297 | |
| 9298 | /* Cache whatever we got, even if there was an error, otherwise the |
| 9299 | * successful stats retrievals would get lost. |
| 9300 | */ |
| 9301 | netdev_hw_stats64_add(dest: stats, src: &report_delta.stats); |
| 9302 | |
| 9303 | if (p_stats) |
| 9304 | *p_stats = *stats; |
| 9305 | *p_used = report_delta.used; |
| 9306 | |
| 9307 | return notifier_to_errno(ret: rc); |
| 9308 | } |
| 9309 | |
| 9310 | int netdev_offload_xstats_get(struct net_device *dev, |
| 9311 | enum netdev_offload_xstats_type type, |
| 9312 | struct rtnl_hw_stats64 *p_stats, bool *p_used, |
| 9313 | struct netlink_ext_ack *extack) |
| 9314 | { |
| 9315 | ASSERT_RTNL(); |
| 9316 | |
| 9317 | if (p_stats) |
| 9318 | return netdev_offload_xstats_get_stats(dev, type, p_stats, |
| 9319 | p_used, extack); |
| 9320 | else |
| 9321 | return netdev_offload_xstats_get_used(dev, type, p_used, |
| 9322 | extack); |
| 9323 | } |
| 9324 | EXPORT_SYMBOL(netdev_offload_xstats_get); |
| 9325 | |
| 9326 | void |
| 9327 | netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, |
| 9328 | const struct rtnl_hw_stats64 *stats) |
| 9329 | { |
| 9330 | report_delta->used = true; |
| 9331 | netdev_hw_stats64_add(dest: &report_delta->stats, src: stats); |
| 9332 | } |
| 9333 | EXPORT_SYMBOL(netdev_offload_xstats_report_delta); |
| 9334 | |
| 9335 | void |
| 9336 | netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) |
| 9337 | { |
| 9338 | report_used->used = true; |
| 9339 | } |
| 9340 | EXPORT_SYMBOL(netdev_offload_xstats_report_used); |
| 9341 | |
| 9342 | void netdev_offload_xstats_push_delta(struct net_device *dev, |
| 9343 | enum netdev_offload_xstats_type type, |
| 9344 | const struct rtnl_hw_stats64 *p_stats) |
| 9345 | { |
| 9346 | struct rtnl_hw_stats64 *stats; |
| 9347 | |
| 9348 | ASSERT_RTNL(); |
| 9349 | |
| 9350 | stats = netdev_offload_xstats_get_ptr(dev, type); |
| 9351 | if (WARN_ON(!stats)) |
| 9352 | return; |
| 9353 | |
| 9354 | netdev_hw_stats64_add(dest: stats, src: p_stats); |
| 9355 | } |
| 9356 | EXPORT_SYMBOL(netdev_offload_xstats_push_delta); |
| 9357 | |
| 9358 | /** |
| 9359 | * netdev_get_xmit_slave - Get the xmit slave of master device |
| 9360 | * @dev: device |
| 9361 | * @skb: The packet |
| 9362 | * @all_slaves: assume all the slaves are active |
| 9363 | * |
| 9364 | * The reference counters are not incremented so the caller must be |
| 9365 | * careful with locks. The caller must hold RCU lock. |
| 9366 | * %NULL is returned if no slave is found. |
| 9367 | */ |
| 9368 | |
| 9369 | struct net_device *netdev_get_xmit_slave(struct net_device *dev, |
| 9370 | struct sk_buff *skb, |
| 9371 | bool all_slaves) |
| 9372 | { |
| 9373 | const struct net_device_ops *ops = dev->netdev_ops; |
| 9374 | |
| 9375 | if (!ops->ndo_get_xmit_slave) |
| 9376 | return NULL; |
| 9377 | return ops->ndo_get_xmit_slave(dev, skb, all_slaves); |
| 9378 | } |
| 9379 | EXPORT_SYMBOL(netdev_get_xmit_slave); |
| 9380 | |
| 9381 | static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, |
| 9382 | struct sock *sk) |
| 9383 | { |
| 9384 | const struct net_device_ops *ops = dev->netdev_ops; |
| 9385 | |
| 9386 | if (!ops->ndo_sk_get_lower_dev) |
| 9387 | return NULL; |
| 9388 | return ops->ndo_sk_get_lower_dev(dev, sk); |
| 9389 | } |
| 9390 | |
| 9391 | /** |
| 9392 | * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket |
| 9393 | * @dev: device |
| 9394 | * @sk: the socket |
| 9395 | * |
| 9396 | * %NULL is returned if no lower device is found. |
| 9397 | */ |
| 9398 | |
| 9399 | struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, |
| 9400 | struct sock *sk) |
| 9401 | { |
| 9402 | struct net_device *lower; |
| 9403 | |
| 9404 | lower = netdev_sk_get_lower_dev(dev, sk); |
| 9405 | while (lower) { |
| 9406 | dev = lower; |
| 9407 | lower = netdev_sk_get_lower_dev(dev, sk); |
| 9408 | } |
| 9409 | |
| 9410 | return dev; |
| 9411 | } |
| 9412 | EXPORT_SYMBOL(netdev_sk_get_lowest_dev); |
| 9413 | |
| 9414 | static void netdev_adjacent_add_links(struct net_device *dev) |
| 9415 | { |
| 9416 | struct netdev_adjacent *iter; |
| 9417 | |
| 9418 | struct net *net = dev_net(dev); |
| 9419 | |
| 9420 | list_for_each_entry(iter, &dev->adj_list.upper, list) { |
| 9421 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
| 9422 | continue; |
| 9423 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
| 9424 | dev_list: &iter->dev->adj_list.lower); |
| 9425 | netdev_adjacent_sysfs_add(dev, adj_dev: iter->dev, |
| 9426 | dev_list: &dev->adj_list.upper); |
| 9427 | } |
| 9428 | |
| 9429 | list_for_each_entry(iter, &dev->adj_list.lower, list) { |
| 9430 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
| 9431 | continue; |
| 9432 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
| 9433 | dev_list: &iter->dev->adj_list.upper); |
| 9434 | netdev_adjacent_sysfs_add(dev, adj_dev: iter->dev, |
| 9435 | dev_list: &dev->adj_list.lower); |
| 9436 | } |
| 9437 | } |
| 9438 | |
| 9439 | static void netdev_adjacent_del_links(struct net_device *dev) |
| 9440 | { |
| 9441 | struct netdev_adjacent *iter; |
| 9442 | |
| 9443 | struct net *net = dev_net(dev); |
| 9444 | |
| 9445 | list_for_each_entry(iter, &dev->adj_list.upper, list) { |
| 9446 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
| 9447 | continue; |
| 9448 | netdev_adjacent_sysfs_del(dev: iter->dev, name: dev->name, |
| 9449 | dev_list: &iter->dev->adj_list.lower); |
| 9450 | netdev_adjacent_sysfs_del(dev, name: iter->dev->name, |
| 9451 | dev_list: &dev->adj_list.upper); |
| 9452 | } |
| 9453 | |
| 9454 | list_for_each_entry(iter, &dev->adj_list.lower, list) { |
| 9455 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
| 9456 | continue; |
| 9457 | netdev_adjacent_sysfs_del(dev: iter->dev, name: dev->name, |
| 9458 | dev_list: &iter->dev->adj_list.upper); |
| 9459 | netdev_adjacent_sysfs_del(dev, name: iter->dev->name, |
| 9460 | dev_list: &dev->adj_list.lower); |
| 9461 | } |
| 9462 | } |
| 9463 | |
| 9464 | void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) |
| 9465 | { |
| 9466 | struct netdev_adjacent *iter; |
| 9467 | |
| 9468 | struct net *net = dev_net(dev); |
| 9469 | |
| 9470 | list_for_each_entry(iter, &dev->adj_list.upper, list) { |
| 9471 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
| 9472 | continue; |
| 9473 | netdev_adjacent_sysfs_del(dev: iter->dev, name: oldname, |
| 9474 | dev_list: &iter->dev->adj_list.lower); |
| 9475 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
| 9476 | dev_list: &iter->dev->adj_list.lower); |
| 9477 | } |
| 9478 | |
| 9479 | list_for_each_entry(iter, &dev->adj_list.lower, list) { |
| 9480 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
| 9481 | continue; |
| 9482 | netdev_adjacent_sysfs_del(dev: iter->dev, name: oldname, |
| 9483 | dev_list: &iter->dev->adj_list.upper); |
| 9484 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
| 9485 | dev_list: &iter->dev->adj_list.upper); |
| 9486 | } |
| 9487 | } |
| 9488 | |
| 9489 | void *netdev_lower_dev_get_private(struct net_device *dev, |
| 9490 | struct net_device *lower_dev) |
| 9491 | { |
| 9492 | struct netdev_adjacent *lower; |
| 9493 | |
| 9494 | if (!lower_dev) |
| 9495 | return NULL; |
| 9496 | lower = __netdev_find_adj(adj_dev: lower_dev, adj_list: &dev->adj_list.lower); |
| 9497 | if (!lower) |
| 9498 | return NULL; |
| 9499 | |
| 9500 | return lower->private; |
| 9501 | } |
| 9502 | EXPORT_SYMBOL(netdev_lower_dev_get_private); |
| 9503 | |
| 9504 | |
| 9505 | /** |
| 9506 | * netdev_lower_state_changed - Dispatch event about lower device state change |
| 9507 | * @lower_dev: device |
| 9508 | * @lower_state_info: state to dispatch |
| 9509 | * |
| 9510 | * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. |
| 9511 | * The caller must hold the RTNL lock. |
| 9512 | */ |
| 9513 | void netdev_lower_state_changed(struct net_device *lower_dev, |
| 9514 | void *lower_state_info) |
| 9515 | { |
| 9516 | struct netdev_notifier_changelowerstate_info changelowerstate_info = { |
| 9517 | .info.dev = lower_dev, |
| 9518 | }; |
| 9519 | |
| 9520 | ASSERT_RTNL(); |
| 9521 | changelowerstate_info.lower_state_info = lower_state_info; |
| 9522 | call_netdevice_notifiers_info(val: NETDEV_CHANGELOWERSTATE, |
| 9523 | info: &changelowerstate_info.info); |
| 9524 | } |
| 9525 | EXPORT_SYMBOL(netdev_lower_state_changed); |
| 9526 | |
| 9527 | static void dev_change_rx_flags(struct net_device *dev, int flags) |
| 9528 | { |
| 9529 | const struct net_device_ops *ops = dev->netdev_ops; |
| 9530 | |
| 9531 | if (ops->ndo_change_rx_flags) |
| 9532 | ops->ndo_change_rx_flags(dev, flags); |
| 9533 | } |
| 9534 | |
| 9535 | static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) |
| 9536 | { |
| 9537 | unsigned int old_flags = dev->flags; |
| 9538 | unsigned int promiscuity, flags; |
| 9539 | kuid_t uid; |
| 9540 | kgid_t gid; |
| 9541 | |
| 9542 | ASSERT_RTNL(); |
| 9543 | |
| 9544 | promiscuity = dev->promiscuity + inc; |
| 9545 | if (promiscuity == 0) { |
| 9546 | /* |
| 9547 | * Avoid overflow. |
| 9548 | * If inc causes overflow, untouch promisc and return error. |
| 9549 | */ |
| 9550 | if (unlikely(inc > 0)) { |
| 9551 | netdev_warn(dev, format: "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n" ); |
| 9552 | return -EOVERFLOW; |
| 9553 | } |
| 9554 | flags = old_flags & ~IFF_PROMISC; |
| 9555 | } else { |
| 9556 | flags = old_flags | IFF_PROMISC; |
| 9557 | } |
| 9558 | WRITE_ONCE(dev->promiscuity, promiscuity); |
| 9559 | if (flags != old_flags) { |
| 9560 | WRITE_ONCE(dev->flags, flags); |
| 9561 | netdev_info(dev, format: "%s promiscuous mode\n" , |
| 9562 | dev->flags & IFF_PROMISC ? "entered" : "left" ); |
| 9563 | if (audit_enabled) { |
| 9564 | current_uid_gid(&uid, &gid); |
| 9565 | audit_log(ctx: audit_context(), GFP_ATOMIC, |
| 9566 | AUDIT_ANOM_PROMISCUOUS, |
| 9567 | fmt: "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u" , |
| 9568 | dev->name, (dev->flags & IFF_PROMISC), |
| 9569 | (old_flags & IFF_PROMISC), |
| 9570 | from_kuid(to: &init_user_ns, uid: audit_get_loginuid(current)), |
| 9571 | from_kuid(to: &init_user_ns, uid), |
| 9572 | from_kgid(to: &init_user_ns, gid), |
| 9573 | audit_get_sessionid(current)); |
| 9574 | } |
| 9575 | |
| 9576 | dev_change_rx_flags(dev, IFF_PROMISC); |
| 9577 | } |
| 9578 | if (notify) { |
| 9579 | /* The ops lock is only required to ensure consistent locking |
| 9580 | * for `NETDEV_CHANGE` notifiers. This function is sometimes |
| 9581 | * called without the lock, even for devices that are ops |
| 9582 | * locked, such as in `dev_uc_sync_multiple` when using |
| 9583 | * bonding or teaming. |
| 9584 | */ |
| 9585 | netdev_ops_assert_locked(dev); |
| 9586 | __dev_notify_flags(dev, old_flags, IFF_PROMISC, portid: 0, NULL); |
| 9587 | } |
| 9588 | return 0; |
| 9589 | } |
| 9590 | |
| 9591 | int netif_set_promiscuity(struct net_device *dev, int inc) |
| 9592 | { |
| 9593 | unsigned int old_flags = dev->flags; |
| 9594 | int err; |
| 9595 | |
| 9596 | err = __dev_set_promiscuity(dev, inc, notify: true); |
| 9597 | if (err < 0) |
| 9598 | return err; |
| 9599 | if (dev->flags != old_flags) |
| 9600 | dev_set_rx_mode(dev); |
| 9601 | return err; |
| 9602 | } |
| 9603 | |
| 9604 | int netif_set_allmulti(struct net_device *dev, int inc, bool notify) |
| 9605 | { |
| 9606 | unsigned int old_flags = dev->flags, old_gflags = dev->gflags; |
| 9607 | unsigned int allmulti, flags; |
| 9608 | |
| 9609 | ASSERT_RTNL(); |
| 9610 | |
| 9611 | allmulti = dev->allmulti + inc; |
| 9612 | if (allmulti == 0) { |
| 9613 | /* |
| 9614 | * Avoid overflow. |
| 9615 | * If inc causes overflow, untouch allmulti and return error. |
| 9616 | */ |
| 9617 | if (unlikely(inc > 0)) { |
| 9618 | netdev_warn(dev, format: "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n" ); |
| 9619 | return -EOVERFLOW; |
| 9620 | } |
| 9621 | flags = old_flags & ~IFF_ALLMULTI; |
| 9622 | } else { |
| 9623 | flags = old_flags | IFF_ALLMULTI; |
| 9624 | } |
| 9625 | WRITE_ONCE(dev->allmulti, allmulti); |
| 9626 | if (flags != old_flags) { |
| 9627 | WRITE_ONCE(dev->flags, flags); |
| 9628 | netdev_info(dev, format: "%s allmulticast mode\n" , |
| 9629 | dev->flags & IFF_ALLMULTI ? "entered" : "left" ); |
| 9630 | dev_change_rx_flags(dev, IFF_ALLMULTI); |
| 9631 | dev_set_rx_mode(dev); |
| 9632 | if (notify) |
| 9633 | __dev_notify_flags(dev, old_flags, |
| 9634 | gchanges: dev->gflags ^ old_gflags, portid: 0, NULL); |
| 9635 | } |
| 9636 | return 0; |
| 9637 | } |
| 9638 | |
| 9639 | /* |
| 9640 | * Upload unicast and multicast address lists to device and |
| 9641 | * configure RX filtering. When the device doesn't support unicast |
| 9642 | * filtering it is put in promiscuous mode while unicast addresses |
| 9643 | * are present. |
| 9644 | */ |
| 9645 | void __dev_set_rx_mode(struct net_device *dev) |
| 9646 | { |
| 9647 | const struct net_device_ops *ops = dev->netdev_ops; |
| 9648 | |
| 9649 | /* dev_open will call this function so the list will stay sane. */ |
| 9650 | if (!(dev->flags&IFF_UP)) |
| 9651 | return; |
| 9652 | |
| 9653 | if (!netif_device_present(dev)) |
| 9654 | return; |
| 9655 | |
| 9656 | if (!(dev->priv_flags & IFF_UNICAST_FLT)) { |
| 9657 | /* Unicast addresses changes may only happen under the rtnl, |
| 9658 | * therefore calling __dev_set_promiscuity here is safe. |
| 9659 | */ |
| 9660 | if (!netdev_uc_empty(dev) && !dev->uc_promisc) { |
| 9661 | __dev_set_promiscuity(dev, inc: 1, notify: false); |
| 9662 | dev->uc_promisc = true; |
| 9663 | } else if (netdev_uc_empty(dev) && dev->uc_promisc) { |
| 9664 | __dev_set_promiscuity(dev, inc: -1, notify: false); |
| 9665 | dev->uc_promisc = false; |
| 9666 | } |
| 9667 | } |
| 9668 | |
| 9669 | if (ops->ndo_set_rx_mode) |
| 9670 | ops->ndo_set_rx_mode(dev); |
| 9671 | } |
| 9672 | |
| 9673 | void dev_set_rx_mode(struct net_device *dev) |
| 9674 | { |
| 9675 | netif_addr_lock_bh(dev); |
| 9676 | __dev_set_rx_mode(dev); |
| 9677 | netif_addr_unlock_bh(dev); |
| 9678 | } |
| 9679 | |
| 9680 | /** |
| 9681 | * netif_get_flags() - get flags reported to userspace |
| 9682 | * @dev: device |
| 9683 | * |
| 9684 | * Get the combination of flag bits exported through APIs to userspace. |
| 9685 | */ |
| 9686 | unsigned int netif_get_flags(const struct net_device *dev) |
| 9687 | { |
| 9688 | unsigned int flags; |
| 9689 | |
| 9690 | flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | |
| 9691 | IFF_ALLMULTI | |
| 9692 | IFF_RUNNING | |
| 9693 | IFF_LOWER_UP | |
| 9694 | IFF_DORMANT)) | |
| 9695 | (READ_ONCE(dev->gflags) & (IFF_PROMISC | |
| 9696 | IFF_ALLMULTI)); |
| 9697 | |
| 9698 | if (netif_running(dev)) { |
| 9699 | if (netif_oper_up(dev)) |
| 9700 | flags |= IFF_RUNNING; |
| 9701 | if (netif_carrier_ok(dev)) |
| 9702 | flags |= IFF_LOWER_UP; |
| 9703 | if (netif_dormant(dev)) |
| 9704 | flags |= IFF_DORMANT; |
| 9705 | } |
| 9706 | |
| 9707 | return flags; |
| 9708 | } |
| 9709 | EXPORT_SYMBOL(netif_get_flags); |
| 9710 | |
| 9711 | int __dev_change_flags(struct net_device *dev, unsigned int flags, |
| 9712 | struct netlink_ext_ack *extack) |
| 9713 | { |
| 9714 | unsigned int old_flags = dev->flags; |
| 9715 | int ret; |
| 9716 | |
| 9717 | ASSERT_RTNL(); |
| 9718 | |
| 9719 | /* |
| 9720 | * Set the flags on our device. |
| 9721 | */ |
| 9722 | |
| 9723 | dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | |
| 9724 | IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | |
| 9725 | IFF_AUTOMEDIA)) | |
| 9726 | (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | |
| 9727 | IFF_ALLMULTI)); |
| 9728 | |
| 9729 | /* |
| 9730 | * Load in the correct multicast list now the flags have changed. |
| 9731 | */ |
| 9732 | |
| 9733 | if ((old_flags ^ flags) & IFF_MULTICAST) |
| 9734 | dev_change_rx_flags(dev, IFF_MULTICAST); |
| 9735 | |
| 9736 | dev_set_rx_mode(dev); |
| 9737 | |
| 9738 | /* |
| 9739 | * Have we downed the interface. We handle IFF_UP ourselves |
| 9740 | * according to user attempts to set it, rather than blindly |
| 9741 | * setting it. |
| 9742 | */ |
| 9743 | |
| 9744 | ret = 0; |
| 9745 | if ((old_flags ^ flags) & IFF_UP) { |
| 9746 | if (old_flags & IFF_UP) |
| 9747 | __dev_close(dev); |
| 9748 | else |
| 9749 | ret = __dev_open(dev, extack); |
| 9750 | } |
| 9751 | |
| 9752 | if ((flags ^ dev->gflags) & IFF_PROMISC) { |
| 9753 | int inc = (flags & IFF_PROMISC) ? 1 : -1; |
| 9754 | old_flags = dev->flags; |
| 9755 | |
| 9756 | dev->gflags ^= IFF_PROMISC; |
| 9757 | |
| 9758 | if (__dev_set_promiscuity(dev, inc, notify: false) >= 0) |
| 9759 | if (dev->flags != old_flags) |
| 9760 | dev_set_rx_mode(dev); |
| 9761 | } |
| 9762 | |
| 9763 | /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI |
| 9764 | * is important. Some (broken) drivers set IFF_PROMISC, when |
| 9765 | * IFF_ALLMULTI is requested not asking us and not reporting. |
| 9766 | */ |
| 9767 | if ((flags ^ dev->gflags) & IFF_ALLMULTI) { |
| 9768 | int inc = (flags & IFF_ALLMULTI) ? 1 : -1; |
| 9769 | |
| 9770 | dev->gflags ^= IFF_ALLMULTI; |
| 9771 | netif_set_allmulti(dev, inc, notify: false); |
| 9772 | } |
| 9773 | |
| 9774 | return ret; |
| 9775 | } |
| 9776 | |
| 9777 | void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, |
| 9778 | unsigned int gchanges, u32 portid, |
| 9779 | const struct nlmsghdr *nlh) |
| 9780 | { |
| 9781 | unsigned int changes = dev->flags ^ old_flags; |
| 9782 | |
| 9783 | if (gchanges) |
| 9784 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: gchanges, GFP_ATOMIC, portid, nlh); |
| 9785 | |
| 9786 | if (changes & IFF_UP) { |
| 9787 | if (dev->flags & IFF_UP) |
| 9788 | call_netdevice_notifiers(NETDEV_UP, dev); |
| 9789 | else |
| 9790 | call_netdevice_notifiers(NETDEV_DOWN, dev); |
| 9791 | } |
| 9792 | |
| 9793 | if (dev->flags & IFF_UP && |
| 9794 | (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { |
| 9795 | struct netdev_notifier_change_info change_info = { |
| 9796 | .info = { |
| 9797 | .dev = dev, |
| 9798 | }, |
| 9799 | .flags_changed = changes, |
| 9800 | }; |
| 9801 | |
| 9802 | call_netdevice_notifiers_info(val: NETDEV_CHANGE, info: &change_info.info); |
| 9803 | } |
| 9804 | } |
| 9805 | |
| 9806 | int netif_change_flags(struct net_device *dev, unsigned int flags, |
| 9807 | struct netlink_ext_ack *extack) |
| 9808 | { |
| 9809 | int ret; |
| 9810 | unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; |
| 9811 | |
| 9812 | ret = __dev_change_flags(dev, flags, extack); |
| 9813 | if (ret < 0) |
| 9814 | return ret; |
| 9815 | |
| 9816 | changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); |
| 9817 | __dev_notify_flags(dev, old_flags, gchanges: changes, portid: 0, NULL); |
