1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * NET3 Protocol independent device support routines. |
4 | * |
5 | * Derived from the non IP parts of dev.c 1.0.19 |
6 | * Authors: Ross Biro |
7 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
8 | * Mark Evans, <evansmp@uhura.aston.ac.uk> |
9 | * |
10 | * Additional Authors: |
11 | * Florian la Roche <rzsfl@rz.uni-sb.de> |
12 | * Alan Cox <gw4pts@gw4pts.ampr.org> |
13 | * David Hinds <dahinds@users.sourceforge.net> |
14 | * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> |
15 | * Adam Sulmicki <adam@cfar.umd.edu> |
16 | * Pekka Riikonen <priikone@poesidon.pspt.fi> |
17 | * |
18 | * Changes: |
19 | * D.J. Barrow : Fixed bug where dev->refcnt gets set |
20 | * to 2 if register_netdev gets called |
21 | * before net_dev_init & also removed a |
22 | * few lines of code in the process. |
23 | * Alan Cox : device private ioctl copies fields back. |
24 | * Alan Cox : Transmit queue code does relevant |
25 | * stunts to keep the queue safe. |
26 | * Alan Cox : Fixed double lock. |
27 | * Alan Cox : Fixed promisc NULL pointer trap |
28 | * ???????? : Support the full private ioctl range |
29 | * Alan Cox : Moved ioctl permission check into |
30 | * drivers |
31 | * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI |
32 | * Alan Cox : 100 backlog just doesn't cut it when |
33 | * you start doing multicast video 8) |
34 | * Alan Cox : Rewrote net_bh and list manager. |
35 | * Alan Cox : Fix ETH_P_ALL echoback lengths. |
36 | * Alan Cox : Took out transmit every packet pass |
37 | * Saved a few bytes in the ioctl handler |
38 | * Alan Cox : Network driver sets packet type before |
39 | * calling netif_rx. Saves a function |
40 | * call a packet. |
41 | * Alan Cox : Hashed net_bh() |
42 | * Richard Kooijman: Timestamp fixes. |
43 | * Alan Cox : Wrong field in SIOCGIFDSTADDR |
44 | * Alan Cox : Device lock protection. |
45 | * Alan Cox : Fixed nasty side effect of device close |
46 | * changes. |
47 | * Rudi Cilibrasi : Pass the right thing to |
48 | * set_mac_address() |
49 | * Dave Miller : 32bit quantity for the device lock to |
50 | * make it work out on a Sparc. |
51 | * Bjorn Ekwall : Added KERNELD hack. |
52 | * Alan Cox : Cleaned up the backlog initialise. |
53 | * Craig Metz : SIOCGIFCONF fix if space for under |
54 | * 1 device. |
55 | * Thomas Bogendoerfer : Return ENODEV for dev_open, if there |
56 | * is no device open function. |
57 | * Andi Kleen : Fix error reporting for SIOCGIFCONF |
58 | * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF |
59 | * Cyrus Durgin : Cleaned for KMOD |
60 | * Adam Sulmicki : Bug Fix : Network Device Unload |
61 | * A network device unload needs to purge |
62 | * the backlog queue. |
63 | * Paul Rusty Russell : SIOCSIFNAME |
64 | * Pekka Riikonen : Netdev boot-time settings code |
65 | * Andrew Morton : Make unregister_netdevice wait |
66 | * indefinitely on dev->refcnt |
67 | * J Hadi Salim : - Backlog queue sampling |
68 | * - netif_rx() feedback |
69 | */ |
70 | |
71 | #include <linux/uaccess.h> |
72 | #include <linux/bitmap.h> |
73 | #include <linux/capability.h> |
74 | #include <linux/cpu.h> |
75 | #include <linux/types.h> |
76 | #include <linux/kernel.h> |
77 | #include <linux/hash.h> |
78 | #include <linux/slab.h> |
79 | #include <linux/sched.h> |
80 | #include <linux/sched/isolation.h> |
81 | #include <linux/sched/mm.h> |
82 | #include <linux/smpboot.h> |
83 | #include <linux/mutex.h> |
84 | #include <linux/rwsem.h> |
85 | #include <linux/string.h> |
86 | #include <linux/mm.h> |
87 | #include <linux/socket.h> |
88 | #include <linux/sockios.h> |
89 | #include <linux/errno.h> |
90 | #include <linux/interrupt.h> |
91 | #include <linux/if_ether.h> |
92 | #include <linux/netdevice.h> |
93 | #include <linux/etherdevice.h> |
94 | #include <linux/ethtool.h> |
95 | #include <linux/ethtool_netlink.h> |
96 | #include <linux/skbuff.h> |
97 | #include <linux/kthread.h> |
98 | #include <linux/bpf.h> |
99 | #include <linux/bpf_trace.h> |
100 | #include <net/net_namespace.h> |
101 | #include <net/sock.h> |
102 | #include <net/busy_poll.h> |
103 | #include <linux/rtnetlink.h> |
104 | #include <linux/stat.h> |
105 | #include <net/dsa.h> |
106 | #include <net/dst.h> |
107 | #include <net/dst_metadata.h> |
108 | #include <net/gro.h> |
109 | #include <net/netdev_queues.h> |
110 | #include <net/pkt_sched.h> |
111 | #include <net/pkt_cls.h> |
112 | #include <net/checksum.h> |
113 | #include <net/xfrm.h> |
114 | #include <net/tcx.h> |
115 | #include <linux/highmem.h> |
116 | #include <linux/init.h> |
117 | #include <linux/module.h> |
118 | #include <linux/netpoll.h> |
119 | #include <linux/rcupdate.h> |
120 | #include <linux/delay.h> |
121 | #include <net/iw_handler.h> |
122 | #include <asm/current.h> |
123 | #include <linux/audit.h> |
124 | #include <linux/dmaengine.h> |
125 | #include <linux/err.h> |
126 | #include <linux/ctype.h> |
127 | #include <linux/if_arp.h> |
128 | #include <linux/if_vlan.h> |
129 | #include <linux/ip.h> |
130 | #include <net/ip.h> |
131 | #include <net/mpls.h> |
132 | #include <linux/ipv6.h> |
133 | #include <linux/in.h> |
134 | #include <linux/jhash.h> |
135 | #include <linux/random.h> |
136 | #include <trace/events/napi.h> |
137 | #include <trace/events/net.h> |
138 | #include <trace/events/skb.h> |
139 | #include <trace/events/qdisc.h> |
140 | #include <trace/events/xdp.h> |
141 | #include <linux/inetdevice.h> |
142 | #include <linux/cpu_rmap.h> |
143 | #include <linux/static_key.h> |
144 | #include <linux/hashtable.h> |
145 | #include <linux/vmalloc.h> |
146 | #include <linux/if_macvlan.h> |
147 | #include <linux/errqueue.h> |
148 | #include <linux/hrtimer.h> |
149 | #include <linux/netfilter_netdev.h> |
150 | #include <linux/crash_dump.h> |
151 | #include <linux/sctp.h> |
152 | #include <net/udp_tunnel.h> |
153 | #include <linux/net_namespace.h> |
154 | #include <linux/indirect_call_wrapper.h> |
155 | #include <net/devlink.h> |
156 | #include <linux/pm_runtime.h> |
157 | #include <linux/prandom.h> |
158 | #include <linux/once_lite.h> |
159 | #include <net/netdev_lock.h> |
160 | #include <net/netdev_rx_queue.h> |
161 | #include <net/page_pool/types.h> |
162 | #include <net/page_pool/helpers.h> |
163 | #include <net/page_pool/memory_provider.h> |
164 | #include <net/rps.h> |
165 | #include <linux/phy_link_topology.h> |
166 | |
167 | #include "dev.h" |
168 | #include "devmem.h" |
169 | #include "net-sysfs.h" |
170 | |
171 | static DEFINE_SPINLOCK(ptype_lock); |
172 | struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; |
173 | |
174 | static int netif_rx_internal(struct sk_buff *skb); |
175 | static int call_netdevice_notifiers_extack(unsigned long val, |
176 | struct net_device *dev, |
177 | struct netlink_ext_ack *extack); |
178 | |
179 | static DEFINE_MUTEX(ifalias_mutex); |
180 | |
181 | /* protects napi_hash addition/deletion and napi_gen_id */ |
182 | static DEFINE_SPINLOCK(napi_hash_lock); |
183 | |
184 | static unsigned int napi_gen_id = NR_CPUS; |
185 | static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); |
186 | |
187 | static inline void dev_base_seq_inc(struct net *net) |
188 | { |
189 | unsigned int val = net->dev_base_seq + 1; |
190 | |
191 | WRITE_ONCE(net->dev_base_seq, val ?: 1); |
192 | } |
193 | |
194 | static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) |
195 | { |
196 | unsigned int hash = full_name_hash(salt: net, name, strnlen(p: name, IFNAMSIZ)); |
197 | |
198 | return &net->dev_name_head[hash_32(val: hash, NETDEV_HASHBITS)]; |
199 | } |
200 | |
201 | static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) |
202 | { |
203 | return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; |
204 | } |
205 | |
206 | #ifndef CONFIG_PREEMPT_RT |
207 | |
208 | static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); |
209 | |
210 | static int __init setup_backlog_napi_threads(char *arg) |
211 | { |
212 | static_branch_enable(&use_backlog_threads_key); |
213 | return 0; |
214 | } |
215 | early_param("thread_backlog_napi", setup_backlog_napi_threads); |
216 | |
217 | static bool use_backlog_threads(void) |
218 | { |
219 | return static_branch_unlikely(&use_backlog_threads_key); |
220 | } |
221 | |
222 | #else |
223 | |
224 | static bool use_backlog_threads(void) |
225 | { |
226 | return true; |
227 | } |
228 | |
229 | #endif |
230 | |
231 | static inline void backlog_lock_irq_save(struct softnet_data *sd, |
232 | unsigned long *flags) |
233 | { |
234 | if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) |
235 | spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); |
236 | else |
237 | local_irq_save(*flags); |
238 | } |
239 | |
240 | static inline void backlog_lock_irq_disable(struct softnet_data *sd) |
241 | { |
242 | if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) |
243 | spin_lock_irq(lock: &sd->input_pkt_queue.lock); |
244 | else |
245 | local_irq_disable(); |
246 | } |
247 | |
248 | static inline void backlog_unlock_irq_restore(struct softnet_data *sd, |
249 | unsigned long *flags) |
250 | { |
251 | if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) |
252 | spin_unlock_irqrestore(lock: &sd->input_pkt_queue.lock, flags: *flags); |
253 | else |
254 | local_irq_restore(*flags); |
255 | } |
256 | |
257 | static inline void backlog_unlock_irq_enable(struct softnet_data *sd) |
258 | { |
259 | if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) |
260 | spin_unlock_irq(lock: &sd->input_pkt_queue.lock); |
261 | else |
262 | local_irq_enable(); |
263 | } |
264 | |
265 | static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, |
266 | const char *name) |
267 | { |
268 | struct netdev_name_node *name_node; |
269 | |
270 | name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); |
271 | if (!name_node) |
272 | return NULL; |
273 | INIT_HLIST_NODE(h: &name_node->hlist); |
274 | name_node->dev = dev; |
275 | name_node->name = name; |
276 | return name_node; |
277 | } |
278 | |
279 | static struct netdev_name_node * |
280 | netdev_name_node_head_alloc(struct net_device *dev) |
281 | { |
282 | struct netdev_name_node *name_node; |
283 | |
284 | name_node = netdev_name_node_alloc(dev, name: dev->name); |
285 | if (!name_node) |
286 | return NULL; |
287 | INIT_LIST_HEAD(list: &name_node->list); |
288 | return name_node; |
289 | } |
290 | |
291 | static void netdev_name_node_free(struct netdev_name_node *name_node) |
292 | { |
293 | kfree(objp: name_node); |
294 | } |
295 | |
296 | static void netdev_name_node_add(struct net *net, |
297 | struct netdev_name_node *name_node) |
298 | { |
299 | hlist_add_head_rcu(n: &name_node->hlist, |
300 | h: dev_name_hash(net, name: name_node->name)); |
301 | } |
302 | |
303 | static void netdev_name_node_del(struct netdev_name_node *name_node) |
304 | { |
305 | hlist_del_rcu(n: &name_node->hlist); |
306 | } |
307 | |
308 | static struct netdev_name_node *netdev_name_node_lookup(struct net *net, |
309 | const char *name) |
310 | { |
311 | struct hlist_head *head = dev_name_hash(net, name); |
312 | struct netdev_name_node *name_node; |
313 | |
314 | hlist_for_each_entry(name_node, head, hlist) |
315 | if (!strcmp(name_node->name, name)) |
316 | return name_node; |
317 | return NULL; |
318 | } |
319 | |
320 | static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, |
321 | const char *name) |
322 | { |
323 | struct hlist_head *head = dev_name_hash(net, name); |
324 | struct netdev_name_node *name_node; |
325 | |
326 | hlist_for_each_entry_rcu(name_node, head, hlist) |
327 | if (!strcmp(name_node->name, name)) |
328 | return name_node; |
329 | return NULL; |
330 | } |
331 | |
332 | bool netdev_name_in_use(struct net *net, const char *name) |
333 | { |
334 | return netdev_name_node_lookup(net, name); |
335 | } |
336 | EXPORT_SYMBOL(netdev_name_in_use); |
337 | |
338 | int netdev_name_node_alt_create(struct net_device *dev, const char *name) |
339 | { |
340 | struct netdev_name_node *name_node; |
341 | struct net *net = dev_net(dev); |
342 | |
343 | name_node = netdev_name_node_lookup(net, name); |
344 | if (name_node) |
345 | return -EEXIST; |
346 | name_node = netdev_name_node_alloc(dev, name); |
347 | if (!name_node) |
348 | return -ENOMEM; |
349 | netdev_name_node_add(net, name_node); |
350 | /* The node that holds dev->name acts as a head of per-device list. */ |
351 | list_add_tail_rcu(new: &name_node->list, head: &dev->name_node->list); |
352 | |
353 | return 0; |
354 | } |
355 | |
356 | static void netdev_name_node_alt_free(struct rcu_head *head) |
357 | { |
358 | struct netdev_name_node *name_node = |
359 | container_of(head, struct netdev_name_node, rcu); |
360 | |
361 | kfree(objp: name_node->name); |
362 | netdev_name_node_free(name_node); |
363 | } |
364 | |
365 | static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) |
366 | { |
367 | netdev_name_node_del(name_node); |
368 | list_del(entry: &name_node->list); |
369 | call_rcu(head: &name_node->rcu, func: netdev_name_node_alt_free); |
370 | } |
371 | |
372 | int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) |
373 | { |
374 | struct netdev_name_node *name_node; |
375 | struct net *net = dev_net(dev); |
376 | |
377 | name_node = netdev_name_node_lookup(net, name); |
378 | if (!name_node) |
379 | return -ENOENT; |
380 | /* lookup might have found our primary name or a name belonging |
381 | * to another device. |
382 | */ |
383 | if (name_node == dev->name_node || name_node->dev != dev) |
384 | return -EINVAL; |
385 | |
386 | __netdev_name_node_alt_destroy(name_node); |
387 | return 0; |
388 | } |
389 | |
390 | static void netdev_name_node_alt_flush(struct net_device *dev) |
391 | { |
392 | struct netdev_name_node *name_node, *tmp; |
393 | |
394 | list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { |
395 | list_del(entry: &name_node->list); |
396 | netdev_name_node_alt_free(head: &name_node->rcu); |
397 | } |
398 | } |
399 | |
400 | /* Device list insertion */ |
401 | static void list_netdevice(struct net_device *dev) |
402 | { |
403 | struct netdev_name_node *name_node; |
404 | struct net *net = dev_net(dev); |
405 | |
406 | ASSERT_RTNL(); |
407 | |
408 | list_add_tail_rcu(new: &dev->dev_list, head: &net->dev_base_head); |
409 | netdev_name_node_add(net, name_node: dev->name_node); |
410 | hlist_add_head_rcu(n: &dev->index_hlist, |
411 | h: dev_index_hash(net, ifindex: dev->ifindex)); |
412 | |
413 | netdev_for_each_altname(dev, name_node) |
414 | netdev_name_node_add(net, name_node); |
415 | |
416 | /* We reserved the ifindex, this can't fail */ |
417 | WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); |
418 | |
419 | dev_base_seq_inc(net); |
420 | } |
421 | |
422 | /* Device list removal |
423 | * caller must respect a RCU grace period before freeing/reusing dev |
424 | */ |
425 | static void unlist_netdevice(struct net_device *dev) |
426 | { |
427 | struct netdev_name_node *name_node; |
428 | struct net *net = dev_net(dev); |
429 | |
430 | ASSERT_RTNL(); |
431 | |
432 | xa_erase(&net->dev_by_index, index: dev->ifindex); |
433 | |
434 | netdev_for_each_altname(dev, name_node) |
435 | netdev_name_node_del(name_node); |
436 | |
437 | /* Unlink dev from the device chain */ |
438 | list_del_rcu(entry: &dev->dev_list); |
439 | netdev_name_node_del(name_node: dev->name_node); |
440 | hlist_del_rcu(n: &dev->index_hlist); |
441 | |
442 | dev_base_seq_inc(net: dev_net(dev)); |
443 | } |
444 | |
445 | /* |
446 | * Our notifier list |
447 | */ |
448 | |
449 | static RAW_NOTIFIER_HEAD(netdev_chain); |
450 | |
451 | /* |
452 | * Device drivers call our routines to queue packets here. We empty the |
453 | * queue in the local softnet handler. |
454 | */ |
455 | |
456 | DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { |
457 | .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), |
458 | }; |
459 | EXPORT_PER_CPU_SYMBOL(softnet_data); |
460 | |
461 | /* Page_pool has a lockless array/stack to alloc/recycle pages. |
462 | * PP consumers must pay attention to run APIs in the appropriate context |
463 | * (e.g. NAPI context). |
464 | */ |
465 | DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { |
466 | .bh_lock = INIT_LOCAL_LOCK(bh_lock), |
467 | }; |
468 | |
469 | #ifdef CONFIG_LOCKDEP |
470 | /* |
471 | * register_netdevice() inits txq->_xmit_lock and sets lockdep class |
472 | * according to dev->type |
473 | */ |
474 | static const unsigned short netdev_lock_type[] = { |
475 | ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, |
476 | ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, |
477 | ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, |
478 | ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, |
479 | ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, |
480 | ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, |
481 | ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, |
482 | ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, |
483 | ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, |
484 | ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, |
485 | ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, |
486 | ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, |
487 | ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, |
488 | ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, |
489 | ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; |
490 | |
491 | static const char *const netdev_lock_name[] = { |
492 | "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", |
493 | "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", |
494 | "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", |
495 | "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", |
496 | "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", |
497 | "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", |
498 | "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", |
499 | "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", |
500 | "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", |
501 | "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", |
502 | "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", |
503 | "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", |
504 | "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", |
505 | "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", |
506 | "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; |
507 | |
508 | static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; |
509 | static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; |
510 | |
511 | static inline unsigned short netdev_lock_pos(unsigned short dev_type) |
512 | { |
513 | int i; |
514 | |
515 | for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) |
516 | if (netdev_lock_type[i] == dev_type) |
517 | return i; |
518 | /* the last key is used by default */ |
519 | return ARRAY_SIZE(netdev_lock_type) - 1; |
520 | } |
521 | |
522 | static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, |
523 | unsigned short dev_type) |
524 | { |
525 | int i; |
526 | |
527 | i = netdev_lock_pos(dev_type); |
528 | lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], |
529 | netdev_lock_name[i]); |
530 | } |
531 | |
532 | static inline void netdev_set_addr_lockdep_class(struct net_device *dev) |
533 | { |
534 | int i; |
535 | |
536 | i = netdev_lock_pos(dev_type: dev->type); |
537 | lockdep_set_class_and_name(&dev->addr_list_lock, |
538 | &netdev_addr_lock_key[i], |
539 | netdev_lock_name[i]); |
540 | } |
541 | #else |
542 | static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, |
543 | unsigned short dev_type) |
544 | { |
545 | } |
546 | |
547 | static inline void netdev_set_addr_lockdep_class(struct net_device *dev) |
548 | { |
549 | } |
550 | #endif |
551 | |
552 | /******************************************************************************* |
553 | * |
554 | * Protocol management and registration routines |
555 | * |
556 | *******************************************************************************/ |
557 | |
558 | |
559 | /* |
560 | * Add a protocol ID to the list. Now that the input handler is |
561 | * smarter we can dispense with all the messy stuff that used to be |
562 | * here. |
563 | * |
564 | * BEWARE!!! Protocol handlers, mangling input packets, |
565 | * MUST BE last in hash buckets and checking protocol handlers |
566 | * MUST start from promiscuous ptype_all chain in net_bh. |
567 | * It is true now, do not change it. |
568 | * Explanation follows: if protocol handler, mangling packet, will |
569 | * be the first on list, it is not able to sense, that packet |
570 | * is cloned and should be copied-on-write, so that it will |
571 | * change it and subsequent readers will get broken packet. |
572 | * --ANK (980803) |
573 | */ |
574 | |
575 | static inline struct list_head *ptype_head(const struct packet_type *pt) |
576 | { |
577 | if (pt->type == htons(ETH_P_ALL)) { |
578 | if (!pt->af_packet_net && !pt->dev) |
579 | return NULL; |
580 | |
581 | return pt->dev ? &pt->dev->ptype_all : |
582 | &pt->af_packet_net->ptype_all; |
583 | } |
584 | |
585 | if (pt->dev) |
586 | return &pt->dev->ptype_specific; |
587 | |
588 | return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : |
589 | &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; |
590 | } |
591 | |
592 | /** |
593 | * dev_add_pack - add packet handler |
594 | * @pt: packet type declaration |
595 | * |
596 | * Add a protocol handler to the networking stack. The passed &packet_type |
597 | * is linked into kernel lists and may not be freed until it has been |
598 | * removed from the kernel lists. |
599 | * |
600 | * This call does not sleep therefore it can not |
601 | * guarantee all CPU's that are in middle of receiving packets |
602 | * will see the new packet type (until the next received packet). |
603 | */ |
604 | |
605 | void dev_add_pack(struct packet_type *pt) |
606 | { |
607 | struct list_head *head = ptype_head(pt); |
608 | |
609 | if (WARN_ON_ONCE(!head)) |
610 | return; |
611 | |
612 | spin_lock(lock: &ptype_lock); |
613 | list_add_rcu(new: &pt->list, head); |
614 | spin_unlock(lock: &ptype_lock); |
615 | } |
616 | EXPORT_SYMBOL(dev_add_pack); |
617 | |
618 | /** |
619 | * __dev_remove_pack - remove packet handler |
620 | * @pt: packet type declaration |
621 | * |
622 | * Remove a protocol handler that was previously added to the kernel |
623 | * protocol handlers by dev_add_pack(). The passed &packet_type is removed |
624 | * from the kernel lists and can be freed or reused once this function |
625 | * returns. |
626 | * |
627 | * The packet type might still be in use by receivers |
628 | * and must not be freed until after all the CPU's have gone |
629 | * through a quiescent state. |
630 | */ |
631 | void __dev_remove_pack(struct packet_type *pt) |
632 | { |
633 | struct list_head *head = ptype_head(pt); |
634 | struct packet_type *pt1; |
635 | |
636 | if (!head) |
637 | return; |
638 | |
639 | spin_lock(lock: &ptype_lock); |
640 | |
641 | list_for_each_entry(pt1, head, list) { |
642 | if (pt == pt1) { |
643 | list_del_rcu(entry: &pt->list); |
644 | goto out; |
645 | } |
646 | } |
647 | |
648 | pr_warn("dev_remove_pack: %p not found\n", pt); |
649 | out: |
650 | spin_unlock(lock: &ptype_lock); |
651 | } |
652 | EXPORT_SYMBOL(__dev_remove_pack); |
653 | |
654 | /** |
655 | * dev_remove_pack - remove packet handler |
656 | * @pt: packet type declaration |
657 | * |
658 | * Remove a protocol handler that was previously added to the kernel |
659 | * protocol handlers by dev_add_pack(). The passed &packet_type is removed |
660 | * from the kernel lists and can be freed or reused once this function |
661 | * returns. |
662 | * |
663 | * This call sleeps to guarantee that no CPU is looking at the packet |
664 | * type after return. |
665 | */ |
666 | void dev_remove_pack(struct packet_type *pt) |
667 | { |
668 | __dev_remove_pack(pt); |
669 | |
670 | synchronize_net(); |
671 | } |
672 | EXPORT_SYMBOL(dev_remove_pack); |
673 | |
674 | |
675 | /******************************************************************************* |
676 | * |
677 | * Device Interface Subroutines |
678 | * |
679 | *******************************************************************************/ |
680 | |
681 | /** |
682 | * dev_get_iflink - get 'iflink' value of a interface |
683 | * @dev: targeted interface |
684 | * |
685 | * Indicates the ifindex the interface is linked to. |
686 | * Physical interfaces have the same 'ifindex' and 'iflink' values. |
687 | */ |
688 | |
689 | int dev_get_iflink(const struct net_device *dev) |
690 | { |
691 | if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) |
692 | return dev->netdev_ops->ndo_get_iflink(dev); |
693 | |
694 | return READ_ONCE(dev->ifindex); |
695 | } |
696 | EXPORT_SYMBOL(dev_get_iflink); |
697 | |
698 | /** |
699 | * dev_fill_metadata_dst - Retrieve tunnel egress information. |
700 | * @dev: targeted interface |
701 | * @skb: The packet. |
702 | * |
703 | * For better visibility of tunnel traffic OVS needs to retrieve |
704 | * egress tunnel information for a packet. Following API allows |
705 | * user to get this info. |
706 | */ |
707 | int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) |
708 | { |
709 | struct ip_tunnel_info *info; |
710 | |
711 | if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) |
712 | return -EINVAL; |
713 | |
714 | info = skb_tunnel_info_unclone(skb); |
715 | if (!info) |
716 | return -ENOMEM; |
717 | if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) |
718 | return -EINVAL; |
719 | |
720 | return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); |
721 | } |
722 | EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); |
723 | |
724 | static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) |
725 | { |
726 | int k = stack->num_paths++; |
727 | |
728 | if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) |
729 | return NULL; |
730 | |
731 | return &stack->path[k]; |
732 | } |
733 | |
734 | int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, |
735 | struct net_device_path_stack *stack) |
736 | { |
737 | const struct net_device *last_dev; |
738 | struct net_device_path_ctx ctx = { |
739 | .dev = dev, |
740 | }; |
741 | struct net_device_path *path; |
742 | int ret = 0; |
743 | |
744 | memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); |
745 | stack->num_paths = 0; |
746 | while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { |
747 | last_dev = ctx.dev; |
748 | path = dev_fwd_path(stack); |
749 | if (!path) |
750 | return -1; |
751 | |
752 | memset(path, 0, sizeof(struct net_device_path)); |
753 | ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); |
754 | if (ret < 0) |
755 | return -1; |
756 | |
757 | if (WARN_ON_ONCE(last_dev == ctx.dev)) |
758 | return -1; |
759 | } |
760 | |
761 | if (!ctx.dev) |
762 | return ret; |
763 | |
764 | path = dev_fwd_path(stack); |
765 | if (!path) |
766 | return -1; |
767 | path->type = DEV_PATH_ETHERNET; |
768 | path->dev = ctx.dev; |
769 | |
770 | return ret; |
771 | } |
772 | EXPORT_SYMBOL_GPL(dev_fill_forward_path); |
773 | |
774 | /* must be called under rcu_read_lock(), as we dont take a reference */ |
775 | static struct napi_struct *napi_by_id(unsigned int napi_id) |
776 | { |
777 | unsigned int hash = napi_id % HASH_SIZE(napi_hash); |
778 | struct napi_struct *napi; |
779 | |
780 | hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) |
781 | if (napi->napi_id == napi_id) |
782 | return napi; |
783 | |
784 | return NULL; |
785 | } |
786 | |
787 | /* must be called under rcu_read_lock(), as we dont take a reference */ |
788 | static struct napi_struct * |
789 | netdev_napi_by_id(struct net *net, unsigned int napi_id) |
790 | { |
791 | struct napi_struct *napi; |
792 | |
793 | napi = napi_by_id(napi_id); |
794 | if (!napi) |
795 | return NULL; |
796 | |
797 | if (WARN_ON_ONCE(!napi->dev)) |
798 | return NULL; |
799 | if (!net_eq(net1: net, net2: dev_net(dev: napi->dev))) |
800 | return NULL; |
801 | |
802 | return napi; |
803 | } |
804 | |
805 | /** |
806 | * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it |
807 | * @net: the applicable net namespace |
808 | * @napi_id: ID of a NAPI of a target device |
809 | * |
810 | * Find a NAPI instance with @napi_id. Lock its device. |
811 | * The device must be in %NETREG_REGISTERED state for lookup to succeed. |
812 | * netdev_unlock() must be called to release it. |
813 | * |
814 | * Return: pointer to NAPI, its device with lock held, NULL if not found. |
815 | */ |
816 | struct napi_struct * |
817 | netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) |
818 | { |
819 | struct napi_struct *napi; |
820 | struct net_device *dev; |
821 | |
822 | rcu_read_lock(); |
823 | napi = netdev_napi_by_id(net, napi_id); |
824 | if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { |
825 | rcu_read_unlock(); |
826 | return NULL; |
827 | } |
828 | |
829 | dev = napi->dev; |
830 | dev_hold(dev); |
831 | rcu_read_unlock(); |
832 | |
833 | dev = __netdev_put_lock(dev, net); |
834 | if (!dev) |
835 | return NULL; |
836 | |
837 | rcu_read_lock(); |
838 | napi = netdev_napi_by_id(net, napi_id); |
839 | if (napi && napi->dev != dev) |
840 | napi = NULL; |
841 | rcu_read_unlock(); |
842 | |
843 | if (!napi) |
844 | netdev_unlock(dev); |
845 | return napi; |
846 | } |
847 | |
848 | /** |
849 | * __dev_get_by_name - find a device by its name |
850 | * @net: the applicable net namespace |
851 | * @name: name to find |
852 | * |
853 | * Find an interface by name. Must be called under RTNL semaphore. |
854 | * If the name is found a pointer to the device is returned. |
855 | * If the name is not found then %NULL is returned. The |
856 | * reference counters are not incremented so the caller must be |
857 | * careful with locks. |
858 | */ |
859 | |
860 | struct net_device *__dev_get_by_name(struct net *net, const char *name) |
861 | { |
862 | struct netdev_name_node *node_name; |
863 | |
864 | node_name = netdev_name_node_lookup(net, name); |
865 | return node_name ? node_name->dev : NULL; |
866 | } |
867 | EXPORT_SYMBOL(__dev_get_by_name); |
868 | |
869 | /** |
870 | * dev_get_by_name_rcu - find a device by its name |
871 | * @net: the applicable net namespace |
872 | * @name: name to find |
873 | * |
874 | * Find an interface by name. |
875 | * If the name is found a pointer to the device is returned. |
876 | * If the name is not found then %NULL is returned. |
877 | * The reference counters are not incremented so the caller must be |
878 | * careful with locks. The caller must hold RCU lock. |
879 | */ |
880 | |
881 | struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) |
882 | { |
883 | struct netdev_name_node *node_name; |
884 | |
885 | node_name = netdev_name_node_lookup_rcu(net, name); |
886 | return node_name ? node_name->dev : NULL; |
887 | } |
888 | EXPORT_SYMBOL(dev_get_by_name_rcu); |
889 | |
890 | /* Deprecated for new users, call netdev_get_by_name() instead */ |
891 | struct net_device *dev_get_by_name(struct net *net, const char *name) |
892 | { |
893 | struct net_device *dev; |
894 | |
895 | rcu_read_lock(); |
896 | dev = dev_get_by_name_rcu(net, name); |
897 | dev_hold(dev); |
898 | rcu_read_unlock(); |
899 | return dev; |
900 | } |
901 | EXPORT_SYMBOL(dev_get_by_name); |
902 | |
903 | /** |
904 | * netdev_get_by_name() - find a device by its name |
905 | * @net: the applicable net namespace |
906 | * @name: name to find |
907 | * @tracker: tracking object for the acquired reference |
908 | * @gfp: allocation flags for the tracker |
909 | * |
910 | * Find an interface by name. This can be called from any |
911 | * context and does its own locking. The returned handle has |
912 | * the usage count incremented and the caller must use netdev_put() to |
913 | * release it when it is no longer needed. %NULL is returned if no |
914 | * matching device is found. |
915 | */ |
916 | struct net_device *netdev_get_by_name(struct net *net, const char *name, |
917 | netdevice_tracker *tracker, gfp_t gfp) |
918 | { |
919 | struct net_device *dev; |
920 | |
921 | dev = dev_get_by_name(net, name); |
922 | if (dev) |
923 | netdev_tracker_alloc(dev, tracker, gfp); |
924 | return dev; |
925 | } |
926 | EXPORT_SYMBOL(netdev_get_by_name); |
927 | |
928 | /** |
929 | * __dev_get_by_index - find a device by its ifindex |
930 | * @net: the applicable net namespace |
931 | * @ifindex: index of device |
932 | * |
933 | * Search for an interface by index. Returns %NULL if the device |
934 | * is not found or a pointer to the device. The device has not |
935 | * had its reference counter increased so the caller must be careful |
936 | * about locking. The caller must hold the RTNL semaphore. |
937 | */ |
938 | |
939 | struct net_device *__dev_get_by_index(struct net *net, int ifindex) |
940 | { |
941 | struct net_device *dev; |
942 | struct hlist_head *head = dev_index_hash(net, ifindex); |
943 | |
944 | hlist_for_each_entry(dev, head, index_hlist) |
945 | if (dev->ifindex == ifindex) |
946 | return dev; |
947 | |
948 | return NULL; |
949 | } |
950 | EXPORT_SYMBOL(__dev_get_by_index); |
951 | |
952 | /** |
953 | * dev_get_by_index_rcu - find a device by its ifindex |
954 | * @net: the applicable net namespace |
955 | * @ifindex: index of device |
956 | * |
957 | * Search for an interface by index. Returns %NULL if the device |
958 | * is not found or a pointer to the device. The device has not |
959 | * had its reference counter increased so the caller must be careful |
960 | * about locking. The caller must hold RCU lock. |
961 | */ |
962 | |
963 | struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) |
964 | { |
965 | struct net_device *dev; |
966 | struct hlist_head *head = dev_index_hash(net, ifindex); |
967 | |
968 | hlist_for_each_entry_rcu(dev, head, index_hlist) |
969 | if (dev->ifindex == ifindex) |
970 | return dev; |
971 | |
972 | return NULL; |
973 | } |
974 | EXPORT_SYMBOL(dev_get_by_index_rcu); |
975 | |
976 | /* Deprecated for new users, call netdev_get_by_index() instead */ |
977 | struct net_device *dev_get_by_index(struct net *net, int ifindex) |
978 | { |
979 | struct net_device *dev; |
980 | |
981 | rcu_read_lock(); |
982 | dev = dev_get_by_index_rcu(net, ifindex); |
983 | dev_hold(dev); |
984 | rcu_read_unlock(); |
985 | return dev; |
986 | } |
987 | EXPORT_SYMBOL(dev_get_by_index); |
988 | |
989 | /** |
990 | * netdev_get_by_index() - find a device by its ifindex |
991 | * @net: the applicable net namespace |
992 | * @ifindex: index of device |
993 | * @tracker: tracking object for the acquired reference |
994 | * @gfp: allocation flags for the tracker |
995 | * |
996 | * Search for an interface by index. Returns NULL if the device |
997 | * is not found or a pointer to the device. The device returned has |
998 | * had a reference added and the pointer is safe until the user calls |
999 | * netdev_put() to indicate they have finished with it. |
1000 | */ |
1001 | struct net_device *netdev_get_by_index(struct net *net, int ifindex, |
1002 | netdevice_tracker *tracker, gfp_t gfp) |
1003 | { |
1004 | struct net_device *dev; |
1005 | |
1006 | dev = dev_get_by_index(net, ifindex); |
1007 | if (dev) |
1008 | netdev_tracker_alloc(dev, tracker, gfp); |
1009 | return dev; |
1010 | } |
1011 | EXPORT_SYMBOL(netdev_get_by_index); |