| 9818 | return ret; |
| 9819 | } |
| 9820 | |
| 9821 | int __netif_set_mtu(struct net_device *dev, int new_mtu) |
| 9822 | { |
| 9823 | const struct net_device_ops *ops = dev->netdev_ops; |
| 9824 | |
| 9825 | if (ops->ndo_change_mtu) |
| 9826 | return ops->ndo_change_mtu(dev, new_mtu); |
| 9827 | |
| 9828 | /* Pairs with all the lockless reads of dev->mtu in the stack */ |
| 9829 | WRITE_ONCE(dev->mtu, new_mtu); |
| 9830 | return 0; |
| 9831 | } |
| 9832 | EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL" ); |
| 9833 | |
| 9834 | int dev_validate_mtu(struct net_device *dev, int new_mtu, |
| 9835 | struct netlink_ext_ack *extack) |
| 9836 | { |
| 9837 | /* MTU must be positive, and in range */ |
| 9838 | if (new_mtu < 0 || new_mtu < dev->min_mtu) { |
| 9839 | NL_SET_ERR_MSG(extack, "mtu less than device minimum" ); |
| 9840 | return -EINVAL; |
| 9841 | } |
| 9842 | |
| 9843 | if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { |
| 9844 | NL_SET_ERR_MSG(extack, "mtu greater than device maximum" ); |
| 9845 | return -EINVAL; |
| 9846 | } |
| 9847 | return 0; |
| 9848 | } |
| 9849 | |
| 9850 | /** |
| 9851 | * netif_set_mtu_ext() - Change maximum transfer unit |
| 9852 | * @dev: device |
| 9853 | * @new_mtu: new transfer unit |
| 9854 | * @extack: netlink extended ack |
| 9855 | * |
| 9856 | * Change the maximum transfer size of the network device. |
| 9857 | * |
| 9858 | * Return: 0 on success, -errno on failure. |
| 9859 | */ |
| 9860 | int netif_set_mtu_ext(struct net_device *dev, int new_mtu, |
| 9861 | struct netlink_ext_ack *extack) |
| 9862 | { |
| 9863 | int err, orig_mtu; |
| 9864 | |
| 9865 | netdev_ops_assert_locked(dev); |
| 9866 | |
| 9867 | if (new_mtu == dev->mtu) |
| 9868 | return 0; |
| 9869 | |
| 9870 | err = dev_validate_mtu(dev, new_mtu, extack); |
| 9871 | if (err) |
| 9872 | return err; |
| 9873 | |
| 9874 | if (!netif_device_present(dev)) |
| 9875 | return -ENODEV; |
| 9876 | |
| 9877 | err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); |
| 9878 | err = notifier_to_errno(ret: err); |
| 9879 | if (err) |
| 9880 | return err; |
| 9881 | |
| 9882 | orig_mtu = dev->mtu; |
| 9883 | err = __netif_set_mtu(dev, new_mtu); |
| 9884 | |
| 9885 | if (!err) { |
| 9886 | err = call_netdevice_notifiers_mtu(val: NETDEV_CHANGEMTU, dev, |
| 9887 | arg: orig_mtu); |
| 9888 | err = notifier_to_errno(ret: err); |
| 9889 | if (err) { |
| 9890 | /* setting mtu back and notifying everyone again, |
| 9891 | * so that they have a chance to revert changes. |
| 9892 | */ |
| 9893 | __netif_set_mtu(dev, orig_mtu); |
| 9894 | call_netdevice_notifiers_mtu(val: NETDEV_CHANGEMTU, dev, |
| 9895 | arg: new_mtu); |
| 9896 | } |
| 9897 | } |
| 9898 | return err; |
| 9899 | } |
| 9900 | |
| 9901 | int netif_set_mtu(struct net_device *dev, int new_mtu) |
| 9902 | { |
| 9903 | struct netlink_ext_ack extack; |
| 9904 | int err; |
| 9905 | |
| 9906 | memset(&extack, 0, sizeof(extack)); |
| 9907 | err = netif_set_mtu_ext(dev, new_mtu, extack: &extack); |
| 9908 | if (err && extack._msg) |
| 9909 | net_err_ratelimited("%s: %s\n" , dev->name, extack._msg); |
| 9910 | return err; |
| 9911 | } |
| 9912 | EXPORT_SYMBOL(netif_set_mtu); |
| 9913 | |
| 9914 | int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) |
| 9915 | { |
| 9916 | unsigned int orig_len = dev->tx_queue_len; |
| 9917 | int res; |
| 9918 | |
| 9919 | if (new_len != (unsigned int)new_len) |
| 9920 | return -ERANGE; |
| 9921 | |
| 9922 | if (new_len != orig_len) { |
| 9923 | WRITE_ONCE(dev->tx_queue_len, new_len); |
| 9924 | res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); |
| 9925 | res = notifier_to_errno(ret: res); |
| 9926 | if (res) |
| 9927 | goto err_rollback; |
| 9928 | res = dev_qdisc_change_tx_queue_len(dev); |
| 9929 | if (res) |
| 9930 | goto err_rollback; |
| 9931 | } |
| 9932 | |
| 9933 | return 0; |
| 9934 | |
| 9935 | err_rollback: |
| 9936 | netdev_err(dev, format: "refused to change device tx_queue_len\n" ); |
| 9937 | WRITE_ONCE(dev->tx_queue_len, orig_len); |
| 9938 | return res; |
| 9939 | } |
| 9940 | |
| 9941 | void netif_set_group(struct net_device *dev, int new_group) |
| 9942 | { |
| 9943 | dev->group = new_group; |
| 9944 | } |
| 9945 | |
| 9946 | /** |
| 9947 | * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. |
| 9948 | * @dev: device |
| 9949 | * @addr: new address |
| 9950 | * @extack: netlink extended ack |
| 9951 | * |
| 9952 | * Return: 0 on success, -errno on failure. |
| 9953 | */ |
| 9954 | int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, |
| 9955 | struct netlink_ext_ack *extack) |
| 9956 | { |
| 9957 | struct netdev_notifier_pre_changeaddr_info info = { |
| 9958 | .info.dev = dev, |
| 9959 | .info.extack = extack, |
| 9960 | .dev_addr = addr, |
| 9961 | }; |
| 9962 | int rc; |
| 9963 | |
| 9964 | rc = call_netdevice_notifiers_info(val: NETDEV_PRE_CHANGEADDR, info: &info.info); |
| 9965 | return notifier_to_errno(ret: rc); |
| 9966 | } |
| 9967 | EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL" ); |
| 9968 | |
| 9969 | int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, |
| 9970 | struct netlink_ext_ack *extack) |
| 9971 | { |
| 9972 | const struct net_device_ops *ops = dev->netdev_ops; |
| 9973 | int err; |
| 9974 | |
| 9975 | if (!ops->ndo_set_mac_address) |
| 9976 | return -EOPNOTSUPP; |
| 9977 | if (ss->ss_family != dev->type) |
| 9978 | return -EINVAL; |
| 9979 | if (!netif_device_present(dev)) |
| 9980 | return -ENODEV; |
| 9981 | err = netif_pre_changeaddr_notify(dev, ss->__data, extack); |
| 9982 | if (err) |
| 9983 | return err; |
| 9984 | if (memcmp(p: dev->dev_addr, q: ss->__data, size: dev->addr_len)) { |
| 9985 | err = ops->ndo_set_mac_address(dev, ss); |
| 9986 | if (err) |
| 9987 | return err; |
| 9988 | } |
| 9989 | dev->addr_assign_type = NET_ADDR_SET; |
| 9990 | call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); |
| 9991 | add_device_randomness(buf: dev->dev_addr, len: dev->addr_len); |
| 9992 | return 0; |
| 9993 | } |
| 9994 | |
| 9995 | DECLARE_RWSEM(dev_addr_sem); |
| 9996 | |
| 9997 | /* "sa" is a true struct sockaddr with limited "sa_data" member. */ |
| 9998 | int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) |
| 9999 | { |
| 10000 | size_t size = sizeof(sa->sa_data); |
| 10001 | struct net_device *dev; |
| 10002 | int ret = 0; |
| 10003 | |
| 10004 | down_read(sem: &dev_addr_sem); |
| 10005 | rcu_read_lock(); |
| 10006 | |
| 10007 | dev = dev_get_by_name_rcu(net, dev_name); |
| 10008 | if (!dev) { |
| 10009 | ret = -ENODEV; |
| 10010 | goto unlock; |
| 10011 | } |
| 10012 | if (!dev->addr_len) |
| 10013 | memset(sa->sa_data, 0, size); |
| 10014 | else |
| 10015 | memcpy(sa->sa_data, dev->dev_addr, |
| 10016 | min_t(size_t, size, dev->addr_len)); |
| 10017 | sa->sa_family = dev->type; |
| 10018 | |
| 10019 | unlock: |
| 10020 | rcu_read_unlock(); |
| 10021 | up_read(sem: &dev_addr_sem); |
| 10022 | return ret; |
| 10023 | } |
| 10024 | EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL" ); |
| 10025 | |
| 10026 | int netif_change_carrier(struct net_device *dev, bool new_carrier) |
| 10027 | { |
| 10028 | const struct net_device_ops *ops = dev->netdev_ops; |
| 10029 | |
| 10030 | if (!ops->ndo_change_carrier) |
| 10031 | return -EOPNOTSUPP; |
| 10032 | if (!netif_device_present(dev)) |
| 10033 | return -ENODEV; |
| 10034 | return ops->ndo_change_carrier(dev, new_carrier); |
| 10035 | } |
| 10036 | |
| 10037 | /** |
| 10038 | * dev_get_phys_port_id - Get device physical port ID |
| 10039 | * @dev: device |
| 10040 | * @ppid: port ID |
| 10041 | * |
| 10042 | * Get device physical port ID |
| 10043 | */ |
| 10044 | int dev_get_phys_port_id(struct net_device *dev, |
| 10045 | struct netdev_phys_item_id *ppid) |
| 10046 | { |
| 10047 | const struct net_device_ops *ops = dev->netdev_ops; |
| 10048 | |
| 10049 | if (!ops->ndo_get_phys_port_id) |
| 10050 | return -EOPNOTSUPP; |
| 10051 | return ops->ndo_get_phys_port_id(dev, ppid); |
| 10052 | } |
| 10053 | |
| 10054 | /** |
| 10055 | * dev_get_phys_port_name - Get device physical port name |
| 10056 | * @dev: device |
| 10057 | * @name: port name |
| 10058 | * @len: limit of bytes to copy to name |
| 10059 | * |
| 10060 | * Get device physical port name |
| 10061 | */ |
| 10062 | int dev_get_phys_port_name(struct net_device *dev, |
| 10063 | char *name, size_t len) |
| 10064 | { |
| 10065 | const struct net_device_ops *ops = dev->netdev_ops; |
| 10066 | int err; |
| 10067 | |
| 10068 | if (ops->ndo_get_phys_port_name) { |
| 10069 | err = ops->ndo_get_phys_port_name(dev, name, len); |
| 10070 | if (err != -EOPNOTSUPP) |
| 10071 | return err; |
| 10072 | } |
| 10073 | return devlink_compat_phys_port_name_get(dev, name, len); |
| 10074 | } |
| 10075 | |
| 10076 | /** |
| 10077 | * netif_get_port_parent_id() - Get the device's port parent identifier |
| 10078 | * @dev: network device |
| 10079 | * @ppid: pointer to a storage for the port's parent identifier |
| 10080 | * @recurse: allow/disallow recursion to lower devices |
| 10081 | * |
| 10082 | * Get the devices's port parent identifier. |
| 10083 | * |
| 10084 | * Return: 0 on success, -errno on failure. |
| 10085 | */ |
| 10086 | int netif_get_port_parent_id(struct net_device *dev, |
| 10087 | struct netdev_phys_item_id *ppid, bool recurse) |
| 10088 | { |
| 10089 | const struct net_device_ops *ops = dev->netdev_ops; |
| 10090 | struct netdev_phys_item_id first = { }; |
| 10091 | struct net_device *lower_dev; |
| 10092 | struct list_head *iter; |
| 10093 | int err; |
| 10094 | |
| 10095 | if (ops->ndo_get_port_parent_id) { |
| 10096 | err = ops->ndo_get_port_parent_id(dev, ppid); |
| 10097 | if (err != -EOPNOTSUPP) |
| 10098 | return err; |
| 10099 | } |
| 10100 | |
| 10101 | err = devlink_compat_switch_id_get(dev, ppid); |
| 10102 | if (!recurse || err != -EOPNOTSUPP) |
| 10103 | return err; |
| 10104 | |
| 10105 | netdev_for_each_lower_dev(dev, lower_dev, iter) { |
| 10106 | err = netif_get_port_parent_id(dev: lower_dev, ppid, recurse: true); |
| 10107 | if (err) |
| 10108 | break; |
| 10109 | if (!first.id_len) |
| 10110 | first = *ppid; |
| 10111 | else if (memcmp(p: &first, q: ppid, size: sizeof(*ppid))) |
| 10112 | return -EOPNOTSUPP; |
| 10113 | } |
| 10114 | |
| 10115 | return err; |
| 10116 | } |
| 10117 | EXPORT_SYMBOL(netif_get_port_parent_id); |
| 10118 | |
| 10119 | /** |
| 10120 | * netdev_port_same_parent_id - Indicate if two network devices have |
| 10121 | * the same port parent identifier |
| 10122 | * @a: first network device |
| 10123 | * @b: second network device |
| 10124 | */ |
| 10125 | bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) |
| 10126 | { |
| 10127 | struct netdev_phys_item_id a_id = { }; |
| 10128 | struct netdev_phys_item_id b_id = { }; |
| 10129 | |
| 10130 | if (netif_get_port_parent_id(a, &a_id, true) || |
| 10131 | netif_get_port_parent_id(b, &b_id, true)) |
| 10132 | return false; |
| 10133 | |
| 10134 | return netdev_phys_item_id_same(a: &a_id, b: &b_id); |
| 10135 | } |
| 10136 | EXPORT_SYMBOL(netdev_port_same_parent_id); |
| 10137 | |
| 10138 | int netif_change_proto_down(struct net_device *dev, bool proto_down) |
| 10139 | { |
| 10140 | if (!dev->change_proto_down) |
| 10141 | return -EOPNOTSUPP; |
| 10142 | if (!netif_device_present(dev)) |
| 10143 | return -ENODEV; |
| 10144 | if (proto_down) |
| 10145 | netif_carrier_off(dev); |
| 10146 | else |
| 10147 | netif_carrier_on(dev); |
| 10148 | WRITE_ONCE(dev->proto_down, proto_down); |
| 10149 | return 0; |
| 10150 | } |
| 10151 | |
| 10152 | /** |
| 10153 | * netdev_change_proto_down_reason_locked - proto down reason |
| 10154 | * |
| 10155 | * @dev: device |
| 10156 | * @mask: proto down mask |
| 10157 | * @value: proto down value |
| 10158 | */ |
| 10159 | void netdev_change_proto_down_reason_locked(struct net_device *dev, |
| 10160 | unsigned long mask, u32 value) |
| 10161 | { |
| 10162 | u32 proto_down_reason; |
| 10163 | int b; |
| 10164 | |
| 10165 | if (!mask) { |
| 10166 | proto_down_reason = value; |
| 10167 | } else { |
| 10168 | proto_down_reason = dev->proto_down_reason; |
| 10169 | for_each_set_bit(b, &mask, 32) { |
| 10170 | if (value & (1 << b)) |
| 10171 | proto_down_reason |= BIT(b); |
| 10172 | else |
| 10173 | proto_down_reason &= ~BIT(b); |
| 10174 | } |
| 10175 | } |
| 10176 | WRITE_ONCE(dev->proto_down_reason, proto_down_reason); |
| 10177 | } |
| 10178 | |
| 10179 | struct bpf_xdp_link { |
| 10180 | struct bpf_link link; |
| 10181 | struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ |
| 10182 | int flags; |
| 10183 | }; |
| 10184 | |
| 10185 | static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) |
| 10186 | { |
| 10187 | if (flags & XDP_FLAGS_HW_MODE) |
| 10188 | return XDP_MODE_HW; |
| 10189 | if (flags & XDP_FLAGS_DRV_MODE) |
| 10190 | return XDP_MODE_DRV; |
| 10191 | if (flags & XDP_FLAGS_SKB_MODE) |
| 10192 | return XDP_MODE_SKB; |
| 10193 | return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; |
| 10194 | } |
| 10195 | |
| 10196 | static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) |
| 10197 | { |
| 10198 | switch (mode) { |
| 10199 | case XDP_MODE_SKB: |
| 10200 | return generic_xdp_install; |
| 10201 | case XDP_MODE_DRV: |
| 10202 | case XDP_MODE_HW: |
| 10203 | return dev->netdev_ops->ndo_bpf; |
| 10204 | default: |
| 10205 | return NULL; |
| 10206 | } |
| 10207 | } |
| 10208 | |
| 10209 | static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, |
| 10210 | enum bpf_xdp_mode mode) |
| 10211 | { |
| 10212 | return dev->xdp_state[mode].link; |
| 10213 | } |
| 10214 | |
| 10215 | static struct bpf_prog *dev_xdp_prog(struct net_device *dev, |
| 10216 | enum bpf_xdp_mode mode) |
| 10217 | { |
| 10218 | struct bpf_xdp_link *link = dev_xdp_link(dev, mode); |
| 10219 | |
| 10220 | if (link) |
| 10221 | return link->link.prog; |
| 10222 | return dev->xdp_state[mode].prog; |
| 10223 | } |
| 10224 | |
| 10225 | u8 dev_xdp_prog_count(struct net_device *dev) |
| 10226 | { |
| 10227 | u8 count = 0; |
| 10228 | int i; |
| 10229 | |
| 10230 | for (i = 0; i < __MAX_XDP_MODE; i++) |
| 10231 | if (dev->xdp_state[i].prog || dev->xdp_state[i].link) |
| 10232 | count++; |
| 10233 | return count; |
| 10234 | } |
| 10235 | EXPORT_SYMBOL_GPL(dev_xdp_prog_count); |
| 10236 | |
| 10237 | u8 dev_xdp_sb_prog_count(struct net_device *dev) |
| 10238 | { |
| 10239 | u8 count = 0; |
| 10240 | int i; |
| 10241 | |
| 10242 | for (i = 0; i < __MAX_XDP_MODE; i++) |
| 10243 | if (dev->xdp_state[i].prog && |
| 10244 | !dev->xdp_state[i].prog->aux->xdp_has_frags) |
| 10245 | count++; |
| 10246 | return count; |
| 10247 | } |
| 10248 | |
| 10249 | int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) |
| 10250 | { |
| 10251 | if (!dev->netdev_ops->ndo_bpf) |
| 10252 | return -EOPNOTSUPP; |
| 10253 | |
| 10254 | if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && |
| 10255 | bpf->command == XDP_SETUP_PROG && |
| 10256 | bpf->prog && !bpf->prog->aux->xdp_has_frags) { |
| 10257 | NL_SET_ERR_MSG(bpf->extack, |
| 10258 | "unable to propagate XDP to device using tcp-data-split" ); |
| 10259 | return -EBUSY; |
| 10260 | } |
| 10261 | |
| 10262 | if (dev_get_min_mp_channel_count(dev)) { |
| 10263 | NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider" ); |
| 10264 | return -EBUSY; |
| 10265 | } |
| 10266 | |
| 10267 | return dev->netdev_ops->ndo_bpf(dev, bpf); |
| 10268 | } |
| 10269 | EXPORT_SYMBOL_GPL(netif_xdp_propagate); |
| 10270 | |
| 10271 | u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) |
| 10272 | { |
| 10273 | struct bpf_prog *prog = dev_xdp_prog(dev, mode); |
| 10274 | |
| 10275 | return prog ? prog->aux->id : 0; |
| 10276 | } |
| 10277 | |
| 10278 | static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, |
| 10279 | struct bpf_xdp_link *link) |
| 10280 | { |
| 10281 | dev->xdp_state[mode].link = link; |
| 10282 | dev->xdp_state[mode].prog = NULL; |
| 10283 | } |
| 10284 | |
| 10285 | static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, |
| 10286 | struct bpf_prog *prog) |
| 10287 | { |
| 10288 | dev->xdp_state[mode].link = NULL; |
| 10289 | dev->xdp_state[mode].prog = prog; |
| 10290 | } |
| 10291 | |
| 10292 | static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, |
| 10293 | bpf_op_t bpf_op, struct netlink_ext_ack *extack, |
| 10294 | u32 flags, struct bpf_prog *prog) |
| 10295 | { |
| 10296 | struct netdev_bpf xdp; |
| 10297 | int err; |
| 10298 | |
| 10299 | netdev_ops_assert_locked(dev); |
| 10300 | |
| 10301 | if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && |
| 10302 | prog && !prog->aux->xdp_has_frags) { |
| 10303 | NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split" ); |
| 10304 | return -EBUSY; |
| 10305 | } |
| 10306 | |
| 10307 | if (dev_get_min_mp_channel_count(dev)) { |
| 10308 | NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider" ); |
| 10309 | return -EBUSY; |
| 10310 | } |
| 10311 | |
| 10312 | memset(&xdp, 0, sizeof(xdp)); |
| 10313 | xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; |
| 10314 | xdp.extack = extack; |
| 10315 | xdp.flags = flags; |
| 10316 | xdp.prog = prog; |
| 10317 | |
| 10318 | /* Drivers assume refcnt is already incremented (i.e, prog pointer is |
| 10319 | * "moved" into driver), so they don't increment it on their own, but |
| 10320 | * they do decrement refcnt when program is detached or replaced. |
| 10321 | * Given net_device also owns link/prog, we need to bump refcnt here |
| 10322 | * to prevent drivers from underflowing it. |
| 10323 | */ |
| 10324 | if (prog) |
| 10325 | bpf_prog_inc(prog); |
| 10326 | err = bpf_op(dev, &xdp); |
| 10327 | if (err) { |
| 10328 | if (prog) |
| 10329 | bpf_prog_put(prog); |
| 10330 | return err; |
| 10331 | } |
| 10332 | |
| 10333 | if (mode != XDP_MODE_HW) |
| 10334 | bpf_prog_change_xdp(prev_prog: dev_xdp_prog(dev, mode), prog); |
| 10335 | |
| 10336 | return 0; |
| 10337 | } |
| 10338 | |
| 10339 | static void dev_xdp_uninstall(struct net_device *dev) |
| 10340 | { |
| 10341 | struct bpf_xdp_link *link; |
| 10342 | struct bpf_prog *prog; |
| 10343 | enum bpf_xdp_mode mode; |
| 10344 | bpf_op_t bpf_op; |
| 10345 | |
| 10346 | ASSERT_RTNL(); |
| 10347 | |
| 10348 | for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { |
| 10349 | prog = dev_xdp_prog(dev, mode); |
| 10350 | if (!prog) |
| 10351 | continue; |
| 10352 | |
| 10353 | bpf_op = dev_xdp_bpf_op(dev, mode); |
| 10354 | if (!bpf_op) |
| 10355 | continue; |
| 10356 | |
| 10357 | WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); |
| 10358 | |
| 10359 | /* auto-detach link from net device */ |
| 10360 | link = dev_xdp_link(dev, mode); |
| 10361 | if (link) |
| 10362 | link->dev = NULL; |
| 10363 | else |
| 10364 | bpf_prog_put(prog); |
| 10365 | |
| 10366 | dev_xdp_set_link(dev, mode, NULL); |
| 10367 | } |
| 10368 | } |
| 10369 | |
| 10370 | static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, |
| 10371 | struct bpf_xdp_link *link, struct bpf_prog *new_prog, |
| 10372 | struct bpf_prog *old_prog, u32 flags) |
| 10373 | { |
| 10374 | unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); |
| 10375 | struct bpf_prog *cur_prog; |
| 10376 | struct net_device *upper; |
| 10377 | struct list_head *iter; |
| 10378 | enum bpf_xdp_mode mode; |
| 10379 | bpf_op_t bpf_op; |
| 10380 | int err; |
| 10381 | |
| 10382 | ASSERT_RTNL(); |
| 10383 | |
| 10384 | /* either link or prog attachment, never both */ |
| 10385 | if (link && (new_prog || old_prog)) |
| 10386 | return -EINVAL; |
| 10387 | /* link supports only XDP mode flags */ |
| 10388 | if (link && (flags & ~XDP_FLAGS_MODES)) { |
| 10389 | NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment" ); |
| 10390 | return -EINVAL; |
| 10391 | } |
| 10392 | /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ |
| 10393 | if (num_modes > 1) { |
| 10394 | NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set" ); |
| 10395 | return -EINVAL; |
| 10396 | } |
| 10397 | /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ |
| 10398 | if (!num_modes && dev_xdp_prog_count(dev) > 1) { |
| 10399 | NL_SET_ERR_MSG(extack, |
| 10400 | "More than one program loaded, unset mode is ambiguous" ); |
| 10401 | return -EINVAL; |
| 10402 | } |
| 10403 | /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ |
| 10404 | if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { |
| 10405 | NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified" ); |
| 10406 | return -EINVAL; |
| 10407 | } |
| 10408 | |
| 10409 | mode = dev_xdp_mode(dev, flags); |
| 10410 | /* can't replace attached link */ |
| 10411 | if (dev_xdp_link(dev, mode)) { |
| 10412 | NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link" ); |
| 10413 | return -EBUSY; |
| 10414 | } |
| 10415 | |
| 10416 | /* don't allow if an upper device already has a program */ |
| 10417 | netdev_for_each_upper_dev_rcu(dev, upper, iter) { |
| 10418 | if (dev_xdp_prog_count(upper) > 0) { |
| 10419 | NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program" ); |
| 10420 | return -EEXIST; |
| 10421 | } |
| 10422 | } |
| 10423 | |
| 10424 | cur_prog = dev_xdp_prog(dev, mode); |
| 10425 | /* can't replace attached prog with link */ |
| 10426 | if (link && cur_prog) { |
| 10427 | NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link" ); |
| 10428 | return -EBUSY; |
| 10429 | } |
| 10430 | if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { |
| 10431 | NL_SET_ERR_MSG(extack, "Active program does not match expected" ); |
| 10432 | return -EEXIST; |
| 10433 | } |
| 10434 | |
| 10435 | /* put effective new program into new_prog */ |
| 10436 | if (link) |
| 10437 | new_prog = link->link.prog; |
| 10438 | |
| 10439 | if (new_prog) { |
| 10440 | bool offload = mode == XDP_MODE_HW; |
| 10441 | enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB |
| 10442 | ? XDP_MODE_DRV : XDP_MODE_SKB; |
| 10443 | |
| 10444 | if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { |
| 10445 | NL_SET_ERR_MSG(extack, "XDP program already attached" ); |
| 10446 | return -EBUSY; |
| 10447 | } |
| 10448 | if (!offload && dev_xdp_prog(dev, mode: other_mode)) { |
| 10449 | NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time" ); |
| 10450 | return -EEXIST; |
| 10451 | } |
| 10452 | if (!offload && bpf_prog_is_offloaded(aux: new_prog->aux)) { |
| 10453 | NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported" ); |
| 10454 | return -EINVAL; |
| 10455 | } |
| 10456 | if (bpf_prog_is_dev_bound(aux: new_prog->aux) && !bpf_offload_dev_match(prog: new_prog, netdev: dev)) { |
| 10457 | NL_SET_ERR_MSG(extack, "Program bound to different device" ); |
| 10458 | return -EINVAL; |
| 10459 | } |
| 10460 | if (bpf_prog_is_dev_bound(aux: new_prog->aux) && mode == XDP_MODE_SKB) { |
| 10461 | NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode" ); |
| 10462 | return -EINVAL; |
| 10463 | } |
| 10464 | if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { |
| 10465 | NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device" ); |
| 10466 | return -EINVAL; |
| 10467 | } |
| 10468 | if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { |
| 10469 | NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device" ); |
| 10470 | return -EINVAL; |
| 10471 | } |
| 10472 | } |
| 10473 | |
| 10474 | /* don't call drivers if the effective program didn't change */ |
| 10475 | if (new_prog != cur_prog) { |
| 10476 | bpf_op = dev_xdp_bpf_op(dev, mode); |
| 10477 | if (!bpf_op) { |
| 10478 | NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode" ); |
| 10479 | return -EOPNOTSUPP; |
| 10480 | } |
| 10481 | |
| 10482 | err = dev_xdp_install(dev, mode, bpf_op, extack, flags, prog: new_prog); |
| 10483 | if (err) |
| 10484 | return err; |
| 10485 | } |
| 10486 | |
| 10487 | if (link) |
| 10488 | dev_xdp_set_link(dev, mode, link); |
| 10489 | else |
| 10490 | dev_xdp_set_prog(dev, mode, prog: new_prog); |
| 10491 | if (cur_prog) |
| 10492 | bpf_prog_put(prog: cur_prog); |
| 10493 | |
| 10494 | return 0; |
| 10495 | } |
| 10496 | |
| 10497 | static int dev_xdp_attach_link(struct net_device *dev, |
| 10498 | struct netlink_ext_ack *extack, |
| 10499 | struct bpf_xdp_link *link) |
| 10500 | { |
| 10501 | return dev_xdp_attach(dev, extack, link, NULL, NULL, flags: link->flags); |
| 10502 | } |
| 10503 | |
| 10504 | static int dev_xdp_detach_link(struct net_device *dev, |
| 10505 | struct netlink_ext_ack *extack, |
| 10506 | struct bpf_xdp_link *link) |
| 10507 | { |
| 10508 | enum bpf_xdp_mode mode; |
| 10509 | bpf_op_t bpf_op; |
| 10510 | |
| 10511 | ASSERT_RTNL(); |
| 10512 | |
| 10513 | mode = dev_xdp_mode(dev, flags: link->flags); |
| 10514 | if (dev_xdp_link(dev, mode) != link) |
| 10515 | return -EINVAL; |
| 10516 | |
| 10517 | bpf_op = dev_xdp_bpf_op(dev, mode); |
| 10518 | WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); |
| 10519 | dev_xdp_set_link(dev, mode, NULL); |
| 10520 | return 0; |
| 10521 | } |
| 10522 | |
| 10523 | static void bpf_xdp_link_release(struct bpf_link *link) |
| 10524 | { |
| 10525 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
| 10526 | |
| 10527 | rtnl_lock(); |
| 10528 | |
| 10529 | /* if racing with net_device's tear down, xdp_link->dev might be |
| 10530 | * already NULL, in which case link was already auto-detached |
| 10531 | */ |
| 10532 | if (xdp_link->dev) { |
| 10533 | netdev_lock_ops(dev: xdp_link->dev); |
| 10534 | WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); |
| 10535 | netdev_unlock_ops(dev: xdp_link->dev); |
| 10536 | xdp_link->dev = NULL; |
| 10537 | } |
| 10538 | |
| 10539 | rtnl_unlock(); |
| 10540 | } |
| 10541 | |
| 10542 | static int bpf_xdp_link_detach(struct bpf_link *link) |
| 10543 | { |
| 10544 | bpf_xdp_link_release(link); |
| 10545 | return 0; |
| 10546 | } |
| 10547 | |
| 10548 | static void bpf_xdp_link_dealloc(struct bpf_link *link) |
| 10549 | { |
| 10550 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
| 10551 | |
| 10552 | kfree(objp: xdp_link); |
| 10553 | } |
| 10554 | |
| 10555 | static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, |
| 10556 | struct seq_file *seq) |
| 10557 | { |
| 10558 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
| 10559 | u32 ifindex = 0; |
| 10560 | |
| 10561 | rtnl_lock(); |
| 10562 | if (xdp_link->dev) |
| 10563 | ifindex = xdp_link->dev->ifindex; |
| 10564 | rtnl_unlock(); |
| 10565 | |
| 10566 | seq_printf(m: seq, fmt: "ifindex:\t%u\n" , ifindex); |
| 10567 | } |
| 10568 | |
| 10569 | static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, |
| 10570 | struct bpf_link_info *info) |
| 10571 | { |
| 10572 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
| 10573 | u32 ifindex = 0; |
| 10574 | |
| 10575 | rtnl_lock(); |
| 10576 | if (xdp_link->dev) |
| 10577 | ifindex = xdp_link->dev->ifindex; |
| 10578 | rtnl_unlock(); |
| 10579 | |
| 10580 | info->xdp.ifindex = ifindex; |
| 10581 | return 0; |
| 10582 | } |
| 10583 | |
| 10584 | static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, |
| 10585 | struct bpf_prog *old_prog) |
| 10586 | { |
| 10587 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
| 10588 | enum bpf_xdp_mode mode; |
| 10589 | bpf_op_t bpf_op; |
| 10590 | int err = 0; |
| 10591 | |
| 10592 | rtnl_lock(); |
| 10593 | |
| 10594 | /* link might have been auto-released already, so fail */ |
| 10595 | if (!xdp_link->dev) { |
| 10596 | err = -ENOLINK; |
| 10597 | goto out_unlock; |
| 10598 | } |
| 10599 | |
| 10600 | if (old_prog && link->prog != old_prog) { |
| 10601 | err = -EPERM; |
| 10602 | goto out_unlock; |
| 10603 | } |
| 10604 | old_prog = link->prog; |
| 10605 | if (old_prog->type != new_prog->type || |
| 10606 | old_prog->expected_attach_type != new_prog->expected_attach_type) { |
| 10607 | err = -EINVAL; |
| 10608 | goto out_unlock; |
| 10609 | } |
| 10610 | |
| 10611 | if (old_prog == new_prog) { |
| 10612 | /* no-op, don't disturb drivers */ |
| 10613 | bpf_prog_put(prog: new_prog); |
| 10614 | goto out_unlock; |
| 10615 | } |
| 10616 | |
| 10617 | netdev_lock_ops(dev: xdp_link->dev); |
| 10618 | mode = dev_xdp_mode(dev: xdp_link->dev, flags: xdp_link->flags); |
| 10619 | bpf_op = dev_xdp_bpf_op(dev: xdp_link->dev, mode); |
| 10620 | err = dev_xdp_install(dev: xdp_link->dev, mode, bpf_op, NULL, |
| 10621 | flags: xdp_link->flags, prog: new_prog); |
| 10622 | netdev_unlock_ops(dev: xdp_link->dev); |
| 10623 | if (err) |
| 10624 | goto out_unlock; |
| 10625 | |
| 10626 | old_prog = xchg(&link->prog, new_prog); |
| 10627 | bpf_prog_put(prog: old_prog); |
| 10628 | |
| 10629 | out_unlock: |
| 10630 | rtnl_unlock(); |
| 10631 | return err; |
| 10632 | } |
| 10633 | |
| 10634 | static const struct bpf_link_ops bpf_xdp_link_lops = { |
| 10635 | .release = bpf_xdp_link_release, |
| 10636 | .dealloc = bpf_xdp_link_dealloc, |
| 10637 | .detach = bpf_xdp_link_detach, |
| 10638 | .show_fdinfo = bpf_xdp_link_show_fdinfo, |
| 10639 | .fill_link_info = bpf_xdp_link_fill_link_info, |
| 10640 | .update_prog = bpf_xdp_link_update, |
| 10641 | }; |
| 10642 | |
| 10643 | int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) |
| 10644 | { |
| 10645 | struct net *net = current->nsproxy->net_ns; |
| 10646 | struct bpf_link_primer link_primer; |
| 10647 | struct netlink_ext_ack extack = {}; |
| 10648 | struct bpf_xdp_link *link; |
| 10649 | struct net_device *dev; |
| 10650 | int err, fd; |
| 10651 | |
| 10652 | rtnl_lock(); |
| 10653 | dev = dev_get_by_index(net, attr->link_create.target_ifindex); |
| 10654 | if (!dev) { |
| 10655 | rtnl_unlock(); |
| 10656 | return -EINVAL; |
| 10657 | } |
| 10658 | |
| 10659 | link = kzalloc(sizeof(*link), GFP_USER); |
| 10660 | if (!link) { |
| 10661 | err = -ENOMEM; |
| 10662 | goto unlock; |
| 10663 | } |
| 10664 | |
| 10665 | bpf_link_init(link: &link->link, type: BPF_LINK_TYPE_XDP, ops: &bpf_xdp_link_lops, prog, |
| 10666 | attach_type: attr->link_create.attach_type); |
| 10667 | link->dev = dev; |
| 10668 | link->flags = attr->link_create.flags; |
| 10669 | |
| 10670 | err = bpf_link_prime(link: &link->link, primer: &link_primer); |
| 10671 | if (err) { |
| 10672 | kfree(objp: link); |
| 10673 | goto unlock; |
| 10674 | } |
| 10675 | |
| 10676 | netdev_lock_ops(dev); |
| 10677 | err = dev_xdp_attach_link(dev, extack: &extack, link); |
| 10678 | netdev_unlock_ops(dev); |
| 10679 | rtnl_unlock(); |
| 10680 | |
| 10681 | if (err) { |
| 10682 | link->dev = NULL; |
| 10683 | bpf_link_cleanup(primer: &link_primer); |
| 10684 | trace_bpf_xdp_link_attach_failed(msg: extack._msg); |
| 10685 | goto out_put_dev; |
| 10686 | } |
| 10687 | |
| 10688 | fd = bpf_link_settle(primer: &link_primer); |
| 10689 | /* link itself doesn't hold dev's refcnt to not complicate shutdown */ |
| 10690 | dev_put(dev); |
| 10691 | return fd; |
| 10692 | |
| 10693 | unlock: |
| 10694 | rtnl_unlock(); |
| 10695 | |
| 10696 | out_put_dev: |
| 10697 | dev_put(dev); |
| 10698 | return err; |
| 10699 | } |
| 10700 | |
| 10701 | /** |
| 10702 | * dev_change_xdp_fd - set or clear a bpf program for a device rx path |
| 10703 | * @dev: device |
| 10704 | * @extack: netlink extended ack |
| 10705 | * @fd: new program fd or negative value to clear |
| 10706 | * @expected_fd: old program fd that userspace expects to replace or clear |
| 10707 | * @flags: xdp-related flags |
| 10708 | * |
| 10709 | * Set or clear a bpf program for a device |
| 10710 | */ |
| 10711 | int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, |
| 10712 | int fd, int expected_fd, u32 flags) |
| 10713 | { |
| 10714 | enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); |
| 10715 | struct bpf_prog *new_prog = NULL, *old_prog = NULL; |
| 10716 | int err; |
| 10717 | |
| 10718 | ASSERT_RTNL(); |
| 10719 | |
| 10720 | if (fd >= 0) { |
| 10721 | new_prog = bpf_prog_get_type_dev(ufd: fd, type: BPF_PROG_TYPE_XDP, |
| 10722 | attach_drv: mode != XDP_MODE_SKB); |
| 10723 | if (IS_ERR(ptr: new_prog)) |
| 10724 | return PTR_ERR(ptr: new_prog); |
| 10725 | } |
| 10726 | |
| 10727 | if (expected_fd >= 0) { |
| 10728 | old_prog = bpf_prog_get_type_dev(ufd: expected_fd, type: BPF_PROG_TYPE_XDP, |
| 10729 | attach_drv: mode != XDP_MODE_SKB); |
| 10730 | if (IS_ERR(ptr: old_prog)) { |
| 10731 | err = PTR_ERR(ptr: old_prog); |
| 10732 | old_prog = NULL; |
| 10733 | goto err_out; |
| 10734 | } |
| 10735 | } |
| 10736 | |
| 10737 | err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); |
| 10738 | |
| 10739 | err_out: |
| 10740 | if (err && new_prog) |
| 10741 | bpf_prog_put(prog: new_prog); |
| 10742 | if (old_prog) |
| 10743 | bpf_prog_put(prog: old_prog); |
| 10744 | return err; |
| 10745 | } |
| 10746 | |
| 10747 | u32 dev_get_min_mp_channel_count(const struct net_device *dev) |
| 10748 | { |
| 10749 | int i; |
| 10750 | |
| 10751 | netdev_ops_assert_locked(dev); |
| 10752 | |
| 10753 | for (i = dev->real_num_rx_queues - 1; i >= 0; i--) |
| 10754 | if (dev->_rx[i].mp_params.mp_priv) |
| 10755 | /* The channel count is the idx plus 1. */ |
| 10756 | return i + 1; |
| 10757 | |
| 10758 | return 0; |
| 10759 | } |
| 10760 | |
| 10761 | /** |
| 10762 | * dev_index_reserve() - allocate an ifindex in a namespace |
| 10763 | * @net: the applicable net namespace |
| 10764 | * @ifindex: requested ifindex, pass %0 to get one allocated |
| 10765 | * |
| 10766 | * Allocate a ifindex for a new device. Caller must either use the ifindex |
| 10767 | * to store the device (via list_netdevice()) or call dev_index_release() |
| 10768 | * to give the index up. |
| 10769 | * |
| 10770 | * Return: a suitable unique value for a new device interface number or -errno. |
| 10771 | */ |
| 10772 | static int dev_index_reserve(struct net *net, u32 ifindex) |
| 10773 | { |
| 10774 | int err; |
| 10775 | |
| 10776 | if (ifindex > INT_MAX) { |
| 10777 | DEBUG_NET_WARN_ON_ONCE(1); |
| 10778 | return -EINVAL; |
| 10779 | } |
| 10780 | |
| 10781 | if (!ifindex) |
| 10782 | err = xa_alloc_cyclic(xa: &net->dev_by_index, id: &ifindex, NULL, |
| 10783 | xa_limit_31b, next: &net->ifindex, GFP_KERNEL); |
| 10784 | else |
| 10785 | err = xa_insert(xa: &net->dev_by_index, index: ifindex, NULL, GFP_KERNEL); |
| 10786 | if (err < 0) |
| 10787 | return err; |
| 10788 | |
| 10789 | return ifindex; |
| 10790 | } |
| 10791 | |
| 10792 | static void dev_index_release(struct net *net, int ifindex) |
| 10793 | { |
| 10794 | /* Expect only unused indexes, unlist_netdevice() removes the used */ |
| 10795 | WARN_ON(xa_erase(&net->dev_by_index, ifindex)); |
| 10796 | } |
| 10797 | |
| 10798 | static bool from_cleanup_net(void) |
| 10799 | { |
| 10800 | #ifdef CONFIG_NET_NS |
| 10801 | return current == READ_ONCE(cleanup_net_task); |
| 10802 | #else |
| 10803 | return false; |
| 10804 | #endif |
| 10805 | } |
| 10806 | |
| 10807 | /* Delayed registration/unregisteration */ |
| 10808 | LIST_HEAD(net_todo_list); |
| 10809 | DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); |
| 10810 | atomic_t dev_unreg_count = ATOMIC_INIT(0); |
| 10811 | |
| 10812 | static void net_set_todo(struct net_device *dev) |
| 10813 | { |
| 10814 | list_add_tail(new: &dev->todo_list, head: &net_todo_list); |
| 10815 | } |
| 10816 | |
| 10817 | static netdev_features_t netdev_sync_upper_features(struct net_device *lower, |
| 10818 | struct net_device *upper, netdev_features_t features) |
| 10819 | { |
| 10820 | netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; |
| 10821 | netdev_features_t feature; |
| 10822 | int feature_bit; |
| 10823 | |
| 10824 | for_each_netdev_feature(upper_disables, feature_bit) { |
| 10825 | feature = __NETIF_F_BIT(feature_bit); |
| 10826 | if (!(upper->wanted_features & feature) |
| 10827 | && (features & feature)) { |
| 10828 | netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n" , |
| 10829 | &feature, upper->name); |
| 10830 | features &= ~feature; |
| 10831 | } |
| 10832 | } |
| 10833 | |
| 10834 | return features; |
| 10835 | } |
| 10836 | |
| 10837 | static void netdev_sync_lower_features(struct net_device *upper, |
| 10838 | struct net_device *lower, netdev_features_t features) |
| 10839 | { |
| 10840 | netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; |
| 10841 | netdev_features_t feature; |
| 10842 | int feature_bit; |
| 10843 | |
| 10844 | for_each_netdev_feature(upper_disables, feature_bit) { |
| 10845 | feature = __NETIF_F_BIT(feature_bit); |
| 10846 | if (!(features & feature) && (lower->features & feature)) { |
| 10847 | netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n" , |
| 10848 | &feature, lower->name); |
| 10849 | netdev_lock_ops(dev: lower); |
| 10850 | lower->wanted_features &= ~feature; |
| 10851 | __netdev_update_features(dev: lower); |
| 10852 | |
| 10853 | if (unlikely(lower->features & feature)) |
| 10854 | netdev_WARN(upper, "failed to disable %pNF on %s!\n" , |
| 10855 | &feature, lower->name); |
| 10856 | else |
| 10857 | netdev_features_change(lower); |
| 10858 | netdev_unlock_ops(dev: lower); |
| 10859 | } |
| 10860 | } |
| 10861 | } |
| 10862 | |
| 10863 | static bool netdev_has_ip_or_hw_csum(netdev_features_t features) |
| 10864 | { |
| 10865 | netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; |
| 10866 | bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; |
| 10867 | bool hw_csum = features & NETIF_F_HW_CSUM; |
| 10868 | |
| 10869 | return ip_csum || hw_csum; |