1012 | |
1013 | /** |
1014 | * dev_get_by_napi_id - find a device by napi_id |
1015 | * @napi_id: ID of the NAPI struct |
1016 | * |
1017 | * Search for an interface by NAPI ID. Returns %NULL if the device |
1018 | * is not found or a pointer to the device. The device has not had |
1019 | * its reference counter increased so the caller must be careful |
1020 | * about locking. The caller must hold RCU lock. |
1021 | */ |
1022 | struct net_device *dev_get_by_napi_id(unsigned int napi_id) |
1023 | { |
1024 | struct napi_struct *napi; |
1025 | |
1026 | WARN_ON_ONCE(!rcu_read_lock_held()); |
1027 | |
1028 | if (!napi_id_valid(napi_id)) |
1029 | return NULL; |
1030 | |
1031 | napi = napi_by_id(napi_id); |
1032 | |
1033 | return napi ? napi->dev : NULL; |
1034 | } |
1035 | |
1036 | /* Release the held reference on the net_device, and if the net_device |
1037 | * is still registered try to lock the instance lock. If device is being |
1038 | * unregistered NULL will be returned (but the reference has been released, |
1039 | * either way!) |
1040 | * |
1041 | * This helper is intended for locking net_device after it has been looked up |
1042 | * using a lockless lookup helper. Lock prevents the instance from going away. |
1043 | */ |
1044 | struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) |
1045 | { |
1046 | netdev_lock(dev); |
1047 | if (dev->reg_state > NETREG_REGISTERED || |
1048 | dev->moving_ns || !net_eq(net1: dev_net(dev), net2: net)) { |
1049 | netdev_unlock(dev); |
1050 | dev_put(dev); |
1051 | return NULL; |
1052 | } |
1053 | dev_put(dev); |
1054 | return dev; |
1055 | } |
1056 | |
1057 | static struct net_device * |
1058 | __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) |
1059 | { |
1060 | netdev_lock_ops_compat(dev); |
1061 | if (dev->reg_state > NETREG_REGISTERED || |
1062 | dev->moving_ns || !net_eq(net1: dev_net(dev), net2: net)) { |
1063 | netdev_unlock_ops_compat(dev); |
1064 | dev_put(dev); |
1065 | return NULL; |
1066 | } |
1067 | dev_put(dev); |
1068 | return dev; |
1069 | } |
1070 | |
1071 | /** |
1072 | * netdev_get_by_index_lock() - find a device by its ifindex |
1073 | * @net: the applicable net namespace |
1074 | * @ifindex: index of device |
1075 | * |
1076 | * Search for an interface by index. If a valid device |
1077 | * with @ifindex is found it will be returned with netdev->lock held. |
1078 | * netdev_unlock() must be called to release it. |
1079 | * |
1080 | * Return: pointer to a device with lock held, NULL if not found. |
1081 | */ |
1082 | struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) |
1083 | { |
1084 | struct net_device *dev; |
1085 | |
1086 | dev = dev_get_by_index(net, ifindex); |
1087 | if (!dev) |
1088 | return NULL; |
1089 | |
1090 | return __netdev_put_lock(dev, net); |
1091 | } |
1092 | |
1093 | struct net_device * |
1094 | netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) |
1095 | { |
1096 | struct net_device *dev; |
1097 | |
1098 | dev = dev_get_by_index(net, ifindex); |
1099 | if (!dev) |
1100 | return NULL; |
1101 | |
1102 | return __netdev_put_lock_ops_compat(dev, net); |
1103 | } |
1104 | |
1105 | struct net_device * |
1106 | netdev_xa_find_lock(struct net *net, struct net_device *dev, |
1107 | unsigned long *index) |
1108 | { |
1109 | if (dev) |
1110 | netdev_unlock(dev); |
1111 | |
1112 | do { |
1113 | rcu_read_lock(); |
1114 | dev = xa_find(xa: &net->dev_by_index, index, ULONG_MAX, XA_PRESENT); |
1115 | if (!dev) { |
1116 | rcu_read_unlock(); |
1117 | return NULL; |
1118 | } |
1119 | dev_hold(dev); |
1120 | rcu_read_unlock(); |
1121 | |
1122 | dev = __netdev_put_lock(dev, net); |
1123 | if (dev) |
1124 | return dev; |
1125 | |
1126 | (*index)++; |
1127 | } while (true); |
1128 | } |
1129 | |
1130 | struct net_device * |
1131 | netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, |
1132 | unsigned long *index) |
1133 | { |
1134 | if (dev) |
1135 | netdev_unlock_ops_compat(dev); |
1136 | |
1137 | do { |
1138 | rcu_read_lock(); |
1139 | dev = xa_find(xa: &net->dev_by_index, index, ULONG_MAX, XA_PRESENT); |
1140 | if (!dev) { |
1141 | rcu_read_unlock(); |
1142 | return NULL; |
1143 | } |
1144 | dev_hold(dev); |
1145 | rcu_read_unlock(); |
1146 | |
1147 | dev = __netdev_put_lock_ops_compat(dev, net); |
1148 | if (dev) |
1149 | return dev; |
1150 | |
1151 | (*index)++; |
1152 | } while (true); |
1153 | } |
1154 | |
1155 | static DEFINE_SEQLOCK(netdev_rename_lock); |
1156 | |
1157 | void netdev_copy_name(struct net_device *dev, char *name) |
1158 | { |
1159 | unsigned int seq; |
1160 | |
1161 | do { |
1162 | seq = read_seqbegin(sl: &netdev_rename_lock); |
1163 | strscpy(name, dev->name, IFNAMSIZ); |
1164 | } while (read_seqretry(sl: &netdev_rename_lock, start: seq)); |
1165 | } |
1166 | |
1167 | /** |
1168 | * netdev_get_name - get a netdevice name, knowing its ifindex. |
1169 | * @net: network namespace |
1170 | * @name: a pointer to the buffer where the name will be stored. |
1171 | * @ifindex: the ifindex of the interface to get the name from. |
1172 | */ |
1173 | int netdev_get_name(struct net *net, char *name, int ifindex) |
1174 | { |
1175 | struct net_device *dev; |
1176 | int ret; |
1177 | |
1178 | rcu_read_lock(); |
1179 | |
1180 | dev = dev_get_by_index_rcu(net, ifindex); |
1181 | if (!dev) { |
1182 | ret = -ENODEV; |
1183 | goto out; |
1184 | } |
1185 | |
1186 | netdev_copy_name(dev, name); |
1187 | |
1188 | ret = 0; |
1189 | out: |
1190 | rcu_read_unlock(); |
1191 | return ret; |
1192 | } |
1193 | |
1194 | static bool dev_addr_cmp(struct net_device *dev, unsigned short type, |
1195 | const char *ha) |
1196 | { |
1197 | return dev->type == type && !memcmp(p: dev->dev_addr, q: ha, size: dev->addr_len); |
1198 | } |
1199 | |
1200 | /** |
1201 | * dev_getbyhwaddr_rcu - find a device by its hardware address |
1202 | * @net: the applicable net namespace |
1203 | * @type: media type of device |
1204 | * @ha: hardware address |
1205 | * |
1206 | * Search for an interface by MAC address. Returns NULL if the device |
1207 | * is not found or a pointer to the device. |
1208 | * The caller must hold RCU. |
1209 | * The returned device has not had its ref count increased |
1210 | * and the caller must therefore be careful about locking |
1211 | * |
1212 | */ |
1213 | |
1214 | struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, |
1215 | const char *ha) |
1216 | { |
1217 | struct net_device *dev; |
1218 | |
1219 | for_each_netdev_rcu(net, dev) |
1220 | if (dev_addr_cmp(dev, type, ha)) |
1221 | return dev; |
1222 | |
1223 | return NULL; |
1224 | } |
1225 | EXPORT_SYMBOL(dev_getbyhwaddr_rcu); |
1226 | |
1227 | /** |
1228 | * dev_getbyhwaddr() - find a device by its hardware address |
1229 | * @net: the applicable net namespace |
1230 | * @type: media type of device |
1231 | * @ha: hardware address |
1232 | * |
1233 | * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold |
1234 | * rtnl_lock. |
1235 | * |
1236 | * Context: rtnl_lock() must be held. |
1237 | * Return: pointer to the net_device, or NULL if not found |
1238 | */ |
1239 | struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, |
1240 | const char *ha) |
1241 | { |
1242 | struct net_device *dev; |
1243 | |
1244 | ASSERT_RTNL(); |
1245 | for_each_netdev(net, dev) |
1246 | if (dev_addr_cmp(dev, type, ha)) |
1247 | return dev; |
1248 | |
1249 | return NULL; |
1250 | } |
1251 | EXPORT_SYMBOL(dev_getbyhwaddr); |
1252 | |
1253 | struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) |
1254 | { |
1255 | struct net_device *dev, *ret = NULL; |
1256 | |
1257 | rcu_read_lock(); |
1258 | for_each_netdev_rcu(net, dev) |
1259 | if (dev->type == type) { |
1260 | dev_hold(dev); |
1261 | ret = dev; |
1262 | break; |
1263 | } |
1264 | rcu_read_unlock(); |
1265 | return ret; |
1266 | } |
1267 | EXPORT_SYMBOL(dev_getfirstbyhwtype); |
1268 | |
1269 | /** |
1270 | * __dev_get_by_flags - find any device with given flags |
1271 | * @net: the applicable net namespace |
1272 | * @if_flags: IFF_* values |
1273 | * @mask: bitmask of bits in if_flags to check |
1274 | * |
1275 | * Search for any interface with the given flags. Returns NULL if a device |
1276 | * is not found or a pointer to the device. Must be called inside |
1277 | * rtnl_lock(), and result refcount is unchanged. |
1278 | */ |
1279 | |
1280 | struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, |
1281 | unsigned short mask) |
1282 | { |
1283 | struct net_device *dev, *ret; |
1284 | |
1285 | ASSERT_RTNL(); |
1286 | |
1287 | ret = NULL; |
1288 | for_each_netdev(net, dev) { |
1289 | if (((dev->flags ^ if_flags) & mask) == 0) { |
1290 | ret = dev; |
1291 | break; |
1292 | } |
1293 | } |
1294 | return ret; |
1295 | } |
1296 | EXPORT_SYMBOL(__dev_get_by_flags); |
1297 | |
1298 | /** |
1299 | * dev_valid_name - check if name is okay for network device |
1300 | * @name: name string |
1301 | * |
1302 | * Network device names need to be valid file names to |
1303 | * allow sysfs to work. We also disallow any kind of |
1304 | * whitespace. |
1305 | */ |
1306 | bool dev_valid_name(const char *name) |
1307 | { |
1308 | if (*name == '\0') |
1309 | return false; |
1310 | if (strnlen(p: name, IFNAMSIZ) == IFNAMSIZ) |
1311 | return false; |
1312 | if (!strcmp(name, ".") || !strcmp(name, "..")) |
1313 | return false; |
1314 | |
1315 | while (*name) { |
1316 | if (*name == '/' || *name == ':' || isspace(*name)) |
1317 | return false; |
1318 | name++; |
1319 | } |
1320 | return true; |
1321 | } |
1322 | EXPORT_SYMBOL(dev_valid_name); |
1323 | |
1324 | /** |
1325 | * __dev_alloc_name - allocate a name for a device |
1326 | * @net: network namespace to allocate the device name in |
1327 | * @name: name format string |
1328 | * @res: result name string |
1329 | * |
1330 | * Passed a format string - eg "lt%d" it will try and find a suitable |
1331 | * id. It scans list of devices to build up a free map, then chooses |
1332 | * the first empty slot. The caller must hold the dev_base or rtnl lock |
1333 | * while allocating the name and adding the device in order to avoid |
1334 | * duplicates. |
1335 | * Limited to bits_per_byte * page size devices (ie 32K on most platforms). |
1336 | * Returns the number of the unit assigned or a negative errno code. |
1337 | */ |
1338 | |
1339 | static int __dev_alloc_name(struct net *net, const char *name, char *res) |
1340 | { |
1341 | int i = 0; |
1342 | const char *p; |
1343 | const int max_netdevices = 8*PAGE_SIZE; |
1344 | unsigned long *inuse; |
1345 | struct net_device *d; |
1346 | char buf[IFNAMSIZ]; |
1347 | |
1348 | /* Verify the string as this thing may have come from the user. |
1349 | * There must be one "%d" and no other "%" characters. |
1350 | */ |
1351 | p = strchr(name, '%'); |
1352 | if (!p || p[1] != 'd' || strchr(p + 2, '%')) |
1353 | return -EINVAL; |
1354 | |
1355 | /* Use one page as a bit array of possible slots */ |
1356 | inuse = bitmap_zalloc(nbits: max_netdevices, GFP_ATOMIC); |
1357 | if (!inuse) |
1358 | return -ENOMEM; |
1359 | |
1360 | for_each_netdev(net, d) { |
1361 | struct netdev_name_node *name_node; |
1362 | |
1363 | netdev_for_each_altname(d, name_node) { |
1364 | if (!sscanf(name_node->name, name, &i)) |
1365 | continue; |
1366 | if (i < 0 || i >= max_netdevices) |
1367 | continue; |
1368 | |
1369 | /* avoid cases where sscanf is not exact inverse of printf */ |
1370 | snprintf(buf, IFNAMSIZ, fmt: name, i); |
1371 | if (!strncmp(buf, name_node->name, IFNAMSIZ)) |
1372 | __set_bit(i, inuse); |
1373 | } |
1374 | if (!sscanf(d->name, name, &i)) |
1375 | continue; |
1376 | if (i < 0 || i >= max_netdevices) |
1377 | continue; |
1378 | |
1379 | /* avoid cases where sscanf is not exact inverse of printf */ |
1380 | snprintf(buf, IFNAMSIZ, fmt: name, i); |
1381 | if (!strncmp(buf, d->name, IFNAMSIZ)) |
1382 | __set_bit(i, inuse); |
1383 | } |
1384 | |
1385 | i = find_first_zero_bit(addr: inuse, size: max_netdevices); |
1386 | bitmap_free(bitmap: inuse); |
1387 | if (i == max_netdevices) |
1388 | return -ENFILE; |
1389 | |
1390 | /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ |
1391 | strscpy(buf, name, IFNAMSIZ); |
1392 | snprintf(buf: res, IFNAMSIZ, fmt: buf, i); |
1393 | return i; |
1394 | } |
1395 | |
1396 | /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ |
1397 | static int dev_prep_valid_name(struct net *net, struct net_device *dev, |
1398 | const char *want_name, char *out_name, |
1399 | int dup_errno) |
1400 | { |
1401 | if (!dev_valid_name(want_name)) |
1402 | return -EINVAL; |
1403 | |
1404 | if (strchr(want_name, '%')) |
1405 | return __dev_alloc_name(net, name: want_name, res: out_name); |
1406 | |
1407 | if (netdev_name_in_use(net, want_name)) |
1408 | return -dup_errno; |
1409 | if (out_name != want_name) |
1410 | strscpy(out_name, want_name, IFNAMSIZ); |
1411 | return 0; |
1412 | } |
1413 | |
1414 | /** |
1415 | * dev_alloc_name - allocate a name for a device |
1416 | * @dev: device |
1417 | * @name: name format string |
1418 | * |
1419 | * Passed a format string - eg "lt%d" it will try and find a suitable |
1420 | * id. It scans list of devices to build up a free map, then chooses |
1421 | * the first empty slot. The caller must hold the dev_base or rtnl lock |
1422 | * while allocating the name and adding the device in order to avoid |
1423 | * duplicates. |
1424 | * Limited to bits_per_byte * page size devices (ie 32K on most platforms). |
1425 | * Returns the number of the unit assigned or a negative errno code. |
1426 | */ |
1427 | |
1428 | int dev_alloc_name(struct net_device *dev, const char *name) |
1429 | { |
1430 | return dev_prep_valid_name(net: dev_net(dev), dev, want_name: name, out_name: dev->name, ENFILE); |
1431 | } |
1432 | EXPORT_SYMBOL(dev_alloc_name); |
1433 | |
1434 | static int dev_get_valid_name(struct net *net, struct net_device *dev, |
1435 | const char *name) |
1436 | { |
1437 | int ret; |
1438 | |
1439 | ret = dev_prep_valid_name(net, dev, want_name: name, out_name: dev->name, EEXIST); |
1440 | return ret < 0 ? ret : 0; |
1441 | } |
1442 | |
1443 | int netif_change_name(struct net_device *dev, const char *newname) |
1444 | { |
1445 | struct net *net = dev_net(dev); |
1446 | unsigned char old_assign_type; |
1447 | char oldname[IFNAMSIZ]; |
1448 | int err = 0; |
1449 | int ret; |
1450 | |
1451 | ASSERT_RTNL_NET(net); |
1452 | |
1453 | if (!strncmp(newname, dev->name, IFNAMSIZ)) |
1454 | return 0; |
1455 | |
1456 | memcpy(oldname, dev->name, IFNAMSIZ); |
1457 | |
1458 | write_seqlock_bh(sl: &netdev_rename_lock); |
1459 | err = dev_get_valid_name(net, dev, name: newname); |
1460 | write_sequnlock_bh(sl: &netdev_rename_lock); |
1461 | |
1462 | if (err < 0) |
1463 | return err; |
1464 | |
1465 | if (oldname[0] && !strchr(oldname, '%')) |
1466 | netdev_info(dev, format: "renamed from %s%s\n", oldname, |
1467 | dev->flags & IFF_UP ? " (while UP)": ""); |
1468 | |
1469 | old_assign_type = dev->name_assign_type; |
1470 | WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); |
1471 | |
1472 | rollback: |
1473 | ret = device_rename(dev: &dev->dev, new_name: dev->name); |
1474 | if (ret) { |
1475 | write_seqlock_bh(sl: &netdev_rename_lock); |
1476 | memcpy(dev->name, oldname, IFNAMSIZ); |
1477 | write_sequnlock_bh(sl: &netdev_rename_lock); |
1478 | WRITE_ONCE(dev->name_assign_type, old_assign_type); |
1479 | return ret; |
1480 | } |
1481 | |
1482 | netdev_adjacent_rename_links(dev, oldname); |
1483 | |
1484 | netdev_name_node_del(name_node: dev->name_node); |
1485 | |
1486 | synchronize_net(); |
1487 | |
1488 | netdev_name_node_add(net, name_node: dev->name_node); |
1489 | |
1490 | ret = call_netdevice_notifiers(val: NETDEV_CHANGENAME, dev); |
1491 | ret = notifier_to_errno(ret); |
1492 | |
1493 | if (ret) { |
1494 | /* err >= 0 after dev_alloc_name() or stores the first errno */ |
1495 | if (err >= 0) { |
1496 | err = ret; |
1497 | write_seqlock_bh(sl: &netdev_rename_lock); |
1498 | memcpy(dev->name, oldname, IFNAMSIZ); |
1499 | write_sequnlock_bh(sl: &netdev_rename_lock); |
1500 | memcpy(oldname, newname, IFNAMSIZ); |
1501 | WRITE_ONCE(dev->name_assign_type, old_assign_type); |
1502 | old_assign_type = NET_NAME_RENAMED; |
1503 | goto rollback; |
1504 | } else { |
1505 | netdev_err(dev, format: "name change rollback failed: %d\n", |
1506 | ret); |
1507 | } |
1508 | } |
1509 | |
1510 | return err; |
1511 | } |
1512 | |
1513 | int netif_set_alias(struct net_device *dev, const char *alias, size_t len) |
1514 | { |
1515 | struct dev_ifalias *new_alias = NULL; |
1516 | |
1517 | if (len >= IFALIASZ) |
1518 | return -EINVAL; |
1519 | |
1520 | if (len) { |
1521 | new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); |
1522 | if (!new_alias) |
1523 | return -ENOMEM; |
1524 | |
1525 | memcpy(new_alias->ifalias, alias, len); |
1526 | new_alias->ifalias[len] = 0; |
1527 | } |
1528 | |
1529 | mutex_lock(&ifalias_mutex); |
1530 | new_alias = rcu_replace_pointer(dev->ifalias, new_alias, |
1531 | mutex_is_locked(&ifalias_mutex)); |
1532 | mutex_unlock(lock: &ifalias_mutex); |
1533 | |
1534 | if (new_alias) |
1535 | kfree_rcu(new_alias, rcuhead); |
1536 | |
1537 | return len; |
1538 | } |
1539 | |
1540 | /** |
1541 | * dev_get_alias - get ifalias of a device |
1542 | * @dev: device |
1543 | * @name: buffer to store name of ifalias |
1544 | * @len: size of buffer |
1545 | * |
1546 | * get ifalias for a device. Caller must make sure dev cannot go |
1547 | * away, e.g. rcu read lock or own a reference count to device. |
1548 | */ |
1549 | int dev_get_alias(const struct net_device *dev, char *name, size_t len) |
1550 | { |
1551 | const struct dev_ifalias *alias; |
1552 | int ret = 0; |
1553 | |
1554 | rcu_read_lock(); |
1555 | alias = rcu_dereference(dev->ifalias); |
1556 | if (alias) |
1557 | ret = snprintf(buf: name, size: len, fmt: "%s", alias->ifalias); |
1558 | rcu_read_unlock(); |
1559 | |
1560 | return ret; |
1561 | } |
1562 | |
1563 | /** |
1564 | * netdev_features_change - device changes features |
1565 | * @dev: device to cause notification |
1566 | * |
1567 | * Called to indicate a device has changed features. |
1568 | */ |
1569 | void netdev_features_change(struct net_device *dev) |
1570 | { |
1571 | call_netdevice_notifiers(val: NETDEV_FEAT_CHANGE, dev); |
1572 | } |
1573 | EXPORT_SYMBOL(netdev_features_change); |
1574 | |
1575 | void netif_state_change(struct net_device *dev) |
1576 | { |
1577 | netdev_ops_assert_locked_or_invisible(dev); |
1578 | |
1579 | if (dev->flags & IFF_UP) { |
1580 | struct netdev_notifier_change_info change_info = { |
1581 | .info.dev = dev, |
1582 | }; |
1583 | |
1584 | call_netdevice_notifiers_info(val: NETDEV_CHANGE, |
1585 | info: &change_info.info); |
1586 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: 0, GFP_KERNEL, portid: 0, NULL); |
1587 | } |
1588 | } |
1589 | |
1590 | /** |
1591 | * __netdev_notify_peers - notify network peers about existence of @dev, |
1592 | * to be called when rtnl lock is already held. |
1593 | * @dev: network device |
1594 | * |
1595 | * Generate traffic such that interested network peers are aware of |
1596 | * @dev, such as by generating a gratuitous ARP. This may be used when |
1597 | * a device wants to inform the rest of the network about some sort of |
1598 | * reconfiguration such as a failover event or virtual machine |
1599 | * migration. |
1600 | */ |
1601 | void __netdev_notify_peers(struct net_device *dev) |
1602 | { |
1603 | ASSERT_RTNL(); |
1604 | call_netdevice_notifiers(val: NETDEV_NOTIFY_PEERS, dev); |
1605 | call_netdevice_notifiers(val: NETDEV_RESEND_IGMP, dev); |
1606 | } |
1607 | EXPORT_SYMBOL(__netdev_notify_peers); |
1608 | |
1609 | /** |
1610 | * netdev_notify_peers - notify network peers about existence of @dev |
1611 | * @dev: network device |
1612 | * |
1613 | * Generate traffic such that interested network peers are aware of |
1614 | * @dev, such as by generating a gratuitous ARP. This may be used when |
1615 | * a device wants to inform the rest of the network about some sort of |
1616 | * reconfiguration such as a failover event or virtual machine |
1617 | * migration. |
1618 | */ |
1619 | void netdev_notify_peers(struct net_device *dev) |
1620 | { |
1621 | rtnl_lock(); |
1622 | __netdev_notify_peers(dev); |
1623 | rtnl_unlock(); |
1624 | } |
1625 | EXPORT_SYMBOL(netdev_notify_peers); |
1626 | |
1627 | static int napi_threaded_poll(void *data); |
1628 | |
1629 | static int napi_kthread_create(struct napi_struct *n) |
1630 | { |
1631 | int err = 0; |
1632 | |
1633 | /* Create and wake up the kthread once to put it in |
1634 | * TASK_INTERRUPTIBLE mode to avoid the blocked task |
1635 | * warning and work with loadavg. |
1636 | */ |
1637 | n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", |
1638 | n->dev->name, n->napi_id); |
1639 | if (IS_ERR(ptr: n->thread)) { |
1640 | err = PTR_ERR(ptr: n->thread); |
1641 | pr_err("kthread_run failed with err %d\n", err); |
1642 | n->thread = NULL; |
1643 | } |
1644 | |
1645 | return err; |
1646 | } |
1647 | |
1648 | static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) |
1649 | { |
1650 | const struct net_device_ops *ops = dev->netdev_ops; |
1651 | int ret; |
1652 | |
1653 | ASSERT_RTNL(); |
1654 | dev_addr_check(dev); |
1655 | |
1656 | if (!netif_device_present(dev)) { |
1657 | /* may be detached because parent is runtime-suspended */ |
1658 | if (dev->dev.parent) |
1659 | pm_runtime_resume(dev: dev->dev.parent); |
1660 | if (!netif_device_present(dev)) |
1661 | return -ENODEV; |
1662 | } |
1663 | |
1664 | /* Block netpoll from trying to do any rx path servicing. |
1665 | * If we don't do this there is a chance ndo_poll_controller |
1666 | * or ndo_poll may be running while we open the device |
1667 | */ |
1668 | netpoll_poll_disable(dev); |
1669 | |
1670 | ret = call_netdevice_notifiers_extack(val: NETDEV_PRE_UP, dev, extack); |
1671 | ret = notifier_to_errno(ret); |
1672 | if (ret) |
1673 | return ret; |
1674 | |
1675 | set_bit(nr: __LINK_STATE_START, addr: &dev->state); |
1676 | |
1677 | netdev_ops_assert_locked(dev); |
1678 | |
1679 | if (ops->ndo_validate_addr) |
1680 | ret = ops->ndo_validate_addr(dev); |
1681 | |
1682 | if (!ret && ops->ndo_open) |
1683 | ret = ops->ndo_open(dev); |
1684 | |
1685 | netpoll_poll_enable(dev); |
1686 | |
1687 | if (ret) |
1688 | clear_bit(nr: __LINK_STATE_START, addr: &dev->state); |
1689 | else { |
1690 | netif_set_up(dev, value: true); |
1691 | dev_set_rx_mode(dev); |
1692 | dev_activate(dev); |
1693 | add_device_randomness(buf: dev->dev_addr, len: dev->addr_len); |
1694 | } |
1695 | |
1696 | return ret; |
1697 | } |
1698 | |
1699 | int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) |
1700 | { |
1701 | int ret; |
1702 | |
1703 | if (dev->flags & IFF_UP) |
1704 | return 0; |
1705 | |
1706 | ret = __dev_open(dev, extack); |
1707 | if (ret < 0) |
1708 | return ret; |
1709 | |
1710 | rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, portid: 0, NULL); |
1711 | call_netdevice_notifiers(val: NETDEV_UP, dev); |
1712 | |
1713 | return ret; |
1714 | } |
1715 | |
1716 | static void __dev_close_many(struct list_head *head) |
1717 | { |
1718 | struct net_device *dev; |
1719 | |
1720 | ASSERT_RTNL(); |
1721 | might_sleep(); |
1722 | |
1723 | list_for_each_entry(dev, head, close_list) { |
1724 | /* Temporarily disable netpoll until the interface is down */ |
1725 | netpoll_poll_disable(dev); |
1726 | |
1727 | call_netdevice_notifiers(val: NETDEV_GOING_DOWN, dev); |
1728 | |
1729 | clear_bit(nr: __LINK_STATE_START, addr: &dev->state); |
1730 | |
1731 | /* Synchronize to scheduled poll. We cannot touch poll list, it |
1732 | * can be even on different cpu. So just clear netif_running(). |
1733 | * |
1734 | * dev->stop() will invoke napi_disable() on all of it's |
1735 | * napi_struct instances on this device. |
1736 | */ |
1737 | smp_mb__after_atomic(); /* Commit netif_running(). */ |
1738 | } |
1739 | |
1740 | dev_deactivate_many(head); |
1741 | |
1742 | list_for_each_entry(dev, head, close_list) { |
1743 | const struct net_device_ops *ops = dev->netdev_ops; |
1744 | |
1745 | /* |
1746 | * Call the device specific close. This cannot fail. |
1747 | * Only if device is UP |
1748 | * |
1749 | * We allow it to be called even after a DETACH hot-plug |
1750 | * event. |
1751 | */ |
1752 | |
1753 | netdev_ops_assert_locked(dev); |
1754 | |
1755 | if (ops->ndo_stop) |
1756 | ops->ndo_stop(dev); |
1757 | |
1758 | netif_set_up(dev, value: false); |
1759 | netpoll_poll_enable(dev); |
1760 | } |
1761 | } |
1762 | |
1763 | static void __dev_close(struct net_device *dev) |
1764 | { |
1765 | LIST_HEAD(single); |
1766 | |
1767 | list_add(new: &dev->close_list, head: &single); |
1768 | __dev_close_many(head: &single); |
1769 | list_del(entry: &single); |
1770 | } |
1771 | |
1772 | void dev_close_many(struct list_head *head, bool unlink) |
1773 | { |
1774 | struct net_device *dev, *tmp; |
1775 | |
1776 | /* Remove the devices that don't need to be closed */ |
1777 | list_for_each_entry_safe(dev, tmp, head, close_list) |
1778 | if (!(dev->flags & IFF_UP)) |
1779 | list_del_init(entry: &dev->close_list); |
1780 | |
1781 | __dev_close_many(head); |
1782 | |
1783 | list_for_each_entry_safe(dev, tmp, head, close_list) { |
1784 | rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, portid: 0, NULL); |
1785 | call_netdevice_notifiers(val: NETDEV_DOWN, dev); |
1786 | if (unlink) |
1787 | list_del_init(entry: &dev->close_list); |
1788 | } |
1789 | } |
1790 | EXPORT_SYMBOL(dev_close_many); |
1791 | |
1792 | void netif_close(struct net_device *dev) |
1793 | { |
1794 | if (dev->flags & IFF_UP) { |
1795 | LIST_HEAD(single); |
1796 | |
1797 | list_add(new: &dev->close_list, head: &single); |
1798 | dev_close_many(&single, true); |
1799 | list_del(entry: &single); |
1800 | } |
1801 | } |
1802 | EXPORT_SYMBOL(netif_close); |
1803 | |
1804 | void netif_disable_lro(struct net_device *dev) |
1805 | { |
1806 | struct net_device *lower_dev; |
1807 | struct list_head *iter; |
1808 | |
1809 | dev->wanted_features &= ~NETIF_F_LRO; |
1810 | netdev_update_features(dev); |
1811 | |
1812 | if (unlikely(dev->features & NETIF_F_LRO)) |
1813 | netdev_WARN(dev, "failed to disable LRO!\n"); |
1814 | |
1815 | netdev_for_each_lower_dev(dev, lower_dev, iter) { |
1816 | netdev_lock_ops(dev: lower_dev); |
1817 | netif_disable_lro(dev: lower_dev); |
1818 | netdev_unlock_ops(dev: lower_dev); |
1819 | } |
1820 | } |
1821 | EXPORT_IPV6_MOD(netif_disable_lro); |
1822 | |
1823 | /** |
1824 | * dev_disable_gro_hw - disable HW Generic Receive Offload on a device |
1825 | * @dev: device |
1826 | * |
1827 | * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be |
1828 | * called under RTNL. This is needed if Generic XDP is installed on |
1829 | * the device. |
1830 | */ |
1831 | static void dev_disable_gro_hw(struct net_device *dev) |
1832 | { |
1833 | dev->wanted_features &= ~NETIF_F_GRO_HW; |
1834 | netdev_update_features(dev); |
1835 | |
1836 | if (unlikely(dev->features & NETIF_F_GRO_HW)) |
1837 | netdev_WARN(dev, "failed to disable GRO_HW!\n"); |
1838 | } |
1839 | |
1840 | const char *netdev_cmd_to_name(enum netdev_cmd cmd) |
1841 | { |
1842 | #define N(val) \ |
1843 | case NETDEV_##val: \ |
1844 | return "NETDEV_" __stringify(val); |
1845 | switch (cmd) { |
1846 | N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) |
1847 | N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) |
1848 | N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) |
1849 | N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) |
1850 | N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) |
1851 | N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) |
1852 | N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) |
1853 | N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) |
1854 | N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) |
1855 | N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) |
1856 | N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) |
1857 | N(XDP_FEAT_CHANGE) |
1858 | } |
1859 | #undef N |
1860 | return "UNKNOWN_NETDEV_EVENT"; |
1861 | } |
1862 | EXPORT_SYMBOL_GPL(netdev_cmd_to_name); |
1863 | |
1864 | static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, |
1865 | struct net_device *dev) |
1866 | { |
1867 | struct netdev_notifier_info info = { |
1868 | .dev = dev, |
1869 | }; |
1870 | |
1871 | return nb->notifier_call(nb, val, &info); |
1872 | } |
1873 | |
1874 | static int call_netdevice_register_notifiers(struct notifier_block *nb, |
1875 | struct net_device *dev) |
1876 | { |
1877 | int err; |
1878 | |
1879 | err = call_netdevice_notifier(nb, val: NETDEV_REGISTER, dev); |
1880 | err = notifier_to_errno(ret: err); |
1881 | if (err) |
1882 | return err; |
1883 | |
1884 | if (!(dev->flags & IFF_UP)) |
1885 | return 0; |
1886 | |
1887 | call_netdevice_notifier(nb, val: NETDEV_UP, dev); |
1888 | return 0; |
1889 | } |
1890 | |
1891 | static void call_netdevice_unregister_notifiers(struct notifier_block *nb, |
1892 | struct net_device *dev) |
1893 | { |
1894 | if (dev->flags & IFF_UP) { |
1895 | call_netdevice_notifier(nb, val: NETDEV_GOING_DOWN, |
1896 | dev); |
1897 | call_netdevice_notifier(nb, val: NETDEV_DOWN, dev); |
1898 | } |
1899 | call_netdevice_notifier(nb, val: NETDEV_UNREGISTER, dev); |
1900 | } |
1901 | |
1902 | static int call_netdevice_register_net_notifiers(struct notifier_block *nb, |
1903 | struct net *net) |
1904 | { |
1905 | struct net_device *dev; |
1906 | int err; |
1907 | |
1908 | for_each_netdev(net, dev) { |
1909 | netdev_lock_ops(dev); |
1910 | err = call_netdevice_register_notifiers(nb, dev); |
1911 | netdev_unlock_ops(dev); |
1912 | if (err) |
1913 | goto rollback; |
1914 | } |
1915 | return 0; |
1916 | |
1917 | rollback: |
1918 | for_each_netdev_continue_reverse(net, dev) |
1919 | call_netdevice_unregister_notifiers(nb, dev); |
1920 | return err; |
1921 | } |
1922 | |
1923 | static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, |
1924 | struct net *net) |
1925 | { |
1926 | struct net_device *dev; |
1927 | |
1928 | for_each_netdev(net, dev) |
1929 | call_netdevice_unregister_notifiers(nb, dev); |
1930 | } |
1931 | |
1932 | static int dev_boot_phase = 1; |
1933 | |
1934 | /** |
1935 | * register_netdevice_notifier - register a network notifier block |
1936 | * @nb: notifier |
1937 | * |
1938 | * Register a notifier to be called when network device events occur. |
1939 | * The notifier passed is linked into the kernel structures and must |
1940 | * not be reused until it has been unregistered. A negative errno code |
1941 | * is returned on a failure. |
1942 | * |
1943 | * When registered all registration and up events are replayed |
1944 | * to the new notifier to allow device to have a race free |
1945 | * view of the network device list. |
1946 | */ |
1947 | |
1948 | int register_netdevice_notifier(struct notifier_block *nb) |
1949 | { |
1950 | struct net *net; |
1951 | int err; |
1952 | |
1953 | /* Close race with setup_net() and cleanup_net() */ |
1954 | down_write(sem: &pernet_ops_rwsem); |
1955 | |
1956 | /* When RTNL is removed, we need protection for netdev_chain. */ |
1957 | rtnl_lock(); |
1958 | |
1959 | err = raw_notifier_chain_register(nh: &netdev_chain, nb); |
1960 | if (err) |
1961 | goto unlock; |
1962 | if (dev_boot_phase) |
1963 | goto unlock; |
1964 | for_each_net(net) { |
1965 | __rtnl_net_lock(net); |
1966 | err = call_netdevice_register_net_notifiers(nb, net); |
1967 | __rtnl_net_unlock(net); |
1968 | if (err) |
1969 | goto rollback; |
1970 | } |
1971 | |
1972 | unlock: |
1973 | rtnl_unlock(); |
1974 | up_write(sem: &pernet_ops_rwsem); |
1975 | return err; |
1976 | |
1977 | rollback: |
1978 | for_each_net_continue_reverse(net) { |
1979 | __rtnl_net_lock(net); |
1980 | call_netdevice_unregister_net_notifiers(nb, net); |
1981 | __rtnl_net_unlock(net); |
1982 | } |
1983 | |
1984 | raw_notifier_chain_unregister(nh: &netdev_chain, nb); |
1985 | goto unlock; |
1986 | } |
1987 | EXPORT_SYMBOL(register_netdevice_notifier); |
1988 | |
1989 | /** |
1990 | * unregister_netdevice_notifier - unregister a network notifier block |
1991 | * @nb: notifier |
1992 | * |
1993 | * Unregister a notifier previously registered by |
1994 | * register_netdevice_notifier(). The notifier is unlinked into the |
1995 | * kernel structures and may then be reused. A negative errno code |
1996 | * is returned on a failure. |
1997 | * |
1998 | * After unregistering unregister and down device events are synthesized |
1999 | * for all devices on the device list to the removed notifier to remove |
2000 | * the need for special case cleanup code. |
2001 | */ |
2002 | |
2003 | int unregister_netdevice_notifier(struct notifier_block *nb) |
2004 | { |
2005 | struct net *net; |
2006 | int err; |
2007 | |
2008 | /* Close race with setup_net() and cleanup_net() */ |
2009 | down_write(sem: &pernet_ops_rwsem); |
2010 | rtnl_lock(); |
2011 | err = raw_notifier_chain_unregister(nh: &netdev_chain, nb); |
2012 | if (err) |
2013 | goto unlock; |
2014 | |
2015 | for_each_net(net) { |
2016 | __rtnl_net_lock(net); |
2017 | call_netdevice_unregister_net_notifiers(nb, net); |
2018 | __rtnl_net_unlock(net); |
2019 | } |
2020 | |
2021 | unlock: |
2022 | rtnl_unlock(); |
2023 | up_write(sem: &pernet_ops_rwsem); |
2024 | return err; |
2025 | } |
2026 | EXPORT_SYMBOL(unregister_netdevice_notifier); |
2027 | |
2028 | static int __register_netdevice_notifier_net(struct net *net, |
2029 | struct notifier_block *nb, |
2030 | bool ignore_call_fail) |
2031 | { |
2032 | int err; |
2033 | |
2034 | err = raw_notifier_chain_register(nh: &net->netdev_chain, nb); |
2035 | if (err) |
2036 | return err; |
2037 | if (dev_boot_phase) |
2038 | return 0; |
2039 | |
2040 | err = call_netdevice_register_net_notifiers(nb, net); |
2041 | if (err && !ignore_call_fail) |
2042 | goto chain_unregister; |
2043 | |
2044 | return 0; |
2045 | |
2046 | chain_unregister: |
2047 | raw_notifier_chain_unregister(nh: &net->netdev_chain, nb); |
2048 | return err; |
2049 | } |
2050 | |
2051 | static int __unregister_netdevice_notifier_net(struct net *net, |
2052 | struct notifier_block *nb) |
2053 | { |
2054 | int err; |
2055 | |
2056 | err = raw_notifier_chain_unregister(nh: &net->netdev_chain, nb); |
2057 | if (err) |
2058 | return err; |
2059 | |
2060 | call_netdevice_unregister_net_notifiers(nb, net); |
2061 | return 0; |
2062 | } |
2063 | |
2064 | /** |
2065 | * register_netdevice_notifier_net - register a per-netns network notifier block |
2066 | * @net: network namespace |
2067 | * @nb: notifier |
2068 | * |
2069 | * Register a notifier to be called when network device events occur. |
2070 | * The notifier passed is linked into the kernel structures and must |
2071 | * not be reused until it has been unregistered. A negative errno code |
2072 | * is returned on a failure. |
2073 | * |
2074 | * When registered all registration and up events are replayed |
2075 | * to the new notifier to allow device to have a race free |
2076 | * view of the network device list. |
2077 | */ |
2078 | |
2079 | int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) |
2080 | { |
2081 | int err; |
2082 | |
2083 | rtnl_net_lock(net); |
2084 | err = __register_netdevice_notifier_net(net, nb, ignore_call_fail: false); |
2085 | rtnl_net_unlock(net); |
2086 | |
2087 | return err; |
2088 | } |
2089 | EXPORT_SYMBOL(register_netdevice_notifier_net); |
2090 | |
2091 | /** |
2092 | * unregister_netdevice_notifier_net - unregister a per-netns |
2093 | * network notifier block |
2094 | * @net: network namespace |
2095 | * @nb: notifier |
2096 | * |
2097 | * Unregister a notifier previously registered by |
2098 | * register_netdevice_notifier_net(). The notifier is unlinked from the |
2099 | * kernel structures and may then be reused. A negative errno code |
2100 | * is returned on a failure. |
2101 | * |
2102 | * After unregistering unregister and down device events are synthesized |
2103 | * for all devices on the device list to the removed notifier to remove |
2104 | * the need for special case cleanup code. |
2105 | */ |
2106 | |
2107 | int unregister_netdevice_notifier_net(struct net *net, |
2108 | struct notifier_block *nb) |
2109 | { |
2110 | int err; |
2111 | |
2112 | rtnl_net_lock(net); |
2113 | err = __unregister_netdevice_notifier_net(net, nb); |
2114 | rtnl_net_unlock(net); |
2115 | |
2116 | return err; |
2117 | } |
2118 | EXPORT_SYMBOL(unregister_netdevice_notifier_net); |
2119 | |
2120 | static void __move_netdevice_notifier_net(struct net *src_net, |
2121 | struct net *dst_net, |
2122 | struct notifier_block *nb) |
2123 | { |
2124 | __unregister_netdevice_notifier_net(net: src_net, nb); |
2125 | __register_netdevice_notifier_net(net: dst_net, nb, ignore_call_fail: true); |
2126 | } |
2127 | |
2128 | static void rtnl_net_dev_lock(struct net_device *dev) |
2129 | { |
2130 | bool again; |
2131 | |
2132 | do { |
2133 | struct net *net; |
2134 | |
2135 | again = false; |
2136 | |
2137 | /* netns might be being dismantled. */ |
2138 | rcu_read_lock(); |
2139 | net = dev_net_rcu(dev); |
2140 | net_passive_inc(net); |
2141 | rcu_read_unlock(); |
2142 | |
2143 | rtnl_net_lock(net); |
2144 | |
2145 | #ifdef CONFIG_NET_NS |
2146 | /* dev might have been moved to another netns. */ |
2147 | if (!net_eq(net1: net, rcu_access_pointer(dev->nd_net.net))) { |
2148 | rtnl_net_unlock(net); |
2149 | net_passive_dec(net); |
2150 | again = true; |
2151 | } |
2152 | #endif |
2153 | } while (again); |
2154 | } |
2155 | |
2156 | static void rtnl_net_dev_unlock(struct net_device *dev) |
2157 | { |
2158 | struct net *net = dev_net(dev); |
2159 | |
2160 | rtnl_net_unlock(net); |
2161 | net_passive_dec(net); |
2162 | } |
2163 | |
2164 | int register_netdevice_notifier_dev_net(struct net_device *dev, |
2165 | struct notifier_block *nb, |
2166 | struct netdev_net_notifier *nn) |
2167 | { |
2168 | int err; |
2169 | |
2170 | rtnl_net_dev_lock(dev); |
2171 | err = __register_netdevice_notifier_net(net: dev_net(dev), nb, ignore_call_fail: false); |
2172 | if (!err) { |
2173 | nn->nb = nb; |
2174 | list_add(new: &nn->list, head: &dev->net_notifier_list); |
2175 | } |
2176 | rtnl_net_dev_unlock(dev); |
2177 | |
2178 | return err; |
2179 | } |
2180 | EXPORT_SYMBOL(register_netdevice_notifier_dev_net); |
2181 | |
2182 | int unregister_netdevice_notifier_dev_net(struct net_device *dev, |
2183 | struct notifier_block *nb, |
2184 | struct netdev_net_notifier *nn) |
2185 | { |
2186 | int err; |
2187 | |
2188 | rtnl_net_dev_lock(dev); |
2189 | list_del(entry: &nn->list); |
2190 | err = __unregister_netdevice_notifier_net(net: dev_net(dev), nb); |
2191 | rtnl_net_dev_unlock(dev); |
2192 | |
2193 | return err; |
2194 | } |
2195 | EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); |
2196 | |
2197 | static void move_netdevice_notifiers_dev_net(struct net_device *dev, |
2198 | struct net *net) |
2199 | { |
2200 | struct netdev_net_notifier *nn; |
2201 | |
2202 | list_for_each_entry(nn, &dev->net_notifier_list, list) |
2203 | __move_netdevice_notifier_net(src_net: dev_net(dev), dst_net: net, nb: nn->nb); |
2204 | } |
2205 | |
2206 | /** |
2207 | * call_netdevice_notifiers_info - call all network notifier blocks |
2208 | * @val: value passed unmodified to notifier function |
2209 | * @info: notifier information data |
2210 | * |
2211 | * Call all network notifier blocks. Parameters and return value |
2212 | * are as for raw_notifier_call_chain(). |
2213 | */ |
2214 | |
2215 | int call_netdevice_notifiers_info(unsigned long val, |
2216 | struct netdev_notifier_info *info) |
2217 | { |
2218 | struct net *net = dev_net(dev: info->dev); |
2219 | int ret; |
2220 | |
2221 | ASSERT_RTNL(); |
2222 | |
2223 | /* Run per-netns notifier block chain first, then run the global one. |
2224 | * Hopefully, one day, the global one is going to be removed after |
2225 | * all notifier block registrators get converted to be per-netns. |
2226 | */ |
2227 | ret = raw_notifier_call_chain(nh: &net->netdev_chain, val, v: info); |
2228 | if (ret & NOTIFY_STOP_MASK) |
2229 | return ret; |
2230 | return raw_notifier_call_chain(nh: &netdev_chain, val, v: info); |
2231 | } |
2232 | |
2233 | /** |
2234 | * call_netdevice_notifiers_info_robust - call per-netns notifier blocks |
2235 | * for and rollback on error |
2236 | * @val_up: value passed unmodified to notifier function |
2237 | * @val_down: value passed unmodified to the notifier function when |
2238 | * recovering from an error on @val_up |
2239 | * @info: notifier information data |
2240 | * |
2241 | * Call all per-netns network notifier blocks, but not notifier blocks on |
2242 | * the global notifier chain. Parameters and return value are as for |
2243 | * raw_notifier_call_chain_robust(). |
2244 | */ |
2245 | |
2246 | static int |
2247 | call_netdevice_notifiers_info_robust(unsigned long val_up, |
2248 | unsigned long val_down, |
2249 | struct netdev_notifier_info *info) |
2250 | { |
2251 | struct net *net = dev_net(dev: info->dev); |
2252 | |
2253 | ASSERT_RTNL(); |
2254 | |
2255 | return raw_notifier_call_chain_robust(nh: &net->netdev_chain, |
2256 | val_up, val_down, v: info); |
2257 | } |
2258 | |
2259 | static int call_netdevice_notifiers_extack(unsigned long val, |
2260 | struct net_device *dev, |
2261 | struct netlink_ext_ack *extack) |
2262 | { |
2263 | struct netdev_notifier_info info = { |
2264 | .dev = dev, |
2265 | .extack = extack, |
2266 | }; |
2267 | |
2268 | return call_netdevice_notifiers_info(val, info: &info); |
2269 | } |
2270 | |
2271 | /** |
2272 | * call_netdevice_notifiers - call all network notifier blocks |
2273 | * @val: value passed unmodified to notifier function |
2274 | * @dev: net_device pointer passed unmodified to notifier function |
2275 | * |
2276 | * Call all network notifier blocks. Parameters and return value |
2277 | * are as for raw_notifier_call_chain(). |
2278 | */ |
2279 | |
2280 | int call_netdevice_notifiers(unsigned long val, struct net_device *dev) |
2281 | { |
2282 | return call_netdevice_notifiers_extack(val, dev, NULL); |
2283 | } |
2284 | EXPORT_SYMBOL(call_netdevice_notifiers); |
2285 | |
2286 | /** |
2287 | * call_netdevice_notifiers_mtu - call all network notifier blocks |
2288 | * @val: value passed unmodified to notifier function |
2289 | * @dev: net_device pointer passed unmodified to notifier function |
2290 | * @arg: additional u32 argument passed to the notifier function |
2291 | * |
2292 | * Call all network notifier blocks. Parameters and return value |
2293 | * are as for raw_notifier_call_chain(). |
2294 | */ |
2295 | static int call_netdevice_notifiers_mtu(unsigned long val, |
2296 | struct net_device *dev, u32 arg) |
2297 | { |
2298 | struct netdev_notifier_info_ext info = { |
2299 | .info.dev = dev, |
2300 | .ext.mtu = arg, |
2301 | }; |
2302 | |
2303 | BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); |
2304 | |
2305 | return call_netdevice_notifiers_info(val, info: &info.info); |
2306 | } |
2307 | |
2308 | #ifdef CONFIG_NET_INGRESS |
2309 | static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); |
2310 | |
2311 | void net_inc_ingress_queue(void) |
2312 | { |
2313 | static_branch_inc(&ingress_needed_key); |
2314 | } |
2315 | EXPORT_SYMBOL_GPL(net_inc_ingress_queue); |
2316 | |
2317 | void net_dec_ingress_queue(void) |
2318 | { |
2319 | static_branch_dec(&ingress_needed_key); |
2320 | } |
2321 | EXPORT_SYMBOL_GPL(net_dec_ingress_queue); |
2322 | #endif |
2323 | |
2324 | #ifdef CONFIG_NET_EGRESS |
2325 | static DEFINE_STATIC_KEY_FALSE(egress_needed_key); |
2326 | |
2327 | void net_inc_egress_queue(void) |
2328 | { |
2329 | static_branch_inc(&egress_needed_key); |
2330 | } |
2331 | EXPORT_SYMBOL_GPL(net_inc_egress_queue); |
2332 | |
2333 | void net_dec_egress_queue(void) |
2334 | { |
2335 | static_branch_dec(&egress_needed_key); |
2336 | } |
2337 | EXPORT_SYMBOL_GPL(net_dec_egress_queue); |
2338 | #endif |
2339 | |
2340 | #ifdef CONFIG_NET_CLS_ACT |
2341 | DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); |
2342 | EXPORT_SYMBOL(tcf_sw_enabled_key); |
2343 | #endif |
2344 | |
2345 | DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); |
2346 | EXPORT_SYMBOL(netstamp_needed_key); |
2347 | #ifdef CONFIG_JUMP_LABEL |
2348 | static atomic_t netstamp_needed_deferred; |
2349 | static atomic_t netstamp_wanted; |
2350 | static void netstamp_clear(struct work_struct *work) |
2351 | { |
2352 | int deferred = atomic_xchg(v: &netstamp_needed_deferred, new: 0); |
2353 | int wanted; |
2354 | |
2355 | wanted = atomic_add_return(i: deferred, v: &netstamp_wanted); |
2356 | if (wanted > 0) |
2357 | static_branch_enable(&netstamp_needed_key); |
2358 | else |
2359 | static_branch_disable(&netstamp_needed_key); |
2360 | } |
2361 | static DECLARE_WORK(netstamp_work, netstamp_clear); |
2362 | #endif |
2363 | |
2364 | void net_enable_timestamp(void) |
2365 | { |
2366 | #ifdef CONFIG_JUMP_LABEL |
2367 | int wanted = atomic_read(v: &netstamp_wanted); |
2368 | |
2369 | while (wanted > 0) { |
2370 | if (atomic_try_cmpxchg(v: &netstamp_wanted, old: &wanted, new: wanted + 1)) |
2371 | return; |
2372 | } |
2373 | atomic_inc(v: &netstamp_needed_deferred); |
2374 | schedule_work(work: &netstamp_work); |
2375 | #else |
2376 | static_branch_inc(&netstamp_needed_key); |
2377 | #endif |
2378 | } |
2379 | EXPORT_SYMBOL(net_enable_timestamp); |
2380 | |
2381 | void net_disable_timestamp(void) |
2382 | { |
2383 | #ifdef CONFIG_JUMP_LABEL |
2384 | int wanted = atomic_read(v: &netstamp_wanted); |
2385 | |
2386 | while (wanted > 1) { |
2387 | if (atomic_try_cmpxchg(v: &netstamp_wanted, old: &wanted, new: wanted - 1)) |
2388 | return; |
2389 | } |
2390 | atomic_dec(v: &netstamp_needed_deferred); |
2391 | schedule_work(work: &netstamp_work); |
2392 | #else |
2393 | static_branch_dec(&netstamp_needed_key); |
2394 | #endif |
2395 | } |
2396 | EXPORT_SYMBOL(net_disable_timestamp); |
2397 | |
2398 | static inline void net_timestamp_set(struct sk_buff *skb) |
2399 | { |
2400 | skb->tstamp = 0; |
2401 | skb->tstamp_type = SKB_CLOCK_REALTIME; |
2402 | if (static_branch_unlikely(&netstamp_needed_key)) |
2403 | skb->tstamp = ktime_get_real(); |
2404 | } |
2405 | |
2406 | #define net_timestamp_check(COND, SKB) \ |
2407 | if (static_branch_unlikely(&netstamp_needed_key)) { \ |
2408 | if ((COND) && !(SKB)->tstamp) \ |
2409 | (SKB)->tstamp = ktime_get_real(); \ |
2410 | } \ |
2411 | |
2412 | bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) |
2413 | { |
2414 | return __is_skb_forwardable(dev, skb, check_mtu: true); |
2415 | } |
2416 | EXPORT_SYMBOL_GPL(is_skb_forwardable); |
2417 | |
2418 | static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, |
2419 | bool check_mtu) |
2420 | { |
2421 | int ret = ____dev_forward_skb(dev, skb, check_mtu); |
2422 | |
2423 | if (likely(!ret)) { |
2424 | skb->protocol = eth_type_trans(skb, dev); |
2425 | skb_postpull_rcsum(skb, start: eth_hdr(skb), ETH_HLEN); |
2426 | } |
2427 | |
2428 | return ret; |
2429 | } |
2430 | |
2431 | int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) |
2432 | { |
2433 | return __dev_forward_skb2(dev, skb, check_mtu: true); |
2434 | } |
2435 | EXPORT_SYMBOL_GPL(__dev_forward_skb); |
2436 | |
2437 | /** |
2438 | * dev_forward_skb - loopback an skb to another netif |
2439 | * |
2440 | * @dev: destination network device |
2441 | * @skb: buffer to forward |
2442 | * |
2443 | * return values: |
2444 | * NET_RX_SUCCESS (no congestion) |
2445 | * NET_RX_DROP (packet was dropped, but freed) |
2446 | * |
2447 | * dev_forward_skb can be used for injecting an skb from the |
2448 | * start_xmit function of one device into the receive queue |
2449 | * of another device. |
2450 | * |
2451 | * The receiving device may be in another namespace, so |
2452 | * we have to clear all information in the skb that could |
2453 | * impact namespace isolation. |
2454 | */ |
2455 | int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) |
2456 | { |
2457 | return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); |
2458 | } |
2459 | EXPORT_SYMBOL_GPL(dev_forward_skb); |
2460 | |
2461 | int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) |
2462 | { |
2463 | return __dev_forward_skb2(dev, skb, check_mtu: false) ?: netif_rx_internal(skb); |
2464 | } |
2465 | |
2466 | static inline int deliver_skb(struct sk_buff *skb, |
2467 | struct packet_type *pt_prev, |
2468 | struct net_device *orig_dev) |
2469 | { |
2470 | if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) |
2471 | return -ENOMEM; |
2472 | refcount_inc(r: &skb->users); |
2473 | return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); |
2474 | } |
2475 | |
2476 | static inline void deliver_ptype_list_skb(struct sk_buff *skb, |
2477 | struct packet_type **pt, |
2478 | struct net_device *orig_dev, |
2479 | __be16 type, |
2480 | struct list_head *ptype_list) |
2481 | { |
2482 | struct packet_type *ptype, *pt_prev = *pt; |
2483 | |
2484 | list_for_each_entry_rcu(ptype, ptype_list, list) { |
2485 | if (ptype->type != type) |
2486 | continue; |
2487 | if (pt_prev) |
2488 | deliver_skb(skb, pt_prev, orig_dev); |
2489 | pt_prev = ptype; |
2490 | } |
2491 | *pt = pt_prev; |
2492 | } |
2493 | |
2494 | static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) |
2495 | { |
2496 | if (!ptype->af_packet_priv || !skb->sk) |
2497 | return false; |
2498 | |
2499 | if (ptype->id_match) |
2500 | return ptype->id_match(ptype, skb->sk); |
2501 | else if ((struct sock *)ptype->af_packet_priv == skb->sk) |
2502 | return true; |
2503 | |
2504 | return false; |
2505 | } |
2506 | |
2507 | /** |
2508 | * dev_nit_active_rcu - return true if any network interface taps are in use |
2509 | * |
2510 | * The caller must hold the RCU lock |
2511 | * |
2512 | * @dev: network device to check for the presence of taps |
2513 | */ |
2514 | bool dev_nit_active_rcu(const struct net_device *dev) |
2515 | { |
2516 | /* Callers may hold either RCU or RCU BH lock */ |
2517 | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
2518 | |
2519 | return !list_empty(head: &dev_net(dev)->ptype_all) || |
2520 | !list_empty(head: &dev->ptype_all); |
2521 | } |
2522 | EXPORT_SYMBOL_GPL(dev_nit_active_rcu); |
2523 | |
2524 | /* |
2525 | * Support routine. Sends outgoing frames to any network |
2526 | * taps currently in use. |
2527 | */ |
2528 | |
2529 | void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) |
2530 | { |
2531 | struct packet_type *ptype, *pt_prev = NULL; |
2532 | struct list_head *ptype_list; |
2533 | struct sk_buff *skb2 = NULL; |
2534 | |
2535 | rcu_read_lock(); |
2536 | ptype_list = &dev_net_rcu(dev)->ptype_all; |
2537 | again: |
2538 | list_for_each_entry_rcu(ptype, ptype_list, list) { |
2539 | if (READ_ONCE(ptype->ignore_outgoing)) |
2540 | continue; |
2541 | |
2542 | /* Never send packets back to the socket |
2543 | * they originated from - MvS (miquels@drinkel.ow.org) |
2544 | */ |
2545 | if (skb_loop_sk(ptype, skb)) |
2546 | continue; |
2547 | |
2548 | if (pt_prev) { |
2549 | deliver_skb(skb: skb2, pt_prev, orig_dev: skb->dev); |
2550 | pt_prev = ptype; |
2551 | continue; |
2552 | } |
2553 | |
2554 | /* need to clone skb, done only once */ |
2555 | skb2 = skb_clone(skb, GFP_ATOMIC); |
2556 | if (!skb2) |
2557 | goto out_unlock; |
2558 | |
2559 | net_timestamp_set(skb: skb2); |
2560 | |
2561 | /* skb->nh should be correctly |
2562 | * set by sender, so that the second statement is |
2563 | * just protection against buggy protocols. |
2564 | */ |
2565 | skb_reset_mac_header(skb: skb2); |
2566 | |
2567 | if (skb_network_header(skb: skb2) < skb2->data || |
2568 | skb_network_header(skb: skb2) > skb_tail_pointer(skb: skb2)) { |
2569 | net_crit_ratelimited("protocol %04x is buggy, dev %s\n", |
2570 | ntohs(skb2->protocol), |
2571 | dev->name); |
2572 | skb_reset_network_header(skb: skb2); |
2573 | } |
2574 | |
2575 | skb2->transport_header = skb2->network_header; |
2576 | skb2->pkt_type = PACKET_OUTGOING; |
2577 | pt_prev = ptype; |
2578 | } |
2579 | |
2580 | if (ptype_list != &dev->ptype_all) { |
2581 | ptype_list = &dev->ptype_all; |
2582 | goto again; |
2583 | } |
2584 | out_unlock: |
2585 | if (pt_prev) { |
2586 | if (!skb_orphan_frags_rx(skb: skb2, GFP_ATOMIC)) |
2587 | pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); |
2588 | else |
2589 | kfree_skb(skb: skb2); |
2590 | } |
2591 | rcu_read_unlock(); |
2592 | } |
2593 | EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); |
2594 | |
2595 | /** |
2596 | * netif_setup_tc - Handle tc mappings on real_num_tx_queues change |
2597 | * @dev: Network device |
2598 | * @txq: number of queues available |
2599 | * |
2600 | * If real_num_tx_queues is changed the tc mappings may no longer be |
2601 | * valid. To resolve this verify the tc mapping remains valid and if |
2602 | * not NULL the mapping. With no priorities mapping to this |
2603 | * offset/count pair it will no longer be used. In the worst case TC0 |
2604 | * is invalid nothing can be done so disable priority mappings. If is |
2605 | * expected that drivers will fix this mapping if they can before |
2606 | * calling netif_set_real_num_tx_queues. |
2607 | */ |
2608 | static void netif_setup_tc(struct net_device *dev, unsigned int txq) |
2609 | { |
2610 | int i; |
2611 | struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; |
2612 | |
2613 | /* If TC0 is invalidated disable TC mapping */ |
2614 | if (tc->offset + tc->count > txq) { |
2615 | netdev_warn(dev, format: "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); |
2616 | dev->num_tc = 0; |
2617 | return; |
2618 | } |
2619 | |
2620 | /* Invalidated prio to tc mappings set to TC0 */ |
2621 | for (i = 1; i < TC_BITMASK + 1; i++) { |
2622 | int q = netdev_get_prio_tc_map(dev, prio: i); |
2623 | |
2624 | tc = &dev->tc_to_txq[q]; |
2625 | if (tc->offset + tc->count > txq) { |
2626 | netdev_warn(dev, format: "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", |
2627 | i, q); |
2628 | netdev_set_prio_tc_map(dev, prio: i, tc: 0); |
2629 | } |
2630 | } |
2631 | } |
2632 | |
2633 | int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) |
2634 | { |
2635 | if (dev->num_tc) { |
2636 | struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; |
2637 | int i; |
2638 | |
2639 | /* walk through the TCs and see if it falls into any of them */ |
2640 | for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { |
2641 | if ((txq - tc->offset) < tc->count) |
2642 | return i; |
2643 | } |
2644 | |
2645 | /* didn't find it, just return -1 to indicate no match */ |
2646 | return -1; |
2647 | } |
2648 | |
2649 | return 0; |
2650 | } |
2651 | EXPORT_SYMBOL(netdev_txq_to_tc); |
2652 | |
2653 | #ifdef CONFIG_XPS |
2654 | static struct static_key xps_needed __read_mostly; |
2655 | static struct static_key xps_rxqs_needed __read_mostly; |
2656 | static DEFINE_MUTEX(xps_map_mutex); |
2657 | #define xmap_dereference(P) \ |
2658 | rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) |
2659 | |
2660 | static bool remove_xps_queue(struct xps_dev_maps *dev_maps, |
2661 | struct xps_dev_maps *old_maps, int tci, u16 index) |
2662 | { |
2663 | struct xps_map *map = NULL; |
2664 | int pos; |
2665 | |
2666 | map = xmap_dereference(dev_maps->attr_map[tci]); |
2667 | if (!map) |
2668 | return false; |
2669 | |
2670 | for (pos = map->len; pos--;) { |
2671 | if (map->queues[pos] != index) |
2672 | continue; |
2673 | |
2674 | if (map->len > 1) { |
2675 | map->queues[pos] = map->queues[--map->len]; |
2676 | break; |
2677 | } |
2678 | |
2679 | if (old_maps) |
2680 | RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); |
2681 | RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); |
2682 | kfree_rcu(map, rcu); |
2683 | return false; |
2684 | } |
2685 | |
2686 | return true; |
2687 | } |
2688 | |
2689 | static bool remove_xps_queue_cpu(struct net_device *dev, |
2690 | struct xps_dev_maps *dev_maps, |
2691 | int cpu, u16 offset, u16 count) |
2692 | { |
2693 | int num_tc = dev_maps->num_tc; |
2694 | bool active = false; |
2695 | int tci; |
2696 | |
2697 | for (tci = cpu * num_tc; num_tc--; tci++) { |
2698 | int i, j; |
2699 | |
2700 | for (i = count, j = offset; i--; j++) { |
2701 | if (!remove_xps_queue(dev_maps, NULL, tci, index: j)) |
2702 | break; |
2703 | } |
2704 | |
2705 | active |= i < 0; |
2706 | } |
2707 | |
2708 | return active; |
2709 | } |
2710 | |
2711 | static void reset_xps_maps(struct net_device *dev, |
2712 | struct xps_dev_maps *dev_maps, |
2713 | enum xps_map_type type) |
2714 | { |
2715 | static_key_slow_dec_cpuslocked(key: &xps_needed); |
2716 | if (type == XPS_RXQS) |
2717 | static_key_slow_dec_cpuslocked(key: &xps_rxqs_needed); |
2718 | |
2719 | RCU_INIT_POINTER(dev->xps_maps[type], NULL); |
2720 | |
2721 | kfree_rcu(dev_maps, rcu); |
2722 | } |
2723 | |
2724 | static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, |
2725 | u16 offset, u16 count) |
2726 | { |
2727 | struct xps_dev_maps *dev_maps; |
2728 | bool active = false; |
2729 | int i, j; |
2730 | |
2731 | dev_maps = xmap_dereference(dev->xps_maps[type]); |
2732 | if (!dev_maps) |
2733 | return; |
2734 | |
2735 | for (j = 0; j < dev_maps->nr_ids; j++) |
2736 | active |= remove_xps_queue_cpu(dev, dev_maps, cpu: j, offset, count); |
2737 | if (!active) |
2738 | reset_xps_maps(dev, dev_maps, type); |
2739 | |
2740 | if (type == XPS_CPUS) { |
2741 | for (i = offset + (count - 1); count--; i--) |
2742 | netdev_queue_numa_node_write( |
2743 | q: netdev_get_tx_queue(dev, index: i), NUMA_NO_NODE); |
2744 | } |
2745 | } |
2746 | |
2747 | static void netif_reset_xps_queues(struct net_device *dev, u16 offset, |
2748 | u16 count) |
2749 | { |
2750 | if (!static_key_false(key: &xps_needed)) |
2751 | return; |
2752 | |
2753 | cpus_read_lock(); |
2754 | mutex_lock(&xps_map_mutex); |
2755 | |
2756 | if (static_key_false(key: &xps_rxqs_needed)) |
2757 | clean_xps_maps(dev, type: XPS_RXQS, offset, count); |
2758 | |
2759 | clean_xps_maps(dev, type: XPS_CPUS, offset, count); |
2760 | |
2761 | mutex_unlock(lock: &xps_map_mutex); |
2762 | cpus_read_unlock(); |
2763 | } |
2764 | |
2765 | static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) |
2766 | { |
2767 | netif_reset_xps_queues(dev, offset: index, count: dev->num_tx_queues - index); |
2768 | } |
2769 | |
2770 | static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, |
2771 | u16 index, bool is_rxqs_map) |
2772 | { |
2773 | struct xps_map *new_map; |
2774 | int alloc_len = XPS_MIN_MAP_ALLOC; |
2775 | int i, pos; |
2776 | |
2777 | for (pos = 0; map && pos < map->len; pos++) { |
2778 | if (map->queues[pos] != index) |
2779 | continue; |
2780 | return map; |
2781 | } |
2782 | |
2783 | /* Need to add tx-queue to this CPU's/rx-queue's existing map */ |
2784 | if (map) { |
2785 | if (pos < map->alloc_len) |
2786 | return map; |
2787 | |
2788 | alloc_len = map->alloc_len * 2; |
2789 | } |
2790 | |
2791 | /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's |
2792 | * map |
2793 | */ |
2794 | if (is_rxqs_map) |
2795 | new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); |
2796 | else |
2797 | new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, |
2798 | cpu_to_node(attr_index)); |
2799 | if (!new_map) |
2800 | return NULL; |
2801 | |
2802 | for (i = 0; i < pos; i++) |
2803 | new_map->queues[i] = map->queues[i]; |
2804 | new_map->alloc_len = alloc_len; |
2805 | new_map->len = pos; |
2806 | |
2807 | return new_map; |
2808 | } |
2809 | |
2810 | /* Copy xps maps at a given index */ |
2811 | static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, |
2812 | struct xps_dev_maps *new_dev_maps, int index, |
2813 | int tc, bool skip_tc) |
2814 | { |
2815 | int i, tci = index * dev_maps->num_tc; |
2816 | struct xps_map *map; |
2817 | |
2818 | /* copy maps belonging to foreign traffic classes */ |
2819 | for (i = 0; i < dev_maps->num_tc; i++, tci++) { |
2820 | if (i == tc && skip_tc) |
2821 | continue; |
2822 | |
2823 | /* fill in the new device map from the old device map */ |
2824 | map = xmap_dereference(dev_maps->attr_map[tci]); |
2825 | RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); |
2826 | } |
2827 | } |
2828 | |
2829 | /* Must be called under cpus_read_lock */ |
2830 | int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, |
2831 | u16 index, enum xps_map_type type) |
2832 | { |
2833 | struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; |
2834 | const unsigned long *online_mask = NULL; |
2835 | bool active = false, copy = false; |
2836 | int i, j, tci, numa_node_id = -2; |
2837 | int maps_sz, num_tc = 1, tc = 0; |
2838 | struct xps_map *map, *new_map; |
2839 | unsigned int nr_ids; |
2840 | |
2841 | WARN_ON_ONCE(index >= dev->num_tx_queues); |
2842 | |
2843 | if (dev->num_tc) { |
2844 | /* Do not allow XPS on subordinate device directly */ |
2845 | num_tc = dev->num_tc; |
2846 | if (num_tc < 0) |
2847 | return -EINVAL; |
2848 | |
2849 | /* If queue belongs to subordinate dev use its map */ |
2850 | dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; |
2851 | |
2852 | tc = netdev_txq_to_tc(dev, index); |
2853 | if (tc < 0) |
2854 | return -EINVAL; |
2855 | } |
2856 | |
2857 | mutex_lock(&xps_map_mutex); |
2858 | |
2859 | dev_maps = xmap_dereference(dev->xps_maps[type]); |
2860 | if (type == XPS_RXQS) { |
2861 | maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); |
2862 | nr_ids = dev->num_rx_queues; |
2863 | } else { |
2864 | maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); |
2865 | if (num_possible_cpus() > 1) |
2866 | online_mask = cpumask_bits(cpu_online_mask); |
2867 | nr_ids = nr_cpu_ids; |
2868 | } |
2869 | |
2870 | if (maps_sz < L1_CACHE_BYTES) |
2871 | maps_sz = L1_CACHE_BYTES; |
2872 | |
2873 | /* The old dev_maps could be larger or smaller than the one we're |
2874 | * setting up now, as dev->num_tc or nr_ids could have been updated in |
2875 | * between. We could try to be smart, but let's be safe instead and only |
2876 | * copy foreign traffic classes if the two map sizes match. |
2877 | */ |
2878 | if (dev_maps && |
2879 | dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) |
2880 | copy = true; |
2881 | |
2882 | /* allocate memory for queue storage */ |
2883 | for (j = -1; j = netif_attrmask_next_and(n: j, src1p: online_mask, src2p: mask, nr_bits: nr_ids), |
2884 | j < nr_ids;) { |
2885 | if (!new_dev_maps) { |
2886 | new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); |
2887 | if (!new_dev_maps) { |
2888 | mutex_unlock(lock: &xps_map_mutex); |
2889 | return -ENOMEM; |
2890 | } |
2891 | |
2892 | new_dev_maps->nr_ids = nr_ids; |
2893 | new_dev_maps->num_tc = num_tc; |
2894 | } |
2895 | |
2896 | tci = j * num_tc + tc; |
2897 | map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; |
2898 | |
2899 | map = expand_xps_map(map, attr_index: j, index, is_rxqs_map: type == XPS_RXQS); |
2900 | if (!map) |
2901 | goto error; |
2902 | |
2903 | RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); |
2904 | } |
2905 | |
2906 | if (!new_dev_maps) |
2907 | goto out_no_new_maps; |
2908 | |
2909 | if (!dev_maps) { |
2910 | /* Increment static keys at most once per type */ |
2911 | static_key_slow_inc_cpuslocked(key: &xps_needed); |
2912 | if (type == XPS_RXQS) |
2913 | static_key_slow_inc_cpuslocked(key: &xps_rxqs_needed); |
2914 | } |
2915 | |
2916 | for (j = 0; j < nr_ids; j++) { |
2917 | bool skip_tc = false; |
2918 | |
2919 | tci = j * num_tc + tc; |
2920 | if (netif_attr_test_mask(j, mask, nr_bits: nr_ids) && |
2921 | netif_attr_test_online(j, online_mask, nr_bits: nr_ids)) { |
2922 | /* add tx-queue to CPU/rx-queue maps */ |
2923 | int pos = 0; |
2924 | |
2925 | skip_tc = true; |
2926 | |
2927 | map = xmap_dereference(new_dev_maps->attr_map[tci]); |
2928 | while ((pos < map->len) && (map->queues[pos] != index)) |
2929 | pos++; |
2930 | |
2931 | if (pos == map->len) |
2932 | map->queues[map->len++] = index; |
2933 | #ifdef CONFIG_NUMA |
2934 | if (type == XPS_CPUS) { |
2935 | if (numa_node_id == -2) |
2936 | numa_node_id = cpu_to_node(cpu: j); |
2937 | else if (numa_node_id != cpu_to_node(cpu: j)) |
2938 | numa_node_id = -1; |
2939 | } |
2940 | #endif |
2941 | } |
2942 | |
2943 | if (copy) |
2944 | xps_copy_dev_maps(dev_maps, new_dev_maps, index: j, tc, |
2945 | skip_tc); |
2946 | } |
2947 | |
2948 | rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); |
2949 | |
2950 | /* Cleanup old maps */ |
2951 | if (!dev_maps) |
2952 | goto out_no_old_maps; |
2953 | |
2954 | for (j = 0; j < dev_maps->nr_ids; j++) { |
2955 | for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { |
2956 | map = xmap_dereference(dev_maps->attr_map[tci]); |
2957 | if (!map) |
2958 | continue; |
2959 | |
2960 | if (copy) { |
2961 | new_map = xmap_dereference(new_dev_maps->attr_map[tci]); |
2962 | if (map == new_map) |
2963 | continue; |
2964 | } |
2965 | |
2966 | RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); |
2967 | kfree_rcu(map, rcu); |
2968 | } |
2969 | } |
2970 | |
2971 | old_dev_maps = dev_maps; |
2972 | |
2973 | out_no_old_maps: |
2974 | dev_maps = new_dev_maps; |
2975 | active = true; |
2976 | |
2977 | out_no_new_maps: |
2978 | if (type == XPS_CPUS) |
2979 | /* update Tx queue numa node */ |
2980 | netdev_queue_numa_node_write(q: netdev_get_tx_queue(dev, index), |
2981 | node: (numa_node_id >= 0) ? |
2982 | numa_node_id : NUMA_NO_NODE); |
2983 | |
2984 | if (!dev_maps) |
2985 | goto out_no_maps; |
2986 | |
2987 | /* removes tx-queue from unused CPUs/rx-queues */ |
2988 | for (j = 0; j < dev_maps->nr_ids; j++) { |
2989 | tci = j * dev_maps->num_tc; |
2990 | |
2991 | for (i = 0; i < dev_maps->num_tc; i++, tci++) { |
2992 | if (i == tc && |
2993 | netif_attr_test_mask(j, mask, nr_bits: dev_maps->nr_ids) && |
2994 | netif_attr_test_online(j, online_mask, nr_bits: dev_maps->nr_ids)) |
2995 | continue; |
2996 | |
2997 | active |= remove_xps_queue(dev_maps, |
2998 | old_maps: copy ? old_dev_maps : NULL, |
2999 | tci, index); |
3000 | } |
3001 | } |
3002 | |
3003 | if (old_dev_maps) |
3004 | kfree_rcu(old_dev_maps, rcu); |
3005 | |
3006 | /* free map if not active */ |
3007 | if (!active) |
3008 | reset_xps_maps(dev, dev_maps, type); |
3009 | |
3010 | out_no_maps: |
3011 | mutex_unlock(lock: &xps_map_mutex); |
3012 | |
3013 | return 0; |
3014 | error: |
3015 | /* remove any maps that we added */ |
3016 | for (j = 0; j < nr_ids; j++) { |
3017 | for (i = num_tc, tci = j * num_tc; i--; tci++) { |
3018 | new_map = xmap_dereference(new_dev_maps->attr_map[tci]); |
3019 | map = copy ? |
3020 | xmap_dereference(dev_maps->attr_map[tci]) : |
3021 | NULL; |
3022 | if (new_map && new_map != map) |
3023 | kfree(objp: new_map); |
3024 | } |
3025 | } |
3026 | |
3027 | mutex_unlock(lock: &xps_map_mutex); |
3028 | |
3029 | kfree(objp: new_dev_maps); |
3030 | return -ENOMEM; |
3031 | } |
3032 | EXPORT_SYMBOL_GPL(__netif_set_xps_queue); |
3033 | |
3034 | int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, |
3035 | u16 index) |
3036 | { |
3037 | int ret; |
3038 | |
3039 | cpus_read_lock(); |
3040 | ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); |
3041 | cpus_read_unlock(); |
3042 | |
3043 | return ret; |
3044 | } |
3045 | EXPORT_SYMBOL(netif_set_xps_queue); |
3046 | |
3047 | #endif |
3048 | static void netdev_unbind_all_sb_channels(struct net_device *dev) |
3049 | { |
3050 | struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; |
3051 | |
3052 | /* Unbind any subordinate channels */ |
3053 | while (txq-- != &dev->_tx[0]) { |
3054 | if (txq->sb_dev) |
3055 | netdev_unbind_sb_channel(dev, sb_dev: txq->sb_dev); |
3056 | } |
3057 | } |
3058 | |
3059 | void netdev_reset_tc(struct net_device *dev) |
3060 | { |
3061 | #ifdef CONFIG_XPS |
3062 | netif_reset_xps_queues_gt(dev, index: 0); |
3063 | #endif |
3064 | netdev_unbind_all_sb_channels(dev); |
3065 | |
3066 | /* Reset TC configuration of device */ |
3067 | dev->num_tc = 0; |
3068 | memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); |
3069 | memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); |
3070 | } |
3071 | EXPORT_SYMBOL(netdev_reset_tc); |
3072 | |
3073 | int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) |
3074 | { |
3075 | if (tc >= dev->num_tc) |
3076 | return -EINVAL; |
3077 | |
3078 | #ifdef CONFIG_XPS |
3079 | netif_reset_xps_queues(dev, offset, count); |
3080 | #endif |
3081 | dev->tc_to_txq[tc].count = count; |
3082 | dev->tc_to_txq[tc].offset = offset; |
3083 | return 0; |
3084 | } |
3085 | EXPORT_SYMBOL(netdev_set_tc_queue); |
3086 | |
3087 | int netdev_set_num_tc(struct net_device *dev, u8 num_tc) |
3088 | { |
3089 | if (num_tc > TC_MAX_QUEUE) |
3090 | return -EINVAL; |
3091 | |
3092 | #ifdef CONFIG_XPS |
3093 | netif_reset_xps_queues_gt(dev, index: 0); |
3094 | #endif |
3095 | netdev_unbind_all_sb_channels(dev); |
3096 | |
3097 | dev->num_tc = num_tc; |
3098 | return 0; |
3099 | } |
3100 | EXPORT_SYMBOL(netdev_set_num_tc); |
3101 | |
3102 | void netdev_unbind_sb_channel(struct net_device *dev, |
3103 | struct net_device *sb_dev) |
3104 | { |
3105 | struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; |
3106 | |
3107 | #ifdef CONFIG_XPS |
3108 | netif_reset_xps_queues_gt(dev: sb_dev, index: 0); |
3109 | #endif |
3110 | memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); |
3111 | memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); |
3112 | |
3113 | while (txq-- != &dev->_tx[0]) { |
3114 | if (txq->sb_dev == sb_dev) |
3115 | txq->sb_dev = NULL; |
3116 | } |
3117 | } |
3118 | EXPORT_SYMBOL(netdev_unbind_sb_channel); |
3119 | |
3120 | int netdev_bind_sb_channel_queue(struct net_device *dev, |
3121 | struct net_device *sb_dev, |
3122 | u8 tc, u16 count, u16 offset) |
3123 | { |
3124 | /* Make certain the sb_dev and dev are already configured */ |
3125 | if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) |
3126 | return -EINVAL; |
3127 | |
3128 | /* We cannot hand out queues we don't have */ |
3129 | if ((offset + count) > dev->real_num_tx_queues) |
3130 | return -EINVAL; |
3131 | |
3132 | /* Record the mapping */ |
3133 | sb_dev->tc_to_txq[tc].count = count; |
3134 | sb_dev->tc_to_txq[tc].offset = offset; |
3135 | |
3136 | /* Provide a way for Tx queue to find the tc_to_txq map or |
3137 | * XPS map for itself. |
3138 | */ |
3139 | while (count--) |
3140 | netdev_get_tx_queue(dev, index: count + offset)->sb_dev = sb_dev; |
3141 | |
3142 | return 0; |
3143 | } |
3144 | EXPORT_SYMBOL(netdev_bind_sb_channel_queue); |
3145 | |
3146 | int netdev_set_sb_channel(struct net_device *dev, u16 channel) |
3147 | { |
3148 | /* Do not use a multiqueue device to represent a subordinate channel */ |
3149 | if (netif_is_multiqueue(dev)) |
3150 | return -ENODEV; |
3151 | |
3152 | /* We allow channels 1 - 32767 to be used for subordinate channels. |