| 10870 | } |
| 10871 | |
| 10872 | static netdev_features_t netdev_fix_features(struct net_device *dev, |
| 10873 | netdev_features_t features) |
| 10874 | { |
| 10875 | /* Fix illegal checksum combinations */ |
| 10876 | if ((features & NETIF_F_HW_CSUM) && |
| 10877 | (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { |
| 10878 | netdev_warn(dev, format: "mixed HW and IP checksum settings.\n" ); |
| 10879 | features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); |
| 10880 | } |
| 10881 | |
| 10882 | /* TSO requires that SG is present as well. */ |
| 10883 | if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { |
| 10884 | netdev_dbg(dev, "Dropping TSO features since no SG feature.\n" ); |
| 10885 | features &= ~NETIF_F_ALL_TSO; |
| 10886 | } |
| 10887 | |
| 10888 | if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && |
| 10889 | !(features & NETIF_F_IP_CSUM)) { |
| 10890 | netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n" ); |
| 10891 | features &= ~NETIF_F_TSO; |
| 10892 | features &= ~NETIF_F_TSO_ECN; |
| 10893 | } |
| 10894 | |
| 10895 | if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && |
| 10896 | !(features & NETIF_F_IPV6_CSUM)) { |
| 10897 | netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n" ); |
| 10898 | features &= ~NETIF_F_TSO6; |
| 10899 | } |
| 10900 | |
| 10901 | /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ |
| 10902 | if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) |
| 10903 | features &= ~NETIF_F_TSO_MANGLEID; |
| 10904 | |
| 10905 | /* TSO ECN requires that TSO is present as well. */ |
| 10906 | if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) |
| 10907 | features &= ~NETIF_F_TSO_ECN; |
| 10908 | |
| 10909 | /* Software GSO depends on SG. */ |
| 10910 | if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { |
| 10911 | netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n" ); |
| 10912 | features &= ~NETIF_F_GSO; |
| 10913 | } |
| 10914 | |
| 10915 | /* GSO partial features require GSO partial be set */ |
| 10916 | if ((features & dev->gso_partial_features) && |
| 10917 | !(features & NETIF_F_GSO_PARTIAL)) { |
| 10918 | netdev_dbg(dev, |
| 10919 | "Dropping partially supported GSO features since no GSO partial.\n" ); |
| 10920 | features &= ~dev->gso_partial_features; |
| 10921 | } |
| 10922 | |
| 10923 | if (!(features & NETIF_F_RXCSUM)) { |
| 10924 | /* NETIF_F_GRO_HW implies doing RXCSUM since every packet |
| 10925 | * successfully merged by hardware must also have the |
| 10926 | * checksum verified by hardware. If the user does not |
| 10927 | * want to enable RXCSUM, logically, we should disable GRO_HW. |
| 10928 | */ |
| 10929 | if (features & NETIF_F_GRO_HW) { |
| 10930 | netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n" ); |
| 10931 | features &= ~NETIF_F_GRO_HW; |
| 10932 | } |
| 10933 | } |
| 10934 | |
| 10935 | /* LRO/HW-GRO features cannot be combined with RX-FCS */ |
| 10936 | if (features & NETIF_F_RXFCS) { |
| 10937 | if (features & NETIF_F_LRO) { |
| 10938 | netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n" ); |
| 10939 | features &= ~NETIF_F_LRO; |
| 10940 | } |
| 10941 | |
| 10942 | if (features & NETIF_F_GRO_HW) { |
| 10943 | netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n" ); |
| 10944 | features &= ~NETIF_F_GRO_HW; |
| 10945 | } |
| 10946 | } |
| 10947 | |
| 10948 | if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { |
| 10949 | netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n" ); |
| 10950 | features &= ~NETIF_F_LRO; |
| 10951 | } |
| 10952 | |
| 10953 | if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { |
| 10954 | netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n" ); |
| 10955 | features &= ~NETIF_F_HW_TLS_TX; |
| 10956 | } |
| 10957 | |
| 10958 | if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { |
| 10959 | netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n" ); |
| 10960 | features &= ~NETIF_F_HW_TLS_RX; |
| 10961 | } |
| 10962 | |
| 10963 | if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { |
| 10964 | netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n" ); |
| 10965 | features &= ~NETIF_F_GSO_UDP_L4; |
| 10966 | } |
| 10967 | |
| 10968 | return features; |
| 10969 | } |
| 10970 | |
| 10971 | int __netdev_update_features(struct net_device *dev) |
| 10972 | { |
| 10973 | struct net_device *upper, *lower; |
| 10974 | netdev_features_t features; |
| 10975 | struct list_head *iter; |
| 10976 | int err = -1; |
| 10977 | |
| 10978 | ASSERT_RTNL(); |
| 10979 | netdev_ops_assert_locked(dev); |
| 10980 | |
| 10981 | features = netdev_get_wanted_features(dev); |
| 10982 | |
| 10983 | if (dev->netdev_ops->ndo_fix_features) |
| 10984 | features = dev->netdev_ops->ndo_fix_features(dev, features); |
| 10985 | |
| 10986 | /* driver might be less strict about feature dependencies */ |
| 10987 | features = netdev_fix_features(dev, features); |
| 10988 | |
| 10989 | /* some features can't be enabled if they're off on an upper device */ |
| 10990 | netdev_for_each_upper_dev_rcu(dev, upper, iter) |
| 10991 | features = netdev_sync_upper_features(lower: dev, upper, features); |
| 10992 | |
| 10993 | if (dev->features == features) |
| 10994 | goto sync_lower; |
| 10995 | |
| 10996 | netdev_dbg(dev, "Features changed: %pNF -> %pNF\n" , |
| 10997 | &dev->features, &features); |
| 10998 | |
| 10999 | if (dev->netdev_ops->ndo_set_features) |
| 11000 | err = dev->netdev_ops->ndo_set_features(dev, features); |
| 11001 | else |
| 11002 | err = 0; |
| 11003 | |
| 11004 | if (unlikely(err < 0)) { |
| 11005 | netdev_err(dev, |
| 11006 | format: "set_features() failed (%d); wanted %pNF, left %pNF\n" , |
| 11007 | err, &features, &dev->features); |
| 11008 | /* return non-0 since some features might have changed and |
| 11009 | * it's better to fire a spurious notification than miss it |
| 11010 | */ |
| 11011 | return -1; |
| 11012 | } |
| 11013 | |
| 11014 | sync_lower: |
| 11015 | /* some features must be disabled on lower devices when disabled |
| 11016 | * on an upper device (think: bonding master or bridge) |
| 11017 | */ |
| 11018 | netdev_for_each_lower_dev(dev, lower, iter) |
| 11019 | netdev_sync_lower_features(upper: dev, lower, features); |
| 11020 | |
| 11021 | if (!err) { |
| 11022 | netdev_features_t diff = features ^ dev->features; |
| 11023 | |
| 11024 | if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { |
| 11025 | /* udp_tunnel_{get,drop}_rx_info both need |
| 11026 | * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the |
| 11027 | * device, or they won't do anything. |
| 11028 | * Thus we need to update dev->features |
| 11029 | * *before* calling udp_tunnel_get_rx_info, |
| 11030 | * but *after* calling udp_tunnel_drop_rx_info. |
| 11031 | */ |
| 11032 | udp_tunnel_nic_lock(dev); |
| 11033 | if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { |
| 11034 | dev->features = features; |
| 11035 | udp_tunnel_get_rx_info(dev); |
| 11036 | } else { |
| 11037 | udp_tunnel_drop_rx_info(dev); |
| 11038 | } |
| 11039 | udp_tunnel_nic_unlock(dev); |
| 11040 | } |
| 11041 | |
| 11042 | if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { |
| 11043 | if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { |
| 11044 | dev->features = features; |
| 11045 | err |= vlan_get_rx_ctag_filter_info(dev); |
| 11046 | } else { |
| 11047 | vlan_drop_rx_ctag_filter_info(dev); |
| 11048 | } |
| 11049 | } |
| 11050 | |
| 11051 | if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { |
| 11052 | if (features & NETIF_F_HW_VLAN_STAG_FILTER) { |
| 11053 | dev->features = features; |
| 11054 | err |= vlan_get_rx_stag_filter_info(dev); |
| 11055 | } else { |
| 11056 | vlan_drop_rx_stag_filter_info(dev); |
| 11057 | } |
| 11058 | } |
| 11059 | |
| 11060 | dev->features = features; |
| 11061 | } |
| 11062 | |
| 11063 | return err < 0 ? 0 : 1; |
| 11064 | } |
| 11065 | |
| 11066 | /** |
| 11067 | * netdev_update_features - recalculate device features |
| 11068 | * @dev: the device to check |
| 11069 | * |
| 11070 | * Recalculate dev->features set and send notifications if it |
| 11071 | * has changed. Should be called after driver or hardware dependent |
| 11072 | * conditions might have changed that influence the features. |
| 11073 | */ |
| 11074 | void netdev_update_features(struct net_device *dev) |
| 11075 | { |
| 11076 | if (__netdev_update_features(dev)) |
| 11077 | netdev_features_change(dev); |
| 11078 | } |
| 11079 | EXPORT_SYMBOL(netdev_update_features); |
| 11080 | |
| 11081 | /** |
| 11082 | * netdev_change_features - recalculate device features |
| 11083 | * @dev: the device to check |
| 11084 | * |
| 11085 | * Recalculate dev->features set and send notifications even |
| 11086 | * if they have not changed. Should be called instead of |
| 11087 | * netdev_update_features() if also dev->vlan_features might |
| 11088 | * have changed to allow the changes to be propagated to stacked |
| 11089 | * VLAN devices. |
| 11090 | */ |
| 11091 | void netdev_change_features(struct net_device *dev) |
| 11092 | { |
| 11093 | __netdev_update_features(dev); |
| 11094 | netdev_features_change(dev); |
| 11095 | } |
| 11096 | EXPORT_SYMBOL(netdev_change_features); |
| 11097 | |
| 11098 | /** |
| 11099 | * netif_stacked_transfer_operstate - transfer operstate |
| 11100 | * @rootdev: the root or lower level device to transfer state from |
| 11101 | * @dev: the device to transfer operstate to |
| 11102 | * |
| 11103 | * Transfer operational state from root to device. This is normally |
| 11104 | * called when a stacking relationship exists between the root |
| 11105 | * device and the device(a leaf device). |
| 11106 | */ |
| 11107 | void netif_stacked_transfer_operstate(const struct net_device *rootdev, |
| 11108 | struct net_device *dev) |
| 11109 | { |
| 11110 | if (rootdev->operstate == IF_OPER_DORMANT) |
| 11111 | netif_dormant_on(dev); |
| 11112 | else |
| 11113 | netif_dormant_off(dev); |
| 11114 | |
| 11115 | if (rootdev->operstate == IF_OPER_TESTING) |
| 11116 | netif_testing_on(dev); |
| 11117 | else |
| 11118 | netif_testing_off(dev); |
| 11119 | |
| 11120 | if (netif_carrier_ok(dev: rootdev)) |
| 11121 | netif_carrier_on(dev); |
| 11122 | else |
| 11123 | netif_carrier_off(dev); |
| 11124 | } |
| 11125 | EXPORT_SYMBOL(netif_stacked_transfer_operstate); |
| 11126 | |
| 11127 | static int netif_alloc_rx_queues(struct net_device *dev) |
| 11128 | { |
| 11129 | unsigned int i, count = dev->num_rx_queues; |
| 11130 | struct netdev_rx_queue *rx; |
| 11131 | size_t sz = count * sizeof(*rx); |
| 11132 | int err = 0; |
| 11133 | |
| 11134 | BUG_ON(count < 1); |
| 11135 | |
| 11136 | rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); |
| 11137 | if (!rx) |
| 11138 | return -ENOMEM; |
| 11139 | |
| 11140 | dev->_rx = rx; |
| 11141 | |
| 11142 | for (i = 0; i < count; i++) { |
| 11143 | rx[i].dev = dev; |
| 11144 | |
| 11145 | /* XDP RX-queue setup */ |
| 11146 | err = xdp_rxq_info_reg(xdp_rxq: &rx[i].xdp_rxq, dev, queue_index: i, napi_id: 0); |
| 11147 | if (err < 0) |
| 11148 | goto err_rxq_info; |
| 11149 | } |
| 11150 | return 0; |
| 11151 | |
| 11152 | err_rxq_info: |
| 11153 | /* Rollback successful reg's and free other resources */ |
| 11154 | while (i--) |
| 11155 | xdp_rxq_info_unreg(xdp_rxq: &rx[i].xdp_rxq); |
| 11156 | kvfree(addr: dev->_rx); |
| 11157 | dev->_rx = NULL; |
| 11158 | return err; |
| 11159 | } |
| 11160 | |
| 11161 | static void netif_free_rx_queues(struct net_device *dev) |
| 11162 | { |
| 11163 | unsigned int i, count = dev->num_rx_queues; |
| 11164 | |
| 11165 | /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ |
| 11166 | if (!dev->_rx) |
| 11167 | return; |
| 11168 | |
| 11169 | for (i = 0; i < count; i++) |
| 11170 | xdp_rxq_info_unreg(xdp_rxq: &dev->_rx[i].xdp_rxq); |
| 11171 | |
| 11172 | kvfree(addr: dev->_rx); |
| 11173 | } |
| 11174 | |
| 11175 | static void netdev_init_one_queue(struct net_device *dev, |
| 11176 | struct netdev_queue *queue, void *_unused) |
| 11177 | { |
| 11178 | /* Initialize queue lock */ |
| 11179 | spin_lock_init(&queue->_xmit_lock); |
| 11180 | netdev_set_xmit_lockdep_class(lock: &queue->_xmit_lock, dev_type: dev->type); |
| 11181 | queue->xmit_lock_owner = -1; |
| 11182 | netdev_queue_numa_node_write(q: queue, NUMA_NO_NODE); |
| 11183 | queue->dev = dev; |
| 11184 | #ifdef CONFIG_BQL |
| 11185 | dql_init(dql: &queue->dql, HZ); |
| 11186 | #endif |
| 11187 | } |
| 11188 | |
| 11189 | static void netif_free_tx_queues(struct net_device *dev) |
| 11190 | { |
| 11191 | kvfree(addr: dev->_tx); |
| 11192 | } |
| 11193 | |
| 11194 | static int netif_alloc_netdev_queues(struct net_device *dev) |
| 11195 | { |
| 11196 | unsigned int count = dev->num_tx_queues; |
| 11197 | struct netdev_queue *tx; |
| 11198 | size_t sz = count * sizeof(*tx); |
| 11199 | |
| 11200 | if (count < 1 || count > 0xffff) |
| 11201 | return -EINVAL; |
| 11202 | |
| 11203 | tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); |
| 11204 | if (!tx) |
| 11205 | return -ENOMEM; |
| 11206 | |
| 11207 | dev->_tx = tx; |
| 11208 | |
| 11209 | netdev_for_each_tx_queue(dev, f: netdev_init_one_queue, NULL); |
| 11210 | spin_lock_init(&dev->tx_global_lock); |
| 11211 | |
| 11212 | return 0; |
| 11213 | } |
| 11214 | |
| 11215 | void netif_tx_stop_all_queues(struct net_device *dev) |
| 11216 | { |
| 11217 | unsigned int i; |
| 11218 | |
| 11219 | for (i = 0; i < dev->num_tx_queues; i++) { |
| 11220 | struct netdev_queue *txq = netdev_get_tx_queue(dev, index: i); |
| 11221 | |
| 11222 | netif_tx_stop_queue(dev_queue: txq); |
| 11223 | } |
| 11224 | } |
| 11225 | EXPORT_SYMBOL(netif_tx_stop_all_queues); |
| 11226 | |
| 11227 | static int netdev_do_alloc_pcpu_stats(struct net_device *dev) |
| 11228 | { |
| 11229 | void __percpu *v; |
| 11230 | |
| 11231 | /* Drivers implementing ndo_get_peer_dev must support tstat |
| 11232 | * accounting, so that skb_do_redirect() can bump the dev's |
| 11233 | * RX stats upon network namespace switch. |
| 11234 | */ |
| 11235 | if (dev->netdev_ops->ndo_get_peer_dev && |
| 11236 | dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) |
| 11237 | return -EOPNOTSUPP; |
| 11238 | |
| 11239 | switch (dev->pcpu_stat_type) { |
| 11240 | case NETDEV_PCPU_STAT_NONE: |
| 11241 | return 0; |
| 11242 | case NETDEV_PCPU_STAT_LSTATS: |
| 11243 | v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); |
| 11244 | break; |
| 11245 | case NETDEV_PCPU_STAT_TSTATS: |
| 11246 | v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); |
| 11247 | break; |
| 11248 | case NETDEV_PCPU_STAT_DSTATS: |
| 11249 | v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); |
| 11250 | break; |
| 11251 | default: |
| 11252 | return -EINVAL; |
| 11253 | } |
| 11254 | |
| 11255 | return v ? 0 : -ENOMEM; |
| 11256 | } |
| 11257 | |
| 11258 | static void netdev_do_free_pcpu_stats(struct net_device *dev) |
| 11259 | { |
| 11260 | switch (dev->pcpu_stat_type) { |
| 11261 | case NETDEV_PCPU_STAT_NONE: |
| 11262 | return; |
| 11263 | case NETDEV_PCPU_STAT_LSTATS: |
| 11264 | free_percpu(pdata: dev->lstats); |
| 11265 | break; |
| 11266 | case NETDEV_PCPU_STAT_TSTATS: |
| 11267 | free_percpu(pdata: dev->tstats); |
| 11268 | break; |
| 11269 | case NETDEV_PCPU_STAT_DSTATS: |
| 11270 | free_percpu(pdata: dev->dstats); |
| 11271 | break; |
| 11272 | } |
| 11273 | } |
| 11274 | |
| 11275 | static void netdev_free_phy_link_topology(struct net_device *dev) |
| 11276 | { |
| 11277 | struct phy_link_topology *topo = dev->link_topo; |
| 11278 | |
| 11279 | if (IS_ENABLED(CONFIG_PHYLIB) && topo) { |
| 11280 | xa_destroy(&topo->phys); |
| 11281 | kfree(objp: topo); |
| 11282 | dev->link_topo = NULL; |
| 11283 | } |
| 11284 | } |
| 11285 | |
| 11286 | /** |
| 11287 | * register_netdevice() - register a network device |
| 11288 | * @dev: device to register |
| 11289 | * |
| 11290 | * Take a prepared network device structure and make it externally accessible. |
| 11291 | * A %NETDEV_REGISTER message is sent to the netdev notifier chain. |
| 11292 | * Callers must hold the rtnl lock - you may want register_netdev() |
| 11293 | * instead of this. |
| 11294 | */ |
| 11295 | int register_netdevice(struct net_device *dev) |
| 11296 | { |
| 11297 | int ret; |
| 11298 | struct net *net = dev_net(dev); |
| 11299 | |
| 11300 | BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < |
| 11301 | NETDEV_FEATURE_COUNT); |
| 11302 | BUG_ON(dev_boot_phase); |
| 11303 | ASSERT_RTNL(); |
| 11304 | |
| 11305 | might_sleep(); |
| 11306 | |
| 11307 | /* When net_device's are persistent, this will be fatal. */ |
| 11308 | BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); |
| 11309 | BUG_ON(!net); |
| 11310 | |
| 11311 | ret = ethtool_check_ops(ops: dev->ethtool_ops); |
| 11312 | if (ret) |
| 11313 | return ret; |
| 11314 | |
| 11315 | /* rss ctx ID 0 is reserved for the default context, start from 1 */ |
| 11316 | xa_init_flags(xa: &dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); |
| 11317 | mutex_init(&dev->ethtool->rss_lock); |
| 11318 | |
| 11319 | spin_lock_init(&dev->addr_list_lock); |
| 11320 | netdev_set_addr_lockdep_class(dev); |
| 11321 | |
| 11322 | ret = dev_get_valid_name(net, dev, name: dev->name); |
| 11323 | if (ret < 0) |
| 11324 | goto out; |
| 11325 | |
| 11326 | ret = -ENOMEM; |
| 11327 | dev->name_node = netdev_name_node_head_alloc(dev); |
| 11328 | if (!dev->name_node) |
| 11329 | goto out; |
| 11330 | |
| 11331 | /* Init, if this function is available */ |
| 11332 | if (dev->netdev_ops->ndo_init) { |
| 11333 | ret = dev->netdev_ops->ndo_init(dev); |
| 11334 | if (ret) { |
| 11335 | if (ret > 0) |
| 11336 | ret = -EIO; |
| 11337 | goto err_free_name; |
| 11338 | } |
| 11339 | } |
| 11340 | |
| 11341 | if (((dev->hw_features | dev->features) & |
| 11342 | NETIF_F_HW_VLAN_CTAG_FILTER) && |
| 11343 | (!dev->netdev_ops->ndo_vlan_rx_add_vid || |
| 11344 | !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { |
| 11345 | netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n" ); |
| 11346 | ret = -EINVAL; |
| 11347 | goto err_uninit; |
| 11348 | } |
| 11349 | |
| 11350 | ret = netdev_do_alloc_pcpu_stats(dev); |
| 11351 | if (ret) |
| 11352 | goto err_uninit; |
| 11353 | |
| 11354 | ret = dev_index_reserve(net, ifindex: dev->ifindex); |
| 11355 | if (ret < 0) |
| 11356 | goto err_free_pcpu; |
| 11357 | dev->ifindex = ret; |
| 11358 | |
| 11359 | /* Transfer changeable features to wanted_features and enable |
| 11360 | * software offloads (GSO and GRO). |
| 11361 | */ |
| 11362 | dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); |