3153 | * Channel 0 is meant to be "native" mode and used only to represent |
3154 | * the main root device. We allow writing 0 to reset the device back |
3155 | * to normal mode after being used as a subordinate channel. |
3156 | */ |
3157 | if (channel > S16_MAX) |
3158 | return -EINVAL; |
3159 | |
3160 | dev->num_tc = -channel; |
3161 | |
3162 | return 0; |
3163 | } |
3164 | EXPORT_SYMBOL(netdev_set_sb_channel); |
3165 | |
3166 | /* |
3167 | * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues |
3168 | * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. |
3169 | */ |
3170 | int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) |
3171 | { |
3172 | bool disabling; |
3173 | int rc; |
3174 | |
3175 | disabling = txq < dev->real_num_tx_queues; |
3176 | |
3177 | if (txq < 1 || txq > dev->num_tx_queues) |
3178 | return -EINVAL; |
3179 | |
3180 | if (dev->reg_state == NETREG_REGISTERED || |
3181 | dev->reg_state == NETREG_UNREGISTERING) { |
3182 | ASSERT_RTNL(); |
3183 | netdev_ops_assert_locked(dev); |
3184 | |
3185 | rc = netdev_queue_update_kobjects(net: dev, old_num: dev->real_num_tx_queues, |
3186 | new_num: txq); |
3187 | if (rc) |
3188 | return rc; |
3189 | |
3190 | if (dev->num_tc) |
3191 | netif_setup_tc(dev, txq); |
3192 | |
3193 | net_shaper_set_real_num_tx_queues(dev, txq); |
3194 | |
3195 | dev_qdisc_change_real_num_tx(dev, new_real_tx: txq); |
3196 | |
3197 | dev->real_num_tx_queues = txq; |
3198 | |
3199 | if (disabling) { |
3200 | synchronize_net(); |
3201 | qdisc_reset_all_tx_gt(dev, i: txq); |
3202 | #ifdef CONFIG_XPS |
3203 | netif_reset_xps_queues_gt(dev, index: txq); |
3204 | #endif |
3205 | } |
3206 | } else { |
3207 | dev->real_num_tx_queues = txq; |
3208 | } |
3209 | |
3210 | return 0; |
3211 | } |
3212 | EXPORT_SYMBOL(netif_set_real_num_tx_queues); |
3213 | |
3214 | /** |
3215 | * netif_set_real_num_rx_queues - set actual number of RX queues used |
3216 | * @dev: Network device |
3217 | * @rxq: Actual number of RX queues |
3218 | * |
3219 | * This must be called either with the rtnl_lock held or before |
3220 | * registration of the net device. Returns 0 on success, or a |
3221 | * negative error code. If called before registration, it always |
3222 | * succeeds. |
3223 | */ |
3224 | int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) |
3225 | { |
3226 | int rc; |
3227 | |
3228 | if (rxq < 1 || rxq > dev->num_rx_queues) |
3229 | return -EINVAL; |
3230 | |
3231 | if (dev->reg_state == NETREG_REGISTERED) { |
3232 | ASSERT_RTNL(); |
3233 | netdev_ops_assert_locked(dev); |
3234 | |
3235 | rc = net_rx_queue_update_kobjects(dev, old_num: dev->real_num_rx_queues, |
3236 | new_num: rxq); |
3237 | if (rc) |
3238 | return rc; |
3239 | } |
3240 | |
3241 | dev->real_num_rx_queues = rxq; |
3242 | return 0; |
3243 | } |
3244 | EXPORT_SYMBOL(netif_set_real_num_rx_queues); |
3245 | |
3246 | /** |
3247 | * netif_set_real_num_queues - set actual number of RX and TX queues used |
3248 | * @dev: Network device |
3249 | * @txq: Actual number of TX queues |
3250 | * @rxq: Actual number of RX queues |
3251 | * |
3252 | * Set the real number of both TX and RX queues. |
3253 | * Does nothing if the number of queues is already correct. |
3254 | */ |
3255 | int netif_set_real_num_queues(struct net_device *dev, |
3256 | unsigned int txq, unsigned int rxq) |
3257 | { |
3258 | unsigned int old_rxq = dev->real_num_rx_queues; |
3259 | int err; |
3260 | |
3261 | if (txq < 1 || txq > dev->num_tx_queues || |
3262 | rxq < 1 || rxq > dev->num_rx_queues) |
3263 | return -EINVAL; |
3264 | |
3265 | /* Start from increases, so the error path only does decreases - |
3266 | * decreases can't fail. |
3267 | */ |
3268 | if (rxq > dev->real_num_rx_queues) { |
3269 | err = netif_set_real_num_rx_queues(dev, rxq); |
3270 | if (err) |
3271 | return err; |
3272 | } |
3273 | if (txq > dev->real_num_tx_queues) { |
3274 | err = netif_set_real_num_tx_queues(dev, txq); |
3275 | if (err) |
3276 | goto undo_rx; |
3277 | } |
3278 | if (rxq < dev->real_num_rx_queues) |
3279 | WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); |
3280 | if (txq < dev->real_num_tx_queues) |
3281 | WARN_ON(netif_set_real_num_tx_queues(dev, txq)); |
3282 | |
3283 | return 0; |
3284 | undo_rx: |
3285 | WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); |
3286 | return err; |
3287 | } |
3288 | EXPORT_SYMBOL(netif_set_real_num_queues); |
3289 | |
3290 | /** |
3291 | * netif_set_tso_max_size() - set the max size of TSO frames supported |
3292 | * @dev: netdev to update |
3293 | * @size: max skb->len of a TSO frame |
3294 | * |
3295 | * Set the limit on the size of TSO super-frames the device can handle. |
3296 | * Unless explicitly set the stack will assume the value of |
3297 | * %GSO_LEGACY_MAX_SIZE. |
3298 | */ |
3299 | void netif_set_tso_max_size(struct net_device *dev, unsigned int size) |
3300 | { |
3301 | dev->tso_max_size = min(GSO_MAX_SIZE, size); |
3302 | if (size < READ_ONCE(dev->gso_max_size)) |
3303 | netif_set_gso_max_size(dev, size); |
3304 | if (size < READ_ONCE(dev->gso_ipv4_max_size)) |
3305 | netif_set_gso_ipv4_max_size(dev, size); |
3306 | } |
3307 | EXPORT_SYMBOL(netif_set_tso_max_size); |
3308 | |
3309 | /** |
3310 | * netif_set_tso_max_segs() - set the max number of segs supported for TSO |
3311 | * @dev: netdev to update |
3312 | * @segs: max number of TCP segments |
3313 | * |
3314 | * Set the limit on the number of TCP segments the device can generate from |
3315 | * a single TSO super-frame. |
3316 | * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. |
3317 | */ |
3318 | void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) |
3319 | { |
3320 | dev->tso_max_segs = segs; |
3321 | if (segs < READ_ONCE(dev->gso_max_segs)) |
3322 | netif_set_gso_max_segs(dev, segs); |
3323 | } |
3324 | EXPORT_SYMBOL(netif_set_tso_max_segs); |
3325 | |
3326 | /** |
3327 | * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper |
3328 | * @to: netdev to update |
3329 | * @from: netdev from which to copy the limits |
3330 | */ |
3331 | void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) |
3332 | { |
3333 | netif_set_tso_max_size(to, from->tso_max_size); |
3334 | netif_set_tso_max_segs(to, from->tso_max_segs); |
3335 | } |
3336 | EXPORT_SYMBOL(netif_inherit_tso_max); |
3337 | |
3338 | /** |
3339 | * netif_get_num_default_rss_queues - default number of RSS queues |
3340 | * |
3341 | * Default value is the number of physical cores if there are only 1 or 2, or |
3342 | * divided by 2 if there are more. |
3343 | */ |
3344 | int netif_get_num_default_rss_queues(void) |
3345 | { |
3346 | cpumask_var_t cpus; |
3347 | int cpu, count = 0; |
3348 | |
3349 | if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) |
3350 | return 1; |
3351 | |
3352 | cpumask_copy(dstp: cpus, cpu_online_mask); |
3353 | for_each_cpu(cpu, cpus) { |
3354 | ++count; |
3355 | cpumask_andnot(dstp: cpus, src1p: cpus, topology_sibling_cpumask(cpu)); |
3356 | } |
3357 | free_cpumask_var(mask: cpus); |
3358 | |
3359 | return count > 2 ? DIV_ROUND_UP(count, 2) : count; |
3360 | } |
3361 | EXPORT_SYMBOL(netif_get_num_default_rss_queues); |
3362 | |
3363 | static void __netif_reschedule(struct Qdisc *q) |
3364 | { |
3365 | struct softnet_data *sd; |
3366 | unsigned long flags; |
3367 | |
3368 | local_irq_save(flags); |
3369 | sd = this_cpu_ptr(&softnet_data); |
3370 | q->next_sched = NULL; |
3371 | *sd->output_queue_tailp = q; |
3372 | sd->output_queue_tailp = &q->next_sched; |
3373 | raise_softirq_irqoff(nr: NET_TX_SOFTIRQ); |
3374 | local_irq_restore(flags); |
3375 | } |
3376 | |
3377 | void __netif_schedule(struct Qdisc *q) |
3378 | { |
3379 | if (!test_and_set_bit(nr: __QDISC_STATE_SCHED, addr: &q->state)) |
3380 | __netif_reschedule(q); |
3381 | } |
3382 | EXPORT_SYMBOL(__netif_schedule); |
3383 | |
3384 | struct dev_kfree_skb_cb { |
3385 | enum skb_drop_reason reason; |
3386 | }; |
3387 | |
3388 | static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) |
3389 | { |
3390 | return (struct dev_kfree_skb_cb *)skb->cb; |
3391 | } |
3392 | |
3393 | void netif_schedule_queue(struct netdev_queue *txq) |
3394 | { |
3395 | rcu_read_lock(); |
3396 | if (!netif_xmit_stopped(dev_queue: txq)) { |
3397 | struct Qdisc *q = rcu_dereference(txq->qdisc); |
3398 | |
3399 | __netif_schedule(q); |
3400 | } |
3401 | rcu_read_unlock(); |
3402 | } |
3403 | EXPORT_SYMBOL(netif_schedule_queue); |
3404 | |
3405 | void netif_tx_wake_queue(struct netdev_queue *dev_queue) |
3406 | { |
3407 | if (test_and_clear_bit(nr: __QUEUE_STATE_DRV_XOFF, addr: &dev_queue->state)) { |
3408 | struct Qdisc *q; |
3409 | |
3410 | rcu_read_lock(); |
3411 | q = rcu_dereference(dev_queue->qdisc); |
3412 | __netif_schedule(q); |
3413 | rcu_read_unlock(); |
3414 | } |
3415 | } |
3416 | EXPORT_SYMBOL(netif_tx_wake_queue); |
3417 | |
3418 | void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) |
3419 | { |
3420 | unsigned long flags; |
3421 | |
3422 | if (unlikely(!skb)) |
3423 | return; |
3424 | |
3425 | if (likely(refcount_read(&skb->users) == 1)) { |
3426 | smp_rmb(); |
3427 | refcount_set(r: &skb->users, n: 0); |
3428 | } else if (likely(!refcount_dec_and_test(&skb->users))) { |
3429 | return; |
3430 | } |
3431 | get_kfree_skb_cb(skb)->reason = reason; |
3432 | local_irq_save(flags); |
3433 | skb->next = __this_cpu_read(softnet_data.completion_queue); |
3434 | __this_cpu_write(softnet_data.completion_queue, skb); |
3435 | raise_softirq_irqoff(nr: NET_TX_SOFTIRQ); |
3436 | local_irq_restore(flags); |
3437 | } |
3438 | EXPORT_SYMBOL(dev_kfree_skb_irq_reason); |
3439 | |
3440 | void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) |
3441 | { |
3442 | if (in_hardirq() || irqs_disabled()) |
3443 | dev_kfree_skb_irq_reason(skb, reason); |
3444 | else |
3445 | kfree_skb_reason(skb, reason); |
3446 | } |
3447 | EXPORT_SYMBOL(dev_kfree_skb_any_reason); |
3448 | |
3449 | |
3450 | /** |
3451 | * netif_device_detach - mark device as removed |
3452 | * @dev: network device |
3453 | * |
3454 | * Mark device as removed from system and therefore no longer available. |
3455 | */ |
3456 | void netif_device_detach(struct net_device *dev) |
3457 | { |
3458 | if (test_and_clear_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state) && |
3459 | netif_running(dev)) { |
3460 | netif_tx_stop_all_queues(dev); |
3461 | } |
3462 | } |
3463 | EXPORT_SYMBOL(netif_device_detach); |
3464 | |
3465 | /** |
3466 | * netif_device_attach - mark device as attached |
3467 | * @dev: network device |
3468 | * |
3469 | * Mark device as attached from system and restart if needed. |
3470 | */ |
3471 | void netif_device_attach(struct net_device *dev) |
3472 | { |
3473 | if (!test_and_set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state) && |
3474 | netif_running(dev)) { |
3475 | netif_tx_wake_all_queues(dev); |
3476 | netdev_watchdog_up(dev); |
3477 | } |
3478 | } |
3479 | EXPORT_SYMBOL(netif_device_attach); |
3480 | |
3481 | /* |
3482 | * Returns a Tx hash based on the given packet descriptor a Tx queues' number |
3483 | * to be used as a distribution range. |
3484 | */ |
3485 | static u16 skb_tx_hash(const struct net_device *dev, |
3486 | const struct net_device *sb_dev, |
3487 | struct sk_buff *skb) |
3488 | { |
3489 | u32 hash; |
3490 | u16 qoffset = 0; |
3491 | u16 qcount = dev->real_num_tx_queues; |
3492 | |
3493 | if (dev->num_tc) { |
3494 | u8 tc = netdev_get_prio_tc_map(dev, prio: skb->priority); |
3495 | |
3496 | qoffset = sb_dev->tc_to_txq[tc].offset; |
3497 | qcount = sb_dev->tc_to_txq[tc].count; |
3498 | if (unlikely(!qcount)) { |
3499 | net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", |
3500 | sb_dev->name, qoffset, tc); |
3501 | qoffset = 0; |
3502 | qcount = dev->real_num_tx_queues; |
3503 | } |
3504 | } |
3505 | |
3506 | if (skb_rx_queue_recorded(skb)) { |
3507 | DEBUG_NET_WARN_ON_ONCE(qcount == 0); |
3508 | hash = skb_get_rx_queue(skb); |
3509 | if (hash >= qoffset) |
3510 | hash -= qoffset; |
3511 | while (unlikely(hash >= qcount)) |
3512 | hash -= qcount; |
3513 | return hash + qoffset; |
3514 | } |
3515 | |
3516 | return (u16) reciprocal_scale(val: skb_get_hash(skb), ep_ro: qcount) + qoffset; |
3517 | } |
3518 | |
3519 | void skb_warn_bad_offload(const struct sk_buff *skb) |
3520 | { |
3521 | static const netdev_features_t null_features; |
3522 | struct net_device *dev = skb->dev; |
3523 | const char *name = ""; |
3524 | |
3525 | if (!net_ratelimit()) |
3526 | return; |
3527 | |
3528 | if (dev) { |
3529 | if (dev->dev.parent) |
3530 | name = dev_driver_string(dev: dev->dev.parent); |
3531 | else |
3532 | name = netdev_name(dev); |
3533 | } |
3534 | skb_dump(KERN_WARNING, skb, full_pkt: false); |
3535 | WARN(1, "%s: caps=(%pNF, %pNF)\n", |
3536 | name, dev ? &dev->features : &null_features, |
3537 | skb->sk ? &skb->sk->sk_route_caps : &null_features); |
3538 | } |
3539 | |
3540 | /* |
3541 | * Invalidate hardware checksum when packet is to be mangled, and |
3542 | * complete checksum manually on outgoing path. |
3543 | */ |
3544 | int skb_checksum_help(struct sk_buff *skb) |
3545 | { |
3546 | __wsum csum; |
3547 | int ret = 0, offset; |
3548 | |
3549 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
3550 | goto out_set_summed; |
3551 | |
3552 | if (unlikely(skb_is_gso(skb))) { |
3553 | skb_warn_bad_offload(skb); |
3554 | return -EINVAL; |
3555 | } |
3556 | |
3557 | if (!skb_frags_readable(skb)) { |
3558 | return -EFAULT; |
3559 | } |
3560 | |
3561 | /* Before computing a checksum, we should make sure no frag could |
3562 | * be modified by an external entity : checksum could be wrong. |
3563 | */ |
3564 | if (skb_has_shared_frag(skb)) { |
3565 | ret = __skb_linearize(skb); |
3566 | if (ret) |
3567 | goto out; |
3568 | } |
3569 | |
3570 | offset = skb_checksum_start_offset(skb); |
3571 | ret = -EINVAL; |
3572 | if (unlikely(offset >= skb_headlen(skb))) { |
3573 | DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); |
3574 | WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", |
3575 | offset, skb_headlen(skb)); |
3576 | goto out; |
3577 | } |
3578 | csum = skb_checksum(skb, offset, len: skb->len - offset, csum: 0); |
3579 | |
3580 | offset += skb->csum_offset; |
3581 | if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { |
3582 | DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); |
3583 | WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", |
3584 | offset + sizeof(__sum16), skb_headlen(skb)); |
3585 | goto out; |
3586 | } |
3587 | ret = skb_ensure_writable(skb, write_len: offset + sizeof(__sum16)); |
3588 | if (ret) |
3589 | goto out; |
3590 | |
3591 | *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; |
3592 | out_set_summed: |
3593 | skb->ip_summed = CHECKSUM_NONE; |
3594 | out: |
3595 | return ret; |
3596 | } |
3597 | EXPORT_SYMBOL(skb_checksum_help); |
3598 | |
3599 | #ifdef CONFIG_NET_CRC32C |
3600 | int skb_crc32c_csum_help(struct sk_buff *skb) |
3601 | { |
3602 | u32 crc; |
3603 | int ret = 0, offset, start; |
3604 | |
3605 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
3606 | goto out; |
3607 | |
3608 | if (unlikely(skb_is_gso(skb))) |
3609 | goto out; |
3610 | |
3611 | /* Before computing a checksum, we should make sure no frag could |
3612 | * be modified by an external entity : checksum could be wrong. |
3613 | */ |
3614 | if (unlikely(skb_has_shared_frag(skb))) { |
3615 | ret = __skb_linearize(skb); |
3616 | if (ret) |
3617 | goto out; |
3618 | } |
3619 | start = skb_checksum_start_offset(skb); |
3620 | offset = start + offsetof(struct sctphdr, checksum); |
3621 | if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { |
3622 | ret = -EINVAL; |
3623 | goto out; |
3624 | } |
3625 | |
3626 | ret = skb_ensure_writable(skb, write_len: offset + sizeof(__le32)); |
3627 | if (ret) |
3628 | goto out; |
3629 | |
3630 | crc = ~skb_crc32c(skb, offset: start, len: skb->len - start, crc: ~0); |
3631 | *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); |
3632 | skb_reset_csum_not_inet(skb); |
3633 | out: |
3634 | return ret; |
3635 | } |
3636 | EXPORT_SYMBOL(skb_crc32c_csum_help); |
3637 | #endif /* CONFIG_NET_CRC32C */ |
3638 | |
3639 | __be16 skb_network_protocol(struct sk_buff *skb, int *depth) |
3640 | { |
3641 | __be16 type = skb->protocol; |
3642 | |
3643 | /* Tunnel gso handlers can set protocol to ethernet. */ |
3644 | if (type == htons(ETH_P_TEB)) { |
3645 | struct ethhdr *eth; |
3646 | |
3647 | if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) |
3648 | return 0; |
3649 | |
3650 | eth = (struct ethhdr *)skb->data; |
3651 | type = eth->h_proto; |
3652 | } |
3653 | |
3654 | return vlan_get_protocol_and_depth(skb, type, depth); |
3655 | } |
3656 | |
3657 | |
3658 | /* Take action when hardware reception checksum errors are detected. */ |
3659 | #ifdef CONFIG_BUG |
3660 | static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) |
3661 | { |
3662 | netdev_err(dev, format: "hw csum failure\n"); |
3663 | skb_dump(KERN_ERR, skb, full_pkt: true); |
3664 | dump_stack(); |
3665 | } |
3666 | |
3667 | void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) |
3668 | { |
3669 | DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); |
3670 | } |
3671 | EXPORT_SYMBOL(netdev_rx_csum_fault); |
3672 | #endif |
3673 | |
3674 | /* XXX: check that highmem exists at all on the given machine. */ |
3675 | static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) |
3676 | { |
3677 | #ifdef CONFIG_HIGHMEM |
3678 | int i; |
3679 | |
3680 | if (!(dev->features & NETIF_F_HIGHDMA)) { |
3681 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
3682 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
3683 | struct page *page = skb_frag_page(frag); |
3684 | |
3685 | if (page && PageHighMem(page)) |
3686 | return 1; |
3687 | } |
3688 | } |
3689 | #endif |
3690 | return 0; |
3691 | } |
3692 | |
3693 | /* If MPLS offload request, verify we are testing hardware MPLS features |
3694 | * instead of standard features for the netdev. |
3695 | */ |
3696 | #if IS_ENABLED(CONFIG_NET_MPLS_GSO) |
3697 | static netdev_features_t net_mpls_features(struct sk_buff *skb, |
3698 | netdev_features_t features, |
3699 | __be16 type) |
3700 | { |
3701 | if (eth_p_mpls(eth_type: type)) |
3702 | features &= skb->dev->mpls_features; |
3703 | |
3704 | return features; |
3705 | } |
3706 | #else |
3707 | static netdev_features_t net_mpls_features(struct sk_buff *skb, |
3708 | netdev_features_t features, |
3709 | __be16 type) |
3710 | { |
3711 | return features; |
3712 | } |
3713 | #endif |
3714 | |
3715 | static netdev_features_t harmonize_features(struct sk_buff *skb, |
3716 | netdev_features_t features) |
3717 | { |
3718 | __be16 type; |
3719 | |
3720 | type = skb_network_protocol(skb, NULL); |
3721 | features = net_mpls_features(skb, features, type); |
3722 | |
3723 | if (skb->ip_summed != CHECKSUM_NONE && |
3724 | !can_checksum_protocol(features, protocol: type)) { |
3725 | features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
3726 | } |
3727 | if (illegal_highdma(dev: skb->dev, skb)) |
3728 | features &= ~NETIF_F_SG; |
3729 | |
3730 | return features; |
3731 | } |
3732 | |
3733 | netdev_features_t passthru_features_check(struct sk_buff *skb, |
3734 | struct net_device *dev, |
3735 | netdev_features_t features) |
3736 | { |
3737 | return features; |
3738 | } |
3739 | EXPORT_SYMBOL(passthru_features_check); |
3740 | |
3741 | static netdev_features_t dflt_features_check(struct sk_buff *skb, |
3742 | struct net_device *dev, |
3743 | netdev_features_t features) |
3744 | { |
3745 | return vlan_features_check(skb, features); |
3746 | } |
3747 | |
3748 | static netdev_features_t gso_features_check(const struct sk_buff *skb, |
3749 | struct net_device *dev, |
3750 | netdev_features_t features) |
3751 | { |
3752 | u16 gso_segs = skb_shinfo(skb)->gso_segs; |
3753 | |
3754 | if (gso_segs > READ_ONCE(dev->gso_max_segs)) |
3755 | return features & ~NETIF_F_GSO_MASK; |
3756 | |
3757 | if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) |
3758 | return features & ~NETIF_F_GSO_MASK; |
3759 | |
3760 | if (!skb_shinfo(skb)->gso_type) { |
3761 | skb_warn_bad_offload(skb); |
3762 | return features & ~NETIF_F_GSO_MASK; |
3763 | } |
3764 | |
3765 | /* Support for GSO partial features requires software |
3766 | * intervention before we can actually process the packets |
3767 | * so we need to strip support for any partial features now |
3768 | * and we can pull them back in after we have partially |
3769 | * segmented the frame. |
3770 | */ |
3771 | if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) |
3772 | features &= ~dev->gso_partial_features; |
3773 | |
3774 | /* Make sure to clear the IPv4 ID mangling feature if the |
3775 | * IPv4 header has the potential to be fragmented. |
3776 | */ |
3777 | if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { |
3778 | struct iphdr *iph = skb->encapsulation ? |
3779 | inner_ip_hdr(skb) : ip_hdr(skb); |
3780 | |
3781 | if (!(iph->frag_off & htons(IP_DF))) |
3782 | features &= ~NETIF_F_TSO_MANGLEID; |
3783 | } |
3784 | |
3785 | return features; |
3786 | } |
3787 | |
3788 | netdev_features_t netif_skb_features(struct sk_buff *skb) |
3789 | { |
3790 | struct net_device *dev = skb->dev; |
3791 | netdev_features_t features = dev->features; |
3792 | |
3793 | if (skb_is_gso(skb)) |
3794 | features = gso_features_check(skb, dev, features); |
3795 | |
3796 | /* If encapsulation offload request, verify we are testing |
3797 | * hardware encapsulation features instead of standard |
3798 | * features for the netdev |
3799 | */ |
3800 | if (skb->encapsulation) |
3801 | features &= dev->hw_enc_features; |
3802 | |
3803 | if (skb_vlan_tagged(skb)) |
3804 | features = netdev_intersect_features(f1: features, |
3805 | f2: dev->vlan_features | |
3806 | NETIF_F_HW_VLAN_CTAG_TX | |
3807 | NETIF_F_HW_VLAN_STAG_TX); |
3808 | |
3809 | if (dev->netdev_ops->ndo_features_check) |
3810 | features &= dev->netdev_ops->ndo_features_check(skb, dev, |
3811 | features); |
3812 | else |
3813 | features &= dflt_features_check(skb, dev, features); |
3814 | |
3815 | return harmonize_features(skb, features); |
3816 | } |
3817 | EXPORT_SYMBOL(netif_skb_features); |
3818 | |
3819 | static int xmit_one(struct sk_buff *skb, struct net_device *dev, |
3820 | struct netdev_queue *txq, bool more) |
3821 | { |
3822 | unsigned int len; |
3823 | int rc; |
3824 | |
3825 | if (dev_nit_active_rcu(dev)) |
3826 | dev_queue_xmit_nit(skb, dev); |
3827 | |
3828 | len = skb->len; |
3829 | trace_net_dev_start_xmit(skb, dev); |
3830 | rc = netdev_start_xmit(skb, dev, txq, more); |
3831 | trace_net_dev_xmit(skb, rc, dev, skb_len: len); |
3832 | |
3833 | return rc; |
3834 | } |
3835 | |
3836 | struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, |
3837 | struct netdev_queue *txq, int *ret) |
3838 | { |
3839 | struct sk_buff *skb = first; |
3840 | int rc = NETDEV_TX_OK; |
3841 | |
3842 | while (skb) { |
3843 | struct sk_buff *next = skb->next; |
3844 | |
3845 | skb_mark_not_on_list(skb); |
3846 | rc = xmit_one(skb, dev, txq, more: next != NULL); |
3847 | if (unlikely(!dev_xmit_complete(rc))) { |
3848 | skb->next = next; |
3849 | goto out; |
3850 | } |
3851 | |
3852 | skb = next; |
3853 | if (netif_tx_queue_stopped(dev_queue: txq) && skb) { |
3854 | rc = NETDEV_TX_BUSY; |
3855 | break; |
3856 | } |
3857 | } |
3858 | |
3859 | out: |
3860 | *ret = rc; |
3861 | return skb; |
3862 | } |
3863 | |
3864 | static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, |
3865 | netdev_features_t features) |
3866 | { |
3867 | if (skb_vlan_tag_present(skb) && |
3868 | !vlan_hw_offload_capable(features, proto: skb->vlan_proto)) |
3869 | skb = __vlan_hwaccel_push_inside(skb); |
3870 | return skb; |
3871 | } |
3872 | |
3873 | int skb_csum_hwoffload_help(struct sk_buff *skb, |
3874 | const netdev_features_t features) |
3875 | { |
3876 | if (unlikely(skb_csum_is_sctp(skb))) |
3877 | return !!(features & NETIF_F_SCTP_CRC) ? 0 : |
3878 | skb_crc32c_csum_help(skb); |
3879 | |
3880 | if (features & NETIF_F_HW_CSUM) |
3881 | return 0; |
3882 | |
3883 | if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { |
3884 | if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && |
3885 | skb_network_header_len(skb) != sizeof(struct ipv6hdr) && |
3886 | !ipv6_has_hopopt_jumbo(skb)) |
3887 | goto sw_checksum; |
3888 | |
3889 | switch (skb->csum_offset) { |
3890 | case offsetof(struct tcphdr, check): |
3891 | case offsetof(struct udphdr, check): |
3892 | return 0; |
3893 | } |
3894 | } |
3895 | |
3896 | sw_checksum: |
3897 | return skb_checksum_help(skb); |
3898 | } |
3899 | EXPORT_SYMBOL(skb_csum_hwoffload_help); |
3900 | |
3901 | static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, |
3902 | struct net_device *dev) |
3903 | { |
3904 | struct skb_shared_info *shinfo; |
3905 | struct net_iov *niov; |
3906 | |
3907 | if (likely(skb_frags_readable(skb))) |
3908 | goto out; |
3909 | |
3910 | if (!dev->netmem_tx) |
3911 | goto out_free; |
3912 | |
3913 | shinfo = skb_shinfo(skb); |
3914 | |
3915 | if (shinfo->nr_frags > 0) { |
3916 | niov = netmem_to_net_iov(netmem: skb_frag_netmem(frag: &shinfo->frags[0])); |
3917 | if (net_is_devmem_iov(niov) && |
3918 | net_devmem_iov_binding(niov)->dev != dev) |
3919 | goto out_free; |
3920 | } |
3921 | |
3922 | out: |
3923 | return skb; |
3924 | |
3925 | out_free: |
3926 | kfree_skb(skb); |
3927 | return NULL; |
3928 | } |
3929 | |
3930 | static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) |
3931 | { |
3932 | netdev_features_t features; |
3933 | |
3934 | skb = validate_xmit_unreadable_skb(skb, dev); |
3935 | if (unlikely(!skb)) |
3936 | goto out_null; |
3937 | |
3938 | features = netif_skb_features(skb); |
3939 | skb = validate_xmit_vlan(skb, features); |
3940 | if (unlikely(!skb)) |
3941 | goto out_null; |
3942 | |
3943 | skb = sk_validate_xmit_skb(skb, dev); |
3944 | if (unlikely(!skb)) |
3945 | goto out_null; |
3946 | |
3947 | if (netif_needs_gso(skb, features)) { |
3948 | struct sk_buff *segs; |
3949 | |
3950 | segs = skb_gso_segment(skb, features); |
3951 | if (IS_ERR(ptr: segs)) { |
3952 | goto out_kfree_skb; |
3953 | } else if (segs) { |
3954 | consume_skb(skb); |
3955 | skb = segs; |
3956 | } |
3957 | } else { |
3958 | if (skb_needs_linearize(skb, features) && |
3959 | __skb_linearize(skb)) |
3960 | goto out_kfree_skb; |
3961 | |
3962 | /* If packet is not checksummed and device does not |
3963 | * support checksumming for this protocol, complete |
3964 | * checksumming here. |
3965 | */ |
3966 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
3967 | if (skb->encapsulation) |
3968 | skb_set_inner_transport_header(skb, |
3969 | offset: skb_checksum_start_offset(skb)); |
3970 | else |
3971 | skb_set_transport_header(skb, |
3972 | offset: skb_checksum_start_offset(skb)); |
3973 | if (skb_csum_hwoffload_help(skb, features)) |
3974 | goto out_kfree_skb; |
3975 | } |
3976 | } |
3977 | |
3978 | skb = validate_xmit_xfrm(skb, features, again); |
3979 | |
3980 | return skb; |
3981 | |
3982 | out_kfree_skb: |
3983 | kfree_skb(skb); |
3984 | out_null: |
3985 | dev_core_stats_tx_dropped_inc(dev); |
3986 | return NULL; |
3987 | } |
3988 | |
3989 | struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) |
3990 | { |
3991 | struct sk_buff *next, *head = NULL, *tail; |
3992 | |
3993 | for (; skb != NULL; skb = next) { |
3994 | next = skb->next; |
3995 | skb_mark_not_on_list(skb); |
3996 | |
3997 | /* in case skb won't be segmented, point to itself */ |
3998 | skb->prev = skb; |
3999 | |
4000 | skb = validate_xmit_skb(skb, dev, again); |
4001 | if (!skb) |
4002 | continue; |
4003 | |
4004 | if (!head) |
4005 | head = skb; |
4006 | else |
4007 | tail->next = skb; |
4008 | /* If skb was segmented, skb->prev points to |
4009 | * the last segment. If not, it still contains skb. |
4010 | */ |
4011 | tail = skb->prev; |
4012 | } |
4013 | return head; |
4014 | } |
4015 | EXPORT_SYMBOL_GPL(validate_xmit_skb_list); |
4016 | |
4017 | static void qdisc_pkt_len_init(struct sk_buff *skb) |
4018 | { |
4019 | const struct skb_shared_info *shinfo = skb_shinfo(skb); |
4020 | |
4021 | qdisc_skb_cb(skb)->pkt_len = skb->len; |
4022 | |
4023 | /* To get more precise estimation of bytes sent on wire, |
4024 | * we add to pkt_len the headers size of all segments |
4025 | */ |
4026 | if (shinfo->gso_size && skb_transport_header_was_set(skb)) { |
4027 | u16 gso_segs = shinfo->gso_segs; |
4028 | unsigned int hdr_len; |
4029 | |
4030 | /* mac layer + network layer */ |
4031 | hdr_len = skb_transport_offset(skb); |
4032 | |
4033 | /* + transport layer */ |
4034 | if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { |
4035 | const struct tcphdr *th; |
4036 | struct tcphdr _tcphdr; |
4037 | |
4038 | th = skb_header_pointer(skb, offset: hdr_len, |
4039 | len: sizeof(_tcphdr), buffer: &_tcphdr); |
4040 | if (likely(th)) |
4041 | hdr_len += __tcp_hdrlen(th); |
4042 | } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { |
4043 | struct udphdr _udphdr; |
4044 | |
4045 | if (skb_header_pointer(skb, offset: hdr_len, |
4046 | len: sizeof(_udphdr), buffer: &_udphdr)) |
4047 | hdr_len += sizeof(struct udphdr); |
4048 | } |
4049 | |
4050 | if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { |
4051 | int payload = skb->len - hdr_len; |
4052 | |
4053 | /* Malicious packet. */ |
4054 | if (payload <= 0) |
4055 | return; |
4056 | gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); |
4057 | } |
4058 | qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; |
4059 | } |
4060 | } |
4061 | |
4062 | static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, |
4063 | struct sk_buff **to_free, |
4064 | struct netdev_queue *txq) |
4065 | { |
4066 | int rc; |
4067 | |
4068 | rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; |
4069 | if (rc == NET_XMIT_SUCCESS) |
4070 | trace_qdisc_enqueue(qdisc: q, txq, skb); |
4071 | return rc; |
4072 | } |
4073 | |
4074 | static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, |
4075 | struct net_device *dev, |
4076 | struct netdev_queue *txq) |
4077 | { |
4078 | spinlock_t *root_lock = qdisc_lock(qdisc: q); |
4079 | struct sk_buff *to_free = NULL; |
4080 | bool contended; |
4081 | int rc; |
4082 | |
4083 | qdisc_calculate_pkt_len(skb, sch: q); |
4084 | |
4085 | tcf_set_drop_reason(skb, reason: SKB_DROP_REASON_QDISC_DROP); |
4086 | |
4087 | if (q->flags & TCQ_F_NOLOCK) { |
4088 | if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(qdisc: q) && |
4089 | qdisc_run_begin(qdisc: q)) { |
4090 | /* Retest nolock_qdisc_is_empty() within the protection |
4091 | * of q->seqlock to protect from racing with requeuing. |
4092 | */ |
4093 | if (unlikely(!nolock_qdisc_is_empty(q))) { |
4094 | rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq); |
4095 | __qdisc_run(q); |
4096 | qdisc_run_end(qdisc: q); |
4097 | |
4098 | goto no_lock_out; |
4099 | } |
4100 | |
4101 | qdisc_bstats_cpu_update(sch: q, skb); |
4102 | if (sch_direct_xmit(skb, q, dev, txq, NULL, validate: true) && |
4103 | !nolock_qdisc_is_empty(qdisc: q)) |
4104 | __qdisc_run(q); |
4105 | |
4106 | qdisc_run_end(qdisc: q); |
4107 | return NET_XMIT_SUCCESS; |
4108 | } |
4109 | |
4110 | rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq); |
4111 | qdisc_run(q); |
4112 | |
4113 | no_lock_out: |
4114 | if (unlikely(to_free)) |
4115 | kfree_skb_list_reason(segs: to_free, |
4116 | reason: tcf_get_drop_reason(skb: to_free)); |
4117 | return rc; |
4118 | } |
4119 | |
4120 | if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { |
4121 | kfree_skb_reason(skb, reason: SKB_DROP_REASON_TC_RECLASSIFY_LOOP); |
4122 | return NET_XMIT_DROP; |
4123 | } |
4124 | /* |
4125 | * Heuristic to force contended enqueues to serialize on a |
4126 | * separate lock before trying to get qdisc main lock. |
4127 | * This permits qdisc->running owner to get the lock more |
4128 | * often and dequeue packets faster. |
4129 | * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit |
4130 | * and then other tasks will only enqueue packets. The packets will be |
4131 | * sent after the qdisc owner is scheduled again. To prevent this |
4132 | * scenario the task always serialize on the lock. |
4133 | */ |
4134 | contended = qdisc_is_running(qdisc: q) || IS_ENABLED(CONFIG_PREEMPT_RT); |
4135 | if (unlikely(contended)) |
4136 | spin_lock(lock: &q->busylock); |
4137 | |
4138 | spin_lock(lock: root_lock); |
4139 | if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { |
4140 | __qdisc_drop(skb, to_free: &to_free); |
4141 | rc = NET_XMIT_DROP; |
4142 | } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && |
4143 | qdisc_run_begin(qdisc: q)) { |
4144 | /* |
4145 | * This is a work-conserving queue; there are no old skbs |
4146 | * waiting to be sent out; and the qdisc is not running - |
4147 | * xmit the skb directly. |
4148 | */ |
4149 | |
4150 | qdisc_bstats_update(sch: q, skb); |
4151 | |
4152 | if (sch_direct_xmit(skb, q, dev, txq, root_lock, validate: true)) { |
4153 | if (unlikely(contended)) { |
4154 | spin_unlock(lock: &q->busylock); |
4155 | contended = false; |
4156 | } |
4157 | __qdisc_run(q); |
4158 | } |
4159 | |
4160 | qdisc_run_end(qdisc: q); |
4161 | rc = NET_XMIT_SUCCESS; |
4162 | } else { |
4163 | WRITE_ONCE(q->owner, smp_processor_id()); |
4164 | rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq); |
4165 | WRITE_ONCE(q->owner, -1); |
4166 | if (qdisc_run_begin(qdisc: q)) { |
4167 | if (unlikely(contended)) { |
4168 | spin_unlock(lock: &q->busylock); |
4169 | contended = false; |
4170 | } |
4171 | __qdisc_run(q); |
4172 | qdisc_run_end(qdisc: q); |
4173 | } |
4174 | } |
4175 | spin_unlock(lock: root_lock); |
4176 | if (unlikely(to_free)) |
4177 | kfree_skb_list_reason(segs: to_free, |
4178 | reason: tcf_get_drop_reason(skb: to_free)); |
4179 | if (unlikely(contended)) |
4180 | spin_unlock(lock: &q->busylock); |
4181 | return rc; |
4182 | } |
4183 | |
4184 | #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) |
4185 | static void skb_update_prio(struct sk_buff *skb) |
4186 | { |
4187 | const struct netprio_map *map; |
4188 | const struct sock *sk; |
4189 | unsigned int prioidx; |
4190 | |
4191 | if (skb->priority) |
4192 | return; |
4193 | map = rcu_dereference_bh(skb->dev->priomap); |
4194 | if (!map) |
4195 | return; |
4196 | sk = skb_to_full_sk(skb); |
4197 | if (!sk) |
4198 | return; |
4199 | |
4200 | prioidx = sock_cgroup_prioidx(skcd: &sk->sk_cgrp_data); |
4201 | |
4202 | if (prioidx < map->priomap_len) |
4203 | skb->priority = map->priomap[prioidx]; |
4204 | } |
4205 | #else |
4206 | #define skb_update_prio(skb) |
4207 | #endif |
4208 | |
4209 | /** |
4210 | * dev_loopback_xmit - loop back @skb |
4211 | * @net: network namespace this loopback is happening in |
4212 | * @sk: sk needed to be a netfilter okfn |
4213 | * @skb: buffer to transmit |
4214 | */ |
4215 | int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) |
4216 | { |
4217 | skb_reset_mac_header(skb); |
4218 | __skb_pull(skb, len: skb_network_offset(skb)); |
4219 | skb->pkt_type = PACKET_LOOPBACK; |
4220 | if (skb->ip_summed == CHECKSUM_NONE) |
4221 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
4222 | DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); |
4223 | skb_dst_force(skb); |
4224 | netif_rx(skb); |
4225 | return 0; |
4226 | } |
4227 | EXPORT_SYMBOL(dev_loopback_xmit); |
4228 | |
4229 | #ifdef CONFIG_NET_EGRESS |
4230 | static struct netdev_queue * |
4231 | netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) |
4232 | { |
4233 | int qm = skb_get_queue_mapping(skb); |
4234 | |
4235 | return netdev_get_tx_queue(dev, index: netdev_cap_txqueue(dev, queue_index: qm)); |
4236 | } |
4237 | |
4238 | #ifndef CONFIG_PREEMPT_RT |
4239 | static bool netdev_xmit_txqueue_skipped(void) |
4240 | { |
4241 | return __this_cpu_read(softnet_data.xmit.skip_txqueue); |
4242 | } |
4243 | |
4244 | void netdev_xmit_skip_txqueue(bool skip) |
4245 | { |
4246 | __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); |
4247 | } |
4248 | EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); |
4249 | |
4250 | #else |
4251 | static bool netdev_xmit_txqueue_skipped(void) |
4252 | { |
4253 | return current->net_xmit.skip_txqueue; |
4254 | } |
4255 | |
4256 | void netdev_xmit_skip_txqueue(bool skip) |
4257 | { |
4258 | current->net_xmit.skip_txqueue = skip; |
4259 | } |
4260 | EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); |
4261 | #endif |
4262 | #endif /* CONFIG_NET_EGRESS */ |
4263 | |
4264 | #ifdef CONFIG_NET_XGRESS |
4265 | static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, |
4266 | enum skb_drop_reason *drop_reason) |
4267 | { |
4268 | int ret = TC_ACT_UNSPEC; |
4269 | #ifdef CONFIG_NET_CLS_ACT |
4270 | struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); |
4271 | struct tcf_result res; |
4272 | |
4273 | if (!miniq) |
4274 | return ret; |
4275 | |
4276 | /* Global bypass */ |
4277 | if (!static_branch_likely(&tcf_sw_enabled_key)) |
4278 | return ret; |
4279 | |
4280 | /* Block-wise bypass */ |
4281 | if (tcf_block_bypass_sw(block: miniq->block)) |
4282 | return ret; |
4283 | |
4284 | tc_skb_cb(skb)->mru = 0; |
4285 | tc_skb_cb(skb)->post_ct = false; |
4286 | tcf_set_drop_reason(skb, reason: *drop_reason); |
4287 | |
4288 | mini_qdisc_bstats_cpu_update(miniq, skb); |
4289 | ret = tcf_classify(skb, block: miniq->block, tp: miniq->filter_list, res: &res, compat_mode: false); |
4290 | /* Only tcf related quirks below. */ |
4291 | switch (ret) { |
4292 | case TC_ACT_SHOT: |
4293 | *drop_reason = tcf_get_drop_reason(skb); |
4294 | mini_qdisc_qstats_cpu_drop(miniq); |
4295 | break; |
4296 | case TC_ACT_OK: |
4297 | case TC_ACT_RECLASSIFY: |
4298 | skb->tc_index = TC_H_MIN(res.classid); |
4299 | break; |
4300 | } |
4301 | #endif /* CONFIG_NET_CLS_ACT */ |
4302 | return ret; |
4303 | } |
4304 | |
4305 | static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); |
4306 | |
4307 | void tcx_inc(void) |
4308 | { |
4309 | static_branch_inc(&tcx_needed_key); |
4310 | } |
4311 | |
4312 | void tcx_dec(void) |
4313 | { |
4314 | static_branch_dec(&tcx_needed_key); |
4315 | } |
4316 | |
4317 | static __always_inline enum tcx_action_base |
4318 | tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, |
4319 | const bool needs_mac) |
4320 | { |
4321 | const struct bpf_mprog_fp *fp; |
4322 | const struct bpf_prog *prog; |
4323 | int ret = TCX_NEXT; |
4324 | |
4325 | if (needs_mac) |
4326 | __skb_push(skb, len: skb->mac_len); |
4327 | bpf_mprog_foreach_prog(entry, fp, prog) { |
4328 | bpf_compute_data_pointers(skb); |
4329 | ret = bpf_prog_run(prog, ctx: skb); |
4330 | if (ret != TCX_NEXT) |
4331 | break; |
4332 | } |
4333 | if (needs_mac) |
4334 | __skb_pull(skb, len: skb->mac_len); |
4335 | return tcx_action_code(skb, code: ret); |
4336 | } |
4337 | |
4338 | static __always_inline struct sk_buff * |
4339 | sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, |
4340 | struct net_device *orig_dev, bool *another) |
4341 | { |
4342 | struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); |
4343 | enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; |
4344 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
4345 | int sch_ret; |
4346 | |
4347 | if (!entry) |
4348 | return skb; |
4349 | |
4350 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
4351 | if (*pt_prev) { |
4352 | *ret = deliver_skb(skb, pt_prev: *pt_prev, orig_dev); |
4353 | *pt_prev = NULL; |
4354 | } |
4355 | |
4356 | qdisc_skb_cb(skb)->pkt_len = skb->len; |
4357 | tcx_set_ingress(skb, ingress: true); |
4358 | |
4359 | if (static_branch_unlikely(&tcx_needed_key)) { |
4360 | sch_ret = tcx_run(entry, skb, needs_mac: true); |
4361 | if (sch_ret != TC_ACT_UNSPEC) |
4362 | goto ingress_verdict; |
4363 | } |
4364 | sch_ret = tc_run(entry: tcx_entry(entry), skb, drop_reason: &drop_reason); |
4365 | ingress_verdict: |
4366 | switch (sch_ret) { |
4367 | case TC_ACT_REDIRECT: |
4368 | /* skb_mac_header check was done by BPF, so we can safely |
4369 | * push the L2 header back before redirecting to another |
4370 | * netdev. |
4371 | */ |
4372 | __skb_push(skb, len: skb->mac_len); |
4373 | if (skb_do_redirect(skb) == -EAGAIN) { |
4374 | __skb_pull(skb, len: skb->mac_len); |
4375 | *another = true; |
4376 | break; |
4377 | } |
4378 | *ret = NET_RX_SUCCESS; |
4379 | bpf_net_ctx_clear(bpf_net_ctx); |
4380 | return NULL; |
4381 | case TC_ACT_SHOT: |
4382 | kfree_skb_reason(skb, reason: drop_reason); |
4383 | *ret = NET_RX_DROP; |
4384 | bpf_net_ctx_clear(bpf_net_ctx); |
4385 | return NULL; |
4386 | /* used by tc_run */ |
4387 | case TC_ACT_STOLEN: |
4388 | case TC_ACT_QUEUED: |
4389 | case TC_ACT_TRAP: |
4390 | consume_skb(skb); |
4391 | fallthrough; |
4392 | case TC_ACT_CONSUMED: |
4393 | *ret = NET_RX_SUCCESS; |
4394 | bpf_net_ctx_clear(bpf_net_ctx); |
4395 | return NULL; |
4396 | } |
4397 | bpf_net_ctx_clear(bpf_net_ctx); |
4398 | |
4399 | return skb; |
4400 | } |
4401 | |
4402 | static __always_inline struct sk_buff * |
4403 | sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) |
4404 | { |
4405 | struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); |
4406 | enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; |
4407 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
4408 | int sch_ret; |
4409 | |
4410 | if (!entry) |
4411 | return skb; |
4412 | |
4413 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
4414 | |
4415 | /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was |
4416 | * already set by the caller. |
4417 | */ |
4418 | if (static_branch_unlikely(&tcx_needed_key)) { |
4419 | sch_ret = tcx_run(entry, skb, needs_mac: false); |
4420 | if (sch_ret != TC_ACT_UNSPEC) |
4421 | goto egress_verdict; |
4422 | } |
4423 | sch_ret = tc_run(entry: tcx_entry(entry), skb, drop_reason: &drop_reason); |
4424 | egress_verdict: |
4425 | switch (sch_ret) { |
4426 | case TC_ACT_REDIRECT: |
4427 | /* No need to push/pop skb's mac_header here on egress! */ |
4428 | skb_do_redirect(skb); |
4429 | *ret = NET_XMIT_SUCCESS; |
4430 | bpf_net_ctx_clear(bpf_net_ctx); |
4431 | return NULL; |
4432 | case TC_ACT_SHOT: |
4433 | kfree_skb_reason(skb, reason: drop_reason); |
4434 | *ret = NET_XMIT_DROP; |
4435 | bpf_net_ctx_clear(bpf_net_ctx); |
4436 | return NULL; |
4437 | /* used by tc_run */ |
4438 | case TC_ACT_STOLEN: |
4439 | case TC_ACT_QUEUED: |
4440 | case TC_ACT_TRAP: |
4441 | consume_skb(skb); |
4442 | fallthrough; |
4443 | case TC_ACT_CONSUMED: |
4444 | *ret = NET_XMIT_SUCCESS; |
4445 | bpf_net_ctx_clear(bpf_net_ctx); |
4446 | return NULL; |
4447 | } |
4448 | bpf_net_ctx_clear(bpf_net_ctx); |
4449 | |
4450 | return skb; |
4451 | } |
4452 | #else |
4453 | static __always_inline struct sk_buff * |
4454 | sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, |
4455 | struct net_device *orig_dev, bool *another) |
4456 | { |
4457 | return skb; |
4458 | } |
4459 | |
4460 | static __always_inline struct sk_buff * |
4461 | sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) |
4462 | { |
4463 | return skb; |
4464 | } |
4465 | #endif /* CONFIG_NET_XGRESS */ |
4466 | |
4467 | #ifdef CONFIG_XPS |
4468 | static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, |
4469 | struct xps_dev_maps *dev_maps, unsigned int tci) |
4470 | { |
4471 | int tc = netdev_get_prio_tc_map(dev, prio: skb->priority); |
4472 | struct xps_map *map; |
4473 | int queue_index = -1; |
4474 | |
4475 | if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) |
4476 | return queue_index; |
4477 | |
4478 | tci *= dev_maps->num_tc; |
4479 | tci += tc; |
4480 | |
4481 | map = rcu_dereference(dev_maps->attr_map[tci]); |
4482 | if (map) { |
4483 | if (map->len == 1) |
4484 | queue_index = map->queues[0]; |
4485 | else |
4486 | queue_index = map->queues[reciprocal_scale( |
4487 | val: skb_get_hash(skb), ep_ro: map->len)]; |
4488 | if (unlikely(queue_index >= dev->real_num_tx_queues)) |
4489 | queue_index = -1; |
4490 | } |
4491 | return queue_index; |
4492 | } |
4493 | #endif |
4494 | |
4495 | static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, |
4496 | struct sk_buff *skb) |
4497 | { |
4498 | #ifdef CONFIG_XPS |
4499 | struct xps_dev_maps *dev_maps; |
4500 | struct sock *sk = skb->sk; |
4501 | int queue_index = -1; |
4502 | |
4503 | if (!static_key_false(key: &xps_needed)) |
4504 | return -1; |
4505 | |
4506 | rcu_read_lock(); |
4507 | if (!static_key_false(key: &xps_rxqs_needed)) |
4508 | goto get_cpus_map; |
4509 | |
4510 | dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); |
4511 | if (dev_maps) { |
4512 | int tci = sk_rx_queue_get(sk); |
4513 | |
4514 | if (tci >= 0) |
4515 | queue_index = __get_xps_queue_idx(dev, skb, dev_maps, |
4516 | tci); |
4517 | } |
4518 | |
4519 | get_cpus_map: |
4520 | if (queue_index < 0) { |
4521 | dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); |
4522 | if (dev_maps) { |
4523 | unsigned int tci = skb->sender_cpu - 1; |
4524 | |
4525 | queue_index = __get_xps_queue_idx(dev, skb, dev_maps, |
4526 | tci); |
4527 | } |
4528 | } |
4529 | rcu_read_unlock(); |
4530 | |
4531 | return queue_index; |
4532 | #else |
4533 | return -1; |
4534 | #endif |
4535 | } |
4536 | |
4537 | u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, |
4538 | struct net_device *sb_dev) |
4539 | { |
4540 | return 0; |
4541 | } |
4542 | EXPORT_SYMBOL(dev_pick_tx_zero); |
4543 | |
4544 | u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, |
4545 | struct net_device *sb_dev) |
4546 | { |
4547 | struct sock *sk = skb->sk; |
4548 | int queue_index = sk_tx_queue_get(sk); |
4549 | |
4550 | sb_dev = sb_dev ? : dev; |
4551 | |
4552 | if (queue_index < 0 || skb->ooo_okay || |
4553 | queue_index >= dev->real_num_tx_queues) { |
4554 | int new_index = get_xps_queue(dev, sb_dev, skb); |
4555 | |
4556 | if (new_index < 0) |
4557 | new_index = skb_tx_hash(dev, sb_dev, skb); |
4558 | |
4559 | if (queue_index != new_index && sk && |
4560 | sk_fullsock(sk) && |
4561 | rcu_access_pointer(sk->sk_dst_cache)) |
4562 | sk_tx_queue_set(sk, tx_queue: new_index); |
4563 | |
4564 | queue_index = new_index; |
4565 | } |
4566 | |
4567 | return queue_index; |
4568 | } |
4569 | EXPORT_SYMBOL(netdev_pick_tx); |
4570 | |
4571 | struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, |
4572 | struct sk_buff *skb, |
4573 | struct net_device *sb_dev) |
4574 | { |
4575 | int queue_index = 0; |
4576 | |
4577 | #ifdef CONFIG_XPS |
4578 | u32 sender_cpu = skb->sender_cpu - 1; |
4579 | |
4580 | if (sender_cpu >= (u32)NR_CPUS) |
4581 | skb->sender_cpu = raw_smp_processor_id() + 1; |
4582 | #endif |
4583 | |
4584 | if (dev->real_num_tx_queues != 1) { |
4585 | const struct net_device_ops *ops = dev->netdev_ops; |
4586 | |
4587 | if (ops->ndo_select_queue) |
4588 | queue_index = ops->ndo_select_queue(dev, skb, sb_dev); |
4589 | else |
4590 | queue_index = netdev_pick_tx(dev, skb, sb_dev); |
4591 | |
4592 | queue_index = netdev_cap_txqueue(dev, queue_index); |
4593 | } |
4594 | |
4595 | skb_set_queue_mapping(skb, queue_mapping: queue_index); |
4596 | return netdev_get_tx_queue(dev, index: queue_index); |
4597 | } |
4598 | |
4599 | /** |
4600 | * __dev_queue_xmit() - transmit a buffer |
4601 | * @skb: buffer to transmit |
4602 | * @sb_dev: suboordinate device used for L2 forwarding offload |
4603 | * |
4604 | * Queue a buffer for transmission to a network device. The caller must |
4605 | * have set the device and priority and built the buffer before calling |
4606 | * this function. The function can be called from an interrupt. |
4607 | * |
4608 | * When calling this method, interrupts MUST be enabled. This is because |
4609 | * the BH enable code must have IRQs enabled so that it will not deadlock. |
4610 | * |
4611 | * Regardless of the return value, the skb is consumed, so it is currently |
4612 | * difficult to retry a send to this method. (You can bump the ref count |
4613 | * before sending to hold a reference for retry if you are careful.) |
4614 | * |
4615 | * Return: |
4616 | * * 0 - buffer successfully transmitted |
4617 | * * positive qdisc return code - NET_XMIT_DROP etc. |
4618 | * * negative errno - other errors |
4619 | */ |
4620 | int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) |
4621 | { |
4622 | struct net_device *dev = skb->dev; |
4623 | struct netdev_queue *txq = NULL; |
4624 | struct Qdisc *q; |
4625 | int rc = -ENOMEM; |
4626 | bool again = false; |
4627 | |
4628 | skb_reset_mac_header(skb); |
4629 | skb_assert_len(skb); |
4630 | |
4631 | if (unlikely(skb_shinfo(skb)->tx_flags & |
4632 | (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) |
4633 | __skb_tstamp_tx(orig_skb: skb, NULL, NULL, sk: skb->sk, tstype: SCM_TSTAMP_SCHED); |
4634 | |
4635 | /* Disable soft irqs for various locks below. Also |
4636 | * stops preemption for RCU. |
4637 | */ |
4638 | rcu_read_lock_bh(); |
4639 | |
4640 | skb_update_prio(skb); |
4641 | |
4642 | qdisc_pkt_len_init(skb); |
4643 | tcx_set_ingress(skb, ingress: false); |
4644 | #ifdef CONFIG_NET_EGRESS |
4645 | if (static_branch_unlikely(&egress_needed_key)) { |
4646 | if (nf_hook_egress_active()) { |
4647 | skb = nf_hook_egress(skb, rc: &rc, dev); |
4648 | if (!skb) |
4649 | goto out; |
4650 | } |
4651 | |
4652 | netdev_xmit_skip_txqueue(false); |
4653 | |
4654 | nf_skip_egress(skb, skip: true); |
4655 | skb = sch_handle_egress(skb, ret: &rc, dev); |
4656 | if (!skb) |
4657 | goto out; |
4658 | nf_skip_egress(skb, skip: false); |
4659 | |
4660 | if (netdev_xmit_txqueue_skipped()) |
4661 | txq = netdev_tx_queue_mapping(dev, skb); |
4662 | } |
4663 | #endif |
4664 | /* If device/qdisc don't need skb->dst, release it right now while |
4665 | * its hot in this cpu cache. |
4666 | */ |
4667 | if (dev->priv_flags & IFF_XMIT_DST_RELEASE) |
4668 | skb_dst_drop(skb); |
4669 | else |
4670 | skb_dst_force(skb); |
4671 | |
4672 | if (!txq) |
4673 | txq = netdev_core_pick_tx(dev, skb, sb_dev); |
4674 | |
4675 | q = rcu_dereference_bh(txq->qdisc); |
4676 | |
4677 | trace_net_dev_queue(skb); |
4678 | if (q->enqueue) { |
4679 | rc = __dev_xmit_skb(skb, q, dev, txq); |
4680 | goto out; |
4681 | } |
4682 | |
4683 | /* The device has no queue. Common case for software devices: |
4684 | * loopback, all the sorts of tunnels... |
4685 | |
4686 | * Really, it is unlikely that netif_tx_lock protection is necessary |
4687 | * here. (f.e. loopback and IP tunnels are clean ignoring statistics |
4688 | * counters.) |
4689 | * However, it is possible, that they rely on protection |
4690 | * made by us here. |
4691 | |
4692 | * Check this and shot the lock. It is not prone from deadlocks. |
4693 | *Either shot noqueue qdisc, it is even simpler 8) |
4694 | */ |
4695 | if (dev->flags & IFF_UP) { |
4696 | int cpu = smp_processor_id(); /* ok because BHs are off */ |
4697 | |
4698 | /* Other cpus might concurrently change txq->xmit_lock_owner |
4699 | * to -1 or to their cpu id, but not to our id. |
4700 | */ |
4701 | if (READ_ONCE(txq->xmit_lock_owner) != cpu) { |
4702 | if (dev_xmit_recursion()) |
4703 | goto recursion_alert; |
4704 | |
4705 | skb = validate_xmit_skb(skb, dev, again: &again); |
4706 | if (!skb) |
4707 | goto out; |
4708 | |
4709 | HARD_TX_LOCK(dev, txq, cpu); |
4710 | |
4711 | if (!netif_xmit_stopped(dev_queue: txq)) { |
4712 | dev_xmit_recursion_inc(); |
4713 | skb = dev_hard_start_xmit(first: skb, dev, txq, ret: &rc); |
4714 | dev_xmit_recursion_dec(); |
4715 | if (dev_xmit_complete(rc)) { |
4716 | HARD_TX_UNLOCK(dev, txq); |
4717 | goto out; |
4718 | } |
4719 | } |
4720 | HARD_TX_UNLOCK(dev, txq); |
4721 | net_crit_ratelimited("Virtual device %s asks to queue packet!\n", |
4722 | dev->name); |
4723 | } else { |
4724 | /* Recursion is detected! It is possible, |
4725 | * unfortunately |
4726 | */ |
4727 | recursion_alert: |
4728 | net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", |
4729 | dev->name); |
4730 | } |
4731 | } |
4732 | |
4733 | rc = -ENETDOWN; |
4734 | rcu_read_unlock_bh(); |
4735 | |
4736 | dev_core_stats_tx_dropped_inc(dev); |
4737 | kfree_skb_list(segs: skb); |
4738 | return rc; |
4739 | out: |
4740 | rcu_read_unlock_bh(); |
4741 | return rc; |
4742 | } |
4743 | EXPORT_SYMBOL(__dev_queue_xmit); |
4744 | |
4745 | int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) |
4746 | { |
4747 | struct net_device *dev = skb->dev; |
4748 | struct sk_buff *orig_skb = skb; |
4749 | struct netdev_queue *txq; |
4750 | int ret = NETDEV_TX_BUSY; |
4751 | bool again = false; |
4752 | |
4753 | if (unlikely(!netif_running(dev) || |
4754 | !netif_carrier_ok(dev))) |
4755 | goto drop; |
4756 | |
4757 | skb = validate_xmit_skb_list(skb, dev, &again); |
4758 | if (skb != orig_skb) |
4759 | goto drop; |
4760 | |
4761 | skb_set_queue_mapping(skb, queue_mapping: queue_id); |
4762 | txq = skb_get_tx_queue(dev, skb); |
4763 | |
4764 | local_bh_disable(); |
4765 | |
4766 | dev_xmit_recursion_inc(); |
4767 | HARD_TX_LOCK(dev, txq, smp_processor_id()); |
4768 | if (!netif_xmit_frozen_or_drv_stopped(dev_queue: txq)) |
4769 | ret = netdev_start_xmit(skb, dev, txq, more: false); |
4770 | HARD_TX_UNLOCK(dev, txq); |
4771 | dev_xmit_recursion_dec(); |
4772 | |
4773 | local_bh_enable(); |
4774 | return ret; |
4775 | drop: |
4776 | dev_core_stats_tx_dropped_inc(dev); |
4777 | kfree_skb_list(segs: skb); |
4778 | return NET_XMIT_DROP; |
4779 | } |
4780 | EXPORT_SYMBOL(__dev_direct_xmit); |
4781 | |
4782 | /************************************************************************* |
4783 | * Receiver routines |
4784 | *************************************************************************/ |
4785 | static DEFINE_PER_CPU(struct task_struct *, backlog_napi); |
4786 | |
4787 | int weight_p __read_mostly = 64; /* old backlog weight */ |
4788 | int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ |
4789 | int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ |
4790 | |
4791 | /* Called with irq disabled */ |
4792 | static inline void ____napi_schedule(struct softnet_data *sd, |
4793 | struct napi_struct *napi) |
4794 | { |
4795 | struct task_struct *thread; |
4796 | |
4797 | lockdep_assert_irqs_disabled(); |
4798 | |
4799 | if (test_bit(NAPI_STATE_THREADED, &napi->state)) { |
4800 | /* Paired with smp_mb__before_atomic() in |
4801 | * napi_enable()/dev_set_threaded(). |
4802 | * Use READ_ONCE() to guarantee a complete |
4803 | * read on napi->thread. Only call |
4804 | * wake_up_process() when it's not NULL. |
4805 | */ |
4806 | thread = READ_ONCE(napi->thread); |
4807 | if (thread) { |
4808 | if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) |
4809 | goto use_local_napi; |
4810 | |
4811 | set_bit(nr: NAPI_STATE_SCHED_THREADED, addr: &napi->state); |
4812 | wake_up_process(tsk: thread); |
4813 | return; |
4814 | } |
4815 | } |
4816 | |
4817 | use_local_napi: |
4818 | DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); |
4819 | list_add_tail(new: &napi->poll_list, head: &sd->poll_list); |
4820 | WRITE_ONCE(napi->list_owner, smp_processor_id()); |
4821 | /* If not called from net_rx_action() |
4822 | * we have to raise NET_RX_SOFTIRQ. |
4823 | */ |
4824 | if (!sd->in_net_rx_action) |
4825 | raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
4826 | } |
4827 | |
4828 | #ifdef CONFIG_RPS |
4829 | |
4830 | struct static_key_false rps_needed __read_mostly; |
4831 | EXPORT_SYMBOL(rps_needed); |
4832 | struct static_key_false rfs_needed __read_mostly; |
4833 | EXPORT_SYMBOL(rfs_needed); |
4834 | |
4835 | static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) |
4836 | { |
4837 | return hash_32(val: hash, bits: flow_table->log); |
4838 | } |
4839 | |
4840 | static struct rps_dev_flow * |
4841 | set_rps_cpu(struct net_device *dev, struct sk_buff *skb, |
4842 | struct rps_dev_flow *rflow, u16 next_cpu) |
4843 | { |
4844 | if (next_cpu < nr_cpu_ids) { |
4845 | u32 head; |
4846 | #ifdef CONFIG_RFS_ACCEL |
4847 | struct netdev_rx_queue *rxqueue; |
4848 | struct rps_dev_flow_table *flow_table; |
4849 | struct rps_dev_flow *old_rflow; |
4850 | u16 rxq_index; |
4851 | u32 flow_id; |
4852 | int rc; |
4853 | |
4854 | /* Should we steer this flow to a different hardware queue? */ |
4855 | if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || |
4856 | !(dev->features & NETIF_F_NTUPLE)) |
4857 | goto out; |
4858 | rxq_index = cpu_rmap_lookup_index(rmap: dev->rx_cpu_rmap, cpu: next_cpu); |
4859 | if (rxq_index == skb_get_rx_queue(skb)) |
4860 | goto out; |
4861 | |
4862 | rxqueue = dev->_rx + rxq_index; |
4863 | flow_table = rcu_dereference(rxqueue->rps_flow_table); |
4864 | if (!flow_table) |
4865 | goto out; |
4866 | flow_id = rfs_slot(hash: skb_get_hash(skb), flow_table); |
4867 | rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, |
4868 | rxq_index, flow_id); |
4869 | if (rc < 0) |
4870 | goto out; |
4871 | old_rflow = rflow; |
4872 | rflow = &flow_table->flows[flow_id]; |
4873 | WRITE_ONCE(rflow->filter, rc); |
4874 | if (old_rflow->filter == rc) |
4875 | WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); |
4876 | out: |
4877 | #endif |
4878 | head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); |
4879 | rps_input_queue_tail_save(dest: &rflow->last_qtail, tail: head); |
4880 | } |
4881 | |
4882 | WRITE_ONCE(rflow->cpu, next_cpu); |
4883 | return rflow; |
4884 | } |
4885 | |
4886 | /* |
4887 | * get_rps_cpu is called from netif_receive_skb and returns the target |
4888 | * CPU from the RPS map of the receiving queue for a given skb. |
4889 | * rcu_read_lock must be held on entry. |
4890 | */ |
4891 | static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, |
4892 | struct rps_dev_flow **rflowp) |
4893 | { |
4894 | const struct rps_sock_flow_table *sock_flow_table; |
4895 | struct netdev_rx_queue *rxqueue = dev->_rx; |
4896 | struct rps_dev_flow_table *flow_table; |
4897 | struct rps_map *map; |
4898 | int cpu = -1; |
4899 | u32 tcpu; |
4900 | u32 hash; |
4901 | |
4902 | if (skb_rx_queue_recorded(skb)) { |
4903 | u16 index = skb_get_rx_queue(skb); |
4904 | |
4905 | if (unlikely(index >= dev->real_num_rx_queues)) { |
4906 | WARN_ONCE(dev->real_num_rx_queues > 1, |
4907 | "%s received packet on queue %u, but number " |
4908 | "of RX queues is %u\n", |
4909 | dev->name, index, dev->real_num_rx_queues); |
4910 | goto done; |
4911 | } |
4912 | rxqueue += index; |
4913 | } |
4914 | |
4915 | /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ |
4916 | |
4917 | flow_table = rcu_dereference(rxqueue->rps_flow_table); |
4918 | map = rcu_dereference(rxqueue->rps_map); |
4919 | if (!flow_table && !map) |
4920 | goto done; |
4921 | |
4922 | skb_reset_network_header(skb); |
4923 | hash = skb_get_hash(skb); |
4924 | if (!hash) |
4925 | goto done; |
4926 | |
4927 | sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); |
4928 | if (flow_table && sock_flow_table) { |
4929 | struct rps_dev_flow *rflow; |
4930 | u32 next_cpu; |
4931 | u32 ident; |
4932 | |
4933 | /* First check into global flow table if there is a match. |
4934 | * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). |
4935 | */ |
4936 | ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); |
4937 | if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) |
4938 | goto try_rps; |
4939 | |
4940 | next_cpu = ident & net_hotdata.rps_cpu_mask; |
4941 | |
4942 | /* OK, now we know there is a match, |
4943 | * we can look at the local (per receive queue) flow table |
4944 | */ |
4945 | rflow = &flow_table->flows[rfs_slot(hash, flow_table)]; |
4946 | tcpu = rflow->cpu; |
4947 | |
4948 | /* |
4949 | * If the desired CPU (where last recvmsg was done) is |
4950 | * different from current CPU (one in the rx-queue flow |
4951 | * table entry), switch if one of the following holds: |
4952 | * - Current CPU is unset (>= nr_cpu_ids). |
4953 | * - Current CPU is offline. |
4954 | * - The current CPU's queue tail has advanced beyond the |
4955 | * last packet that was enqueued using this table entry. |
4956 | * This guarantees that all previous packets for the flow |
4957 | * have been dequeued, thus preserving in order delivery. |
4958 | */ |
4959 | if (unlikely(tcpu != next_cpu) && |
4960 | (tcpu >= nr_cpu_ids || !cpu_online(cpu: tcpu) || |
4961 | ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - |
4962 | rflow->last_qtail)) >= 0)) { |
4963 | tcpu = next_cpu; |
4964 | rflow = set_rps_cpu(dev, skb, rflow, next_cpu); |
4965 | } |
4966 | |
4967 | if (tcpu < nr_cpu_ids && cpu_online(cpu: tcpu)) { |
4968 | *rflowp = rflow; |
4969 | cpu = tcpu; |
4970 | goto done; |
4971 | } |
4972 | } |
4973 | |
4974 | try_rps: |
4975 | |
4976 | if (map) { |
4977 | tcpu = map->cpus[reciprocal_scale(val: hash, ep_ro: map->len)]; |
4978 | if (cpu_online(cpu: tcpu)) { |
4979 | cpu = tcpu; |
4980 | goto done; |
4981 | } |
4982 | } |
4983 | |
4984 | done: |
4985 | return cpu; |
4986 | } |
4987 | |
4988 | #ifdef CONFIG_RFS_ACCEL |
4989 | |
4990 | /** |
4991 | * rps_may_expire_flow - check whether an RFS hardware filter may be removed |
4992 | * @dev: Device on which the filter was set |
4993 | * @rxq_index: RX queue index |
4994 | * @flow_id: Flow ID passed to ndo_rx_flow_steer() |
4995 | * @filter_id: Filter ID returned by ndo_rx_flow_steer() |
4996 | * |
4997 | * Drivers that implement ndo_rx_flow_steer() should periodically call |
4998 | * this function for each installed filter and remove the filters for |
4999 | * which it returns %true. |
5000 | */ |
5001 | bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, |
5002 | u32 flow_id, u16 filter_id) |
5003 | { |
5004 | struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; |
5005 | struct rps_dev_flow_table *flow_table; |
5006 | struct rps_dev_flow *rflow; |
5007 | bool expire = true; |
5008 | unsigned int cpu; |
5009 | |
5010 | rcu_read_lock(); |
5011 | flow_table = rcu_dereference(rxqueue->rps_flow_table); |
5012 | if (flow_table && flow_id < (1UL << flow_table->log)) { |
5013 | rflow = &flow_table->flows[flow_id]; |
5014 | cpu = READ_ONCE(rflow->cpu); |
5015 | if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && |
5016 | ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - |
5017 | READ_ONCE(rflow->last_qtail)) < |
5018 | (int)(10 << flow_table->log))) |
5019 | expire = false; |
5020 | } |
5021 | rcu_read_unlock(); |
5022 | return expire; |
5023 | } |
5024 | EXPORT_SYMBOL(rps_may_expire_flow); |
5025 | |
5026 | #endif /* CONFIG_RFS_ACCEL */ |
5027 | |
5028 | /* Called from hardirq (IPI) context */ |
5029 | static void rps_trigger_softirq(void *data) |
5030 | { |
5031 | struct softnet_data *sd = data; |
5032 | |
5033 | ____napi_schedule(sd, napi: &sd->backlog); |
5034 | /* Pairs with READ_ONCE() in softnet_seq_show() */ |
5035 | WRITE_ONCE(sd->received_rps, sd->received_rps + 1); |
5036 | } |
5037 | |
5038 | #endif /* CONFIG_RPS */ |
5039 | |
5040 | /* Called from hardirq (IPI) context */ |
5041 | static void trigger_rx_softirq(void *data) |
5042 | { |
5043 | struct softnet_data *sd = data; |
5044 | |
5045 | __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
5046 | smp_store_release(&sd->defer_ipi_scheduled, 0); |
5047 | } |
5048 | |
5049 | /* |
5050 | * After we queued a packet into sd->input_pkt_queue, |
5051 | * we need to make sure this queue is serviced soon. |
5052 | * |
5053 | * - If this is another cpu queue, link it to our rps_ipi_list, |
5054 | * and make sure we will process rps_ipi_list from net_rx_action(). |
5055 | * |
5056 | * - If this is our own queue, NAPI schedule our backlog. |
5057 | * Note that this also raises NET_RX_SOFTIRQ. |
5058 | */ |
5059 | static void napi_schedule_rps(struct softnet_data *sd) |
5060 | { |
5061 | struct softnet_data *mysd = this_cpu_ptr(&softnet_data); |
5062 | |
5063 | #ifdef CONFIG_RPS |
5064 | if (sd != mysd) { |
5065 | if (use_backlog_threads()) { |
5066 | __napi_schedule_irqoff(n: &sd->backlog); |
5067 | return; |
5068 | } |
5069 | |
5070 | sd->rps_ipi_next = mysd->rps_ipi_list; |
5071 | mysd->rps_ipi_list = sd; |
5072 | |
5073 | /* If not called from net_rx_action() or napi_threaded_poll() |
5074 | * we have to raise NET_RX_SOFTIRQ. |
5075 | */ |
5076 | if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) |
5077 | __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
5078 | return; |
5079 | } |
5080 | #endif /* CONFIG_RPS */ |
5081 | __napi_schedule_irqoff(n: &mysd->backlog); |
5082 | } |
5083 | |
5084 | void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) |
5085 | { |
5086 | unsigned long flags; |
5087 | |
5088 | if (use_backlog_threads()) { |
5089 | backlog_lock_irq_save(sd, flags: &flags); |
5090 | |
5091 | if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) |
5092 | __napi_schedule_irqoff(n: &sd->backlog); |
5093 | |
5094 | backlog_unlock_irq_restore(sd, flags: &flags); |
5095 | |
5096 | } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { |
5097 | smp_call_function_single_async(cpu, csd: &sd->defer_csd); |
5098 | } |
5099 | } |
5100 | |
5101 | #ifdef CONFIG_NET_FLOW_LIMIT |
5102 | int netdev_flow_limit_table_len __read_mostly = (1 << 12); |
5103 | #endif |
5104 | |
5105 | static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) |
5106 | { |
5107 | #ifdef CONFIG_NET_FLOW_LIMIT |
5108 | struct sd_flow_limit *fl; |
5109 | struct softnet_data *sd; |
5110 | unsigned int old_flow, new_flow; |
5111 | |
5112 | if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) |
5113 | return false; |
5114 | |
5115 | sd = this_cpu_ptr(&softnet_data); |
5116 | |
5117 | rcu_read_lock(); |
5118 | fl = rcu_dereference(sd->flow_limit); |
5119 | if (fl) { |
5120 | new_flow = hash_32(val: skb_get_hash(skb), bits: fl->log_buckets); |
5121 | old_flow = fl->history[fl->history_head]; |
5122 | fl->history[fl->history_head] = new_flow; |
5123 | |
5124 | fl->history_head++; |
5125 | fl->history_head &= FLOW_LIMIT_HISTORY - 1; |
5126 | |
5127 | if (likely(fl->buckets[old_flow])) |
5128 | fl->buckets[old_flow]--; |
5129 | |
5130 | if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { |
5131 | /* Pairs with READ_ONCE() in softnet_seq_show() */ |
5132 | WRITE_ONCE(fl->count, fl->count + 1); |
5133 | rcu_read_unlock(); |
5134 | return true; |
5135 | } |
5136 | } |
5137 | rcu_read_unlock(); |
5138 | #endif |
5139 | return false; |
5140 | } |
5141 | |
5142 | /* |
5143 | * enqueue_to_backlog is called to queue an skb to a per CPU backlog |
5144 | * queue (may be a remote CPU queue). |
5145 | */ |
5146 | static int enqueue_to_backlog(struct sk_buff *skb, int cpu, |
5147 | unsigned int *qtail) |
5148 | { |
5149 | enum skb_drop_reason reason; |
5150 | struct softnet_data *sd; |
5151 | unsigned long flags; |
5152 | unsigned int qlen; |
5153 | int max_backlog; |
5154 | u32 tail; |
5155 | |
5156 | reason = SKB_DROP_REASON_DEV_READY; |
5157 | if (!netif_running(dev: skb->dev)) |
5158 | goto bad_dev; |
5159 | |
5160 | reason = SKB_DROP_REASON_CPU_BACKLOG; |
5161 | sd = &per_cpu(softnet_data, cpu); |
5162 | |
5163 | qlen = skb_queue_len_lockless(list_: &sd->input_pkt_queue); |
5164 | max_backlog = READ_ONCE(net_hotdata.max_backlog); |
5165 | if (unlikely(qlen > max_backlog)) |
5166 | goto cpu_backlog_drop; |
5167 | backlog_lock_irq_save(sd, flags: &flags); |
5168 | qlen = skb_queue_len(list_: &sd->input_pkt_queue); |
5169 | if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { |
5170 | if (!qlen) { |
5171 | /* Schedule NAPI for backlog device. We can use |
5172 | * non atomic operation as we own the queue lock. |
5173 | */ |
5174 | if (!__test_and_set_bit(NAPI_STATE_SCHED, |
5175 | &sd->backlog.state)) |
5176 | napi_schedule_rps(sd); |
5177 | } |
5178 | __skb_queue_tail(list: &sd->input_pkt_queue, newsk: skb); |
5179 | tail = rps_input_queue_tail_incr(sd); |
5180 | backlog_unlock_irq_restore(sd, flags: &flags); |
5181 | |
5182 | /* save the tail outside of the critical section */ |
5183 | rps_input_queue_tail_save(dest: qtail, tail); |
5184 | return NET_RX_SUCCESS; |
5185 | } |
5186 | |
5187 | backlog_unlock_irq_restore(sd, flags: &flags); |
5188 | |
5189 | cpu_backlog_drop: |
5190 | atomic_inc(v: &sd->dropped); |
5191 | bad_dev: |
5192 | dev_core_stats_rx_dropped_inc(dev: skb->dev); |
5193 | kfree_skb_reason(skb, reason); |
5194 | return NET_RX_DROP; |
5195 | } |
5196 | |
5197 | static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) |
5198 | { |
5199 | struct net_device *dev = skb->dev; |
5200 | struct netdev_rx_queue *rxqueue; |
5201 | |
5202 | rxqueue = dev->_rx; |
5203 | |
5204 | if (skb_rx_queue_recorded(skb)) { |
5205 | u16 index = skb_get_rx_queue(skb); |
5206 | |
5207 | if (unlikely(index >= dev->real_num_rx_queues)) { |
5208 | WARN_ONCE(dev->real_num_rx_queues > 1, |
5209 | "%s received packet on queue %u, but number " |
5210 | "of RX queues is %u\n", |
5211 | dev->name, index, dev->real_num_rx_queues); |
5212 | |
5213 | return rxqueue; /* Return first rxqueue */ |
5214 | } |
5215 | rxqueue += index; |
5216 | } |
5217 | return rxqueue; |
5218 | } |
5219 | |
5220 | u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, |
5221 | const struct bpf_prog *xdp_prog) |
5222 | { |
5223 | void *orig_data, *orig_data_end, *hard_start; |
5224 | struct netdev_rx_queue *rxqueue; |
5225 | bool orig_bcast, orig_host; |
5226 | u32 mac_len, frame_sz; |
5227 | __be16 orig_eth_type; |
5228 | struct ethhdr *eth; |
5229 | u32 metalen, act; |
5230 | int off; |
5231 | |
5232 | /* The XDP program wants to see the packet starting at the MAC |
5233 | * header. |
5234 | */ |
5235 | mac_len = skb->data - skb_mac_header(skb); |
5236 | hard_start = skb->data - skb_headroom(skb); |
5237 | |
5238 | /* SKB "head" area always have tailroom for skb_shared_info */ |
5239 | frame_sz = (void *)skb_end_pointer(skb) - hard_start; |
5240 | frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
5241 | |
5242 | rxqueue = netif_get_rxqueue(skb); |
5243 | xdp_init_buff(xdp, frame_sz, rxq: &rxqueue->xdp_rxq); |
5244 | xdp_prepare_buff(xdp, hard_start, headroom: skb_headroom(skb) - mac_len, |
5245 | data_len: skb_headlen(skb) + mac_len, meta_valid: true); |
5246 | if (skb_is_nonlinear(skb)) { |
5247 | skb_shinfo(skb)->xdp_frags_size = skb->data_len; |
5248 | xdp_buff_set_frags_flag(xdp); |
5249 | } else { |
5250 | xdp_buff_clear_frags_flag(xdp); |
5251 | } |
5252 | |
5253 | orig_data_end = xdp->data_end; |
5254 | orig_data = xdp->data; |
5255 | eth = (struct ethhdr *)xdp->data; |
5256 | orig_host = ether_addr_equal_64bits(addr1: eth->h_dest, addr2: skb->dev->dev_addr); |
5257 | orig_bcast = is_multicast_ether_addr_64bits(addr: eth->h_dest); |
5258 | orig_eth_type = eth->h_proto; |
5259 | |
5260 | act = bpf_prog_run_xdp(prog: xdp_prog, xdp); |
5261 | |
5262 | /* check if bpf_xdp_adjust_head was used */ |
5263 | off = xdp->data - orig_data; |
5264 | if (off) { |
5265 | if (off > 0) |
5266 | __skb_pull(skb, len: off); |
5267 | else if (off < 0) |
5268 | __skb_push(skb, len: -off); |
5269 | |