| 11363 | dev->features |= NETIF_F_SOFT_FEATURES; |
| 11364 | |
| 11365 | if (dev->udp_tunnel_nic_info) { |
| 11366 | dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; |
| 11367 | dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; |
| 11368 | } |
| 11369 | |
| 11370 | dev->wanted_features = dev->features & dev->hw_features; |
| 11371 | |
| 11372 | if (!(dev->flags & IFF_LOOPBACK)) |
| 11373 | dev->hw_features |= NETIF_F_NOCACHE_COPY; |
| 11374 | |
| 11375 | /* If IPv4 TCP segmentation offload is supported we should also |
| 11376 | * allow the device to enable segmenting the frame with the option |
| 11377 | * of ignoring a static IP ID value. This doesn't enable the |
| 11378 | * feature itself but allows the user to enable it later. |
| 11379 | */ |
| 11380 | if (dev->hw_features & NETIF_F_TSO) |
| 11381 | dev->hw_features |= NETIF_F_TSO_MANGLEID; |
| 11382 | if (dev->vlan_features & NETIF_F_TSO) |
| 11383 | dev->vlan_features |= NETIF_F_TSO_MANGLEID; |
| 11384 | if (dev->mpls_features & NETIF_F_TSO) |
| 11385 | dev->mpls_features |= NETIF_F_TSO_MANGLEID; |
| 11386 | if (dev->hw_enc_features & NETIF_F_TSO) |
| 11387 | dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; |
| 11388 | |
| 11389 | /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. |
| 11390 | */ |
| 11391 | dev->vlan_features |= NETIF_F_HIGHDMA; |
| 11392 | |
| 11393 | /* Make NETIF_F_SG inheritable to tunnel devices. |
| 11394 | */ |
| 11395 | dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; |
| 11396 | |
| 11397 | /* Make NETIF_F_SG inheritable to MPLS. |
| 11398 | */ |
| 11399 | dev->mpls_features |= NETIF_F_SG; |
| 11400 | |
| 11401 | ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); |
| 11402 | ret = notifier_to_errno(ret); |
| 11403 | if (ret) |
| 11404 | goto err_ifindex_release; |
| 11405 | |
| 11406 | ret = netdev_register_kobject(dev); |
| 11407 | |
| 11408 | netdev_lock(dev); |
| 11409 | WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); |
| 11410 | netdev_unlock(dev); |
| 11411 | |
| 11412 | if (ret) |
| 11413 | goto err_uninit_notify; |
| 11414 | |
| 11415 | netdev_lock_ops(dev); |
| 11416 | __netdev_update_features(dev); |
| 11417 | netdev_unlock_ops(dev); |
| 11418 | |
| 11419 | /* |
| 11420 | * Default initial state at registry is that the |
| 11421 | * device is present. |
| 11422 | */ |
| 11423 | |
| 11424 | set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state); |
| 11425 | |
| 11426 | linkwatch_init_dev(dev); |
| 11427 | |
| 11428 | dev_init_scheduler(dev); |
| 11429 | |
| 11430 | netdev_hold(dev, tracker: &dev->dev_registered_tracker, GFP_KERNEL); |
| 11431 | list_netdevice(dev); |
| 11432 | |
| 11433 | add_device_randomness(buf: dev->dev_addr, len: dev->addr_len); |
| 11434 | |
| 11435 | /* If the device has permanent device address, driver should |
| 11436 | * set dev_addr and also addr_assign_type should be set to |
| 11437 | * NET_ADDR_PERM (default value). |
| 11438 | */ |
| 11439 | if (dev->addr_assign_type == NET_ADDR_PERM) |
| 11440 | memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); |
| 11441 | |
| 11442 | /* Notify protocols, that a new device appeared. */ |
| 11443 | netdev_lock_ops(dev); |
| 11444 | ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); |
| 11445 | netdev_unlock_ops(dev); |
| 11446 | ret = notifier_to_errno(ret); |
| 11447 | if (ret) { |
| 11448 | /* Expect explicit free_netdev() on failure */ |
| 11449 | dev->needs_free_netdev = false; |
| 11450 | unregister_netdevice_queue(dev, NULL); |
| 11451 | goto out; |
| 11452 | } |
| 11453 | /* |
| 11454 | * Prevent userspace races by waiting until the network |
| 11455 | * device is fully setup before sending notifications. |
| 11456 | */ |
| 11457 | if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) |
| 11458 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: ~0U, GFP_KERNEL, portid: 0, NULL); |
| 11459 | |
| 11460 | out: |
| 11461 | return ret; |
| 11462 | |
| 11463 | err_uninit_notify: |
| 11464 | call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); |
| 11465 | err_ifindex_release: |
| 11466 | dev_index_release(net, ifindex: dev->ifindex); |
| 11467 | err_free_pcpu: |
| 11468 | netdev_do_free_pcpu_stats(dev); |
| 11469 | err_uninit: |
| 11470 | if (dev->netdev_ops->ndo_uninit) |
| 11471 | dev->netdev_ops->ndo_uninit(dev); |
| 11472 | if (dev->priv_destructor) |
| 11473 | dev->priv_destructor(dev); |
| 11474 | err_free_name: |
| 11475 | netdev_name_node_free(name_node: dev->name_node); |
| 11476 | goto out; |
| 11477 | } |
| 11478 | EXPORT_SYMBOL(register_netdevice); |
| 11479 | |
| 11480 | /* Initialize the core of a dummy net device. |
| 11481 | * The setup steps dummy netdevs need which normal netdevs get by going |
| 11482 | * through register_netdevice(). |
| 11483 | */ |
| 11484 | static void init_dummy_netdev(struct net_device *dev) |
| 11485 | { |
| 11486 | /* make sure we BUG if trying to hit standard |
| 11487 | * register/unregister code path |
| 11488 | */ |
| 11489 | dev->reg_state = NETREG_DUMMY; |
| 11490 | |
| 11491 | /* a dummy interface is started by default */ |
| 11492 | set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state); |
| 11493 | set_bit(nr: __LINK_STATE_START, addr: &dev->state); |
| 11494 | |
| 11495 | /* Note : We dont allocate pcpu_refcnt for dummy devices, |
| 11496 | * because users of this 'device' dont need to change |
| 11497 | * its refcount. |
| 11498 | */ |
| 11499 | } |
| 11500 | |
| 11501 | /** |
| 11502 | * register_netdev - register a network device |
| 11503 | * @dev: device to register |
| 11504 | * |
| 11505 | * Take a completed network device structure and add it to the kernel |
| 11506 | * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier |
| 11507 | * chain. 0 is returned on success. A negative errno code is returned |
| 11508 | * on a failure to set up the device, or if the name is a duplicate. |
| 11509 | * |
| 11510 | * This is a wrapper around register_netdevice that takes the rtnl semaphore |
| 11511 | * and expands the device name if you passed a format string to |
| 11512 | * alloc_netdev. |
| 11513 | */ |
| 11514 | int register_netdev(struct net_device *dev) |
| 11515 | { |
| 11516 | struct net *net = dev_net(dev); |
| 11517 | int err; |
| 11518 | |
| 11519 | if (rtnl_net_lock_killable(net)) |
| 11520 | return -EINTR; |
| 11521 | |
| 11522 | err = register_netdevice(dev); |
| 11523 | |
| 11524 | rtnl_net_unlock(net); |
| 11525 | |
| 11526 | return err; |
| 11527 | } |
| 11528 | EXPORT_SYMBOL(register_netdev); |
| 11529 | |
| 11530 | int netdev_refcnt_read(const struct net_device *dev) |
| 11531 | { |
| 11532 | #ifdef CONFIG_PCPU_DEV_REFCNT |
| 11533 | int i, refcnt = 0; |
| 11534 | |
| 11535 | for_each_possible_cpu(i) |
| 11536 | refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); |
| 11537 | return refcnt; |
| 11538 | #else |
| 11539 | return refcount_read(&dev->dev_refcnt); |
| 11540 | #endif |
| 11541 | } |
| 11542 | EXPORT_SYMBOL(netdev_refcnt_read); |
| 11543 | |
| 11544 | int netdev_unregister_timeout_secs __read_mostly = 10; |
| 11545 | |
| 11546 | #define WAIT_REFS_MIN_MSECS 1 |
| 11547 | #define WAIT_REFS_MAX_MSECS 250 |
| 11548 | /** |
| 11549 | * netdev_wait_allrefs_any - wait until all references are gone. |
| 11550 | * @list: list of net_devices to wait on |
| 11551 | * |
| 11552 | * This is called when unregistering network devices. |
| 11553 | * |
| 11554 | * Any protocol or device that holds a reference should register |
| 11555 | * for netdevice notification, and cleanup and put back the |
| 11556 | * reference if they receive an UNREGISTER event. |
| 11557 | * We can get stuck here if buggy protocols don't correctly |
| 11558 | * call dev_put. |
| 11559 | */ |
| 11560 | static struct net_device *netdev_wait_allrefs_any(struct list_head *list) |
| 11561 | { |
| 11562 | unsigned long rebroadcast_time, warning_time; |
| 11563 | struct net_device *dev; |
| 11564 | int wait = 0; |
| 11565 | |
| 11566 | rebroadcast_time = warning_time = jiffies; |
| 11567 | |
| 11568 | list_for_each_entry(dev, list, todo_list) |
| 11569 | if (netdev_refcnt_read(dev) == 1) |
| 11570 | return dev; |
| 11571 | |
| 11572 | while (true) { |
| 11573 | if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { |
| 11574 | rtnl_lock(); |
| 11575 | |
| 11576 | /* Rebroadcast unregister notification */ |
| 11577 | list_for_each_entry(dev, list, todo_list) |
| 11578 | call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
| 11579 | |
| 11580 | __rtnl_unlock(); |
| 11581 | rcu_barrier(); |
| 11582 | rtnl_lock(); |
| 11583 | |
| 11584 | list_for_each_entry(dev, list, todo_list) |
| 11585 | if (test_bit(__LINK_STATE_LINKWATCH_PENDING, |
| 11586 | &dev->state)) { |
| 11587 | /* We must not have linkwatch events |
| 11588 | * pending on unregister. If this |
| 11589 | * happens, we simply run the queue |
| 11590 | * unscheduled, resulting in a noop |
| 11591 | * for this device. |
| 11592 | */ |
| 11593 | linkwatch_run_queue(); |
| 11594 | break; |
| 11595 | } |
| 11596 | |
| 11597 | __rtnl_unlock(); |
| 11598 | |
| 11599 | rebroadcast_time = jiffies; |
| 11600 | } |
| 11601 | |
| 11602 | rcu_barrier(); |
| 11603 | |
| 11604 | if (!wait) { |
| 11605 | wait = WAIT_REFS_MIN_MSECS; |
| 11606 | } else { |
| 11607 | msleep(msecs: wait); |
| 11608 | wait = min(wait << 1, WAIT_REFS_MAX_MSECS); |
| 11609 | } |
| 11610 | |
| 11611 | list_for_each_entry(dev, list, todo_list) |
| 11612 | if (netdev_refcnt_read(dev) == 1) |
| 11613 | return dev; |
| 11614 | |
| 11615 | if (time_after(jiffies, warning_time + |
| 11616 | READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { |
| 11617 | list_for_each_entry(dev, list, todo_list) { |
| 11618 | pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n" , |
| 11619 | dev->name, netdev_refcnt_read(dev)); |
| 11620 | ref_tracker_dir_print(dir: &dev->refcnt_tracker, display_limit: 10); |
| 11621 | } |
| 11622 | |
| 11623 | warning_time = jiffies; |
| 11624 | } |
| 11625 | } |
| 11626 | } |
| 11627 | |
| 11628 | /* The sequence is: |
| 11629 | * |
| 11630 | * rtnl_lock(); |
| 11631 | * ... |
| 11632 | * register_netdevice(x1); |
| 11633 | * register_netdevice(x2); |
| 11634 | * ... |
| 11635 | * unregister_netdevice(y1); |
| 11636 | * unregister_netdevice(y2); |
| 11637 | * ... |
| 11638 | * rtnl_unlock(); |
| 11639 | * free_netdev(y1); |
| 11640 | * free_netdev(y2); |
| 11641 | * |
| 11642 | * We are invoked by rtnl_unlock(). |
| 11643 | * This allows us to deal with problems: |
| 11644 | * 1) We can delete sysfs objects which invoke hotplug |
| 11645 | * without deadlocking with linkwatch via keventd. |
| 11646 | * 2) Since we run with the RTNL semaphore not held, we can sleep |
| 11647 | * safely in order to wait for the netdev refcnt to drop to zero. |
| 11648 | * |
| 11649 | * We must not return until all unregister events added during |
| 11650 | * the interval the lock was held have been completed. |
| 11651 | */ |
| 11652 | void netdev_run_todo(void) |
| 11653 | { |
| 11654 | struct net_device *dev, *tmp; |
| 11655 | struct list_head list; |
| 11656 | int cnt; |
| 11657 | #ifdef CONFIG_LOCKDEP |
| 11658 | struct list_head unlink_list; |
| 11659 | |
| 11660 | list_replace_init(old: &net_unlink_list, new: &unlink_list); |
| 11661 | |
| 11662 | while (!list_empty(head: &unlink_list)) { |
| 11663 | dev = list_first_entry(&unlink_list, struct net_device, |
| 11664 | unlink_list); |
| 11665 | list_del_init(entry: &dev->unlink_list); |
| 11666 | dev->nested_level = dev->lower_level - 1; |
| 11667 | } |
| 11668 | #endif |
| 11669 | |
| 11670 | /* Snapshot list, allow later requests */ |
| 11671 | list_replace_init(old: &net_todo_list, new: &list); |
| 11672 | |
| 11673 | __rtnl_unlock(); |
| 11674 | |
| 11675 | /* Wait for rcu callbacks to finish before next phase */ |
| 11676 | if (!list_empty(head: &list)) |
| 11677 | rcu_barrier(); |
| 11678 | |
| 11679 | list_for_each_entry_safe(dev, tmp, &list, todo_list) { |
| 11680 | if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { |
| 11681 | netdev_WARN(dev, "run_todo but not unregistering\n" ); |
| 11682 | list_del(entry: &dev->todo_list); |
| 11683 | continue; |
| 11684 | } |
| 11685 | |
| 11686 | netdev_lock(dev); |
| 11687 | WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); |
| 11688 | netdev_unlock(dev); |
| 11689 | linkwatch_sync_dev(dev); |
| 11690 | } |
| 11691 | |
| 11692 | cnt = 0; |
| 11693 | while (!list_empty(head: &list)) { |
| 11694 | dev = netdev_wait_allrefs_any(list: &list); |
| 11695 | list_del(entry: &dev->todo_list); |
| 11696 | |
| 11697 | /* paranoia */ |
| 11698 | BUG_ON(netdev_refcnt_read(dev) != 1); |
| 11699 | BUG_ON(!list_empty(&dev->ptype_all)); |
| 11700 | BUG_ON(!list_empty(&dev->ptype_specific)); |
| 11701 | WARN_ON(rcu_access_pointer(dev->ip_ptr)); |
| 11702 | WARN_ON(rcu_access_pointer(dev->ip6_ptr)); |
| 11703 | |
| 11704 | netdev_do_free_pcpu_stats(dev); |
| 11705 | if (dev->priv_destructor) |
| 11706 | dev->priv_destructor(dev); |
| 11707 | if (dev->needs_free_netdev) |
| 11708 | free_netdev(dev); |
| 11709 | |
| 11710 | cnt++; |
| 11711 | |
| 11712 | /* Free network device */ |
| 11713 | kobject_put(kobj: &dev->dev.kobj); |
| 11714 | } |
| 11715 | if (cnt && atomic_sub_and_test(i: cnt, v: &dev_unreg_count)) |
| 11716 | wake_up(&netdev_unregistering_wq); |
| 11717 | } |
| 11718 | |
| 11719 | /* Collate per-cpu network dstats statistics |
| 11720 | * |
| 11721 | * Read per-cpu network statistics from dev->dstats and populate the related |
| 11722 | * fields in @s. |
| 11723 | */ |
| 11724 | static void dev_fetch_dstats(struct rtnl_link_stats64 *s, |
| 11725 | const struct pcpu_dstats __percpu *dstats) |
| 11726 | { |
| 11727 | int cpu; |
| 11728 | |
| 11729 | for_each_possible_cpu(cpu) { |
| 11730 | u64 rx_packets, rx_bytes, rx_drops; |
| 11731 | u64 tx_packets, tx_bytes, tx_drops; |
| 11732 | const struct pcpu_dstats *stats; |
| 11733 | unsigned int start; |
| 11734 | |
| 11735 | stats = per_cpu_ptr(dstats, cpu); |
| 11736 | do { |
| 11737 | start = u64_stats_fetch_begin(syncp: &stats->syncp); |
| 11738 | rx_packets = u64_stats_read(p: &stats->rx_packets); |
| 11739 | rx_bytes = u64_stats_read(p: &stats->rx_bytes); |
| 11740 | rx_drops = u64_stats_read(p: &stats->rx_drops); |
| 11741 | tx_packets = u64_stats_read(p: &stats->tx_packets); |
| 11742 | tx_bytes = u64_stats_read(p: &stats->tx_bytes); |
| 11743 | tx_drops = u64_stats_read(p: &stats->tx_drops); |
| 11744 | } while (u64_stats_fetch_retry(syncp: &stats->syncp, start)); |
| 11745 | |
| 11746 | s->rx_packets += rx_packets; |
| 11747 | s->rx_bytes += rx_bytes; |
| 11748 | s->rx_dropped += rx_drops; |
| 11749 | s->tx_packets += tx_packets; |
| 11750 | s->tx_bytes += tx_bytes; |
| 11751 | s->tx_dropped += tx_drops; |
| 11752 | } |
| 11753 | } |
| 11754 | |
| 11755 | /* ndo_get_stats64 implementation for dtstats-based accounting. |
| 11756 | * |
| 11757 | * Populate @s from dev->stats and dev->dstats. This is used internally by the |
| 11758 | * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. |
| 11759 | */ |
| 11760 | static void dev_get_dstats64(const struct net_device *dev, |
| 11761 | struct rtnl_link_stats64 *s) |
| 11762 | { |
| 11763 | netdev_stats_to_stats64(stats64: s, netdev_stats: &dev->stats); |
| 11764 | dev_fetch_dstats(s, dstats: dev->dstats); |
| 11765 | } |
| 11766 | |
| 11767 | /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has |
| 11768 | * all the same fields in the same order as net_device_stats, with only |
| 11769 | * the type differing, but rtnl_link_stats64 may have additional fields |
| 11770 | * at the end for newer counters. |
| 11771 | */ |
| 11772 | void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, |
| 11773 | const struct net_device_stats *netdev_stats) |
| 11774 | { |
| 11775 | size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); |
| 11776 | const atomic_long_t *src = (atomic_long_t *)netdev_stats; |
| 11777 | u64 *dst = (u64 *)stats64; |
| 11778 | |
| 11779 | BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); |
| 11780 | for (i = 0; i < n; i++) |
| 11781 | dst[i] = (unsigned long)atomic_long_read(v: &src[i]); |
| 11782 | /* zero out counters that only exist in rtnl_link_stats64 */ |
| 11783 | memset((char *)stats64 + n * sizeof(u64), 0, |
| 11784 | sizeof(*stats64) - n * sizeof(u64)); |
| 11785 | } |
| 11786 | EXPORT_SYMBOL(netdev_stats_to_stats64); |
| 11787 | |
| 11788 | static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( |
| 11789 | struct net_device *dev) |
| 11790 | { |
| 11791 | struct net_device_core_stats __percpu *p; |
| 11792 | |
| 11793 | p = alloc_percpu_gfp(struct net_device_core_stats, |
| 11794 | GFP_ATOMIC | __GFP_NOWARN); |
| 11795 | |
| 11796 | if (p && cmpxchg(&dev->core_stats, NULL, p)) |
| 11797 | free_percpu(pdata: p); |
| 11798 | |
| 11799 | /* This READ_ONCE() pairs with the cmpxchg() above */ |
| 11800 | return READ_ONCE(dev->core_stats); |
| 11801 | } |
| 11802 | |
| 11803 | noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) |
| 11804 | { |
| 11805 | /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ |
| 11806 | struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); |
| 11807 | unsigned long __percpu *field; |
| 11808 | |
| 11809 | if (unlikely(!p)) { |
| 11810 | p = netdev_core_stats_alloc(dev); |
| 11811 | if (!p) |
| 11812 | return; |
| 11813 | } |
| 11814 | |
| 11815 | field = (unsigned long __percpu *)((void __percpu *)p + offset); |
| 11816 | this_cpu_inc(*field); |
| 11817 | } |
| 11818 | EXPORT_SYMBOL_GPL(netdev_core_stats_inc); |
| 11819 | |
| 11820 | /** |
| 11821 | * dev_get_stats - get network device statistics |
| 11822 | * @dev: device to get statistics from |
| 11823 | * @storage: place to store stats |
| 11824 | * |
| 11825 | * Get network statistics from device. Return @storage. |
| 11826 | * The device driver may provide its own method by setting |
| 11827 | * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; |
| 11828 | * otherwise the internal statistics structure is used. |
| 11829 | */ |
| 11830 | struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, |
| 11831 | struct rtnl_link_stats64 *storage) |
| 11832 | { |
| 11833 | const struct net_device_ops *ops = dev->netdev_ops; |
| 11834 | const struct net_device_core_stats __percpu *p; |
| 11835 | |
| 11836 | /* |
| 11837 | * IPv{4,6} and udp tunnels share common stat helpers and use |
| 11838 | * different stat type (NETDEV_PCPU_STAT_TSTATS vs |
| 11839 | * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. |
| 11840 | */ |
| 11841 | BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != |
| 11842 | offsetof(struct pcpu_dstats, rx_bytes)); |
| 11843 | BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != |
| 11844 | offsetof(struct pcpu_dstats, rx_packets)); |
| 11845 | BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != |
| 11846 | offsetof(struct pcpu_dstats, tx_bytes)); |
| 11847 | BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != |
| 11848 | offsetof(struct pcpu_dstats, tx_packets)); |
| 11849 | |
| 11850 | if (ops->ndo_get_stats64) { |
| 11851 | memset(storage, 0, sizeof(*storage)); |
| 11852 | ops->ndo_get_stats64(dev, storage); |
| 11853 | } else if (ops->ndo_get_stats) { |
| 11854 | netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); |
| 11855 | } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { |
| 11856 | dev_get_tstats64(dev, s: storage); |
| 11857 | } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { |
| 11858 | dev_get_dstats64(dev, s: storage); |
| 11859 | } else { |
| 11860 | netdev_stats_to_stats64(storage, &dev->stats); |
| 11861 | } |
| 11862 | |
| 11863 | /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ |
| 11864 | p = READ_ONCE(dev->core_stats); |
| 11865 | if (p) { |
| 11866 | const struct net_device_core_stats *core_stats; |
| 11867 | int i; |
| 11868 | |
| 11869 | for_each_possible_cpu(i) { |
| 11870 | core_stats = per_cpu_ptr(p, i); |
| 11871 | storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); |
| 11872 | storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); |
| 11873 | storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); |
| 11874 | storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); |
| 11875 | } |
| 11876 | } |
| 11877 | return storage; |
| 11878 | } |
| 11879 | EXPORT_SYMBOL(dev_get_stats); |
| 11880 | |
| 11881 | /** |
| 11882 | * dev_fetch_sw_netstats - get per-cpu network device statistics |
| 11883 | * @s: place to store stats |
| 11884 | * @netstats: per-cpu network stats to read from |
| 11885 | * |
| 11886 | * Read per-cpu network statistics and populate the related fields in @s. |
| 11887 | */ |
| 11888 | void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, |
| 11889 | const struct pcpu_sw_netstats __percpu *netstats) |
| 11890 | { |
| 11891 | int cpu; |
| 11892 | |
| 11893 | for_each_possible_cpu(cpu) { |
| 11894 | u64 rx_packets, rx_bytes, tx_packets, tx_bytes; |
| 11895 | const struct pcpu_sw_netstats *stats; |
| 11896 | unsigned int start; |
| 11897 | |
| 11898 | stats = per_cpu_ptr(netstats, cpu); |
| 11899 | do { |
| 11900 | start = u64_stats_fetch_begin(syncp: &stats->syncp); |
| 11901 | rx_packets = u64_stats_read(p: &stats->rx_packets); |
| 11902 | rx_bytes = u64_stats_read(p: &stats->rx_bytes); |
| 11903 | tx_packets = u64_stats_read(p: &stats->tx_packets); |
| 11904 | tx_bytes = u64_stats_read(p: &stats->tx_bytes); |
| 11905 | } while (u64_stats_fetch_retry(syncp: &stats->syncp, start)); |
| 11906 | |
| 11907 | s->rx_packets += rx_packets; |
| 11908 | s->rx_bytes += rx_bytes; |
| 11909 | s->tx_packets += tx_packets; |
| 11910 | s->tx_bytes += tx_bytes; |
| 11911 | } |
| 11912 | } |
| 11913 | EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); |
| 11914 | |
| 11915 | /** |
| 11916 | * dev_get_tstats64 - ndo_get_stats64 implementation |
| 11917 | * @dev: device to get statistics from |
| 11918 | * @s: place to store stats |
| 11919 | * |
| 11920 | * Populate @s from dev->stats and dev->tstats. Can be used as |
| 11921 | * ndo_get_stats64() callback. |
| 11922 | */ |
| 11923 | void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) |
| 11924 | { |
| 11925 | netdev_stats_to_stats64(s, &dev->stats); |
| 11926 | dev_fetch_sw_netstats(s, dev->tstats); |
| 11927 | } |
| 11928 | EXPORT_SYMBOL_GPL(dev_get_tstats64); |
| 11929 | |
| 11930 | struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) |
| 11931 | { |
| 11932 | struct netdev_queue *queue = dev_ingress_queue(dev); |
| 11933 | |
| 11934 | #ifdef CONFIG_NET_CLS_ACT |
| 11935 | if (queue) |
| 11936 | return queue; |
| 11937 | queue = kzalloc(sizeof(*queue), GFP_KERNEL); |
| 11938 | if (!queue) |
| 11939 | return NULL; |
| 11940 | netdev_init_one_queue(dev, queue, NULL); |
| 11941 | RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); |
| 11942 | RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); |
| 11943 | rcu_assign_pointer(dev->ingress_queue, queue); |
| 11944 | #endif |
| 11945 | return queue; |
| 11946 | } |
| 11947 | |
| 11948 | static const struct ethtool_ops default_ethtool_ops; |
| 11949 | |
| 11950 | void netdev_set_default_ethtool_ops(struct net_device *dev, |
| 11951 | const struct ethtool_ops *ops) |
| 11952 | { |
| 11953 | if (dev->ethtool_ops == &default_ethtool_ops) |
| 11954 | dev->ethtool_ops = ops; |
| 11955 | } |
| 11956 | EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); |
| 11957 | |
| 11958 | /** |
| 11959 | * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default |
| 11960 | * @dev: netdev to enable the IRQ coalescing on |
| 11961 | * |
| 11962 | * Sets a conservative default for SW IRQ coalescing. Users can use |
| 11963 | * sysfs attributes to override the default values. |
| 11964 | */ |
| 11965 | void netdev_sw_irq_coalesce_default_on(struct net_device *dev) |
| 11966 | { |
| 11967 | WARN_ON(dev->reg_state == NETREG_REGISTERED); |
| 11968 | |
| 11969 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { |
| 11970 | netdev_set_gro_flush_timeout(netdev: dev, timeout: 20000); |
| 11971 | netdev_set_defer_hard_irqs(netdev: dev, defer: 1); |
| 11972 | } |
| 11973 | } |
| 11974 | EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); |
| 11975 | |
| 11976 | /** |
| 11977 | * alloc_netdev_mqs - allocate network device |
| 11978 | * @sizeof_priv: size of private data to allocate space for |
| 11979 | * @name: device name format string |
| 11980 | * @name_assign_type: origin of device name |
| 11981 | * @setup: callback to initialize device |
| 11982 | * @txqs: the number of TX subqueues to allocate |
| 11983 | * @rxqs: the number of RX subqueues to allocate |
| 11984 | * |
| 11985 | * Allocates a struct net_device with private data area for driver use |
| 11986 | * and performs basic initialization. Also allocates subqueue structs |
| 11987 | * for each queue on the device. |
| 11988 | */ |
| 11989 | struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, |
| 11990 | unsigned char name_assign_type, |
| 11991 | void (*setup)(struct net_device *), |
| 11992 | unsigned int txqs, unsigned int rxqs) |
| 11993 | { |
| 11994 | struct net_device *dev; |
| 11995 | size_t napi_config_sz; |
| 11996 | unsigned int maxqs; |
| 11997 | |
| 11998 | BUG_ON(strlen(name) >= sizeof(dev->name)); |
| 11999 | |
| 12000 | if (txqs < 1) { |
| 12001 | pr_err("alloc_netdev: Unable to allocate device with zero queues\n" ); |
| 12002 | return NULL; |
| 12003 | } |
| 12004 | |
| 12005 | if (rxqs < 1) { |
| 12006 | pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n" ); |
| 12007 | return NULL; |
| 12008 | } |
| 12009 | |
| 12010 | maxqs = max(txqs, rxqs); |
| 12011 | |
| 12012 | dev = kvzalloc(struct_size(dev, priv, sizeof_priv), |
| 12013 | GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); |
| 12014 | if (!dev) |
| 12015 | return NULL; |
| 12016 | |
| 12017 | dev->priv_len = sizeof_priv; |
| 12018 | |
| 12019 | ref_tracker_dir_init(dir: &dev->refcnt_tracker, quarantine_count: 128, class: "netdev" ); |
| 12020 | #ifdef CONFIG_PCPU_DEV_REFCNT |
| 12021 | dev->pcpu_refcnt = alloc_percpu(int); |
| 12022 | if (!dev->pcpu_refcnt) |
| 12023 | goto free_dev; |
| 12024 | __dev_hold(dev); |
| 12025 | #else |
| 12026 | refcount_set(&dev->dev_refcnt, 1); |
| 12027 | #endif |
| 12028 | |
| 12029 | if (dev_addr_init(dev)) |
| 12030 | goto free_pcpu; |
| 12031 | |
| 12032 | dev_mc_init(dev); |
| 12033 | dev_uc_init(dev); |
| 12034 | |
| 12035 | dev_net_set(dev, net: &init_net); |
| 12036 | |
| 12037 | dev->gso_max_size = GSO_LEGACY_MAX_SIZE; |
| 12038 | dev->xdp_zc_max_segs = 1; |
| 12039 | dev->gso_max_segs = GSO_MAX_SEGS; |
| 12040 | dev->gro_max_size = GRO_LEGACY_MAX_SIZE; |
| 12041 | dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; |
| 12042 | dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; |
| 12043 | dev->tso_max_size = TSO_LEGACY_MAX_SIZE; |
| 12044 | dev->tso_max_segs = TSO_MAX_SEGS; |
| 12045 | dev->upper_level = 1; |
| 12046 | dev->lower_level = 1; |
| 12047 | #ifdef CONFIG_LOCKDEP |
| 12048 | dev->nested_level = 0; |
| 12049 | INIT_LIST_HEAD(list: &dev->unlink_list); |
| 12050 | #endif |
| 12051 | |
| 12052 | INIT_LIST_HEAD(list: &dev->napi_list); |
| 12053 | INIT_LIST_HEAD(list: &dev->unreg_list); |
| 12054 | INIT_LIST_HEAD(list: &dev->close_list); |
| 12055 | INIT_LIST_HEAD(list: &dev->link_watch_list); |
| 12056 | INIT_LIST_HEAD(list: &dev->adj_list.upper); |
| 12057 | INIT_LIST_HEAD(list: &dev->adj_list.lower); |
| 12058 | INIT_LIST_HEAD(list: &dev->ptype_all); |
| 12059 | INIT_LIST_HEAD(list: &dev->ptype_specific); |
| 12060 | INIT_LIST_HEAD(list: &dev->net_notifier_list); |
| 12061 | #ifdef CONFIG_NET_SCHED |
| 12062 | hash_init(dev->qdisc_hash); |
| 12063 | #endif |
| 12064 | |
| 12065 | mutex_init(&dev->lock); |
| 12066 | |
| 12067 | dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; |
| 12068 | setup(dev); |
| 12069 | |
| 12070 | if (!dev->tx_queue_len) { |
| 12071 | dev->priv_flags |= IFF_NO_QUEUE; |
| 12072 | dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; |
| 12073 | } |
| 12074 | |
| 12075 | dev->num_tx_queues = txqs; |
| 12076 | dev->real_num_tx_queues = txqs; |
| 12077 | if (netif_alloc_netdev_queues(dev)) |
| 12078 | goto free_all; |
| 12079 | |
| 12080 | dev->num_rx_queues = rxqs; |
| 12081 | dev->real_num_rx_queues = rxqs; |
| 12082 | if (netif_alloc_rx_queues(dev)) |
| 12083 | goto free_all; |
| 12084 | dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); |
| 12085 | if (!dev->ethtool) |
| 12086 | goto free_all; |
| 12087 | |
| 12088 | dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); |
| 12089 | if (!dev->cfg) |
| 12090 | goto free_all; |
| 12091 | dev->cfg_pending = dev->cfg; |
| 12092 | |
| 12093 | dev->num_napi_configs = maxqs; |
| 12094 | napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); |
| 12095 | dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); |
| 12096 | if (!dev->napi_config) |
| 12097 | goto free_all; |
| 12098 | |
| 12099 | strscpy(dev->name, name); |
| 12100 | dev->name_assign_type = name_assign_type; |
| 12101 | dev->group = INIT_NETDEV_GROUP; |
| 12102 | if (!dev->ethtool_ops) |
| 12103 | dev->ethtool_ops = &default_ethtool_ops; |
| 12104 | |
| 12105 | nf_hook_netdev_init(dev); |
| 12106 | |
| 12107 | return dev; |
| 12108 | |
| 12109 | free_all: |
| 12110 | free_netdev(dev); |
| 12111 | return NULL; |
| 12112 | |
| 12113 | free_pcpu: |
| 12114 | #ifdef CONFIG_PCPU_DEV_REFCNT |
| 12115 | free_percpu(pdata: dev->pcpu_refcnt); |
| 12116 | free_dev: |
| 12117 | #endif |
| 12118 | kvfree(addr: dev); |
| 12119 | return NULL; |
| 12120 | } |
| 12121 | EXPORT_SYMBOL(alloc_netdev_mqs); |
| 12122 | |
| 12123 | static void netdev_napi_exit(struct net_device *dev) |
| 12124 | { |
| 12125 | if (!list_empty(head: &dev->napi_list)) { |
| 12126 | struct napi_struct *p, *n; |
| 12127 | |
| 12128 | netdev_lock(dev); |
| 12129 | list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) |
| 12130 | __netif_napi_del_locked(p); |
| 12131 | netdev_unlock(dev); |
| 12132 | |
| 12133 | synchronize_net(); |
| 12134 | } |
| 12135 | |
| 12136 | kvfree(addr: dev->napi_config); |
| 12137 | } |
| 12138 | |
| 12139 | /** |
| 12140 | * free_netdev - free network device |
| 12141 | * @dev: device |
| 12142 | * |
| 12143 | * This function does the last stage of destroying an allocated device |
| 12144 | * interface. The reference to the device object is released. If this |
| 12145 | * is the last reference then it will be freed.Must be called in process |
| 12146 | * context. |
| 12147 | */ |
| 12148 | void free_netdev(struct net_device *dev) |
| 12149 | { |
| 12150 | might_sleep(); |
| 12151 | |
| 12152 | /* When called immediately after register_netdevice() failed the unwind |
| 12153 | * handling may still be dismantling the device. Handle that case by |
| 12154 | * deferring the free. |
| 12155 | */ |
| 12156 | if (dev->reg_state == NETREG_UNREGISTERING) { |
| 12157 | ASSERT_RTNL(); |
| 12158 | dev->needs_free_netdev = true; |
| 12159 | return; |
| 12160 | } |
| 12161 | |
| 12162 | WARN_ON(dev->cfg != dev->cfg_pending); |
| 12163 | kfree(objp: dev->cfg); |
| 12164 | kfree(objp: dev->ethtool); |
| 12165 | netif_free_tx_queues(dev); |
| 12166 | netif_free_rx_queues(dev); |
| 12167 | |
| 12168 | kfree(rcu_dereference_protected(dev->ingress_queue, 1)); |
| 12169 | |
| 12170 | /* Flush device addresses */ |
| 12171 | dev_addr_flush(dev); |
| 12172 | |
| 12173 | netdev_napi_exit(dev); |
| 12174 | |
| 12175 | netif_del_cpu_rmap(dev); |
| 12176 | |
| 12177 | ref_tracker_dir_exit(dir: &dev->refcnt_tracker); |
| 12178 | #ifdef CONFIG_PCPU_DEV_REFCNT |
| 12179 | free_percpu(pdata: dev->pcpu_refcnt); |
| 12180 | dev->pcpu_refcnt = NULL; |
| 12181 | #endif |
| 12182 | free_percpu(pdata: dev->core_stats); |
| 12183 | dev->core_stats = NULL; |
| 12184 | free_percpu(pdata: dev->xdp_bulkq); |
| 12185 | dev->xdp_bulkq = NULL; |
| 12186 | |
| 12187 | netdev_free_phy_link_topology(dev); |
| 12188 | |
| 12189 | mutex_destroy(lock: &dev->lock); |
| 12190 | |
| 12191 | /* Compatibility with error handling in drivers */ |
| 12192 | if (dev->reg_state == NETREG_UNINITIALIZED || |
| 12193 | dev->reg_state == NETREG_DUMMY) { |
| 12194 | kvfree(addr: dev); |
| 12195 | return; |
| 12196 | } |
| 12197 | |
| 12198 | BUG_ON(dev->reg_state != NETREG_UNREGISTERED); |
| 12199 | WRITE_ONCE(dev->reg_state, NETREG_RELEASED); |
| 12200 | |
| 12201 | /* will free via device release */ |
| 12202 | put_device(dev: &dev->dev); |
| 12203 | } |
| 12204 | EXPORT_SYMBOL(free_netdev); |
| 12205 | |
| 12206 | /** |
| 12207 | * alloc_netdev_dummy - Allocate and initialize a dummy net device. |
| 12208 | * @sizeof_priv: size of private data to allocate space for |
| 12209 | * |
| 12210 | * Return: the allocated net_device on success, NULL otherwise |
| 12211 | */ |
| 12212 | struct net_device *alloc_netdev_dummy(int sizeof_priv) |
| 12213 | { |
| 12214 | return alloc_netdev(sizeof_priv, "dummy#" , NET_NAME_UNKNOWN, |
| 12215 | init_dummy_netdev); |
| 12216 | } |
| 12217 | EXPORT_SYMBOL_GPL(alloc_netdev_dummy); |
| 12218 | |
| 12219 | /** |
| 12220 | * synchronize_net - Synchronize with packet receive processing |
| 12221 | * |
| 12222 | * Wait for packets currently being received to be done. |
| 12223 | * Does not block later packets from starting. |
| 12224 | */ |
| 12225 | void synchronize_net(void) |
| 12226 | { |
| 12227 | might_sleep(); |
| 12228 | if (from_cleanup_net() || rtnl_is_locked()) |
| 12229 | synchronize_rcu_expedited(); |
| 12230 | else |
| 12231 | synchronize_rcu(); |
| 12232 | } |
| 12233 | EXPORT_SYMBOL(synchronize_net); |
| 12234 | |
| 12235 | static void (struct net_device *dev) |
| 12236 | { |
| 12237 | struct ethtool_rxfh_context *ctx; |
| 12238 | unsigned long context; |
| 12239 | |
| 12240 | mutex_lock(&dev->ethtool->rss_lock); |
| 12241 | xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { |
| 12242 | xa_erase(&dev->ethtool->rss_ctx, index: context); |
| 12243 | dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); |
| 12244 | kfree(objp: ctx); |
| 12245 | } |
| 12246 | xa_destroy(&dev->ethtool->rss_ctx); |
| 12247 | mutex_unlock(lock: &dev->ethtool->rss_lock); |
| 12248 | } |
| 12249 | |
| 12250 | /** |
| 12251 | * unregister_netdevice_queue - remove device from the kernel |
| 12252 | * @dev: device |
| 12253 | * @head: list |
| 12254 | * |
| 12255 | * This function shuts down a device interface and removes it |
| 12256 | * from the kernel tables. |
| 12257 | * If head not NULL, device is queued to be unregistered later. |
| 12258 | * |
| 12259 | * Callers must hold the rtnl semaphore. You may want |
| 12260 | * unregister_netdev() instead of this. |
| 12261 | */ |
| 12262 | |
| 12263 | void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) |
| 12264 | { |
| 12265 | ASSERT_RTNL(); |
| 12266 | |
| 12267 | if (head) { |
| 12268 | list_move_tail(list: &dev->unreg_list, head); |
| 12269 | } else { |
| 12270 | LIST_HEAD(single); |
| 12271 | |
| 12272 | list_add(new: &dev->unreg_list, head: &single); |
| 12273 | unregister_netdevice_many(head: &single); |
| 12274 | } |
| 12275 | } |
| 12276 | EXPORT_SYMBOL(unregister_netdevice_queue); |
| 12277 | |
| 12278 | static void dev_memory_provider_uninstall(struct net_device *dev) |
| 12279 | { |
| 12280 | unsigned int i; |
| 12281 | |
| 12282 | for (i = 0; i < dev->real_num_rx_queues; i++) { |
| 12283 | struct netdev_rx_queue *rxq = &dev->_rx[i]; |
| 12284 | struct pp_memory_provider_params *p = &rxq->mp_params; |
| 12285 | |
| 12286 | if (p->mp_ops && p->mp_ops->uninstall) |
| 12287 | p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); |
| 12288 | } |
| 12289 | } |
| 12290 | |
| 12291 | /* devices must be UP and netdev_lock()'d */ |
| 12292 | static void netif_close_many_and_unlock(struct list_head *close_head) |
| 12293 | { |
| 12294 | struct net_device *dev, *tmp; |
| 12295 | |
| 12296 | netif_close_many(close_head, false); |
| 12297 | |
| 12298 | /* ... now unlock them */ |
| 12299 | list_for_each_entry_safe(dev, tmp, close_head, close_list) { |
| 12300 | netdev_unlock(dev); |
| 12301 | list_del_init(entry: &dev->close_list); |
| 12302 | } |
| 12303 | } |
| 12304 | |
| 12305 | static void netif_close_many_and_unlock_cond(struct list_head *close_head) |
| 12306 | { |
| 12307 | #ifdef CONFIG_LOCKDEP |
| 12308 | /* We can only track up to MAX_LOCK_DEPTH locks per task. |
| 12309 | * |
| 12310 | * Reserve half the available slots for additional locks possibly |
| 12311 | * taken by notifiers and (soft)irqs. |
| 12312 | */ |
| 12313 | unsigned int limit = MAX_LOCK_DEPTH / 2; |
| 12314 | |
| 12315 | if (lockdep_depth(current) > limit) |
| 12316 | netif_close_many_and_unlock(close_head); |
| 12317 | #endif |
| 12318 | } |
| 12319 | |
| 12320 | void unregister_netdevice_many_notify(struct list_head *head, |
| 12321 | u32 portid, const struct nlmsghdr *nlh) |
| 12322 | { |
| 12323 | struct net_device *dev, *tmp; |
| 12324 | LIST_HEAD(close_head); |
| 12325 | int cnt = 0; |
| 12326 | |
| 12327 | BUG_ON(dev_boot_phase); |
| 12328 | ASSERT_RTNL(); |
| 12329 | |
| 12330 | if (list_empty(head)) |
| 12331 | return; |
| 12332 | |
| 12333 | list_for_each_entry_safe(dev, tmp, head, unreg_list) { |
| 12334 | /* Some devices call without registering |
| 12335 | * for initialization unwind. Remove those |