5270 | skb->mac_header += off; |
5271 | skb_reset_network_header(skb); |
5272 | } |
5273 | |
5274 | /* check if bpf_xdp_adjust_tail was used */ |
5275 | off = xdp->data_end - orig_data_end; |
5276 | if (off != 0) { |
5277 | skb_set_tail_pointer(skb, offset: xdp->data_end - xdp->data); |
5278 | skb->len += off; /* positive on grow, negative on shrink */ |
5279 | } |
5280 | |
5281 | /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers |
5282 | * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. |
5283 | */ |
5284 | if (xdp_buff_has_frags(xdp)) |
5285 | skb->data_len = skb_shinfo(skb)->xdp_frags_size; |
5286 | else |
5287 | skb->data_len = 0; |
5288 | |
5289 | /* check if XDP changed eth hdr such SKB needs update */ |
5290 | eth = (struct ethhdr *)xdp->data; |
5291 | if ((orig_eth_type != eth->h_proto) || |
5292 | (orig_host != ether_addr_equal_64bits(addr1: eth->h_dest, |
5293 | addr2: skb->dev->dev_addr)) || |
5294 | (orig_bcast != is_multicast_ether_addr_64bits(addr: eth->h_dest))) { |
5295 | __skb_push(skb, ETH_HLEN); |
5296 | skb->pkt_type = PACKET_HOST; |
5297 | skb->protocol = eth_type_trans(skb, dev: skb->dev); |
5298 | } |
5299 | |
5300 | /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull |
5301 | * before calling us again on redirect path. We do not call do_redirect |
5302 | * as we leave that up to the caller. |
5303 | * |
5304 | * Caller is responsible for managing lifetime of skb (i.e. calling |
5305 | * kfree_skb in response to actions it cannot handle/XDP_DROP). |
5306 | */ |
5307 | switch (act) { |
5308 | case XDP_REDIRECT: |
5309 | case XDP_TX: |
5310 | __skb_push(skb, len: mac_len); |
5311 | break; |
5312 | case XDP_PASS: |
5313 | metalen = xdp->data - xdp->data_meta; |
5314 | if (metalen) |
5315 | skb_metadata_set(skb, meta_len: metalen); |
5316 | break; |
5317 | } |
5318 | |
5319 | return act; |
5320 | } |
5321 | |
5322 | static int |
5323 | netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) |
5324 | { |
5325 | struct sk_buff *skb = *pskb; |
5326 | int err, hroom, troom; |
5327 | |
5328 | local_lock_nested_bh(&system_page_pool.bh_lock); |
5329 | err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); |
5330 | local_unlock_nested_bh(&system_page_pool.bh_lock); |
5331 | if (!err) |
5332 | return 0; |
5333 | |
5334 | /* In case we have to go down the path and also linearize, |
5335 | * then lets do the pskb_expand_head() work just once here. |
5336 | */ |
5337 | hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); |
5338 | troom = skb->tail + skb->data_len - skb->end; |
5339 | err = pskb_expand_head(skb, |
5340 | nhead: hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, |
5341 | ntail: troom > 0 ? troom + 128 : 0, GFP_ATOMIC); |
5342 | if (err) |
5343 | return err; |
5344 | |
5345 | return skb_linearize(skb); |
5346 | } |
5347 | |
5348 | static u32 netif_receive_generic_xdp(struct sk_buff **pskb, |
5349 | struct xdp_buff *xdp, |
5350 | const struct bpf_prog *xdp_prog) |
5351 | { |
5352 | struct sk_buff *skb = *pskb; |
5353 | u32 mac_len, act = XDP_DROP; |
5354 | |
5355 | /* Reinjected packets coming from act_mirred or similar should |
5356 | * not get XDP generic processing. |
5357 | */ |
5358 | if (skb_is_redirected(skb)) |
5359 | return XDP_PASS; |
5360 | |
5361 | /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM |
5362 | * bytes. This is the guarantee that also native XDP provides, |
5363 | * thus we need to do it here as well. |
5364 | */ |
5365 | mac_len = skb->data - skb_mac_header(skb); |
5366 | __skb_push(skb, len: mac_len); |
5367 | |
5368 | if (skb_cloned(skb) || skb_is_nonlinear(skb) || |
5369 | skb_headroom(skb) < XDP_PACKET_HEADROOM) { |
5370 | if (netif_skb_check_for_xdp(pskb, prog: xdp_prog)) |
5371 | goto do_drop; |
5372 | } |
5373 | |
5374 | __skb_pull(skb: *pskb, len: mac_len); |
5375 | |
5376 | act = bpf_prog_run_generic_xdp(skb: *pskb, xdp, xdp_prog); |
5377 | switch (act) { |
5378 | case XDP_REDIRECT: |
5379 | case XDP_TX: |
5380 | case XDP_PASS: |
5381 | break; |
5382 | default: |
5383 | bpf_warn_invalid_xdp_action(dev: (*pskb)->dev, prog: xdp_prog, act); |
5384 | fallthrough; |
5385 | case XDP_ABORTED: |
5386 | trace_xdp_exception(dev: (*pskb)->dev, xdp: xdp_prog, act); |
5387 | fallthrough; |
5388 | case XDP_DROP: |
5389 | do_drop: |
5390 | kfree_skb(skb: *pskb); |
5391 | break; |
5392 | } |
5393 | |
5394 | return act; |
5395 | } |
5396 | |
5397 | /* When doing generic XDP we have to bypass the qdisc layer and the |
5398 | * network taps in order to match in-driver-XDP behavior. This also means |
5399 | * that XDP packets are able to starve other packets going through a qdisc, |
5400 | * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX |
5401 | * queues, so they do not have this starvation issue. |
5402 | */ |
5403 | void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) |
5404 | { |
5405 | struct net_device *dev = skb->dev; |
5406 | struct netdev_queue *txq; |
5407 | bool free_skb = true; |
5408 | int cpu, rc; |
5409 | |
5410 | txq = netdev_core_pick_tx(dev, skb, NULL); |
5411 | cpu = smp_processor_id(); |
5412 | HARD_TX_LOCK(dev, txq, cpu); |
5413 | if (!netif_xmit_frozen_or_drv_stopped(dev_queue: txq)) { |
5414 | rc = netdev_start_xmit(skb, dev, txq, more: 0); |
5415 | if (dev_xmit_complete(rc)) |
5416 | free_skb = false; |
5417 | } |
5418 | HARD_TX_UNLOCK(dev, txq); |
5419 | if (free_skb) { |
5420 | trace_xdp_exception(dev, xdp: xdp_prog, act: XDP_TX); |
5421 | dev_core_stats_tx_dropped_inc(dev); |
5422 | kfree_skb(skb); |
5423 | } |
5424 | } |
5425 | |
5426 | static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); |
5427 | |
5428 | int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) |
5429 | { |
5430 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
5431 | |
5432 | if (xdp_prog) { |
5433 | struct xdp_buff xdp; |
5434 | u32 act; |
5435 | int err; |
5436 | |
5437 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
5438 | act = netif_receive_generic_xdp(pskb, xdp: &xdp, xdp_prog); |
5439 | if (act != XDP_PASS) { |
5440 | switch (act) { |
5441 | case XDP_REDIRECT: |
5442 | err = xdp_do_generic_redirect(dev: (*pskb)->dev, skb: *pskb, |
5443 | xdp: &xdp, prog: xdp_prog); |
5444 | if (err) |
5445 | goto out_redir; |
5446 | break; |
5447 | case XDP_TX: |
5448 | generic_xdp_tx(skb: *pskb, xdp_prog); |
5449 | break; |
5450 | } |
5451 | bpf_net_ctx_clear(bpf_net_ctx); |
5452 | return XDP_DROP; |
5453 | } |
5454 | bpf_net_ctx_clear(bpf_net_ctx); |
5455 | } |
5456 | return XDP_PASS; |
5457 | out_redir: |
5458 | bpf_net_ctx_clear(bpf_net_ctx); |
5459 | kfree_skb_reason(skb: *pskb, reason: SKB_DROP_REASON_XDP); |
5460 | return XDP_DROP; |
5461 | } |
5462 | EXPORT_SYMBOL_GPL(do_xdp_generic); |
5463 | |
5464 | static int netif_rx_internal(struct sk_buff *skb) |
5465 | { |
5466 | int ret; |
5467 | |
5468 | net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); |
5469 | |
5470 | trace_netif_rx(skb); |
5471 | |
5472 | #ifdef CONFIG_RPS |
5473 | if (static_branch_unlikely(&rps_needed)) { |
5474 | struct rps_dev_flow voidflow, *rflow = &voidflow; |
5475 | int cpu; |
5476 | |
5477 | rcu_read_lock(); |
5478 | |
5479 | cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow); |
5480 | if (cpu < 0) |
5481 | cpu = smp_processor_id(); |
5482 | |
5483 | ret = enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail); |
5484 | |
5485 | rcu_read_unlock(); |
5486 | } else |
5487 | #endif |
5488 | { |
5489 | unsigned int qtail; |
5490 | |
5491 | ret = enqueue_to_backlog(skb, smp_processor_id(), qtail: &qtail); |
5492 | } |
5493 | return ret; |
5494 | } |
5495 | |
5496 | /** |
5497 | * __netif_rx - Slightly optimized version of netif_rx |
5498 | * @skb: buffer to post |
5499 | * |
5500 | * This behaves as netif_rx except that it does not disable bottom halves. |
5501 | * As a result this function may only be invoked from the interrupt context |
5502 | * (either hard or soft interrupt). |
5503 | */ |
5504 | int __netif_rx(struct sk_buff *skb) |
5505 | { |
5506 | int ret; |
5507 | |
5508 | lockdep_assert_once(hardirq_count() | softirq_count()); |
5509 | |
5510 | trace_netif_rx_entry(skb); |
5511 | ret = netif_rx_internal(skb); |
5512 | trace_netif_rx_exit(ret); |
5513 | return ret; |
5514 | } |
5515 | EXPORT_SYMBOL(__netif_rx); |
5516 | |
5517 | /** |
5518 | * netif_rx - post buffer to the network code |
5519 | * @skb: buffer to post |
5520 | * |
5521 | * This function receives a packet from a device driver and queues it for |
5522 | * the upper (protocol) levels to process via the backlog NAPI device. It |
5523 | * always succeeds. The buffer may be dropped during processing for |
5524 | * congestion control or by the protocol layers. |
5525 | * The network buffer is passed via the backlog NAPI device. Modern NIC |
5526 | * driver should use NAPI and GRO. |
5527 | * This function can used from interrupt and from process context. The |
5528 | * caller from process context must not disable interrupts before invoking |
5529 | * this function. |
5530 | * |
5531 | * return values: |
5532 | * NET_RX_SUCCESS (no congestion) |
5533 | * NET_RX_DROP (packet was dropped) |
5534 | * |
5535 | */ |
5536 | int netif_rx(struct sk_buff *skb) |
5537 | { |
5538 | bool need_bh_off = !(hardirq_count() | softirq_count()); |
5539 | int ret; |
5540 | |
5541 | if (need_bh_off) |
5542 | local_bh_disable(); |
5543 | trace_netif_rx_entry(skb); |
5544 | ret = netif_rx_internal(skb); |
5545 | trace_netif_rx_exit(ret); |
5546 | if (need_bh_off) |
5547 | local_bh_enable(); |
5548 | return ret; |
5549 | } |
5550 | EXPORT_SYMBOL(netif_rx); |
5551 | |
5552 | static __latent_entropy void net_tx_action(void) |
5553 | { |
5554 | struct softnet_data *sd = this_cpu_ptr(&softnet_data); |
5555 | |
5556 | if (sd->completion_queue) { |
5557 | struct sk_buff *clist; |
5558 | |
5559 | local_irq_disable(); |
5560 | clist = sd->completion_queue; |
5561 | sd->completion_queue = NULL; |
5562 | local_irq_enable(); |
5563 | |
5564 | while (clist) { |
5565 | struct sk_buff *skb = clist; |
5566 | |
5567 | clist = clist->next; |
5568 | |
5569 | WARN_ON(refcount_read(&skb->users)); |
5570 | if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) |
5571 | trace_consume_skb(skb, location: net_tx_action); |
5572 | else |
5573 | trace_kfree_skb(skb, location: net_tx_action, |
5574 | reason: get_kfree_skb_cb(skb)->reason, NULL); |
5575 | |
5576 | if (skb->fclone != SKB_FCLONE_UNAVAILABLE) |
5577 | __kfree_skb(skb); |
5578 | else |
5579 | __napi_kfree_skb(skb, |
5580 | reason: get_kfree_skb_cb(skb)->reason); |
5581 | } |
5582 | } |
5583 | |
5584 | if (sd->output_queue) { |
5585 | struct Qdisc *head; |
5586 | |
5587 | local_irq_disable(); |
5588 | head = sd->output_queue; |
5589 | sd->output_queue = NULL; |
5590 | sd->output_queue_tailp = &sd->output_queue; |
5591 | local_irq_enable(); |
5592 | |
5593 | rcu_read_lock(); |
5594 | |
5595 | while (head) { |
5596 | struct Qdisc *q = head; |
5597 | spinlock_t *root_lock = NULL; |
5598 | |
5599 | head = head->next_sched; |
5600 | |
5601 | /* We need to make sure head->next_sched is read |
5602 | * before clearing __QDISC_STATE_SCHED |
5603 | */ |
5604 | smp_mb__before_atomic(); |
5605 | |
5606 | if (!(q->flags & TCQ_F_NOLOCK)) { |
5607 | root_lock = qdisc_lock(qdisc: q); |
5608 | spin_lock(lock: root_lock); |
5609 | } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, |
5610 | &q->state))) { |
5611 | /* There is a synchronize_net() between |
5612 | * STATE_DEACTIVATED flag being set and |
5613 | * qdisc_reset()/some_qdisc_is_busy() in |
5614 | * dev_deactivate(), so we can safely bail out |
5615 | * early here to avoid data race between |
5616 | * qdisc_deactivate() and some_qdisc_is_busy() |
5617 | * for lockless qdisc. |
5618 | */ |
5619 | clear_bit(nr: __QDISC_STATE_SCHED, addr: &q->state); |
5620 | continue; |
5621 | } |
5622 | |
5623 | clear_bit(nr: __QDISC_STATE_SCHED, addr: &q->state); |
5624 | qdisc_run(q); |
5625 | if (root_lock) |
5626 | spin_unlock(lock: root_lock); |
5627 | } |
5628 | |
5629 | rcu_read_unlock(); |
5630 | } |
5631 | |
5632 | xfrm_dev_backlog(sd); |
5633 | } |
5634 | |
5635 | #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) |
5636 | /* This hook is defined here for ATM LANE */ |
5637 | int (*br_fdb_test_addr_hook)(struct net_device *dev, |
5638 | unsigned char *addr) __read_mostly; |
5639 | EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); |
5640 | #endif |
5641 | |
5642 | /** |
5643 | * netdev_is_rx_handler_busy - check if receive handler is registered |
5644 | * @dev: device to check |
5645 | * |
5646 | * Check if a receive handler is already registered for a given device. |
5647 | * Return true if there one. |
5648 | * |
5649 | * The caller must hold the rtnl_mutex. |
5650 | */ |
5651 | bool netdev_is_rx_handler_busy(struct net_device *dev) |
5652 | { |
5653 | ASSERT_RTNL(); |
5654 | return dev && rtnl_dereference(dev->rx_handler); |
5655 | } |
5656 | EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); |
5657 | |
5658 | /** |
5659 | * netdev_rx_handler_register - register receive handler |
5660 | * @dev: device to register a handler for |
5661 | * @rx_handler: receive handler to register |
5662 | * @rx_handler_data: data pointer that is used by rx handler |
5663 | * |
5664 | * Register a receive handler for a device. This handler will then be |
5665 | * called from __netif_receive_skb. A negative errno code is returned |
5666 | * on a failure. |
5667 | * |
5668 | * The caller must hold the rtnl_mutex. |
5669 | * |
5670 | * For a general description of rx_handler, see enum rx_handler_result. |
5671 | */ |
5672 | int netdev_rx_handler_register(struct net_device *dev, |
5673 | rx_handler_func_t *rx_handler, |
5674 | void *rx_handler_data) |
5675 | { |
5676 | if (netdev_is_rx_handler_busy(dev)) |
5677 | return -EBUSY; |
5678 | |
5679 | if (dev->priv_flags & IFF_NO_RX_HANDLER) |
5680 | return -EINVAL; |
5681 | |
5682 | /* Note: rx_handler_data must be set before rx_handler */ |
5683 | rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); |
5684 | rcu_assign_pointer(dev->rx_handler, rx_handler); |
5685 | |
5686 | return 0; |
5687 | } |
5688 | EXPORT_SYMBOL_GPL(netdev_rx_handler_register); |
5689 | |
5690 | /** |
5691 | * netdev_rx_handler_unregister - unregister receive handler |
5692 | * @dev: device to unregister a handler from |
5693 | * |
5694 | * Unregister a receive handler from a device. |
5695 | * |
5696 | * The caller must hold the rtnl_mutex. |
5697 | */ |
5698 | void netdev_rx_handler_unregister(struct net_device *dev) |
5699 | { |
5700 | |
5701 | ASSERT_RTNL(); |
5702 | RCU_INIT_POINTER(dev->rx_handler, NULL); |
5703 | /* a reader seeing a non NULL rx_handler in a rcu_read_lock() |
5704 | * section has a guarantee to see a non NULL rx_handler_data |
5705 | * as well. |
5706 | */ |
5707 | synchronize_net(); |
5708 | RCU_INIT_POINTER(dev->rx_handler_data, NULL); |
5709 | } |
5710 | EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); |
5711 | |
5712 | /* |
5713 | * Limit the use of PFMEMALLOC reserves to those protocols that implement |
5714 | * the special handling of PFMEMALLOC skbs. |
5715 | */ |
5716 | static bool skb_pfmemalloc_protocol(struct sk_buff *skb) |
5717 | { |
5718 | switch (skb->protocol) { |
5719 | case htons(ETH_P_ARP): |
5720 | case htons(ETH_P_IP): |
5721 | case htons(ETH_P_IPV6): |
5722 | case htons(ETH_P_8021Q): |
5723 | case htons(ETH_P_8021AD): |
5724 | return true; |
5725 | default: |
5726 | return false; |
5727 | } |
5728 | } |
5729 | |
5730 | static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, |
5731 | int *ret, struct net_device *orig_dev) |
5732 | { |
5733 | if (nf_hook_ingress_active(skb)) { |
5734 | int ingress_retval; |
5735 | |
5736 | if (*pt_prev) { |
5737 | *ret = deliver_skb(skb, pt_prev: *pt_prev, orig_dev); |
5738 | *pt_prev = NULL; |
5739 | } |
5740 | |
5741 | rcu_read_lock(); |
5742 | ingress_retval = nf_hook_ingress(skb); |
5743 | rcu_read_unlock(); |
5744 | return ingress_retval; |
5745 | } |
5746 | return 0; |
5747 | } |
5748 | |
5749 | static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, |
5750 | struct packet_type **ppt_prev) |
5751 | { |
5752 | struct packet_type *ptype, *pt_prev; |
5753 | rx_handler_func_t *rx_handler; |
5754 | struct sk_buff *skb = *pskb; |
5755 | struct net_device *orig_dev; |
5756 | bool deliver_exact = false; |
5757 | int ret = NET_RX_DROP; |
5758 | __be16 type; |
5759 | |
5760 | net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); |
5761 | |
5762 | trace_netif_receive_skb(skb); |
5763 | |
5764 | orig_dev = skb->dev; |
5765 | |
5766 | skb_reset_network_header(skb); |
5767 | #if !defined(CONFIG_DEBUG_NET) |
5768 | /* We plan to no longer reset the transport header here. |
5769 | * Give some time to fuzzers and dev build to catch bugs |
5770 | * in network stacks. |
5771 | */ |
5772 | if (!skb_transport_header_was_set(skb)) |
5773 | skb_reset_transport_header(skb); |
5774 | #endif |
5775 | skb_reset_mac_len(skb); |
5776 | |
5777 | pt_prev = NULL; |
5778 | |
5779 | another_round: |
5780 | skb->skb_iif = skb->dev->ifindex; |
5781 | |
5782 | __this_cpu_inc(softnet_data.processed); |
5783 | |
5784 | if (static_branch_unlikely(&generic_xdp_needed_key)) { |
5785 | int ret2; |
5786 | |
5787 | migrate_disable(); |
5788 | ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), |
5789 | &skb); |
5790 | migrate_enable(); |
5791 | |
5792 | if (ret2 != XDP_PASS) { |
5793 | ret = NET_RX_DROP; |
5794 | goto out; |
5795 | } |
5796 | } |
5797 | |
5798 | if (eth_type_vlan(ethertype: skb->protocol)) { |
5799 | skb = skb_vlan_untag(skb); |
5800 | if (unlikely(!skb)) |
5801 | goto out; |
5802 | } |
5803 | |
5804 | if (skb_skip_tc_classify(skb)) |
5805 | goto skip_classify; |
5806 | |
5807 | if (pfmemalloc) |
5808 | goto skip_taps; |
5809 | |
5810 | list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, |
5811 | list) { |
5812 | if (pt_prev) |
5813 | ret = deliver_skb(skb, pt_prev, orig_dev); |
5814 | pt_prev = ptype; |
5815 | } |
5816 | |
5817 | list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { |
5818 | if (pt_prev) |
5819 | ret = deliver_skb(skb, pt_prev, orig_dev); |
5820 | pt_prev = ptype; |
5821 | } |
5822 | |
5823 | skip_taps: |
5824 | #ifdef CONFIG_NET_INGRESS |
5825 | if (static_branch_unlikely(&ingress_needed_key)) { |
5826 | bool another = false; |
5827 | |
5828 | nf_skip_egress(skb, skip: true); |
5829 | skb = sch_handle_ingress(skb, pt_prev: &pt_prev, ret: &ret, orig_dev, |
5830 | another: &another); |
5831 | if (another) |
5832 | goto another_round; |
5833 | if (!skb) |
5834 | goto out; |
5835 | |
5836 | nf_skip_egress(skb, skip: false); |
5837 | if (nf_ingress(skb, pt_prev: &pt_prev, ret: &ret, orig_dev) < 0) |
5838 | goto out; |
5839 | } |
5840 | #endif |
5841 | skb_reset_redirect(skb); |
5842 | skip_classify: |
5843 | if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) |
5844 | goto drop; |
5845 | |
5846 | if (skb_vlan_tag_present(skb)) { |
5847 | if (pt_prev) { |
5848 | ret = deliver_skb(skb, pt_prev, orig_dev); |
5849 | pt_prev = NULL; |
5850 | } |
5851 | if (vlan_do_receive(skb: &skb)) |
5852 | goto another_round; |
5853 | else if (unlikely(!skb)) |
5854 | goto out; |
5855 | } |
5856 | |
5857 | rx_handler = rcu_dereference(skb->dev->rx_handler); |
5858 | if (rx_handler) { |
5859 | if (pt_prev) { |
5860 | ret = deliver_skb(skb, pt_prev, orig_dev); |
5861 | pt_prev = NULL; |
5862 | } |
5863 | switch (rx_handler(&skb)) { |
5864 | case RX_HANDLER_CONSUMED: |
5865 | ret = NET_RX_SUCCESS; |
5866 | goto out; |
5867 | case RX_HANDLER_ANOTHER: |
5868 | goto another_round; |
5869 | case RX_HANDLER_EXACT: |
5870 | deliver_exact = true; |
5871 | break; |
5872 | case RX_HANDLER_PASS: |
5873 | break; |
5874 | default: |
5875 | BUG(); |
5876 | } |
5877 | } |
5878 | |
5879 | if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(dev: skb->dev)) { |
5880 | check_vlan_id: |
5881 | if (skb_vlan_tag_get_id(skb)) { |
5882 | /* Vlan id is non 0 and vlan_do_receive() above couldn't |
5883 | * find vlan device. |
5884 | */ |
5885 | skb->pkt_type = PACKET_OTHERHOST; |
5886 | } else if (eth_type_vlan(ethertype: skb->protocol)) { |
5887 | /* Outer header is 802.1P with vlan 0, inner header is |
5888 | * 802.1Q or 802.1AD and vlan_do_receive() above could |
5889 | * not find vlan dev for vlan id 0. |
5890 | */ |
5891 | __vlan_hwaccel_clear_tag(skb); |
5892 | skb = skb_vlan_untag(skb); |
5893 | if (unlikely(!skb)) |
5894 | goto out; |
5895 | if (vlan_do_receive(skb: &skb)) |
5896 | /* After stripping off 802.1P header with vlan 0 |
5897 | * vlan dev is found for inner header. |
5898 | */ |
5899 | goto another_round; |
5900 | else if (unlikely(!skb)) |
5901 | goto out; |
5902 | else |
5903 | /* We have stripped outer 802.1P vlan 0 header. |
5904 | * But could not find vlan dev. |
5905 | * check again for vlan id to set OTHERHOST. |
5906 | */ |
5907 | goto check_vlan_id; |
5908 | } |
5909 | /* Note: we might in the future use prio bits |
5910 | * and set skb->priority like in vlan_do_receive() |
5911 | * For the time being, just ignore Priority Code Point |
5912 | */ |
5913 | __vlan_hwaccel_clear_tag(skb); |
5914 | } |
5915 | |
5916 | type = skb->protocol; |
5917 | |
5918 | /* deliver only exact match when indicated */ |
5919 | if (likely(!deliver_exact)) { |
5920 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
5921 | ptype_list: &ptype_base[ntohs(type) & |
5922 | PTYPE_HASH_MASK]); |
5923 | |
5924 | /* orig_dev and skb->dev could belong to different netns; |
5925 | * Even in such case we need to traverse only the list |
5926 | * coming from skb->dev, as the ptype owner (packet socket) |
5927 | * will use dev_net(skb->dev) to do namespace filtering. |
5928 | */ |
5929 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
5930 | ptype_list: &dev_net_rcu(dev: skb->dev)->ptype_specific); |
5931 | } |
5932 | |
5933 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
5934 | ptype_list: &orig_dev->ptype_specific); |
5935 | |
5936 | if (unlikely(skb->dev != orig_dev)) { |
5937 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
5938 | ptype_list: &skb->dev->ptype_specific); |
5939 | } |
5940 | |
5941 | if (pt_prev) { |
5942 | if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) |
5943 | goto drop; |
5944 | *ppt_prev = pt_prev; |
5945 | } else { |
5946 | drop: |
5947 | if (!deliver_exact) |
5948 | dev_core_stats_rx_dropped_inc(dev: skb->dev); |
5949 | else |
5950 | dev_core_stats_rx_nohandler_inc(dev: skb->dev); |
5951 | kfree_skb_reason(skb, reason: SKB_DROP_REASON_UNHANDLED_PROTO); |
5952 | /* Jamal, now you will not able to escape explaining |
5953 | * me how you were going to use this. :-) |
5954 | */ |
5955 | ret = NET_RX_DROP; |
5956 | } |
5957 | |
5958 | out: |
5959 | /* The invariant here is that if *ppt_prev is not NULL |
5960 | * then skb should also be non-NULL. |
5961 | * |
5962 | * Apparently *ppt_prev assignment above holds this invariant due to |
5963 | * skb dereferencing near it. |
5964 | */ |
5965 | *pskb = skb; |
5966 | return ret; |
5967 | } |
5968 | |
5969 | static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) |
5970 | { |
5971 | struct net_device *orig_dev = skb->dev; |
5972 | struct packet_type *pt_prev = NULL; |
5973 | int ret; |
5974 | |
5975 | ret = __netif_receive_skb_core(pskb: &skb, pfmemalloc, ppt_prev: &pt_prev); |
5976 | if (pt_prev) |
5977 | ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, |
5978 | skb->dev, pt_prev, orig_dev); |
5979 | return ret; |
5980 | } |
5981 | |
5982 | /** |
5983 | * netif_receive_skb_core - special purpose version of netif_receive_skb |
5984 | * @skb: buffer to process |
5985 | * |
5986 | * More direct receive version of netif_receive_skb(). It should |
5987 | * only be used by callers that have a need to skip RPS and Generic XDP. |
5988 | * Caller must also take care of handling if ``(page_is_)pfmemalloc``. |
5989 | * |
5990 | * This function may only be called from softirq context and interrupts |
5991 | * should be enabled. |
5992 | * |
5993 | * Return values (usually ignored): |
5994 | * NET_RX_SUCCESS: no congestion |
5995 | * NET_RX_DROP: packet was dropped |
5996 | */ |
5997 | int netif_receive_skb_core(struct sk_buff *skb) |
5998 | { |
5999 | int ret; |
6000 | |
6001 | rcu_read_lock(); |
6002 | ret = __netif_receive_skb_one_core(skb, pfmemalloc: false); |
6003 | rcu_read_unlock(); |
6004 | |
6005 | return ret; |
6006 | } |
6007 | EXPORT_SYMBOL(netif_receive_skb_core); |
6008 | |
6009 | static inline void __netif_receive_skb_list_ptype(struct list_head *head, |
6010 | struct packet_type *pt_prev, |
6011 | struct net_device *orig_dev) |
6012 | { |
6013 | struct sk_buff *skb, *next; |
6014 | |
6015 | if (!pt_prev) |
6016 | return; |
6017 | if (list_empty(head)) |
6018 | return; |
6019 | if (pt_prev->list_func != NULL) |
6020 | INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, |
6021 | ip_list_rcv, head, pt_prev, orig_dev); |
6022 | else |
6023 | list_for_each_entry_safe(skb, next, head, list) { |
6024 | skb_list_del_init(skb); |
6025 | pt_prev->func(skb, skb->dev, pt_prev, orig_dev); |
6026 | } |
6027 | } |
6028 | |
6029 | static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) |
6030 | { |
6031 | /* Fast-path assumptions: |
6032 | * - There is no RX handler. |
6033 | * - Only one packet_type matches. |
6034 | * If either of these fails, we will end up doing some per-packet |
6035 | * processing in-line, then handling the 'last ptype' for the whole |
6036 | * sublist. This can't cause out-of-order delivery to any single ptype, |
6037 | * because the 'last ptype' must be constant across the sublist, and all |
6038 | * other ptypes are handled per-packet. |
6039 | */ |
6040 | /* Current (common) ptype of sublist */ |
6041 | struct packet_type *pt_curr = NULL; |
6042 | /* Current (common) orig_dev of sublist */ |
6043 | struct net_device *od_curr = NULL; |
6044 | struct sk_buff *skb, *next; |
6045 | LIST_HEAD(sublist); |
6046 | |
6047 | list_for_each_entry_safe(skb, next, head, list) { |
6048 | struct net_device *orig_dev = skb->dev; |
6049 | struct packet_type *pt_prev = NULL; |
6050 | |
6051 | skb_list_del_init(skb); |
6052 | __netif_receive_skb_core(pskb: &skb, pfmemalloc, ppt_prev: &pt_prev); |
6053 | if (!pt_prev) |
6054 | continue; |
6055 | if (pt_curr != pt_prev || od_curr != orig_dev) { |
6056 | /* dispatch old sublist */ |
6057 | __netif_receive_skb_list_ptype(head: &sublist, pt_prev: pt_curr, orig_dev: od_curr); |
6058 | /* start new sublist */ |
6059 | INIT_LIST_HEAD(list: &sublist); |
6060 | pt_curr = pt_prev; |
6061 | od_curr = orig_dev; |
6062 | } |
6063 | list_add_tail(new: &skb->list, head: &sublist); |
6064 | } |
6065 | |
6066 | /* dispatch final sublist */ |
6067 | __netif_receive_skb_list_ptype(head: &sublist, pt_prev: pt_curr, orig_dev: od_curr); |
6068 | } |
6069 | |
6070 | static int __netif_receive_skb(struct sk_buff *skb) |
6071 | { |
6072 | int ret; |
6073 | |
6074 | if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { |
6075 | unsigned int noreclaim_flag; |
6076 | |
6077 | /* |
6078 | * PFMEMALLOC skbs are special, they should |
6079 | * - be delivered to SOCK_MEMALLOC sockets only |
6080 | * - stay away from userspace |
6081 | * - have bounded memory usage |
6082 | * |
6083 | * Use PF_MEMALLOC as this saves us from propagating the allocation |
6084 | * context down to all allocation sites. |
6085 | */ |
6086 | noreclaim_flag = memalloc_noreclaim_save(); |
6087 | ret = __netif_receive_skb_one_core(skb, pfmemalloc: true); |
6088 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
6089 | } else |
6090 | ret = __netif_receive_skb_one_core(skb, pfmemalloc: false); |
6091 | |
6092 | return ret; |
6093 | } |
6094 | |
6095 | static void __netif_receive_skb_list(struct list_head *head) |
6096 | { |
6097 | unsigned long noreclaim_flag = 0; |
6098 | struct sk_buff *skb, *next; |
6099 | bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ |
6100 | |
6101 | list_for_each_entry_safe(skb, next, head, list) { |
6102 | if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { |
6103 | struct list_head sublist; |
6104 | |
6105 | /* Handle the previous sublist */ |
6106 | list_cut_before(list: &sublist, head, entry: &skb->list); |
6107 | if (!list_empty(head: &sublist)) |
6108 | __netif_receive_skb_list_core(head: &sublist, pfmemalloc); |
6109 | pfmemalloc = !pfmemalloc; |
6110 | /* See comments in __netif_receive_skb */ |
6111 | if (pfmemalloc) |
6112 | noreclaim_flag = memalloc_noreclaim_save(); |
6113 | else |
6114 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
6115 | } |
6116 | } |
6117 | /* Handle the remaining sublist */ |
6118 | if (!list_empty(head)) |
6119 | __netif_receive_skb_list_core(head, pfmemalloc); |
6120 | /* Restore pflags */ |
6121 | if (pfmemalloc) |
6122 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
6123 | } |
6124 | |
6125 | static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) |
6126 | { |
6127 | struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); |
6128 | struct bpf_prog *new = xdp->prog; |
6129 | int ret = 0; |
6130 | |
6131 | switch (xdp->command) { |
6132 | case XDP_SETUP_PROG: |
6133 | rcu_assign_pointer(dev->xdp_prog, new); |
6134 | if (old) |
6135 | bpf_prog_put(prog: old); |
6136 | |
6137 | if (old && !new) { |
6138 | static_branch_dec(&generic_xdp_needed_key); |
6139 | } else if (new && !old) { |
6140 | static_branch_inc(&generic_xdp_needed_key); |
6141 | netif_disable_lro(dev); |
6142 | dev_disable_gro_hw(dev); |
6143 | } |
6144 | break; |
6145 | |
6146 | default: |
6147 | ret = -EINVAL; |
6148 | break; |
6149 | } |
6150 | |
6151 | return ret; |
6152 | } |
6153 | |
6154 | static int netif_receive_skb_internal(struct sk_buff *skb) |
6155 | { |
6156 | int ret; |
6157 | |
6158 | net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); |
6159 | |
6160 | if (skb_defer_rx_timestamp(skb)) |
6161 | return NET_RX_SUCCESS; |
6162 | |
6163 | rcu_read_lock(); |
6164 | #ifdef CONFIG_RPS |
6165 | if (static_branch_unlikely(&rps_needed)) { |
6166 | struct rps_dev_flow voidflow, *rflow = &voidflow; |
6167 | int cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow); |
6168 | |
6169 | if (cpu >= 0) { |
6170 | ret = enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail); |
6171 | rcu_read_unlock(); |
6172 | return ret; |
6173 | } |
6174 | } |
6175 | #endif |
6176 | ret = __netif_receive_skb(skb); |
6177 | rcu_read_unlock(); |
6178 | return ret; |
6179 | } |
6180 | |
6181 | void netif_receive_skb_list_internal(struct list_head *head) |
6182 | { |
6183 | struct sk_buff *skb, *next; |
6184 | LIST_HEAD(sublist); |
6185 | |
6186 | list_for_each_entry_safe(skb, next, head, list) { |
6187 | net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), |
6188 | skb); |
6189 | skb_list_del_init(skb); |
6190 | if (!skb_defer_rx_timestamp(skb)) |
6191 | list_add_tail(new: &skb->list, head: &sublist); |
6192 | } |
6193 | list_splice_init(list: &sublist, head); |
6194 | |
6195 | rcu_read_lock(); |
6196 | #ifdef CONFIG_RPS |
6197 | if (static_branch_unlikely(&rps_needed)) { |
6198 | list_for_each_entry_safe(skb, next, head, list) { |
6199 | struct rps_dev_flow voidflow, *rflow = &voidflow; |
6200 | int cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow); |
6201 | |
6202 | if (cpu >= 0) { |
6203 | /* Will be handled, remove from list */ |
6204 | skb_list_del_init(skb); |
6205 | enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail); |
6206 | } |
6207 | } |
6208 | } |
6209 | #endif |
6210 | __netif_receive_skb_list(head); |
6211 | rcu_read_unlock(); |
6212 | } |
6213 | |
6214 | /** |
6215 | * netif_receive_skb - process receive buffer from network |
6216 | * @skb: buffer to process |
6217 | * |
6218 | * netif_receive_skb() is the main receive data processing function. |
6219 | * It always succeeds. The buffer may be dropped during processing |
6220 | * for congestion control or by the protocol layers. |
6221 | * |
6222 | * This function may only be called from softirq context and interrupts |
6223 | * should be enabled. |
6224 | * |
6225 | * Return values (usually ignored): |
6226 | * NET_RX_SUCCESS: no congestion |
6227 | * NET_RX_DROP: packet was dropped |
6228 | */ |
6229 | int netif_receive_skb(struct sk_buff *skb) |
6230 | { |
6231 | int ret; |
6232 | |
6233 | trace_netif_receive_skb_entry(skb); |
6234 | |
6235 | ret = netif_receive_skb_internal(skb); |
6236 | trace_netif_receive_skb_exit(ret); |
6237 | |
6238 | return ret; |
6239 | } |
6240 | EXPORT_SYMBOL(netif_receive_skb); |
6241 | |
6242 | /** |
6243 | * netif_receive_skb_list - process many receive buffers from network |
6244 | * @head: list of skbs to process. |
6245 | * |
6246 | * Since return value of netif_receive_skb() is normally ignored, and |
6247 | * wouldn't be meaningful for a list, this function returns void. |
6248 | * |
6249 | * This function may only be called from softirq context and interrupts |
6250 | * should be enabled. |
6251 | */ |
6252 | void netif_receive_skb_list(struct list_head *head) |
6253 | { |
6254 | struct sk_buff *skb; |
6255 | |
6256 | if (list_empty(head)) |
6257 | return; |
6258 | if (trace_netif_receive_skb_list_entry_enabled()) { |
6259 | list_for_each_entry(skb, head, list) |
6260 | trace_netif_receive_skb_list_entry(skb); |
6261 | } |
6262 | netif_receive_skb_list_internal(head); |
6263 | trace_netif_receive_skb_list_exit(ret: 0); |
6264 | } |
6265 | EXPORT_SYMBOL(netif_receive_skb_list); |
6266 | |
6267 | /* Network device is going away, flush any packets still pending */ |
6268 | static void flush_backlog(struct work_struct *work) |
6269 | { |
6270 | struct sk_buff *skb, *tmp; |
6271 | struct sk_buff_head list; |
6272 | struct softnet_data *sd; |
6273 | |
6274 | __skb_queue_head_init(list: &list); |
6275 | local_bh_disable(); |
6276 | sd = this_cpu_ptr(&softnet_data); |
6277 | |
6278 | backlog_lock_irq_disable(sd); |
6279 | skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { |
6280 | if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { |
6281 | __skb_unlink(skb, list: &sd->input_pkt_queue); |
6282 | __skb_queue_tail(list: &list, newsk: skb); |
6283 | rps_input_queue_head_incr(sd); |
6284 | } |
6285 | } |
6286 | backlog_unlock_irq_enable(sd); |
6287 | |
6288 | local_lock_nested_bh(&softnet_data.process_queue_bh_lock); |
6289 | skb_queue_walk_safe(&sd->process_queue, skb, tmp) { |
6290 | if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { |
6291 | __skb_unlink(skb, list: &sd->process_queue); |
6292 | __skb_queue_tail(list: &list, newsk: skb); |
6293 | rps_input_queue_head_incr(sd); |
6294 | } |
6295 | } |
6296 | local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); |
6297 | local_bh_enable(); |
6298 | |
6299 | __skb_queue_purge_reason(list: &list, reason: SKB_DROP_REASON_DEV_READY); |
6300 | } |
6301 | |
6302 | static bool flush_required(int cpu) |
6303 | { |
6304 | #if IS_ENABLED(CONFIG_RPS) |
6305 | struct softnet_data *sd = &per_cpu(softnet_data, cpu); |
6306 | bool do_flush; |
6307 | |
6308 | backlog_lock_irq_disable(sd); |
6309 | |
6310 | /* as insertion into process_queue happens with the rps lock held, |
6311 | * process_queue access may race only with dequeue |
6312 | */ |
6313 | do_flush = !skb_queue_empty(list: &sd->input_pkt_queue) || |
6314 | !skb_queue_empty_lockless(list: &sd->process_queue); |
6315 | backlog_unlock_irq_enable(sd); |
6316 | |
6317 | return do_flush; |
6318 | #endif |
6319 | /* without RPS we can't safely check input_pkt_queue: during a |
6320 | * concurrent remote skb_queue_splice() we can detect as empty both |
6321 | * input_pkt_queue and process_queue even if the latter could end-up |
6322 | * containing a lot of packets. |
6323 | */ |
6324 | return true; |
6325 | } |
6326 | |
6327 | struct flush_backlogs { |
6328 | cpumask_t flush_cpus; |
6329 | struct work_struct w[]; |
6330 | }; |
6331 | |
6332 | static struct flush_backlogs *flush_backlogs_alloc(void) |
6333 | { |
6334 | return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), |
6335 | GFP_KERNEL); |
6336 | } |
6337 | |
6338 | static struct flush_backlogs *flush_backlogs_fallback; |
6339 | static DEFINE_MUTEX(flush_backlogs_mutex); |
6340 | |
6341 | static void flush_all_backlogs(void) |
6342 | { |
6343 | struct flush_backlogs *ptr = flush_backlogs_alloc(); |
6344 | unsigned int cpu; |
6345 | |
6346 | if (!ptr) { |
6347 | mutex_lock(&flush_backlogs_mutex); |
6348 | ptr = flush_backlogs_fallback; |
6349 | } |
6350 | cpumask_clear(dstp: &ptr->flush_cpus); |
6351 | |
6352 | cpus_read_lock(); |
6353 | |
6354 | for_each_online_cpu(cpu) { |
6355 | if (flush_required(cpu)) { |
6356 | INIT_WORK(&ptr->w[cpu], flush_backlog); |
6357 | queue_work_on(cpu, wq: system_highpri_wq, work: &ptr->w[cpu]); |
6358 | __cpumask_set_cpu(cpu, dstp: &ptr->flush_cpus); |
6359 | } |
6360 | } |
6361 | |
6362 | /* we can have in flight packet[s] on the cpus we are not flushing, |
6363 | * synchronize_net() in unregister_netdevice_many() will take care of |
6364 | * them. |
6365 | */ |
6366 | for_each_cpu(cpu, &ptr->flush_cpus) |
6367 | flush_work(work: &ptr->w[cpu]); |
6368 | |
6369 | cpus_read_unlock(); |
6370 | |
6371 | if (ptr != flush_backlogs_fallback) |
6372 | kfree(objp: ptr); |
6373 | else |
6374 | mutex_unlock(lock: &flush_backlogs_mutex); |
6375 | } |
6376 | |
6377 | static void net_rps_send_ipi(struct softnet_data *remsd) |
6378 | { |
6379 | #ifdef CONFIG_RPS |
6380 | while (remsd) { |
6381 | struct softnet_data *next = remsd->rps_ipi_next; |
6382 | |
6383 | if (cpu_online(cpu: remsd->cpu)) |
6384 | smp_call_function_single_async(cpu: remsd->cpu, csd: &remsd->csd); |
6385 | remsd = next; |
6386 | } |
6387 | #endif |
6388 | } |
6389 | |
6390 | /* |
6391 | * net_rps_action_and_irq_enable sends any pending IPI's for rps. |
6392 | * Note: called with local irq disabled, but exits with local irq enabled. |
6393 | */ |
6394 | static void net_rps_action_and_irq_enable(struct softnet_data *sd) |
6395 | { |
6396 | #ifdef CONFIG_RPS |
6397 | struct softnet_data *remsd = sd->rps_ipi_list; |
6398 | |
6399 | if (!use_backlog_threads() && remsd) { |
6400 | sd->rps_ipi_list = NULL; |
6401 | |
6402 | local_irq_enable(); |
6403 | |
6404 | /* Send pending IPI's to kick RPS processing on remote cpus. */ |
6405 | net_rps_send_ipi(remsd); |
6406 | } else |
6407 | #endif |
6408 | local_irq_enable(); |
6409 | } |
6410 | |
6411 | static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) |
6412 | { |
6413 | #ifdef CONFIG_RPS |
6414 | return !use_backlog_threads() && sd->rps_ipi_list; |
6415 | #else |
6416 | return false; |
6417 | #endif |
6418 | } |
6419 | |
6420 | static int process_backlog(struct napi_struct *napi, int quota) |
6421 | { |
6422 | struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); |
6423 | bool again = true; |
6424 | int work = 0; |
6425 | |
6426 | /* Check if we have pending ipi, its better to send them now, |
6427 | * not waiting net_rx_action() end. |
6428 | */ |
6429 | if (sd_has_rps_ipi_waiting(sd)) { |
6430 | local_irq_disable(); |
6431 | net_rps_action_and_irq_enable(sd); |
6432 | } |
6433 | |
6434 | napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); |
6435 | while (again) { |
6436 | struct sk_buff *skb; |
6437 | |
6438 | local_lock_nested_bh(&softnet_data.process_queue_bh_lock); |
6439 | while ((skb = __skb_dequeue(list: &sd->process_queue))) { |
6440 | local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); |
6441 | rcu_read_lock(); |
6442 | __netif_receive_skb(skb); |
6443 | rcu_read_unlock(); |
6444 | if (++work >= quota) { |
6445 | rps_input_queue_head_add(sd, val: work); |
6446 | return work; |
6447 | } |
6448 | |
6449 | local_lock_nested_bh(&softnet_data.process_queue_bh_lock); |
6450 | } |
6451 | local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); |
6452 | |
6453 | backlog_lock_irq_disable(sd); |
6454 | if (skb_queue_empty(list: &sd->input_pkt_queue)) { |
6455 | /* |
6456 | * Inline a custom version of __napi_complete(). |
6457 | * only current cpu owns and manipulates this napi, |
6458 | * and NAPI_STATE_SCHED is the only possible flag set |
6459 | * on backlog. |
6460 | * We can use a plain write instead of clear_bit(), |
6461 | * and we dont need an smp_mb() memory barrier. |
6462 | */ |
6463 | napi->state &= NAPIF_STATE_THREADED; |
6464 | again = false; |
6465 | } else { |
6466 | local_lock_nested_bh(&softnet_data.process_queue_bh_lock); |
6467 | skb_queue_splice_tail_init(list: &sd->input_pkt_queue, |
6468 | head: &sd->process_queue); |
6469 | local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); |
6470 | } |
6471 | backlog_unlock_irq_enable(sd); |
6472 | } |
6473 | |
6474 | if (work) |
6475 | rps_input_queue_head_add(sd, val: work); |
6476 | return work; |
6477 | } |
6478 | |
6479 | /** |
6480 | * __napi_schedule - schedule for receive |
6481 | * @n: entry to schedule |
6482 | * |
6483 | * The entry's receive function will be scheduled to run. |
6484 | * Consider using __napi_schedule_irqoff() if hard irqs are masked. |
6485 | */ |
6486 | void __napi_schedule(struct napi_struct *n) |
6487 | { |
6488 | unsigned long flags; |
6489 | |
6490 | local_irq_save(flags); |
6491 | ____napi_schedule(this_cpu_ptr(&softnet_data), napi: n); |
6492 | local_irq_restore(flags); |
6493 | } |
6494 | EXPORT_SYMBOL(__napi_schedule); |
6495 | |
6496 | /** |
6497 | * napi_schedule_prep - check if napi can be scheduled |
6498 | * @n: napi context |
6499 | * |
6500 | * Test if NAPI routine is already running, and if not mark |
6501 | * it as running. This is used as a condition variable to |
6502 | * insure only one NAPI poll instance runs. We also make |
6503 | * sure there is no pending NAPI disable. |
6504 | */ |
6505 | bool napi_schedule_prep(struct napi_struct *n) |
6506 | { |
6507 | unsigned long new, val = READ_ONCE(n->state); |
6508 | |
6509 | do { |
6510 | if (unlikely(val & NAPIF_STATE_DISABLE)) |
6511 | return false; |
6512 | new = val | NAPIF_STATE_SCHED; |
6513 | |
6514 | /* Sets STATE_MISSED bit if STATE_SCHED was already set |
6515 | * This was suggested by Alexander Duyck, as compiler |
6516 | * emits better code than : |
6517 | * if (val & NAPIF_STATE_SCHED) |
6518 | * new |= NAPIF_STATE_MISSED; |
6519 | */ |
6520 | new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * |
6521 | NAPIF_STATE_MISSED; |
6522 | } while (!try_cmpxchg(&n->state, &val, new)); |
6523 | |
6524 | return !(val & NAPIF_STATE_SCHED); |
6525 | } |
6526 | EXPORT_SYMBOL(napi_schedule_prep); |
6527 | |
6528 | /** |
6529 | * __napi_schedule_irqoff - schedule for receive |
6530 | * @n: entry to schedule |
6531 | * |
6532 | * Variant of __napi_schedule() assuming hard irqs are masked. |
6533 | * |
6534 | * On PREEMPT_RT enabled kernels this maps to __napi_schedule() |
6535 | * because the interrupt disabled assumption might not be true |
6536 | * due to force-threaded interrupts and spinlock substitution. |
6537 | */ |
6538 | void __napi_schedule_irqoff(struct napi_struct *n) |
6539 | { |
6540 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
6541 | ____napi_schedule(this_cpu_ptr(&softnet_data), napi: n); |
6542 | else |
6543 | __napi_schedule(n); |
6544 | } |
6545 | EXPORT_SYMBOL(__napi_schedule_irqoff); |
6546 | |
6547 | bool napi_complete_done(struct napi_struct *n, int work_done) |
6548 | { |
6549 | unsigned long flags, val, new, timeout = 0; |
6550 | bool ret = true; |
6551 | |
6552 | /* |
6553 | * 1) Don't let napi dequeue from the cpu poll list |
6554 | * just in case its running on a different cpu. |
6555 | * 2) If we are busy polling, do nothing here, we have |
6556 | * the guarantee we will be called later. |
6557 | */ |
6558 | if (unlikely(n->state & (NAPIF_STATE_NPSVC | |
6559 | NAPIF_STATE_IN_BUSY_POLL))) |
6560 | return false; |
6561 | |
6562 | if (work_done) { |
6563 | if (n->gro.bitmask) |
6564 | timeout = napi_get_gro_flush_timeout(n); |
6565 | n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); |
6566 | } |
6567 | if (n->defer_hard_irqs_count > 0) { |
6568 | n->defer_hard_irqs_count--; |
6569 | timeout = napi_get_gro_flush_timeout(n); |
6570 | if (timeout) |
6571 | ret = false; |
6572 | } |
6573 | |
6574 | /* |
6575 | * When the NAPI instance uses a timeout and keeps postponing |
6576 | * it, we need to bound somehow the time packets are kept in |
6577 | * the GRO layer. |
6578 | */ |
6579 | gro_flush(gro: &n->gro, flush_old: !!timeout); |
6580 | gro_normal_list(gro: &n->gro); |
6581 | |
6582 | if (unlikely(!list_empty(&n->poll_list))) { |
6583 | /* If n->poll_list is not empty, we need to mask irqs */ |
6584 | local_irq_save(flags); |
6585 | list_del_init(entry: &n->poll_list); |
6586 | local_irq_restore(flags); |
6587 | } |
6588 | WRITE_ONCE(n->list_owner, -1); |
6589 | |
6590 | val = READ_ONCE(n->state); |
6591 | do { |
6592 | WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); |
6593 | |
6594 | new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | |
6595 | NAPIF_STATE_SCHED_THREADED | |
6596 | NAPIF_STATE_PREFER_BUSY_POLL); |
6597 | |
6598 | /* If STATE_MISSED was set, leave STATE_SCHED set, |
6599 | * because we will call napi->poll() one more time. |
6600 | * This C code was suggested by Alexander Duyck to help gcc. |
6601 | */ |
6602 | new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * |
6603 | NAPIF_STATE_SCHED; |
6604 | } while (!try_cmpxchg(&n->state, &val, new)); |
6605 | |
6606 | if (unlikely(val & NAPIF_STATE_MISSED)) { |
6607 | __napi_schedule(n); |
6608 | return false; |
6609 | } |
6610 | |
6611 | if (timeout) |
6612 | hrtimer_start(timer: &n->timer, tim: ns_to_ktime(ns: timeout), |
6613 | mode: HRTIMER_MODE_REL_PINNED); |
6614 | return ret; |
6615 | } |
6616 | EXPORT_SYMBOL(napi_complete_done); |
6617 | |
6618 | static void skb_defer_free_flush(struct softnet_data *sd) |
6619 | { |
6620 | struct sk_buff *skb, *next; |
6621 | |
6622 | /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ |
6623 | if (!READ_ONCE(sd->defer_list)) |
6624 | return; |
6625 | |
6626 | spin_lock(lock: &sd->defer_lock); |
6627 | skb = sd->defer_list; |
6628 | sd->defer_list = NULL; |
6629 | sd->defer_count = 0; |
6630 | spin_unlock(lock: &sd->defer_lock); |
6631 | |
6632 | while (skb != NULL) { |
6633 | next = skb->next; |
6634 | napi_consume_skb(skb, budget: 1); |
6635 | skb = next; |
6636 | } |
6637 | } |
6638 | |
6639 | #if defined(CONFIG_NET_RX_BUSY_POLL) |
6640 | |
6641 | static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) |
6642 | { |
6643 | if (!skip_schedule) { |
6644 | gro_normal_list(gro: &napi->gro); |
6645 | __napi_schedule(napi); |
6646 | return; |
6647 | } |
6648 | |
6649 | /* Flush too old packets. If HZ < 1000, flush all packets */ |
6650 | gro_flush(gro: &napi->gro, HZ >= 1000); |
6651 | gro_normal_list(gro: &napi->gro); |
6652 | |
6653 | clear_bit(nr: NAPI_STATE_SCHED, addr: &napi->state); |
6654 | } |
6655 | |
6656 | enum { |
6657 | NAPI_F_PREFER_BUSY_POLL = 1, |
6658 | NAPI_F_END_ON_RESCHED = 2, |
6659 | }; |
6660 | |
6661 | static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, |
6662 | unsigned flags, u16 budget) |
6663 | { |
6664 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
6665 | bool skip_schedule = false; |
6666 | unsigned long timeout; |
6667 | int rc; |
6668 | |
6669 | /* Busy polling means there is a high chance device driver hard irq |
6670 | * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was |
6671 | * set in napi_schedule_prep(). |
6672 | * Since we are about to call napi->poll() once more, we can safely |
6673 | * clear NAPI_STATE_MISSED. |
6674 | * |
6675 | * Note: x86 could use a single "lock and ..." instruction |
6676 | * to perform these two clear_bit() |
6677 | */ |
6678 | clear_bit(nr: NAPI_STATE_MISSED, addr: &napi->state); |
6679 | clear_bit(nr: NAPI_STATE_IN_BUSY_POLL, addr: &napi->state); |
6680 | |
6681 | local_bh_disable(); |
6682 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
6683 | |
6684 | if (flags & NAPI_F_PREFER_BUSY_POLL) { |
6685 | napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(n: napi); |
6686 | timeout = napi_get_gro_flush_timeout(n: napi); |
6687 | if (napi->defer_hard_irqs_count && timeout) { |
6688 | hrtimer_start(timer: &napi->timer, tim: ns_to_ktime(ns: timeout), mode: HRTIMER_MODE_REL_PINNED); |
6689 | skip_schedule = true; |
6690 | } |
6691 | } |
6692 | |
6693 | /* All we really want here is to re-enable device interrupts. |
6694 | * Ideally, a new ndo_busy_poll_stop() could avoid another round. |
6695 | */ |
6696 | rc = napi->poll(napi, budget); |
6697 | /* We can't gro_normal_list() here, because napi->poll() might have |
6698 | * rearmed the napi (napi_complete_done()) in which case it could |
6699 | * already be running on another CPU. |
6700 | */ |
6701 | trace_napi_poll(napi, work: rc, budget); |
6702 | netpoll_poll_unlock(have: have_poll_lock); |
6703 | if (rc == budget) |
6704 | __busy_poll_stop(napi, skip_schedule); |
6705 | bpf_net_ctx_clear(bpf_net_ctx); |
6706 | local_bh_enable(); |
6707 | } |
6708 | |
6709 | static void __napi_busy_loop(unsigned int napi_id, |
6710 | bool (*loop_end)(void *, unsigned long), |
6711 | void *loop_end_arg, unsigned flags, u16 budget) |
6712 | { |
6713 | unsigned long start_time = loop_end ? busy_loop_current_time() : 0; |
6714 | int (*napi_poll)(struct napi_struct *napi, int budget); |
6715 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
6716 | void *have_poll_lock = NULL; |
6717 | struct napi_struct *napi; |
6718 | |
6719 | WARN_ON_ONCE(!rcu_read_lock_held()); |
6720 | |
6721 | restart: |
6722 | napi_poll = NULL; |
6723 | |
6724 | napi = napi_by_id(napi_id); |
6725 | if (!napi) |
6726 | return; |
6727 | |
6728 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
6729 | preempt_disable(); |
6730 | for (;;) { |
6731 | int work = 0; |
6732 | |
6733 | local_bh_disable(); |
6734 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
6735 | if (!napi_poll) { |
6736 | unsigned long val = READ_ONCE(napi->state); |
6737 | |
6738 | /* If multiple threads are competing for this napi, |
6739 | * we avoid dirtying napi->state as much as we can. |
6740 | */ |
6741 | if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | |
6742 | NAPIF_STATE_IN_BUSY_POLL)) { |
6743 | if (flags & NAPI_F_PREFER_BUSY_POLL) |
6744 | set_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state); |
6745 | goto count; |
6746 | } |
6747 | if (cmpxchg(&napi->state, val, |
6748 | val | NAPIF_STATE_IN_BUSY_POLL | |
6749 | NAPIF_STATE_SCHED) != val) { |
6750 | if (flags & NAPI_F_PREFER_BUSY_POLL) |
6751 | set_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state); |
6752 | goto count; |
6753 | } |
6754 | have_poll_lock = netpoll_poll_lock(napi); |
6755 | napi_poll = napi->poll; |
6756 | } |
6757 | work = napi_poll(napi, budget); |
6758 | trace_napi_poll(napi, work, budget); |
6759 | gro_normal_list(gro: &napi->gro); |
6760 | count: |
6761 | if (work > 0) |
6762 | __NET_ADD_STATS(dev_net(napi->dev), |
6763 | LINUX_MIB_BUSYPOLLRXPACKETS, work); |
6764 | skb_defer_free_flush(this_cpu_ptr(&softnet_data)); |
6765 | bpf_net_ctx_clear(bpf_net_ctx); |
6766 | local_bh_enable(); |
6767 | |
6768 | if (!loop_end || loop_end(loop_end_arg, start_time)) |
6769 | break; |
6770 | |
6771 | if (unlikely(need_resched())) { |
6772 | if (flags & NAPI_F_END_ON_RESCHED) |
6773 | break; |
6774 | if (napi_poll) |
6775 | busy_poll_stop(napi, have_poll_lock, flags, budget); |
6776 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
6777 | preempt_enable(); |
6778 | rcu_read_unlock(); |
6779 | cond_resched(); |
6780 | rcu_read_lock(); |
6781 | if (loop_end(loop_end_arg, start_time)) |
6782 | return; |
6783 | goto restart; |
6784 | } |
6785 | cpu_relax(); |
6786 | } |
6787 | if (napi_poll) |
6788 | busy_poll_stop(napi, have_poll_lock, flags, budget); |
6789 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
6790 | preempt_enable(); |
6791 | } |
6792 | |
6793 | void napi_busy_loop_rcu(unsigned int napi_id, |
6794 | bool (*loop_end)(void *, unsigned long), |
6795 | void *loop_end_arg, bool prefer_busy_poll, u16 budget) |
6796 | { |
6797 | unsigned flags = NAPI_F_END_ON_RESCHED; |
6798 | |
6799 | if (prefer_busy_poll) |
6800 | flags |= NAPI_F_PREFER_BUSY_POLL; |
6801 | |
6802 | __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); |
6803 | } |
6804 | |
6805 | void napi_busy_loop(unsigned int napi_id, |
6806 | bool (*loop_end)(void *, unsigned long), |
6807 | void *loop_end_arg, bool prefer_busy_poll, u16 budget) |
6808 | { |
6809 | unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; |
6810 | |
6811 | rcu_read_lock(); |
6812 | __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); |
6813 | rcu_read_unlock(); |
6814 | } |
6815 | EXPORT_SYMBOL(napi_busy_loop); |
6816 | |
6817 | void napi_suspend_irqs(unsigned int napi_id) |
6818 | { |
6819 | struct napi_struct *napi; |
6820 | |
6821 | rcu_read_lock(); |
6822 | napi = napi_by_id(napi_id); |
6823 | if (napi) { |
6824 | unsigned long timeout = napi_get_irq_suspend_timeout(n: napi); |
6825 | |
6826 | if (timeout) |
6827 | hrtimer_start(timer: &napi->timer, tim: ns_to_ktime(ns: timeout), |
6828 | mode: HRTIMER_MODE_REL_PINNED); |
6829 | } |
6830 | rcu_read_unlock(); |
6831 | } |
6832 | |
6833 | void napi_resume_irqs(unsigned int napi_id) |
6834 | { |
6835 | struct napi_struct *napi; |
6836 | |
6837 | rcu_read_lock(); |
6838 | napi = napi_by_id(napi_id); |
6839 | if (napi) { |
6840 | /* If irq_suspend_timeout is set to 0 between the call to |
6841 | * napi_suspend_irqs and now, the original value still |
6842 | * determines the safety timeout as intended and napi_watchdog |
6843 | * will resume irq processing. |
6844 | */ |
6845 | if (napi_get_irq_suspend_timeout(n: napi)) { |
6846 | local_bh_disable(); |
6847 | napi_schedule(n: napi); |
6848 | local_bh_enable(); |
6849 | } |
6850 | } |
6851 | rcu_read_unlock(); |
6852 | } |
6853 | |
6854 | #endif /* CONFIG_NET_RX_BUSY_POLL */ |
6855 | |
6856 | static void __napi_hash_add_with_id(struct napi_struct *napi, |
6857 | unsigned int napi_id) |
6858 | { |
6859 | napi->gro.cached_napi_id = napi_id; |
6860 | |
6861 | WRITE_ONCE(napi->napi_id, napi_id); |
6862 | hlist_add_head_rcu(n: &napi->napi_hash_node, |
6863 | h: &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); |
6864 | } |
6865 | |
6866 | static void napi_hash_add_with_id(struct napi_struct *napi, |
6867 | unsigned int napi_id) |
6868 | { |
6869 | unsigned long flags; |
6870 | |
6871 | spin_lock_irqsave(&napi_hash_lock, flags); |
6872 | WARN_ON_ONCE(napi_by_id(napi_id)); |
6873 | __napi_hash_add_with_id(napi, napi_id); |
6874 | spin_unlock_irqrestore(lock: &napi_hash_lock, flags); |
6875 | } |
6876 | |
6877 | static void napi_hash_add(struct napi_struct *napi) |
6878 | { |
6879 | unsigned long flags; |
6880 | |
6881 | if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) |
6882 | return; |
6883 | |
6884 | spin_lock_irqsave(&napi_hash_lock, flags); |
6885 | |
6886 | /* 0..NR_CPUS range is reserved for sender_cpu use */ |
6887 | do { |
6888 | if (unlikely(!napi_id_valid(++napi_gen_id))) |
6889 | napi_gen_id = MIN_NAPI_ID; |
6890 | } while (napi_by_id(napi_id: napi_gen_id)); |
6891 | |
6892 | __napi_hash_add_with_id(napi, napi_id: napi_gen_id); |
6893 | |
6894 | spin_unlock_irqrestore(lock: &napi_hash_lock, flags); |
6895 | } |
6896 | |
6897 | /* Warning : caller is responsible to make sure rcu grace period |
6898 | * is respected before freeing memory containing @napi |
6899 | */ |
6900 | static void napi_hash_del(struct napi_struct *napi) |
6901 | { |
6902 | unsigned long flags; |
6903 | |
6904 | spin_lock_irqsave(&napi_hash_lock, flags); |
6905 | |
6906 | hlist_del_init_rcu(n: &napi->napi_hash_node); |
6907 | |
6908 | spin_unlock_irqrestore(lock: &napi_hash_lock, flags); |
6909 | } |
6910 | |
6911 | static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) |
6912 | { |
6913 | struct napi_struct *napi; |
6914 | |
6915 | napi = container_of(timer, struct napi_struct, timer); |
6916 | |
6917 | /* Note : we use a relaxed variant of napi_schedule_prep() not setting |
6918 | * NAPI_STATE_MISSED, since we do not react to a device IRQ. |
6919 | */ |
6920 | if (!napi_disable_pending(n: napi) && |
6921 | !test_and_set_bit(nr: NAPI_STATE_SCHED, addr: &napi->state)) { |
6922 | clear_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state); |
6923 | __napi_schedule_irqoff(napi); |
6924 | } |
6925 | |
6926 | return HRTIMER_NORESTART; |
6927 | } |
6928 | |
6929 | int dev_set_threaded(struct net_device *dev, bool threaded) |
6930 | { |
6931 | struct napi_struct *napi; |
6932 | int err = 0; |
6933 | |
6934 | netdev_assert_locked_or_invisible(dev); |
6935 | |
6936 | if (dev->threaded == threaded) |
6937 | return 0; |
6938 | |
6939 | if (threaded) { |
6940 | list_for_each_entry(napi, &dev->napi_list, dev_list) { |
6941 | if (!napi->thread) { |
6942 | err = napi_kthread_create(n: napi); |
6943 | if (err) { |
6944 | threaded = false; |
6945 | break; |
6946 | } |
6947 | } |
6948 | } |
6949 | } |
6950 | |
6951 | WRITE_ONCE(dev->threaded, threaded); |
6952 | |
6953 | /* Make sure kthread is created before THREADED bit |
6954 | * is set. |
6955 | */ |
6956 | smp_mb__before_atomic(); |
6957 | |
6958 | /* Setting/unsetting threaded mode on a napi might not immediately |
6959 | * take effect, if the current napi instance is actively being |
6960 | * polled. In this case, the switch between threaded mode and |
6961 | * softirq mode will happen in the next round of napi_schedule(). |
6962 | * This should not cause hiccups/stalls to the live traffic. |
6963 | */ |
6964 | list_for_each_entry(napi, &dev->napi_list, dev_list) |
6965 | assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); |
6966 | |
6967 | return err; |
6968 | } |
6969 | EXPORT_SYMBOL(dev_set_threaded); |
6970 | |
6971 | /** |
6972 | * netif_queue_set_napi - Associate queue with the napi |
6973 | * @dev: device to which NAPI and queue belong |
6974 | * @queue_index: Index of queue |
6975 | * @type: queue type as RX or TX |
6976 | * @napi: NAPI context, pass NULL to clear previously set NAPI |
6977 | * |
6978 | * Set queue with its corresponding napi context. This should be done after |
6979 | * registering the NAPI handler for the queue-vector and the queues have been |
6980 | * mapped to the corresponding interrupt vector. |
6981 | */ |
6982 | void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, |
6983 | enum netdev_queue_type type, struct napi_struct *napi) |
6984 | { |
6985 | struct netdev_rx_queue *rxq; |
6986 | struct netdev_queue *txq; |
6987 | |
6988 | if (WARN_ON_ONCE(napi && !napi->dev)) |
6989 | return; |
6990 | netdev_ops_assert_locked_or_invisible(dev); |
6991 | |
6992 | switch (type) { |
6993 | case NETDEV_QUEUE_TYPE_RX: |
6994 | rxq = __netif_get_rx_queue(dev, rxq: queue_index); |
6995 | rxq->napi = napi; |
6996 | return; |
6997 | case NETDEV_QUEUE_TYPE_TX: |
6998 | txq = netdev_get_tx_queue(dev, index: queue_index); |
6999 | txq->napi = napi; |
7000 | return; |
7001 | default: |
7002 | return; |
7003 | } |
7004 | } |
7005 | EXPORT_SYMBOL(netif_queue_set_napi); |
7006 | |
7007 | static void |
7008 | netif_napi_irq_notify(struct irq_affinity_notify *notify, |
7009 | const cpumask_t *mask) |
7010 | { |
7011 | struct napi_struct *napi = |
7012 | container_of(notify, struct napi_struct, notify); |
7013 | #ifdef CONFIG_RFS_ACCEL |
7014 | struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; |
7015 | int err; |
7016 | #endif |
7017 | |
7018 | if (napi->config && napi->dev->irq_affinity_auto) |
7019 | cpumask_copy(dstp: &napi->config->affinity_mask, srcp: mask); |
7020 | |
7021 | #ifdef CONFIG_RFS_ACCEL |
7022 | if (napi->dev->rx_cpu_rmap_auto) { |
7023 | err = cpu_rmap_update(rmap, index: napi->napi_rmap_idx, affinity: mask); |
7024 | if (err) |
7025 | netdev_warn(dev: napi->dev, format: "RMAP update failed (%d)\n", |
7026 | err); |
7027 | } |
7028 | #endif |
7029 | } |
7030 | |
7031 | #ifdef CONFIG_RFS_ACCEL |
7032 | static void netif_napi_affinity_release(struct kref *ref) |
7033 | { |
7034 | struct napi_struct *napi = |
7035 | container_of(ref, struct napi_struct, notify.kref); |
7036 | struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; |
7037 | |
7038 | netdev_assert_locked(dev: napi->dev); |
7039 | WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, |
7040 | &napi->state)); |
7041 | |
7042 | if (!napi->dev->rx_cpu_rmap_auto) |
7043 | return; |
7044 | rmap->obj[napi->napi_rmap_idx] = NULL; |
7045 | napi->napi_rmap_idx = -1; |
7046 | cpu_rmap_put(rmap); |
7047 | } |
7048 | |
7049 | int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) |
7050 | { |
7051 | if (dev->rx_cpu_rmap_auto) |
7052 | return 0; |
7053 | |
7054 | dev->rx_cpu_rmap = alloc_irq_cpu_rmap(size: num_irqs); |
7055 | if (!dev->rx_cpu_rmap) |
7056 | return -ENOMEM; |
7057 | |
7058 | dev->rx_cpu_rmap_auto = true; |
7059 | return 0; |
7060 | } |
7061 | EXPORT_SYMBOL(netif_enable_cpu_rmap); |
7062 | |
7063 | static void netif_del_cpu_rmap(struct net_device *dev) |
7064 | { |
7065 | struct cpu_rmap *rmap = dev->rx_cpu_rmap; |
7066 | |
7067 | if (!dev->rx_cpu_rmap_auto) |
7068 | return; |
7069 | |
7070 | /* Free the rmap */ |
7071 | cpu_rmap_put(rmap); |
7072 | dev->rx_cpu_rmap = NULL; |
7073 | dev->rx_cpu_rmap_auto = false; |
7074 | } |
7075 | |
7076 | #else |
7077 | static void netif_napi_affinity_release(struct kref *ref) |
7078 | { |
7079 | } |
7080 | |
7081 | int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) |
7082 | { |
7083 | return 0; |
7084 | } |
7085 | EXPORT_SYMBOL(netif_enable_cpu_rmap); |
7086 | |
7087 | static void netif_del_cpu_rmap(struct net_device *dev) |
7088 | { |
7089 | } |
7090 | #endif |
7091 | |
7092 | void netif_set_affinity_auto(struct net_device *dev) |
7093 | { |
7094 | unsigned int i, maxqs, numa; |
7095 | |
7096 | maxqs = max(dev->num_tx_queues, dev->num_rx_queues); |
7097 | numa = dev_to_node(dev: &dev->dev); |
7098 | |
7099 | for (i = 0; i < maxqs; i++) |
7100 | cpumask_set_cpu(cpu: cpumask_local_spread(i, node: numa), |
7101 | dstp: &dev->napi_config[i].affinity_mask); |
7102 | |
7103 | dev->irq_affinity_auto = true; |
7104 | } |
7105 | EXPORT_SYMBOL(netif_set_affinity_auto); |
7106 | |
7107 | void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) |
7108 | { |
7109 | int rc; |
7110 | |
7111 | netdev_assert_locked_or_invisible(dev: napi->dev); |
7112 | |
7113 | if (napi->irq == irq) |
7114 | return; |
7115 | |
7116 | /* Remove existing resources */ |
7117 | if (test_and_clear_bit(nr: NAPI_STATE_HAS_NOTIFIER, addr: &napi->state)) |
7118 | irq_set_affinity_notifier(irq: napi->irq, NULL); |
7119 | |
7120 | napi->irq = irq; |
7121 | if (irq < 0 || |
7122 | (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) |
7123 | return; |
7124 | |
7125 | /* Abort for buggy drivers */ |
7126 | if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) |
7127 | return; |
7128 | |
7129 | #ifdef CONFIG_RFS_ACCEL |
7130 | if (napi->dev->rx_cpu_rmap_auto) { |
7131 | rc = cpu_rmap_add(rmap: napi->dev->rx_cpu_rmap, obj: napi); |
7132 | if (rc < 0) |
7133 | return; |
7134 | |
7135 | cpu_rmap_get(rmap: napi->dev->rx_cpu_rmap); |
7136 | napi->napi_rmap_idx = rc; |
7137 | } |
7138 | #endif |
7139 | |
7140 | /* Use core IRQ notifier */ |
7141 | napi->notify.notify = netif_napi_irq_notify; |
7142 | napi->notify.release = netif_napi_affinity_release; |
7143 | rc = irq_set_affinity_notifier(irq, notify: &napi->notify); |
7144 | if (rc) { |
7145 | netdev_warn(dev: napi->dev, format: "Unable to set IRQ notifier (%d)\n", |
7146 | rc); |
7147 | goto put_rmap; |
7148 | } |
7149 | |
7150 | set_bit(nr: NAPI_STATE_HAS_NOTIFIER, addr: &napi->state); |
7151 | return; |
7152 | |
7153 | put_rmap: |
7154 | #ifdef CONFIG_RFS_ACCEL |
7155 | if (napi->dev->rx_cpu_rmap_auto) { |
7156 | napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; |
7157 | cpu_rmap_put(rmap: napi->dev->rx_cpu_rmap); |
7158 | napi->napi_rmap_idx = -1; |
7159 | } |
7160 | #endif |
7161 | napi->notify.notify = NULL; |
7162 | napi->notify.release = NULL; |
7163 | } |
7164 | EXPORT_SYMBOL(netif_napi_set_irq_locked); |
7165 | |
7166 | static void napi_restore_config(struct napi_struct *n) |
7167 | { |
7168 | n->defer_hard_irqs = n->config->defer_hard_irqs; |
7169 | n->gro_flush_timeout = n->config->gro_flush_timeout; |
7170 | n->irq_suspend_timeout = n->config->irq_suspend_timeout; |
7171 | |
7172 | if (n->dev->irq_affinity_auto && |
7173 | test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) |
7174 | irq_set_affinity(irq: n->irq, cpumask: &n->config->affinity_mask); |
7175 | |
7176 | /* a NAPI ID might be stored in the config, if so use it. if not, use |
7177 | * napi_hash_add to generate one for us. |
7178 | */ |
7179 | if (n->config->napi_id) { |
7180 | napi_hash_add_with_id(napi: n, napi_id: n->config->napi_id); |
7181 | } else { |
7182 | napi_hash_add(napi: n); |
7183 | n->config->napi_id = n->napi_id; |
7184 | } |
7185 | } |
7186 | |
7187 | static void napi_save_config(struct napi_struct *n) |
7188 | { |
7189 | n->config->defer_hard_irqs = n->defer_hard_irqs; |
7190 | n->config->gro_flush_timeout = n->gro_flush_timeout; |
7191 | n->config->irq_suspend_timeout = n->irq_suspend_timeout; |
7192 | napi_hash_del(napi: n); |
7193 | } |
7194 | |
7195 | /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will |
7196 | * inherit an existing ID try to insert it at the right position. |
7197 | */ |
7198 | static void |
7199 | netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) |
7200 | { |
7201 | unsigned int new_id, pos_id; |
7202 | struct list_head *higher; |
7203 | struct napi_struct *pos; |
7204 | |
7205 | new_id = UINT_MAX; |
7206 | if (napi->config && napi->config->napi_id) |
7207 | new_id = napi->config->napi_id; |
7208 | |
7209 | higher = &dev->napi_list; |
7210 | list_for_each_entry(pos, &dev->napi_list, dev_list) { |
7211 | if (napi_id_valid(napi_id: pos->napi_id)) |
7212 | pos_id = pos->napi_id; |
7213 | else if (pos->config) |
7214 | pos_id = pos->config->napi_id; |
7215 | else |
7216 | pos_id = UINT_MAX; |
7217 | |
7218 | if (pos_id <= new_id) |
7219 | break; |
7220 | higher = &pos->dev_list; |
7221 | } |
7222 | list_add_rcu(new: &napi->dev_list, head: higher); /* adds after higher */ |
7223 | } |
7224 | |
7225 | /* Double check that napi_get_frags() allocates skbs with |
7226 | * skb->head being backed by slab, not a page fragment. |
7227 | * This is to make sure bug fixed in 3226b158e67c |
7228 | * ("net: avoid 32 x truesize under-estimation for tiny skbs") |
7229 | * does not accidentally come back. |
7230 | */ |
7231 | static void napi_get_frags_check(struct napi_struct *napi) |
7232 | { |
7233 | struct sk_buff *skb; |
7234 | |
7235 | local_bh_disable(); |
7236 | skb = napi_get_frags(napi); |
7237 | WARN_ON_ONCE(skb && skb->head_frag); |
7238 | napi_free_frags(napi); |
7239 | local_bh_enable(); |
7240 | } |
7241 | |
7242 | void netif_napi_add_weight_locked(struct net_device *dev, |
7243 | struct napi_struct *napi, |
7244 | int (*poll)(struct napi_struct *, int), |
7245 | int weight) |
7246 | { |
7247 | netdev_assert_locked(dev); |
7248 | if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) |
7249 | return; |
7250 | |
7251 | INIT_LIST_HEAD(list: &napi->poll_list); |
7252 | INIT_HLIST_NODE(h: &napi->napi_hash_node); |
7253 | hrtimer_setup(timer: &napi->timer, function: napi_watchdog, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_PINNED); |
7254 | gro_init(gro: &napi->gro); |
7255 | napi->skb = NULL; |
7256 | napi->poll = poll; |
7257 | if (weight > NAPI_POLL_WEIGHT) |
7258 | netdev_err_once(dev, "%s() called with weight %d\n", __func__, |
7259 | weight); |
7260 | napi->weight = weight; |
7261 | napi->dev = dev; |
7262 | #ifdef CONFIG_NETPOLL |
7263 | napi->poll_owner = -1; |
7264 | #endif |
7265 | napi->list_owner = -1; |
7266 | set_bit(nr: NAPI_STATE_SCHED, addr: &napi->state); |
7267 | set_bit(nr: NAPI_STATE_NPSVC, addr: &napi->state); |
7268 | netif_napi_dev_list_add(dev, napi); |
7269 | |
7270 | /* default settings from sysfs are applied to all NAPIs. any per-NAPI |
7271 | * configuration will be loaded in napi_enable |
7272 | */ |
7273 | napi_set_defer_hard_irqs(n: napi, READ_ONCE(dev->napi_defer_hard_irqs)); |
7274 | napi_set_gro_flush_timeout(n: napi, READ_ONCE(dev->gro_flush_timeout)); |
7275 | |
7276 | napi_get_frags_check(napi); |
7277 | /* Create kthread for this napi if dev->threaded is set. |
7278 | * Clear dev->threaded if kthread creation failed so that |
7279 | * threaded mode will not be enabled in napi_enable(). |
7280 | */ |
7281 | if (dev->threaded && napi_kthread_create(n: napi)) |
7282 | dev->threaded = false; |
7283 | netif_napi_set_irq_locked(napi, -1); |
7284 | } |
7285 | EXPORT_SYMBOL(netif_napi_add_weight_locked); |
7286 | |
7287 | void napi_disable_locked(struct napi_struct *n) |
7288 | { |
7289 | unsigned long val, new; |
7290 | |
7291 | might_sleep(); |
7292 | netdev_assert_locked(dev: n->dev); |
7293 | |
7294 | set_bit(nr: NAPI_STATE_DISABLE, addr: &n->state); |
7295 | |
7296 | val = READ_ONCE(n->state); |
7297 | do { |
7298 | while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { |
7299 | usleep_range(min: 20, max: 200); |
7300 | val = READ_ONCE(n->state); |
7301 | } |
7302 | |
7303 | new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; |
7304 | new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); |
7305 | } while (!try_cmpxchg(&n->state, &val, new)); |
7306 | |
7307 | hrtimer_cancel(timer: &n->timer); |
7308 | |
7309 | if (n->config) |
7310 | napi_save_config(n); |
7311 | else |
7312 | napi_hash_del(napi: n); |
7313 | |
7314 | clear_bit(nr: NAPI_STATE_DISABLE, addr: &n->state); |
7315 | } |
7316 | EXPORT_SYMBOL(napi_disable_locked); |
7317 | |
7318 | /** |
7319 | * napi_disable() - prevent NAPI from scheduling |
7320 | * @n: NAPI context |
7321 | * |
7322 | * Stop NAPI from being scheduled on this context. |
7323 | * Waits till any outstanding processing completes. |
7324 | * Takes netdev_lock() for associated net_device. |
7325 | */ |
7326 | void napi_disable(struct napi_struct *n) |
7327 | { |
7328 | netdev_lock(dev: n->dev); |
7329 | napi_disable_locked(n); |
7330 | netdev_unlock(dev: n->dev); |
7331 | } |
7332 | EXPORT_SYMBOL(napi_disable); |
7333 | |
7334 | void napi_enable_locked(struct napi_struct *n) |
7335 | { |
7336 | unsigned long new, val = READ_ONCE(n->state); |
7337 | |
7338 | if (n->config) |
7339 | napi_restore_config(n); |
7340 | else |
7341 | napi_hash_add(napi: n); |
7342 | |
7343 | do { |
7344 | BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); |
7345 | |
7346 | new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); |
7347 | if (n->dev->threaded && n->thread) |
7348 | new |= NAPIF_STATE_THREADED; |