| 12336 | * devices and proceed with the remaining. |
| 12337 | */ |
| 12338 | if (dev->reg_state == NETREG_UNINITIALIZED) { |
| 12339 | pr_debug("unregister_netdevice: device %s/%p never was registered\n" , |
| 12340 | dev->name, dev); |
| 12341 | |
| 12342 | WARN_ON(1); |
| 12343 | list_del(entry: &dev->unreg_list); |
| 12344 | continue; |
| 12345 | } |
| 12346 | dev->dismantle = true; |
| 12347 | BUG_ON(dev->reg_state != NETREG_REGISTERED); |
| 12348 | } |
| 12349 | |
| 12350 | /* If device is running, close it first. Start with ops locked... */ |
| 12351 | list_for_each_entry(dev, head, unreg_list) { |
| 12352 | if (!(dev->flags & IFF_UP)) |
| 12353 | continue; |
| 12354 | if (netdev_need_ops_lock(dev)) { |
| 12355 | list_add_tail(new: &dev->close_list, head: &close_head); |
| 12356 | netdev_lock(dev); |
| 12357 | } |
| 12358 | netif_close_many_and_unlock_cond(close_head: &close_head); |
| 12359 | } |
| 12360 | netif_close_many_and_unlock(close_head: &close_head); |
| 12361 | /* ... now go over the rest. */ |
| 12362 | list_for_each_entry(dev, head, unreg_list) { |
| 12363 | if (!netdev_need_ops_lock(dev)) |
| 12364 | list_add_tail(new: &dev->close_list, head: &close_head); |
| 12365 | } |
| 12366 | netif_close_many(&close_head, true); |
| 12367 | |
| 12368 | list_for_each_entry(dev, head, unreg_list) { |
| 12369 | /* And unlink it from device chain. */ |
| 12370 | unlist_netdevice(dev); |
| 12371 | netdev_lock(dev); |
| 12372 | WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); |
| 12373 | netdev_unlock(dev); |
| 12374 | } |
| 12375 | flush_all_backlogs(); |
| 12376 | |
| 12377 | synchronize_net(); |
| 12378 | |
| 12379 | list_for_each_entry(dev, head, unreg_list) { |
| 12380 | struct sk_buff *skb = NULL; |
| 12381 | |
| 12382 | /* Shutdown queueing discipline. */ |
| 12383 | netdev_lock_ops(dev); |
| 12384 | dev_shutdown(dev); |
| 12385 | dev_tcx_uninstall(dev); |
| 12386 | dev_xdp_uninstall(dev); |
| 12387 | dev_memory_provider_uninstall(dev); |
| 12388 | netdev_unlock_ops(dev); |
| 12389 | bpf_dev_bound_netdev_unregister(dev); |
| 12390 | |
| 12391 | netdev_offload_xstats_disable_all(dev); |
| 12392 | |
| 12393 | /* Notify protocols, that we are about to destroy |
| 12394 | * this device. They should clean all the things. |
| 12395 | */ |
| 12396 | call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
| 12397 | |
| 12398 | if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) |
| 12399 | skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, change: ~0U, event: 0, |
| 12400 | GFP_KERNEL, NULL, new_ifindex: 0, |
| 12401 | portid, nlh); |
| 12402 | |
| 12403 | /* |
| 12404 | * Flush the unicast and multicast chains |
| 12405 | */ |
| 12406 | dev_uc_flush(dev); |
| 12407 | dev_mc_flush(dev); |
| 12408 | |
| 12409 | netdev_name_node_alt_flush(dev); |
| 12410 | netdev_name_node_free(name_node: dev->name_node); |
| 12411 | |
| 12412 | netdev_rss_contexts_free(dev); |
| 12413 | |
| 12414 | call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); |
| 12415 | |
| 12416 | if (dev->netdev_ops->ndo_uninit) |
| 12417 | dev->netdev_ops->ndo_uninit(dev); |
| 12418 | |
| 12419 | mutex_destroy(lock: &dev->ethtool->rss_lock); |
| 12420 | |
| 12421 | net_shaper_flush_netdev(dev); |
| 12422 | |
| 12423 | if (skb) |
| 12424 | rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); |
| 12425 | |
| 12426 | /* Notifier chain MUST detach us all upper devices. */ |
| 12427 | WARN_ON(netdev_has_any_upper_dev(dev)); |
| 12428 | WARN_ON(netdev_has_any_lower_dev(dev)); |
| 12429 | |
| 12430 | /* Remove entries from kobject tree */ |
| 12431 | netdev_unregister_kobject(dev); |
| 12432 | #ifdef CONFIG_XPS |
| 12433 | /* Remove XPS queueing entries */ |
| 12434 | netif_reset_xps_queues_gt(dev, index: 0); |
| 12435 | #endif |
| 12436 | } |
| 12437 | |
| 12438 | synchronize_net(); |
| 12439 | |
| 12440 | list_for_each_entry(dev, head, unreg_list) { |
| 12441 | netdev_put(dev, tracker: &dev->dev_registered_tracker); |
| 12442 | net_set_todo(dev); |
| 12443 | cnt++; |
| 12444 | } |
| 12445 | atomic_add(i: cnt, v: &dev_unreg_count); |
| 12446 | |
| 12447 | list_del(entry: head); |
| 12448 | } |
| 12449 | |
| 12450 | /** |
| 12451 | * unregister_netdevice_many - unregister many devices |
| 12452 | * @head: list of devices |
| 12453 | * |
| 12454 | * Note: As most callers use a stack allocated list_head, |
| 12455 | * we force a list_del() to make sure stack won't be corrupted later. |
| 12456 | */ |
| 12457 | void unregister_netdevice_many(struct list_head *head) |
| 12458 | { |
| 12459 | unregister_netdevice_many_notify(head, portid: 0, NULL); |
| 12460 | } |
| 12461 | EXPORT_SYMBOL(unregister_netdevice_many); |
| 12462 | |
| 12463 | /** |
| 12464 | * unregister_netdev - remove device from the kernel |
| 12465 | * @dev: device |
| 12466 | * |
| 12467 | * This function shuts down a device interface and removes it |
| 12468 | * from the kernel tables. |
| 12469 | * |
| 12470 | * This is just a wrapper for unregister_netdevice that takes |
| 12471 | * the rtnl semaphore. In general you want to use this and not |
| 12472 | * unregister_netdevice. |
| 12473 | */ |
| 12474 | void unregister_netdev(struct net_device *dev) |
| 12475 | { |
| 12476 | rtnl_net_dev_lock(dev); |
| 12477 | unregister_netdevice(dev); |
| 12478 | rtnl_net_dev_unlock(dev); |
| 12479 | } |
| 12480 | EXPORT_SYMBOL(unregister_netdev); |
| 12481 | |
| 12482 | int __dev_change_net_namespace(struct net_device *dev, struct net *net, |
| 12483 | const char *pat, int new_ifindex, |
| 12484 | struct netlink_ext_ack *extack) |
| 12485 | { |
| 12486 | struct netdev_name_node *name_node; |
| 12487 | struct net *net_old = dev_net(dev); |
| 12488 | char new_name[IFNAMSIZ] = {}; |
| 12489 | int err, new_nsid; |
| 12490 | |
| 12491 | ASSERT_RTNL(); |
| 12492 | |
| 12493 | /* Don't allow namespace local devices to be moved. */ |
| 12494 | err = -EINVAL; |
| 12495 | if (dev->netns_immutable) { |
| 12496 | NL_SET_ERR_MSG(extack, "The interface netns is immutable" ); |
| 12497 | goto out; |
| 12498 | } |
| 12499 | |
| 12500 | /* Ensure the device has been registered */ |
| 12501 | if (dev->reg_state != NETREG_REGISTERED) { |
| 12502 | NL_SET_ERR_MSG(extack, "The interface isn't registered" ); |
| 12503 | goto out; |
| 12504 | } |
| 12505 | |
| 12506 | /* Get out if there is nothing todo */ |
| 12507 | err = 0; |
| 12508 | if (net_eq(net1: net_old, net2: net)) |
| 12509 | goto out; |
| 12510 | |
| 12511 | /* Pick the destination device name, and ensure |
| 12512 | * we can use it in the destination network namespace. |
| 12513 | */ |
| 12514 | err = -EEXIST; |
| 12515 | if (netdev_name_in_use(net, dev->name)) { |
| 12516 | /* We get here if we can't use the current device name */ |
| 12517 | if (!pat) { |
| 12518 | NL_SET_ERR_MSG(extack, |
| 12519 | "An interface with the same name exists in the target netns" ); |
| 12520 | goto out; |
| 12521 | } |
| 12522 | err = dev_prep_valid_name(net, dev, want_name: pat, out_name: new_name, EEXIST); |
| 12523 | if (err < 0) { |
| 12524 | NL_SET_ERR_MSG_FMT(extack, |
| 12525 | "Unable to use '%s' for the new interface name in the target netns" , |
| 12526 | pat); |
| 12527 | goto out; |
| 12528 | } |
| 12529 | } |
| 12530 | /* Check that none of the altnames conflicts. */ |
| 12531 | err = -EEXIST; |
| 12532 | netdev_for_each_altname(dev, name_node) { |
| 12533 | if (netdev_name_in_use(net, name_node->name)) { |
| 12534 | NL_SET_ERR_MSG_FMT(extack, |
| 12535 | "An interface with the altname %s exists in the target netns" , |
| 12536 | name_node->name); |
| 12537 | goto out; |
| 12538 | } |
| 12539 | } |
| 12540 | |
| 12541 | /* Check that new_ifindex isn't used yet. */ |
| 12542 | if (new_ifindex) { |
| 12543 | err = dev_index_reserve(net, ifindex: new_ifindex); |
| 12544 | if (err < 0) { |
| 12545 | NL_SET_ERR_MSG_FMT(extack, |
| 12546 | "The ifindex %d is not available in the target netns" , |
| 12547 | new_ifindex); |
| 12548 | goto out; |
| 12549 | } |
| 12550 | } else { |
| 12551 | /* If there is an ifindex conflict assign a new one */ |
| 12552 | err = dev_index_reserve(net, ifindex: dev->ifindex); |
| 12553 | if (err == -EBUSY) |
| 12554 | err = dev_index_reserve(net, ifindex: 0); |
| 12555 | if (err < 0) { |
| 12556 | NL_SET_ERR_MSG(extack, |
| 12557 | "Unable to allocate a new ifindex in the target netns" ); |
| 12558 | goto out; |
| 12559 | } |
| 12560 | new_ifindex = err; |
| 12561 | } |
| 12562 | |
| 12563 | /* |
| 12564 | * And now a mini version of register_netdevice unregister_netdevice. |
| 12565 | */ |
| 12566 | |
| 12567 | netdev_lock_ops(dev); |
| 12568 | /* If device is running close it first. */ |
| 12569 | netif_close(dev); |
| 12570 | /* And unlink it from device chain */ |
| 12571 | unlist_netdevice(dev); |
| 12572 | |
| 12573 | if (!netdev_need_ops_lock(dev)) |
| 12574 | netdev_lock(dev); |
| 12575 | dev->moving_ns = true; |
| 12576 | netdev_unlock(dev); |
| 12577 | |
| 12578 | synchronize_net(); |
| 12579 | |
| 12580 | /* Shutdown queueing discipline. */ |
| 12581 | netdev_lock_ops(dev); |
| 12582 | dev_shutdown(dev); |
| 12583 | netdev_unlock_ops(dev); |
| 12584 | |
| 12585 | /* Notify protocols, that we are about to destroy |
| 12586 | * this device. They should clean all the things. |
| 12587 | * |
| 12588 | * Note that dev->reg_state stays at NETREG_REGISTERED. |
| 12589 | * This is wanted because this way 8021q and macvlan know |
| 12590 | * the device is just moving and can keep their slaves up. |
| 12591 | */ |
| 12592 | call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
| 12593 | rcu_barrier(); |
| 12594 | |
| 12595 | new_nsid = peernet2id_alloc(net: dev_net(dev), peer: net, GFP_KERNEL); |
| 12596 | |
| 12597 | rtmsg_ifinfo_newnet(RTM_DELLINK, dev, change: ~0U, GFP_KERNEL, new_nsid: &new_nsid, |
| 12598 | new_ifindex); |
| 12599 | |
| 12600 | /* |
| 12601 | * Flush the unicast and multicast chains |
| 12602 | */ |
| 12603 | dev_uc_flush(dev); |
| 12604 | dev_mc_flush(dev); |
| 12605 | |
| 12606 | /* Send a netdev-removed uevent to the old namespace */ |
| 12607 | kobject_uevent(kobj: &dev->dev.kobj, action: KOBJ_REMOVE); |
| 12608 | netdev_adjacent_del_links(dev); |
| 12609 | |
| 12610 | /* Move per-net netdevice notifiers that are following the netdevice */ |
| 12611 | move_netdevice_notifiers_dev_net(dev, net); |
| 12612 | |
| 12613 | /* Actually switch the network namespace */ |
| 12614 | netdev_lock(dev); |
| 12615 | dev_net_set(dev, net); |
| 12616 | netdev_unlock(dev); |
| 12617 | dev->ifindex = new_ifindex; |
| 12618 | |
| 12619 | if (new_name[0]) { |
| 12620 | /* Rename the netdev to prepared name */ |
| 12621 | write_seqlock_bh(sl: &netdev_rename_lock); |
| 12622 | strscpy(dev->name, new_name, IFNAMSIZ); |
| 12623 | write_sequnlock_bh(sl: &netdev_rename_lock); |
| 12624 | } |
| 12625 | |
| 12626 | /* Fixup kobjects */ |
| 12627 | dev_set_uevent_suppress(dev: &dev->dev, val: 1); |
| 12628 | err = device_rename(dev: &dev->dev, new_name: dev->name); |
| 12629 | dev_set_uevent_suppress(dev: &dev->dev, val: 0); |
| 12630 | WARN_ON(err); |
| 12631 | |
| 12632 | /* Send a netdev-add uevent to the new namespace */ |
| 12633 | kobject_uevent(kobj: &dev->dev.kobj, action: KOBJ_ADD); |
| 12634 | netdev_adjacent_add_links(dev); |
| 12635 | |
| 12636 | /* Adapt owner in case owning user namespace of target network |
| 12637 | * namespace is different from the original one. |
| 12638 | */ |
| 12639 | err = netdev_change_owner(dev, net_old, net_new: net); |
| 12640 | WARN_ON(err); |
| 12641 | |
| 12642 | netdev_lock(dev); |
| 12643 | dev->moving_ns = false; |
| 12644 | if (!netdev_need_ops_lock(dev)) |
| 12645 | netdev_unlock(dev); |
| 12646 | |
| 12647 | /* Add the device back in the hashes */ |
| 12648 | list_netdevice(dev); |
| 12649 | /* Notify protocols, that a new device appeared. */ |
| 12650 | call_netdevice_notifiers(NETDEV_REGISTER, dev); |
| 12651 | netdev_unlock_ops(dev); |
| 12652 | |
| 12653 | /* |
| 12654 | * Prevent userspace races by waiting until the network |
| 12655 | * device is fully setup before sending notifications. |
| 12656 | */ |
| 12657 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: ~0U, GFP_KERNEL, portid: 0, NULL); |
| 12658 | |
| 12659 | synchronize_net(); |
| 12660 | err = 0; |
| 12661 | out: |
| 12662 | return err; |
| 12663 | } |
| 12664 | |
| 12665 | static int dev_cpu_dead(unsigned int oldcpu) |
| 12666 | { |
| 12667 | struct sk_buff **list_skb; |
| 12668 | struct sk_buff *skb; |
| 12669 | unsigned int cpu; |
| 12670 | struct softnet_data *sd, *oldsd, *remsd = NULL; |
| 12671 | |
| 12672 | local_irq_disable(); |
| 12673 | cpu = smp_processor_id(); |
| 12674 | sd = &per_cpu(softnet_data, cpu); |
| 12675 | oldsd = &per_cpu(softnet_data, oldcpu); |
| 12676 | |
| 12677 | /* Find end of our completion_queue. */ |
| 12678 | list_skb = &sd->completion_queue; |
| 12679 | while (*list_skb) |
| 12680 | list_skb = &(*list_skb)->next; |
| 12681 | /* Append completion queue from offline CPU. */ |
| 12682 | *list_skb = oldsd->completion_queue; |
| 12683 | oldsd->completion_queue = NULL; |
| 12684 | |
| 12685 | /* Append output queue from offline CPU. */ |
| 12686 | if (oldsd->output_queue) { |
| 12687 | *sd->output_queue_tailp = oldsd->output_queue; |
| 12688 | sd->output_queue_tailp = oldsd->output_queue_tailp; |
| 12689 | oldsd->output_queue = NULL; |
| 12690 | oldsd->output_queue_tailp = &oldsd->output_queue; |
| 12691 | } |
| 12692 | /* Append NAPI poll list from offline CPU, with one exception : |
| 12693 | * process_backlog() must be called by cpu owning percpu backlog. |
| 12694 | * We properly handle process_queue & input_pkt_queue later. |
| 12695 | */ |
| 12696 | while (!list_empty(head: &oldsd->poll_list)) { |
| 12697 | struct napi_struct *napi = list_first_entry(&oldsd->poll_list, |
| 12698 | struct napi_struct, |
| 12699 | poll_list); |
| 12700 | |
| 12701 | list_del_init(entry: &napi->poll_list); |
| 12702 | if (napi->poll == process_backlog) |
| 12703 | napi->state &= NAPIF_STATE_THREADED; |
| 12704 | else |
| 12705 | ____napi_schedule(sd, napi); |
| 12706 | } |
| 12707 | |
| 12708 | raise_softirq_irqoff(nr: NET_TX_SOFTIRQ); |
| 12709 | local_irq_enable(); |
| 12710 | |
| 12711 | if (!use_backlog_threads()) { |
| 12712 | #ifdef CONFIG_RPS |
| 12713 | remsd = oldsd->rps_ipi_list; |
| 12714 | oldsd->rps_ipi_list = NULL; |
| 12715 | #endif |
| 12716 | /* send out pending IPI's on offline CPU */ |
| 12717 | net_rps_send_ipi(remsd); |
| 12718 | } |
| 12719 | |
| 12720 | /* Process offline CPU's input_pkt_queue */ |
| 12721 | while ((skb = __skb_dequeue(list: &oldsd->process_queue))) { |
| 12722 | netif_rx(skb); |
| 12723 | rps_input_queue_head_incr(sd: oldsd); |
| 12724 | } |
| 12725 | while ((skb = skb_dequeue(list: &oldsd->input_pkt_queue))) { |
| 12726 | netif_rx(skb); |
| 12727 | rps_input_queue_head_incr(sd: oldsd); |
| 12728 | } |
| 12729 | |
| 12730 | return 0; |
| 12731 | } |
| 12732 | |
| 12733 | /** |
| 12734 | * netdev_increment_features - increment feature set by one |
| 12735 | * @all: current feature set |
| 12736 | * @one: new feature set |
| 12737 | * @mask: mask feature set |
| 12738 | * |
| 12739 | * Computes a new feature set after adding a device with feature set |
| 12740 | * @one to the master device with current feature set @all. Will not |
| 12741 | * enable anything that is off in @mask. Returns the new feature set. |
| 12742 | */ |
| 12743 | netdev_features_t netdev_increment_features(netdev_features_t all, |
| 12744 | netdev_features_t one, netdev_features_t mask) |
| 12745 | { |
| 12746 | if (mask & NETIF_F_HW_CSUM) |
| 12747 | mask |= NETIF_F_CSUM_MASK; |
| 12748 | mask |= NETIF_F_VLAN_CHALLENGED; |
| 12749 | |
| 12750 | all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; |
| 12751 | all &= one | ~NETIF_F_ALL_FOR_ALL; |
| 12752 | |
| 12753 | /* If one device supports hw checksumming, set for all. */ |
| 12754 | if (all & NETIF_F_HW_CSUM) |
| 12755 | all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); |
| 12756 | |
| 12757 | return all; |
| 12758 | } |
| 12759 | EXPORT_SYMBOL(netdev_increment_features); |
| 12760 | |
| 12761 | /** |
| 12762 | * netdev_compute_master_upper_features - compute feature from lowers |
| 12763 | * @dev: the upper device |
| 12764 | * @update_header: whether to update upper device's header_len/headroom/tailroom |
| 12765 | * |
| 12766 | * Recompute the upper device's feature based on all lower devices. |
| 12767 | */ |
| 12768 | void netdev_compute_master_upper_features(struct net_device *dev, bool ) |
| 12769 | { |
| 12770 | unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; |
| 12771 | netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES; |
| 12772 | netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES; |
| 12773 | netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES; |
| 12774 | netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES; |
| 12775 | netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES; |
| 12776 | unsigned short = ETH_HLEN; |
| 12777 | unsigned int tso_max_size = TSO_MAX_SIZE; |
| 12778 | unsigned short max_headroom = 0; |
| 12779 | unsigned short max_tailroom = 0; |
| 12780 | u16 tso_max_segs = TSO_MAX_SEGS; |
| 12781 | struct net_device *lower_dev; |
| 12782 | struct list_head *iter; |
| 12783 | |
| 12784 | mpls_features = netdev_base_features(features: mpls_features); |
| 12785 | vlan_features = netdev_base_features(features: vlan_features); |
| 12786 | enc_features = netdev_base_features(features: enc_features); |
| 12787 | |
| 12788 | netdev_for_each_lower_dev(dev, lower_dev, iter) { |
| 12789 | gso_partial_features = netdev_increment_features(gso_partial_features, |
| 12790 | lower_dev->gso_partial_features, |
| 12791 | MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES); |
| 12792 | |
| 12793 | vlan_features = netdev_increment_features(vlan_features, |
| 12794 | lower_dev->vlan_features, |
| 12795 | MASTER_UPPER_DEV_VLAN_FEATURES); |
| 12796 | |
| 12797 | enc_features = netdev_increment_features(enc_features, |
| 12798 | lower_dev->hw_enc_features, |
| 12799 | MASTER_UPPER_DEV_ENC_FEATURES); |
| 12800 | |
| 12801 | if (IS_ENABLED(CONFIG_XFRM_OFFLOAD)) |
| 12802 | xfrm_features = netdev_increment_features(xfrm_features, |
| 12803 | lower_dev->hw_enc_features, |
| 12804 | MASTER_UPPER_DEV_XFRM_FEATURES); |
| 12805 | |
| 12806 | mpls_features = netdev_increment_features(mpls_features, |
| 12807 | lower_dev->mpls_features, |
| 12808 | MASTER_UPPER_DEV_MPLS_FEATURES); |
| 12809 | |
| 12810 | dst_release_flag &= lower_dev->priv_flags; |
| 12811 | |
| 12812 | if (update_header) { |
| 12813 | max_header_len = max(max_header_len, lower_dev->hard_header_len); |
| 12814 | max_headroom = max(max_headroom, lower_dev->needed_headroom); |
| 12815 | max_tailroom = max(max_tailroom, lower_dev->needed_tailroom); |
| 12816 | } |
| 12817 | |
| 12818 | tso_max_size = min(tso_max_size, lower_dev->tso_max_size); |
| 12819 | tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs); |
| 12820 | } |
| 12821 | |
| 12822 | dev->gso_partial_features = gso_partial_features; |
| 12823 | dev->vlan_features = vlan_features; |
| 12824 | dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL | |
| 12825 | NETIF_F_HW_VLAN_CTAG_TX | |
| 12826 | NETIF_F_HW_VLAN_STAG_TX; |
| 12827 | if (IS_ENABLED(CONFIG_XFRM_OFFLOAD)) |
| 12828 | dev->hw_enc_features |= xfrm_features; |
| 12829 | dev->mpls_features = mpls_features; |
| 12830 | |
| 12831 | dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; |
| 12832 | if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) && |
| 12833 | dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM)) |
| 12834 | dev->priv_flags |= IFF_XMIT_DST_RELEASE; |
| 12835 | |
| 12836 | if (update_header) { |
| 12837 | dev->hard_header_len = max_header_len; |
| 12838 | dev->needed_headroom = max_headroom; |
| 12839 | dev->needed_tailroom = max_tailroom; |
| 12840 | } |
| 12841 | |
| 12842 | netif_set_tso_max_segs(dev, tso_max_segs); |
| 12843 | netif_set_tso_max_size(dev, tso_max_size); |
| 12844 | |
| 12845 | netdev_change_features(dev); |
| 12846 | } |
| 12847 | EXPORT_SYMBOL(netdev_compute_master_upper_features); |
| 12848 | |
| 12849 | static struct hlist_head * __net_init netdev_create_hash(void) |
| 12850 | { |
| 12851 | int i; |
| 12852 | struct hlist_head *hash; |
| 12853 | |
| 12854 | hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); |
| 12855 | if (hash != NULL) |
| 12856 | for (i = 0; i < NETDEV_HASHENTRIES; i++) |
| 12857 | INIT_HLIST_HEAD(&hash[i]); |
| 12858 | |
| 12859 | return hash; |
| 12860 | } |
| 12861 | |
| 12862 | /* Initialize per network namespace state */ |
| 12863 | static int __net_init netdev_init(struct net *net) |
| 12864 | { |
| 12865 | BUILD_BUG_ON(GRO_HASH_BUCKETS > |
| 12866 | BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); |
| 12867 | |
| 12868 | INIT_LIST_HEAD(list: &net->dev_base_head); |
| 12869 | |
| 12870 | net->dev_name_head = netdev_create_hash(); |
| 12871 | if (net->dev_name_head == NULL) |
| 12872 | goto err_name; |
| 12873 | |
| 12874 | net->dev_index_head = netdev_create_hash(); |
| 12875 | if (net->dev_index_head == NULL) |
| 12876 | goto err_idx; |
| 12877 | |
| 12878 | xa_init_flags(xa: &net->dev_by_index, XA_FLAGS_ALLOC1); |
| 12879 | |
| 12880 | RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); |
| 12881 | |
| 12882 | return 0; |
| 12883 | |
| 12884 | err_idx: |
| 12885 | kfree(objp: net->dev_name_head); |
| 12886 | err_name: |
| 12887 | return -ENOMEM; |
| 12888 | } |
| 12889 | |
| 12890 | /** |
| 12891 | * netdev_drivername - network driver for the device |
| 12892 | * @dev: network device |
| 12893 | * |
| 12894 | * Determine network driver for device. |
| 12895 | */ |
| 12896 | const char *netdev_drivername(const struct net_device *dev) |
| 12897 | { |
| 12898 | const struct device_driver *driver; |
| 12899 | const struct device *parent; |
| 12900 | const char *empty = "" ; |
| 12901 | |
| 12902 | parent = dev->dev.parent; |
| 12903 | if (!parent) |
| 12904 | return empty; |
| 12905 | |
| 12906 | driver = parent->driver; |
| 12907 | if (driver && driver->name) |
| 12908 | return driver->name; |
| 12909 | return empty; |
| 12910 | } |
| 12911 | |
| 12912 | static void __netdev_printk(const char *level, const struct net_device *dev, |
| 12913 | struct va_format *vaf) |
| 12914 | { |
| 12915 | if (dev && dev->dev.parent) { |
| 12916 | dev_printk_emit(level: level[1] - '0', |
| 12917 | dev: dev->dev.parent, |
| 12918 | fmt: "%s %s %s%s: %pV" , |
| 12919 | dev_driver_string(dev: dev->dev.parent), |
| 12920 | dev_name(dev: dev->dev.parent), |
| 12921 | netdev_name(dev), netdev_reg_state(dev), |
| 12922 | vaf); |
| 12923 | } else if (dev) { |
| 12924 | printk("%s%s%s: %pV" , |
| 12925 | level, netdev_name(dev), netdev_reg_state(dev), vaf); |
| 12926 | } else { |
| 12927 | printk("%s(NULL net_device): %pV" , level, vaf); |
| 12928 | } |
| 12929 | } |
| 12930 | |
| 12931 | void netdev_printk(const char *level, const struct net_device *dev, |
| 12932 | const char *format, ...) |
| 12933 | { |
| 12934 | struct va_format vaf; |
| 12935 | va_list args; |
| 12936 | |
| 12937 | va_start(args, format); |
| 12938 | |
| 12939 | vaf.fmt = format; |
| 12940 | vaf.va = &args; |
| 12941 | |
| 12942 | __netdev_printk(level, dev, vaf: &vaf); |
| 12943 | |
| 12944 | va_end(args); |
| 12945 | } |
| 12946 | EXPORT_SYMBOL(netdev_printk); |
| 12947 | |
| 12948 | #define define_netdev_printk_level(func, level) \ |
| 12949 | void func(const struct net_device *dev, const char *fmt, ...) \ |
| 12950 | { \ |
| 12951 | struct va_format vaf; \ |
| 12952 | va_list args; \ |
| 12953 | \ |
| 12954 | va_start(args, fmt); \ |
| 12955 | \ |
| 12956 | vaf.fmt = fmt; \ |
| 12957 | vaf.va = &args; \ |
| 12958 | \ |
| 12959 | __netdev_printk(level, dev, &vaf); \ |
| 12960 | \ |
| 12961 | va_end(args); \ |
| 12962 | } \ |
| 12963 | EXPORT_SYMBOL(func); |
| 12964 | |
| 12965 | define_netdev_printk_level(netdev_emerg, KERN_EMERG); |
| 12966 | define_netdev_printk_level(netdev_alert, KERN_ALERT); |
| 12967 | define_netdev_printk_level(netdev_crit, KERN_CRIT); |
| 12968 | define_netdev_printk_level(netdev_err, KERN_ERR); |
| 12969 | define_netdev_printk_level(netdev_warn, KERN_WARNING); |
| 12970 | define_netdev_printk_level(netdev_notice, KERN_NOTICE); |
| 12971 | define_netdev_printk_level(netdev_info, KERN_INFO); |
| 12972 | |
| 12973 | static void __net_exit netdev_exit(struct net *net) |
| 12974 | { |
| 12975 | kfree(objp: net->dev_name_head); |
| 12976 | kfree(objp: net->dev_index_head); |
| 12977 | xa_destroy(&net->dev_by_index); |
| 12978 | if (net != &init_net) |
| 12979 | WARN_ON_ONCE(!list_empty(&net->dev_base_head)); |
| 12980 | } |
| 12981 | |
| 12982 | static struct pernet_operations __net_initdata netdev_net_ops = { |
| 12983 | .init = netdev_init, |
| 12984 | .exit = netdev_exit, |
| 12985 | }; |
| 12986 | |
| 12987 | static void __net_exit default_device_exit_net(struct net *net) |
| 12988 | { |
| 12989 | struct netdev_name_node *name_node, *tmp; |
| 12990 | struct net_device *dev, *aux; |
| 12991 | /* |
| 12992 | * Push all migratable network devices back to the |
| 12993 | * initial network namespace |
| 12994 | */ |
| 12995 | ASSERT_RTNL(); |
| 12996 | for_each_netdev_safe(net, dev, aux) { |
| 12997 | int err; |
| 12998 | char fb_name[IFNAMSIZ]; |
| 12999 | |
| 13000 | /* Ignore unmoveable devices (i.e. loopback) */ |
| 13001 | if (dev->netns_immutable) |
| 13002 | continue; |
| 13003 | |
| 13004 | /* Leave virtual devices for the generic cleanup */ |
| 13005 | if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) |
| 13006 | continue; |
| 13007 | |
| 13008 | /* Push remaining network devices to init_net */ |
| 13009 | snprintf(buf: fb_name, IFNAMSIZ, fmt: "dev%d" , dev->ifindex); |
| 13010 | if (netdev_name_in_use(&init_net, fb_name)) |
| 13011 | snprintf(buf: fb_name, IFNAMSIZ, fmt: "dev%%d" ); |
| 13012 | |
| 13013 | netdev_for_each_altname_safe(dev, name_node, tmp) |
| 13014 | if (netdev_name_in_use(&init_net, name_node->name)) |
| 13015 | __netdev_name_node_alt_destroy(name_node); |
| 13016 | |
| 13017 | err = dev_change_net_namespace(dev, net: &init_net, pat: fb_name); |
| 13018 | if (err) { |
| 13019 | pr_emerg("%s: failed to move %s to init_net: %d\n" , |
| 13020 | __func__, dev->name, err); |
| 13021 | BUG(); |
| 13022 | } |
| 13023 | } |
| 13024 | } |
| 13025 | |
| 13026 | static void __net_exit default_device_exit_batch(struct list_head *net_list) |
| 13027 | { |
| 13028 | /* At exit all network devices most be removed from a network |
| 13029 | * namespace. Do this in the reverse order of registration. |
| 13030 | * Do this across as many network namespaces as possible to |
| 13031 | * improve batching efficiency. |
| 13032 | */ |
| 13033 | struct net_device *dev; |
| 13034 | struct net *net; |
| 13035 | LIST_HEAD(dev_kill_list); |
| 13036 | |
| 13037 | rtnl_lock(); |
| 13038 | list_for_each_entry(net, net_list, exit_list) { |
| 13039 | default_device_exit_net(net); |
| 13040 | cond_resched(); |
| 13041 | } |
| 13042 | |
| 13043 | list_for_each_entry(net, net_list, exit_list) { |
| 13044 | for_each_netdev_reverse(net, dev) { |
| 13045 | if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) |
| 13046 | dev->rtnl_link_ops->dellink(dev, &dev_kill_list); |
| 13047 | else |
| 13048 | unregister_netdevice_queue(dev, &dev_kill_list); |
| 13049 | } |
| 13050 | } |
| 13051 | unregister_netdevice_many(&dev_kill_list); |
| 13052 | rtnl_unlock(); |
| 13053 | } |
| 13054 | |
| 13055 | static struct pernet_operations __net_initdata default_device_ops = { |
| 13056 | .exit_batch = default_device_exit_batch, |
| 13057 | }; |
| 13058 | |
| 13059 | static void __init net_dev_struct_check(void) |
| 13060 | { |
| 13061 | /* TX read-mostly hotpath */ |
| 13062 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); |
| 13063 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); |
| 13064 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); |
| 13065 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); |
| 13066 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); |
| 13067 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); |
| 13068 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); |
| 13069 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); |
| 13070 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); |
| 13071 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); |
| 13072 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); |
| 13073 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); |
| 13074 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); |
| 13075 | #ifdef CONFIG_XPS |
| 13076 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); |
| 13077 | #endif |
| 13078 | #ifdef CONFIG_NETFILTER_EGRESS |
| 13079 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); |
| 13080 | #endif |
| 13081 | #ifdef CONFIG_NET_XGRESS |
| 13082 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); |
| 13083 | #endif |
| 13084 | CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); |
| 13085 | |
| 13086 | /* TXRX read-mostly hotpath */ |
| 13087 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); |
| 13088 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); |
| 13089 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); |
| 13090 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); |
| 13091 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); |
| 13092 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); |
| 13093 | CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); |
| 13094 | |
| 13095 | /* RX read-mostly hotpath */ |
| 13096 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); |
| 13097 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); |
| 13098 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); |
| 13099 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); |
| 13100 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); |
| 13101 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); |
| 13102 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); |
| 13103 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); |
| 13104 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); |
| 13105 | #ifdef CONFIG_NETPOLL |
| 13106 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); |
| 13107 | #endif |
| 13108 | #ifdef CONFIG_NET_XGRESS |
| 13109 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); |
| 13110 | #endif |
| 13111 | CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); |
| 13112 | } |
| 13113 | |
| 13114 | /* |
| 13115 | * Initialize the DEV module. At boot time this walks the device list and |
| 13116 | * unhooks any devices that fail to initialise (normally hardware not |
| 13117 | * present) and leaves us with a valid list of present and active devices. |
| 13118 | * |
| 13119 | */ |
| 13120 | |
| 13121 | /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ |
| 13122 | #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) |
| 13123 | |
| 13124 | static int net_page_pool_create(int cpuid) |
| 13125 | { |
| 13126 | #if IS_ENABLED(CONFIG_PAGE_POOL) |
| 13127 | struct page_pool_params page_pool_params = { |
| 13128 | .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, |
| 13129 | .flags = PP_FLAG_SYSTEM_POOL, |
| 13130 | .nid = cpu_to_mem(cpu: cpuid), |
| 13131 | }; |
| 13132 | struct page_pool *pp_ptr; |
| 13133 | int err; |
| 13134 | |
| 13135 | pp_ptr = page_pool_create_percpu(params: &page_pool_params, cpuid); |
| 13136 | if (IS_ERR(ptr: pp_ptr)) |
| 13137 | return -ENOMEM; |
| 13138 | |
| 13139 | err = xdp_reg_page_pool(pool: pp_ptr); |
| 13140 | if (err) { |
| 13141 | page_pool_destroy(pool: pp_ptr); |
| 13142 | return err; |
| 13143 | } |
| 13144 | |
| 13145 | per_cpu(system_page_pool.pool, cpuid) = pp_ptr; |
| 13146 | #endif |
| 13147 | return 0; |
| 13148 | } |
| 13149 | |
| 13150 | static int backlog_napi_should_run(unsigned int cpu) |
| 13151 | { |
| 13152 | struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); |
| 13153 | struct napi_struct *napi = &sd->backlog; |
| 13154 | |
| 13155 | return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); |
| 13156 | } |
| 13157 | |
| 13158 | static void run_backlog_napi(unsigned int cpu) |
| 13159 | { |
| 13160 | struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); |
| 13161 | |
| 13162 | napi_threaded_poll_loop(napi: &sd->backlog, busy_poll: false); |
| 13163 | } |
| 13164 | |
| 13165 | static void backlog_napi_setup(unsigned int cpu) |
| 13166 | { |
| 13167 | struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); |
| 13168 | struct napi_struct *napi = &sd->backlog; |
| 13169 | |
| 13170 | napi->thread = this_cpu_read(backlog_napi); |
| 13171 | set_bit(nr: NAPI_STATE_THREADED, addr: &napi->state); |
| 13172 | } |
| 13173 | |
| 13174 | static struct smp_hotplug_thread backlog_threads = { |
| 13175 | .store = &backlog_napi, |
| 13176 | .thread_should_run = backlog_napi_should_run, |
| 13177 | .thread_fn = run_backlog_napi, |
| 13178 | .thread_comm = "backlog_napi/%u" , |
| 13179 | .setup = backlog_napi_setup, |
| 13180 | }; |
| 13181 | |
| 13182 | /* |
| 13183 | * This is called single threaded during boot, so no need |
| 13184 | * to take the rtnl semaphore. |
| 13185 | */ |
| 13186 | static int __init net_dev_init(void) |
| 13187 | { |
| 13188 | int i, rc = -ENOMEM; |
| 13189 | |
| 13190 | BUG_ON(!dev_boot_phase); |
| 13191 | |
| 13192 | net_dev_struct_check(); |
| 13193 | |
| 13194 | if (dev_proc_init()) |
| 13195 | goto out; |
| 13196 | |
| 13197 | if (netdev_kobject_init()) |
| 13198 | goto out; |
| 13199 | |
| 13200 | for (i = 0; i < PTYPE_HASH_SIZE; i++) |
| 13201 | INIT_LIST_HEAD(list: &ptype_base[i]); |
| 13202 | |
| 13203 | if (register_pernet_subsys(&netdev_net_ops)) |
| 13204 | goto out; |
| 13205 | |
| 13206 | /* |
| 13207 | * Initialise the packet receive queues. |
| 13208 | */ |
| 13209 | |
| 13210 | flush_backlogs_fallback = flush_backlogs_alloc(); |
| 13211 | if (!flush_backlogs_fallback) |
| 13212 | goto out; |
| 13213 | |
| 13214 | for_each_possible_cpu(i) { |
| 13215 | struct softnet_data *sd = &per_cpu(softnet_data, i); |
| 13216 | |
| 13217 | skb_queue_head_init(list: &sd->input_pkt_queue); |
| 13218 | skb_queue_head_init(list: &sd->process_queue); |
| 13219 | #ifdef CONFIG_XFRM_OFFLOAD |
| 13220 | skb_queue_head_init(list: &sd->xfrm_backlog); |
| 13221 | #endif |
| 13222 | INIT_LIST_HEAD(list: &sd->poll_list); |
| 13223 | sd->output_queue_tailp = &sd->output_queue; |
| 13224 | #ifdef CONFIG_RPS |
| 13225 | INIT_CSD(&sd->csd, rps_trigger_softirq, sd); |
| 13226 | sd->cpu = i; |
| 13227 | #endif |
| 13228 | INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); |
| 13229 | |
| 13230 | gro_init(gro: &sd->backlog.gro); |
| 13231 | sd->backlog.poll = process_backlog; |
| 13232 | sd->backlog.weight = weight_p; |
| 13233 | INIT_LIST_HEAD(list: &sd->backlog.poll_list); |
| 13234 | |
| 13235 | if (net_page_pool_create(cpuid: i)) |
| 13236 | goto out; |
| 13237 | } |
| 13238 | net_hotdata.skb_defer_nodes = |
| 13239 | __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids, |
| 13240 | __alignof__(struct skb_defer_node)); |
| 13241 | if (!net_hotdata.skb_defer_nodes) |
| 13242 | goto out; |
| 13243 | if (use_backlog_threads()) |
| 13244 | smpboot_register_percpu_thread(plug_thread: &backlog_threads); |
| 13245 | |
| 13246 | dev_boot_phase = 0; |
| 13247 | |
| 13248 | /* The loopback device is special if any other network devices |
| 13249 | * is present in a network namespace the loopback device must |
| 13250 | * be present. Since we now dynamically allocate and free the |
| 13251 | * loopback device ensure this invariant is maintained by |
| 13252 | * keeping the loopback device as the first device on the |
| 13253 | * list of network devices. Ensuring the loopback devices |
| 13254 | * is the first device that appears and the last network device |
| 13255 | * that disappears. |
| 13256 | */ |
| 13257 | if (register_pernet_device(&loopback_net_ops)) |
| 13258 | goto out; |
| 13259 | |
| 13260 | if (register_pernet_device(&default_device_ops)) |
| 13261 | goto out; |
| 13262 | |
| 13263 | open_softirq(nr: NET_TX_SOFTIRQ, action: net_tx_action); |
| 13264 | open_softirq(nr: NET_RX_SOFTIRQ, action: net_rx_action); |
| 13265 | |
| 13266 | rc = cpuhp_setup_state_nocalls(state: CPUHP_NET_DEV_DEAD, name: "net/dev:dead" , |
| 13267 | NULL, teardown: dev_cpu_dead); |
| 13268 | WARN_ON(rc < 0); |
| 13269 | rc = 0; |
| 13270 | |
| 13271 | /* avoid static key IPIs to isolated CPUs */ |
| 13272 | if (housekeeping_enabled(type: HK_TYPE_MISC)) |
| 13273 | net_enable_timestamp(); |
| 13274 | out: |
| 13275 | if (rc < 0) { |
| 13276 | for_each_possible_cpu(i) { |
| 13277 | struct page_pool *pp_ptr; |
| 13278 | |
| 13279 | pp_ptr = per_cpu(system_page_pool.pool, i); |
| 13280 | if (!pp_ptr) |
| 13281 | continue; |
| 13282 | |
| 13283 | xdp_unreg_page_pool(pool: pp_ptr); |
| 13284 | page_pool_destroy(pool: pp_ptr); |
| 13285 | per_cpu(system_page_pool.pool, i) = NULL; |
| 13286 | } |
| 13287 | } |
| 13288 | |
| 13289 | return rc; |
| 13290 | } |
| 13291 | |
| 13292 | subsys_initcall(net_dev_init); |
| 13293 | |