7349 | } while (!try_cmpxchg(&n->state, &val, new)); |
7350 | } |
7351 | EXPORT_SYMBOL(napi_enable_locked); |
7352 | |
7353 | /** |
7354 | * napi_enable() - enable NAPI scheduling |
7355 | * @n: NAPI context |
7356 | * |
7357 | * Enable scheduling of a NAPI instance. |
7358 | * Must be paired with napi_disable(). |
7359 | * Takes netdev_lock() for associated net_device. |
7360 | */ |
7361 | void napi_enable(struct napi_struct *n) |
7362 | { |
7363 | netdev_lock(dev: n->dev); |
7364 | napi_enable_locked(n); |
7365 | netdev_unlock(dev: n->dev); |
7366 | } |
7367 | EXPORT_SYMBOL(napi_enable); |
7368 | |
7369 | /* Must be called in process context */ |
7370 | void __netif_napi_del_locked(struct napi_struct *napi) |
7371 | { |
7372 | netdev_assert_locked(dev: napi->dev); |
7373 | |
7374 | if (!test_and_clear_bit(nr: NAPI_STATE_LISTED, addr: &napi->state)) |
7375 | return; |
7376 | |
7377 | /* Make sure NAPI is disabled (or was never enabled). */ |
7378 | WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); |
7379 | |
7380 | if (test_and_clear_bit(nr: NAPI_STATE_HAS_NOTIFIER, addr: &napi->state)) |
7381 | irq_set_affinity_notifier(irq: napi->irq, NULL); |
7382 | |
7383 | if (napi->config) { |
7384 | napi->index = -1; |
7385 | napi->config = NULL; |
7386 | } |
7387 | |
7388 | list_del_rcu(entry: &napi->dev_list); |
7389 | napi_free_frags(napi); |
7390 | |
7391 | gro_cleanup(gro: &napi->gro); |
7392 | |
7393 | if (napi->thread) { |
7394 | kthread_stop(k: napi->thread); |
7395 | napi->thread = NULL; |
7396 | } |
7397 | } |
7398 | EXPORT_SYMBOL(__netif_napi_del_locked); |
7399 | |
7400 | static int __napi_poll(struct napi_struct *n, bool *repoll) |
7401 | { |
7402 | int work, weight; |
7403 | |
7404 | weight = n->weight; |
7405 | |
7406 | /* This NAPI_STATE_SCHED test is for avoiding a race |
7407 | * with netpoll's poll_napi(). Only the entity which |
7408 | * obtains the lock and sees NAPI_STATE_SCHED set will |
7409 | * actually make the ->poll() call. Therefore we avoid |
7410 | * accidentally calling ->poll() when NAPI is not scheduled. |
7411 | */ |
7412 | work = 0; |
7413 | if (napi_is_scheduled(n)) { |
7414 | work = n->poll(n, weight); |
7415 | trace_napi_poll(napi: n, work, budget: weight); |
7416 | |
7417 | xdp_do_check_flushed(napi: n); |
7418 | } |
7419 | |
7420 | if (unlikely(work > weight)) |
7421 | netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", |
7422 | n->poll, work, weight); |
7423 | |
7424 | if (likely(work < weight)) |
7425 | return work; |
7426 | |
7427 | /* Drivers must not modify the NAPI state if they |
7428 | * consume the entire weight. In such cases this code |
7429 | * still "owns" the NAPI instance and therefore can |
7430 | * move the instance around on the list at-will. |
7431 | */ |
7432 | if (unlikely(napi_disable_pending(n))) { |
7433 | napi_complete(n); |
7434 | return work; |
7435 | } |
7436 | |
7437 | /* The NAPI context has more processing work, but busy-polling |
7438 | * is preferred. Exit early. |
7439 | */ |
7440 | if (napi_prefer_busy_poll(n)) { |
7441 | if (napi_complete_done(n, work)) { |
7442 | /* If timeout is not set, we need to make sure |
7443 | * that the NAPI is re-scheduled. |
7444 | */ |
7445 | napi_schedule(n); |
7446 | } |
7447 | return work; |
7448 | } |
7449 | |
7450 | /* Flush too old packets. If HZ < 1000, flush all packets */ |
7451 | gro_flush(gro: &n->gro, HZ >= 1000); |
7452 | gro_normal_list(gro: &n->gro); |
7453 | |
7454 | /* Some drivers may have called napi_schedule |
7455 | * prior to exhausting their budget. |
7456 | */ |
7457 | if (unlikely(!list_empty(&n->poll_list))) { |
7458 | pr_warn_once("%s: Budget exhausted after napi rescheduled\n", |
7459 | n->dev ? n->dev->name : "backlog"); |
7460 | return work; |
7461 | } |
7462 | |
7463 | *repoll = true; |
7464 | |
7465 | return work; |
7466 | } |
7467 | |
7468 | static int napi_poll(struct napi_struct *n, struct list_head *repoll) |
7469 | { |
7470 | bool do_repoll = false; |
7471 | void *have; |
7472 | int work; |
7473 | |
7474 | list_del_init(entry: &n->poll_list); |
7475 | |
7476 | have = netpoll_poll_lock(napi: n); |
7477 | |
7478 | work = __napi_poll(n, repoll: &do_repoll); |
7479 | |
7480 | if (do_repoll) { |
7481 | #if defined(CONFIG_DEBUG_NET) |
7482 | if (unlikely(!napi_is_scheduled(n))) |
7483 | pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", |
7484 | n->dev->name, n->poll); |
7485 | #endif |
7486 | list_add_tail(new: &n->poll_list, head: repoll); |
7487 | } |
7488 | netpoll_poll_unlock(have); |
7489 | |
7490 | return work; |
7491 | } |
7492 | |
7493 | static int napi_thread_wait(struct napi_struct *napi) |
7494 | { |
7495 | set_current_state(TASK_INTERRUPTIBLE); |
7496 | |
7497 | while (!kthread_should_stop()) { |
7498 | /* Testing SCHED_THREADED bit here to make sure the current |
7499 | * kthread owns this napi and could poll on this napi. |
7500 | * Testing SCHED bit is not enough because SCHED bit might be |
7501 | * set by some other busy poll thread or by napi_disable(). |
7502 | */ |
7503 | if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { |
7504 | WARN_ON(!list_empty(&napi->poll_list)); |
7505 | __set_current_state(TASK_RUNNING); |
7506 | return 0; |
7507 | } |
7508 | |
7509 | schedule(); |
7510 | set_current_state(TASK_INTERRUPTIBLE); |
7511 | } |
7512 | __set_current_state(TASK_RUNNING); |
7513 | |
7514 | return -1; |
7515 | } |
7516 | |
7517 | static void napi_threaded_poll_loop(struct napi_struct *napi) |
7518 | { |
7519 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
7520 | struct softnet_data *sd; |
7521 | unsigned long last_qs = jiffies; |
7522 | |
7523 | for (;;) { |
7524 | bool repoll = false; |
7525 | void *have; |
7526 | |
7527 | local_bh_disable(); |
7528 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
7529 | |
7530 | sd = this_cpu_ptr(&softnet_data); |
7531 | sd->in_napi_threaded_poll = true; |
7532 | |
7533 | have = netpoll_poll_lock(napi); |
7534 | __napi_poll(n: napi, repoll: &repoll); |
7535 | netpoll_poll_unlock(have); |
7536 | |
7537 | sd->in_napi_threaded_poll = false; |
7538 | barrier(); |
7539 | |
7540 | if (sd_has_rps_ipi_waiting(sd)) { |
7541 | local_irq_disable(); |
7542 | net_rps_action_and_irq_enable(sd); |
7543 | } |
7544 | skb_defer_free_flush(sd); |
7545 | bpf_net_ctx_clear(bpf_net_ctx); |
7546 | local_bh_enable(); |
7547 | |
7548 | if (!repoll) |
7549 | break; |
7550 | |
7551 | rcu_softirq_qs_periodic(last_qs); |
7552 | cond_resched(); |
7553 | } |
7554 | } |
7555 | |
7556 | static int napi_threaded_poll(void *data) |
7557 | { |
7558 | struct napi_struct *napi = data; |
7559 | |
7560 | while (!napi_thread_wait(napi)) |
7561 | napi_threaded_poll_loop(napi); |
7562 | |
7563 | return 0; |
7564 | } |
7565 | |
7566 | static __latent_entropy void net_rx_action(void) |
7567 | { |
7568 | struct softnet_data *sd = this_cpu_ptr(&softnet_data); |
7569 | unsigned long time_limit = jiffies + |
7570 | usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); |
7571 | struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; |
7572 | int budget = READ_ONCE(net_hotdata.netdev_budget); |
7573 | LIST_HEAD(list); |
7574 | LIST_HEAD(repoll); |
7575 | |
7576 | bpf_net_ctx = bpf_net_ctx_set(bpf_net_ctx: &__bpf_net_ctx); |
7577 | start: |
7578 | sd->in_net_rx_action = true; |
7579 | local_irq_disable(); |
7580 | list_splice_init(list: &sd->poll_list, head: &list); |
7581 | local_irq_enable(); |
7582 | |
7583 | for (;;) { |
7584 | struct napi_struct *n; |
7585 | |
7586 | skb_defer_free_flush(sd); |
7587 | |
7588 | if (list_empty(head: &list)) { |
7589 | if (list_empty(head: &repoll)) { |
7590 | sd->in_net_rx_action = false; |
7591 | barrier(); |
7592 | /* We need to check if ____napi_schedule() |
7593 | * had refilled poll_list while |
7594 | * sd->in_net_rx_action was true. |
7595 | */ |
7596 | if (!list_empty(head: &sd->poll_list)) |
7597 | goto start; |
7598 | if (!sd_has_rps_ipi_waiting(sd)) |
7599 | goto end; |
7600 | } |
7601 | break; |
7602 | } |
7603 | |
7604 | n = list_first_entry(&list, struct napi_struct, poll_list); |
7605 | budget -= napi_poll(n, repoll: &repoll); |
7606 | |
7607 | /* If softirq window is exhausted then punt. |
7608 | * Allow this to run for 2 jiffies since which will allow |
7609 | * an average latency of 1.5/HZ. |
7610 | */ |
7611 | if (unlikely(budget <= 0 || |
7612 | time_after_eq(jiffies, time_limit))) { |
7613 | /* Pairs with READ_ONCE() in softnet_seq_show() */ |
7614 | WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); |
7615 | break; |
7616 | } |
7617 | } |
7618 | |
7619 | local_irq_disable(); |
7620 | |
7621 | list_splice_tail_init(list: &sd->poll_list, head: &list); |
7622 | list_splice_tail(list: &repoll, head: &list); |
7623 | list_splice(list: &list, head: &sd->poll_list); |
7624 | if (!list_empty(head: &sd->poll_list)) |
7625 | __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
7626 | else |
7627 | sd->in_net_rx_action = false; |
7628 | |
7629 | net_rps_action_and_irq_enable(sd); |
7630 | end: |
7631 | bpf_net_ctx_clear(bpf_net_ctx); |
7632 | } |
7633 | |
7634 | struct netdev_adjacent { |
7635 | struct net_device *dev; |
7636 | netdevice_tracker dev_tracker; |
7637 | |
7638 | /* upper master flag, there can only be one master device per list */ |
7639 | bool master; |
7640 | |
7641 | /* lookup ignore flag */ |
7642 | bool ignore; |
7643 | |
7644 | /* counter for the number of times this device was added to us */ |
7645 | u16 ref_nr; |
7646 | |
7647 | /* private field for the users */ |
7648 | void *private; |
7649 | |
7650 | struct list_head list; |
7651 | struct rcu_head rcu; |
7652 | }; |
7653 | |
7654 | static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, |
7655 | struct list_head *adj_list) |
7656 | { |
7657 | struct netdev_adjacent *adj; |
7658 | |
7659 | list_for_each_entry(adj, adj_list, list) { |
7660 | if (adj->dev == adj_dev) |
7661 | return adj; |
7662 | } |
7663 | return NULL; |
7664 | } |
7665 | |
7666 | static int ____netdev_has_upper_dev(struct net_device *upper_dev, |
7667 | struct netdev_nested_priv *priv) |
7668 | { |
7669 | struct net_device *dev = (struct net_device *)priv->data; |
7670 | |
7671 | return upper_dev == dev; |
7672 | } |
7673 | |
7674 | /** |
7675 | * netdev_has_upper_dev - Check if device is linked to an upper device |
7676 | * @dev: device |
7677 | * @upper_dev: upper device to check |
7678 | * |
7679 | * Find out if a device is linked to specified upper device and return true |
7680 | * in case it is. Note that this checks only immediate upper device, |
7681 | * not through a complete stack of devices. The caller must hold the RTNL lock. |
7682 | */ |
7683 | bool netdev_has_upper_dev(struct net_device *dev, |
7684 | struct net_device *upper_dev) |
7685 | { |
7686 | struct netdev_nested_priv priv = { |
7687 | .data = (void *)upper_dev, |
7688 | }; |
7689 | |
7690 | ASSERT_RTNL(); |
7691 | |
7692 | return netdev_walk_all_upper_dev_rcu(dev, fn: ____netdev_has_upper_dev, |
7693 | priv: &priv); |
7694 | } |
7695 | EXPORT_SYMBOL(netdev_has_upper_dev); |
7696 | |
7697 | /** |
7698 | * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device |
7699 | * @dev: device |
7700 | * @upper_dev: upper device to check |
7701 | * |
7702 | * Find out if a device is linked to specified upper device and return true |
7703 | * in case it is. Note that this checks the entire upper device chain. |
7704 | * The caller must hold rcu lock. |
7705 | */ |
7706 | |
7707 | bool netdev_has_upper_dev_all_rcu(struct net_device *dev, |
7708 | struct net_device *upper_dev) |
7709 | { |
7710 | struct netdev_nested_priv priv = { |
7711 | .data = (void *)upper_dev, |
7712 | }; |
7713 | |
7714 | return !!netdev_walk_all_upper_dev_rcu(dev, fn: ____netdev_has_upper_dev, |
7715 | priv: &priv); |
7716 | } |
7717 | EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); |
7718 | |
7719 | /** |
7720 | * netdev_has_any_upper_dev - Check if device is linked to some device |
7721 | * @dev: device |
7722 | * |
7723 | * Find out if a device is linked to an upper device and return true in case |
7724 | * it is. The caller must hold the RTNL lock. |
7725 | */ |
7726 | bool netdev_has_any_upper_dev(struct net_device *dev) |
7727 | { |
7728 | ASSERT_RTNL(); |
7729 | |
7730 | return !list_empty(head: &dev->adj_list.upper); |
7731 | } |
7732 | EXPORT_SYMBOL(netdev_has_any_upper_dev); |
7733 | |
7734 | /** |
7735 | * netdev_master_upper_dev_get - Get master upper device |
7736 | * @dev: device |
7737 | * |
7738 | * Find a master upper device and return pointer to it or NULL in case |
7739 | * it's not there. The caller must hold the RTNL lock. |
7740 | */ |
7741 | struct net_device *netdev_master_upper_dev_get(struct net_device *dev) |
7742 | { |
7743 | struct netdev_adjacent *upper; |
7744 | |
7745 | ASSERT_RTNL(); |
7746 | |
7747 | if (list_empty(head: &dev->adj_list.upper)) |
7748 | return NULL; |
7749 | |
7750 | upper = list_first_entry(&dev->adj_list.upper, |
7751 | struct netdev_adjacent, list); |
7752 | if (likely(upper->master)) |
7753 | return upper->dev; |
7754 | return NULL; |
7755 | } |
7756 | EXPORT_SYMBOL(netdev_master_upper_dev_get); |
7757 | |
7758 | static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) |
7759 | { |
7760 | struct netdev_adjacent *upper; |
7761 | |
7762 | ASSERT_RTNL(); |
7763 | |
7764 | if (list_empty(head: &dev->adj_list.upper)) |
7765 | return NULL; |
7766 | |
7767 | upper = list_first_entry(&dev->adj_list.upper, |
7768 | struct netdev_adjacent, list); |
7769 | if (likely(upper->master) && !upper->ignore) |
7770 | return upper->dev; |
7771 | return NULL; |
7772 | } |
7773 | |
7774 | /** |
7775 | * netdev_has_any_lower_dev - Check if device is linked to some device |
7776 | * @dev: device |
7777 | * |
7778 | * Find out if a device is linked to a lower device and return true in case |
7779 | * it is. The caller must hold the RTNL lock. |
7780 | */ |
7781 | static bool netdev_has_any_lower_dev(struct net_device *dev) |
7782 | { |
7783 | ASSERT_RTNL(); |
7784 | |
7785 | return !list_empty(head: &dev->adj_list.lower); |
7786 | } |
7787 | |
7788 | void *netdev_adjacent_get_private(struct list_head *adj_list) |
7789 | { |
7790 | struct netdev_adjacent *adj; |
7791 | |
7792 | adj = list_entry(adj_list, struct netdev_adjacent, list); |
7793 | |
7794 | return adj->private; |
7795 | } |
7796 | EXPORT_SYMBOL(netdev_adjacent_get_private); |
7797 | |
7798 | /** |
7799 | * netdev_upper_get_next_dev_rcu - Get the next dev from upper list |
7800 | * @dev: device |
7801 | * @iter: list_head ** of the current position |
7802 | * |
7803 | * Gets the next device from the dev's upper list, starting from iter |
7804 | * position. The caller must hold RCU read lock. |
7805 | */ |
7806 | struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, |
7807 | struct list_head **iter) |
7808 | { |
7809 | struct netdev_adjacent *upper; |
7810 | |
7811 | WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); |
7812 | |
7813 | upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
7814 | |
7815 | if (&upper->list == &dev->adj_list.upper) |
7816 | return NULL; |
7817 | |
7818 | *iter = &upper->list; |
7819 | |
7820 | return upper->dev; |
7821 | } |
7822 | EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); |
7823 | |
7824 | static struct net_device *__netdev_next_upper_dev(struct net_device *dev, |
7825 | struct list_head **iter, |
7826 | bool *ignore) |
7827 | { |
7828 | struct netdev_adjacent *upper; |
7829 | |
7830 | upper = list_entry((*iter)->next, struct netdev_adjacent, list); |
7831 | |
7832 | if (&upper->list == &dev->adj_list.upper) |
7833 | return NULL; |
7834 | |
7835 | *iter = &upper->list; |
7836 | *ignore = upper->ignore; |
7837 | |
7838 | return upper->dev; |
7839 | } |
7840 | |
7841 | static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, |
7842 | struct list_head **iter) |
7843 | { |
7844 | struct netdev_adjacent *upper; |
7845 | |
7846 | WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); |
7847 | |
7848 | upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
7849 | |
7850 | if (&upper->list == &dev->adj_list.upper) |
7851 | return NULL; |
7852 | |
7853 | *iter = &upper->list; |
7854 | |
7855 | return upper->dev; |
7856 | } |
7857 | |
7858 | static int __netdev_walk_all_upper_dev(struct net_device *dev, |
7859 | int (*fn)(struct net_device *dev, |
7860 | struct netdev_nested_priv *priv), |
7861 | struct netdev_nested_priv *priv) |
7862 | { |
7863 | struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
7864 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
7865 | int ret, cur = 0; |
7866 | bool ignore; |
7867 | |
7868 | now = dev; |
7869 | iter = &dev->adj_list.upper; |
7870 | |
7871 | while (1) { |
7872 | if (now != dev) { |
7873 | ret = fn(now, priv); |
7874 | if (ret) |
7875 | return ret; |
7876 | } |
7877 | |
7878 | next = NULL; |
7879 | while (1) { |
7880 | udev = __netdev_next_upper_dev(dev: now, iter: &iter, ignore: &ignore); |
7881 | if (!udev) |
7882 | break; |
7883 | if (ignore) |
7884 | continue; |
7885 | |
7886 | next = udev; |
7887 | niter = &udev->adj_list.upper; |
7888 | dev_stack[cur] = now; |
7889 | iter_stack[cur++] = iter; |
7890 | break; |
7891 | } |
7892 | |
7893 | if (!next) { |
7894 | if (!cur) |
7895 | return 0; |
7896 | next = dev_stack[--cur]; |
7897 | niter = iter_stack[cur]; |
7898 | } |
7899 | |
7900 | now = next; |
7901 | iter = niter; |
7902 | } |
7903 | |
7904 | return 0; |
7905 | } |
7906 | |
7907 | int netdev_walk_all_upper_dev_rcu(struct net_device *dev, |
7908 | int (*fn)(struct net_device *dev, |
7909 | struct netdev_nested_priv *priv), |
7910 | struct netdev_nested_priv *priv) |
7911 | { |
7912 | struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
7913 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
7914 | int ret, cur = 0; |
7915 | |
7916 | now = dev; |
7917 | iter = &dev->adj_list.upper; |
7918 | |
7919 | while (1) { |
7920 | if (now != dev) { |
7921 | ret = fn(now, priv); |
7922 | if (ret) |
7923 | return ret; |
7924 | } |
7925 | |
7926 | next = NULL; |
7927 | while (1) { |
7928 | udev = netdev_next_upper_dev_rcu(dev: now, iter: &iter); |
7929 | if (!udev) |
7930 | break; |
7931 | |
7932 | next = udev; |
7933 | niter = &udev->adj_list.upper; |
7934 | dev_stack[cur] = now; |
7935 | iter_stack[cur++] = iter; |
7936 | break; |
7937 | } |
7938 | |
7939 | if (!next) { |
7940 | if (!cur) |
7941 | return 0; |
7942 | next = dev_stack[--cur]; |
7943 | niter = iter_stack[cur]; |
7944 | } |
7945 | |
7946 | now = next; |
7947 | iter = niter; |
7948 | } |
7949 | |
7950 | return 0; |
7951 | } |
7952 | EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); |
7953 | |
7954 | static bool __netdev_has_upper_dev(struct net_device *dev, |
7955 | struct net_device *upper_dev) |
7956 | { |
7957 | struct netdev_nested_priv priv = { |
7958 | .flags = 0, |
7959 | .data = (void *)upper_dev, |
7960 | }; |
7961 | |
7962 | ASSERT_RTNL(); |
7963 | |
7964 | return __netdev_walk_all_upper_dev(dev, fn: ____netdev_has_upper_dev, |
7965 | priv: &priv); |
7966 | } |
7967 | |
7968 | /** |
7969 | * netdev_lower_get_next_private - Get the next ->private from the |
7970 | * lower neighbour list |
7971 | * @dev: device |
7972 | * @iter: list_head ** of the current position |
7973 | * |
7974 | * Gets the next netdev_adjacent->private from the dev's lower neighbour |
7975 | * list, starting from iter position. The caller must hold either hold the |
7976 | * RTNL lock or its own locking that guarantees that the neighbour lower |
7977 | * list will remain unchanged. |
7978 | */ |
7979 | void *netdev_lower_get_next_private(struct net_device *dev, |
7980 | struct list_head **iter) |
7981 | { |
7982 | struct netdev_adjacent *lower; |
7983 | |
7984 | lower = list_entry(*iter, struct netdev_adjacent, list); |
7985 | |
7986 | if (&lower->list == &dev->adj_list.lower) |
7987 | return NULL; |
7988 | |
7989 | *iter = lower->list.next; |
7990 | |
7991 | return lower->private; |
7992 | } |
7993 | EXPORT_SYMBOL(netdev_lower_get_next_private); |
7994 | |
7995 | /** |
7996 | * netdev_lower_get_next_private_rcu - Get the next ->private from the |
7997 | * lower neighbour list, RCU |
7998 | * variant |
7999 | * @dev: device |
8000 | * @iter: list_head ** of the current position |
8001 | * |
8002 | * Gets the next netdev_adjacent->private from the dev's lower neighbour |
8003 | * list, starting from iter position. The caller must hold RCU read lock. |
8004 | */ |
8005 | void *netdev_lower_get_next_private_rcu(struct net_device *dev, |
8006 | struct list_head **iter) |
8007 | { |
8008 | struct netdev_adjacent *lower; |
8009 | |
8010 | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
8011 | |
8012 | lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
8013 | |
8014 | if (&lower->list == &dev->adj_list.lower) |
8015 | return NULL; |
8016 | |
8017 | *iter = &lower->list; |
8018 | |
8019 | return lower->private; |
8020 | } |
8021 | EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); |
8022 | |
8023 | /** |
8024 | * netdev_lower_get_next - Get the next device from the lower neighbour |
8025 | * list |
8026 | * @dev: device |
8027 | * @iter: list_head ** of the current position |
8028 | * |
8029 | * Gets the next netdev_adjacent from the dev's lower neighbour |
8030 | * list, starting from iter position. The caller must hold RTNL lock or |
8031 | * its own locking that guarantees that the neighbour lower |
8032 | * list will remain unchanged. |
8033 | */ |
8034 | void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) |
8035 | { |
8036 | struct netdev_adjacent *lower; |
8037 | |
8038 | lower = list_entry(*iter, struct netdev_adjacent, list); |
8039 | |
8040 | if (&lower->list == &dev->adj_list.lower) |
8041 | return NULL; |
8042 | |
8043 | *iter = lower->list.next; |
8044 | |
8045 | return lower->dev; |
8046 | } |
8047 | EXPORT_SYMBOL(netdev_lower_get_next); |
8048 | |
8049 | static struct net_device *netdev_next_lower_dev(struct net_device *dev, |
8050 | struct list_head **iter) |
8051 | { |
8052 | struct netdev_adjacent *lower; |
8053 | |
8054 | lower = list_entry((*iter)->next, struct netdev_adjacent, list); |
8055 | |
8056 | if (&lower->list == &dev->adj_list.lower) |
8057 | return NULL; |
8058 | |
8059 | *iter = &lower->list; |
8060 | |
8061 | return lower->dev; |
8062 | } |
8063 | |
8064 | static struct net_device *__netdev_next_lower_dev(struct net_device *dev, |
8065 | struct list_head **iter, |
8066 | bool *ignore) |
8067 | { |
8068 | struct netdev_adjacent *lower; |
8069 | |
8070 | lower = list_entry((*iter)->next, struct netdev_adjacent, list); |
8071 | |
8072 | if (&lower->list == &dev->adj_list.lower) |
8073 | return NULL; |
8074 | |
8075 | *iter = &lower->list; |
8076 | *ignore = lower->ignore; |
8077 | |
8078 | return lower->dev; |
8079 | } |
8080 | |
8081 | int netdev_walk_all_lower_dev(struct net_device *dev, |
8082 | int (*fn)(struct net_device *dev, |
8083 | struct netdev_nested_priv *priv), |
8084 | struct netdev_nested_priv *priv) |
8085 | { |
8086 | struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
8087 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
8088 | int ret, cur = 0; |
8089 | |
8090 | now = dev; |
8091 | iter = &dev->adj_list.lower; |
8092 | |
8093 | while (1) { |
8094 | if (now != dev) { |
8095 | ret = fn(now, priv); |
8096 | if (ret) |
8097 | return ret; |
8098 | } |
8099 | |
8100 | next = NULL; |
8101 | while (1) { |
8102 | ldev = netdev_next_lower_dev(dev: now, iter: &iter); |
8103 | if (!ldev) |
8104 | break; |
8105 | |
8106 | next = ldev; |
8107 | niter = &ldev->adj_list.lower; |
8108 | dev_stack[cur] = now; |
8109 | iter_stack[cur++] = iter; |
8110 | break; |
8111 | } |
8112 | |
8113 | if (!next) { |
8114 | if (!cur) |
8115 | return 0; |
8116 | next = dev_stack[--cur]; |
8117 | niter = iter_stack[cur]; |
8118 | } |
8119 | |
8120 | now = next; |
8121 | iter = niter; |
8122 | } |
8123 | |
8124 | return 0; |
8125 | } |
8126 | EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); |
8127 | |
8128 | static int __netdev_walk_all_lower_dev(struct net_device *dev, |
8129 | int (*fn)(struct net_device *dev, |
8130 | struct netdev_nested_priv *priv), |
8131 | struct netdev_nested_priv *priv) |
8132 | { |
8133 | struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
8134 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
8135 | int ret, cur = 0; |
8136 | bool ignore; |
8137 | |
8138 | now = dev; |
8139 | iter = &dev->adj_list.lower; |
8140 | |
8141 | while (1) { |
8142 | if (now != dev) { |
8143 | ret = fn(now, priv); |
8144 | if (ret) |
8145 | return ret; |
8146 | } |
8147 | |
8148 | next = NULL; |
8149 | while (1) { |
8150 | ldev = __netdev_next_lower_dev(dev: now, iter: &iter, ignore: &ignore); |
8151 | if (!ldev) |
8152 | break; |
8153 | if (ignore) |
8154 | continue; |
8155 | |
8156 | next = ldev; |
8157 | niter = &ldev->adj_list.lower; |
8158 | dev_stack[cur] = now; |
8159 | iter_stack[cur++] = iter; |
8160 | break; |
8161 | } |
8162 | |
8163 | if (!next) { |
8164 | if (!cur) |
8165 | return 0; |
8166 | next = dev_stack[--cur]; |
8167 | niter = iter_stack[cur]; |
8168 | } |
8169 | |
8170 | now = next; |
8171 | iter = niter; |
8172 | } |
8173 | |
8174 | return 0; |
8175 | } |
8176 | |
8177 | struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, |
8178 | struct list_head **iter) |
8179 | { |
8180 | struct netdev_adjacent *lower; |
8181 | |
8182 | lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
8183 | if (&lower->list == &dev->adj_list.lower) |
8184 | return NULL; |
8185 | |
8186 | *iter = &lower->list; |
8187 | |
8188 | return lower->dev; |
8189 | } |
8190 | EXPORT_SYMBOL(netdev_next_lower_dev_rcu); |
8191 | |
8192 | static u8 __netdev_upper_depth(struct net_device *dev) |
8193 | { |
8194 | struct net_device *udev; |
8195 | struct list_head *iter; |
8196 | u8 max_depth = 0; |
8197 | bool ignore; |
8198 | |
8199 | for (iter = &dev->adj_list.upper, |
8200 | udev = __netdev_next_upper_dev(dev, iter: &iter, ignore: &ignore); |
8201 | udev; |
8202 | udev = __netdev_next_upper_dev(dev, iter: &iter, ignore: &ignore)) { |
8203 | if (ignore) |
8204 | continue; |
8205 | if (max_depth < udev->upper_level) |
8206 | max_depth = udev->upper_level; |
8207 | } |
8208 | |
8209 | return max_depth; |
8210 | } |
8211 | |
8212 | static u8 __netdev_lower_depth(struct net_device *dev) |
8213 | { |
8214 | struct net_device *ldev; |
8215 | struct list_head *iter; |
8216 | u8 max_depth = 0; |
8217 | bool ignore; |
8218 | |
8219 | for (iter = &dev->adj_list.lower, |
8220 | ldev = __netdev_next_lower_dev(dev, iter: &iter, ignore: &ignore); |
8221 | ldev; |
8222 | ldev = __netdev_next_lower_dev(dev, iter: &iter, ignore: &ignore)) { |
8223 | if (ignore) |
8224 | continue; |
8225 | if (max_depth < ldev->lower_level) |
8226 | max_depth = ldev->lower_level; |
8227 | } |
8228 | |
8229 | return max_depth; |
8230 | } |
8231 | |
8232 | static int __netdev_update_upper_level(struct net_device *dev, |
8233 | struct netdev_nested_priv *__unused) |
8234 | { |
8235 | dev->upper_level = __netdev_upper_depth(dev) + 1; |
8236 | return 0; |
8237 | } |
8238 | |
8239 | #ifdef CONFIG_LOCKDEP |
8240 | static LIST_HEAD(net_unlink_list); |
8241 | |
8242 | static void net_unlink_todo(struct net_device *dev) |
8243 | { |
8244 | if (list_empty(head: &dev->unlink_list)) |
8245 | list_add_tail(new: &dev->unlink_list, head: &net_unlink_list); |
8246 | } |
8247 | #endif |
8248 | |
8249 | static int __netdev_update_lower_level(struct net_device *dev, |
8250 | struct netdev_nested_priv *priv) |
8251 | { |
8252 | dev->lower_level = __netdev_lower_depth(dev) + 1; |
8253 | |
8254 | #ifdef CONFIG_LOCKDEP |
8255 | if (!priv) |
8256 | return 0; |
8257 | |
8258 | if (priv->flags & NESTED_SYNC_IMM) |
8259 | dev->nested_level = dev->lower_level - 1; |
8260 | if (priv->flags & NESTED_SYNC_TODO) |
8261 | net_unlink_todo(dev); |
8262 | #endif |
8263 | return 0; |
8264 | } |
8265 | |
8266 | int netdev_walk_all_lower_dev_rcu(struct net_device *dev, |
8267 | int (*fn)(struct net_device *dev, |
8268 | struct netdev_nested_priv *priv), |
8269 | struct netdev_nested_priv *priv) |
8270 | { |
8271 | struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
8272 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
8273 | int ret, cur = 0; |
8274 | |
8275 | now = dev; |
8276 | iter = &dev->adj_list.lower; |
8277 | |
8278 | while (1) { |
8279 | if (now != dev) { |
8280 | ret = fn(now, priv); |
8281 | if (ret) |
8282 | return ret; |
8283 | } |
8284 | |
8285 | next = NULL; |
8286 | while (1) { |
8287 | ldev = netdev_next_lower_dev_rcu(now, &iter); |
8288 | if (!ldev) |
8289 | break; |
8290 | |
8291 | next = ldev; |
8292 | niter = &ldev->adj_list.lower; |
8293 | dev_stack[cur] = now; |
8294 | iter_stack[cur++] = iter; |
8295 | break; |
8296 | } |
8297 | |
8298 | if (!next) { |
8299 | if (!cur) |
8300 | return 0; |
8301 | next = dev_stack[--cur]; |
8302 | niter = iter_stack[cur]; |
8303 | } |
8304 | |
8305 | now = next; |
8306 | iter = niter; |
8307 | } |
8308 | |
8309 | return 0; |
8310 | } |
8311 | EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); |
8312 | |
8313 | /** |
8314 | * netdev_lower_get_first_private_rcu - Get the first ->private from the |
8315 | * lower neighbour list, RCU |
8316 | * variant |
8317 | * @dev: device |
8318 | * |
8319 | * Gets the first netdev_adjacent->private from the dev's lower neighbour |
8320 | * list. The caller must hold RCU read lock. |
8321 | */ |
8322 | void *netdev_lower_get_first_private_rcu(struct net_device *dev) |
8323 | { |
8324 | struct netdev_adjacent *lower; |
8325 | |
8326 | lower = list_first_or_null_rcu(&dev->adj_list.lower, |
8327 | struct netdev_adjacent, list); |
8328 | if (lower) |
8329 | return lower->private; |
8330 | return NULL; |
8331 | } |
8332 | EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); |
8333 | |
8334 | /** |
8335 | * netdev_master_upper_dev_get_rcu - Get master upper device |
8336 | * @dev: device |
8337 | * |
8338 | * Find a master upper device and return pointer to it or NULL in case |
8339 | * it's not there. The caller must hold the RCU read lock. |
8340 | */ |
8341 | struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) |
8342 | { |
8343 | struct netdev_adjacent *upper; |
8344 | |
8345 | upper = list_first_or_null_rcu(&dev->adj_list.upper, |
8346 | struct netdev_adjacent, list); |
8347 | if (upper && likely(upper->master)) |
8348 | return upper->dev; |
8349 | return NULL; |
8350 | } |
8351 | EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); |
8352 | |
8353 | static int netdev_adjacent_sysfs_add(struct net_device *dev, |
8354 | struct net_device *adj_dev, |
8355 | struct list_head *dev_list) |
8356 | { |
8357 | char linkname[IFNAMSIZ+7]; |
8358 | |
8359 | sprintf(buf: linkname, fmt: dev_list == &dev->adj_list.upper ? |
8360 | "upper_%s": "lower_%s", adj_dev->name); |
8361 | return sysfs_create_link(kobj: &(dev->dev.kobj), target: &(adj_dev->dev.kobj), |
8362 | name: linkname); |
8363 | } |
8364 | static void netdev_adjacent_sysfs_del(struct net_device *dev, |
8365 | char *name, |
8366 | struct list_head *dev_list) |
8367 | { |
8368 | char linkname[IFNAMSIZ+7]; |
8369 | |
8370 | sprintf(buf: linkname, fmt: dev_list == &dev->adj_list.upper ? |
8371 | "upper_%s": "lower_%s", name); |
8372 | sysfs_remove_link(kobj: &(dev->dev.kobj), name: linkname); |
8373 | } |
8374 | |
8375 | static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, |
8376 | struct net_device *adj_dev, |
8377 | struct list_head *dev_list) |
8378 | { |
8379 | return (dev_list == &dev->adj_list.upper || |
8380 | dev_list == &dev->adj_list.lower) && |
8381 | net_eq(net1: dev_net(dev), net2: dev_net(dev: adj_dev)); |
8382 | } |
8383 | |
8384 | static int __netdev_adjacent_dev_insert(struct net_device *dev, |
8385 | struct net_device *adj_dev, |
8386 | struct list_head *dev_list, |
8387 | void *private, bool master) |
8388 | { |
8389 | struct netdev_adjacent *adj; |
8390 | int ret; |
8391 | |
8392 | adj = __netdev_find_adj(adj_dev, adj_list: dev_list); |
8393 | |
8394 | if (adj) { |
8395 | adj->ref_nr += 1; |
8396 | pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", |
8397 | dev->name, adj_dev->name, adj->ref_nr); |
8398 | |
8399 | return 0; |
8400 | } |
8401 | |
8402 | adj = kmalloc(sizeof(*adj), GFP_KERNEL); |
8403 | if (!adj) |
8404 | return -ENOMEM; |
8405 | |
8406 | adj->dev = adj_dev; |
8407 | adj->master = master; |
8408 | adj->ref_nr = 1; |
8409 | adj->private = private; |
8410 | adj->ignore = false; |
8411 | netdev_hold(dev: adj_dev, tracker: &adj->dev_tracker, GFP_KERNEL); |
8412 | |
8413 | pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", |
8414 | dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); |
8415 | |
8416 | if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { |
8417 | ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); |
8418 | if (ret) |
8419 | goto free_adj; |
8420 | } |
8421 | |
8422 | /* Ensure that master link is always the first item in list. */ |
8423 | if (master) { |
8424 | ret = sysfs_create_link(kobj: &(dev->dev.kobj), |
8425 | target: &(adj_dev->dev.kobj), name: "master"); |
8426 | if (ret) |
8427 | goto remove_symlinks; |
8428 | |
8429 | list_add_rcu(new: &adj->list, head: dev_list); |
8430 | } else { |
8431 | list_add_tail_rcu(new: &adj->list, head: dev_list); |
8432 | } |
8433 | |
8434 | return 0; |
8435 | |
8436 | remove_symlinks: |
8437 | if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) |
8438 | netdev_adjacent_sysfs_del(dev, name: adj_dev->name, dev_list); |
8439 | free_adj: |
8440 | netdev_put(dev: adj_dev, tracker: &adj->dev_tracker); |
8441 | kfree(objp: adj); |
8442 | |
8443 | return ret; |
8444 | } |
8445 | |
8446 | static void __netdev_adjacent_dev_remove(struct net_device *dev, |
8447 | struct net_device *adj_dev, |
8448 | u16 ref_nr, |
8449 | struct list_head *dev_list) |
8450 | { |
8451 | struct netdev_adjacent *adj; |
8452 | |
8453 | pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", |
8454 | dev->name, adj_dev->name, ref_nr); |
8455 | |
8456 | adj = __netdev_find_adj(adj_dev, adj_list: dev_list); |
8457 | |
8458 | if (!adj) { |
8459 | pr_err("Adjacency does not exist for device %s from %s\n", |
8460 | dev->name, adj_dev->name); |
8461 | WARN_ON(1); |
8462 | return; |
8463 | } |
8464 | |
8465 | if (adj->ref_nr > ref_nr) { |
8466 | pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", |
8467 | dev->name, adj_dev->name, ref_nr, |
8468 | adj->ref_nr - ref_nr); |
8469 | adj->ref_nr -= ref_nr; |
8470 | return; |
8471 | } |
8472 | |
8473 | if (adj->master) |
8474 | sysfs_remove_link(kobj: &(dev->dev.kobj), name: "master"); |
8475 | |
8476 | if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) |
8477 | netdev_adjacent_sysfs_del(dev, name: adj_dev->name, dev_list); |
8478 | |
8479 | list_del_rcu(entry: &adj->list); |
8480 | pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", |
8481 | adj_dev->name, dev->name, adj_dev->name); |
8482 | netdev_put(dev: adj_dev, tracker: &adj->dev_tracker); |
8483 | kfree_rcu(adj, rcu); |
8484 | } |
8485 | |
8486 | static int __netdev_adjacent_dev_link_lists(struct net_device *dev, |
8487 | struct net_device *upper_dev, |
8488 | struct list_head *up_list, |
8489 | struct list_head *down_list, |
8490 | void *private, bool master) |
8491 | { |
8492 | int ret; |
8493 | |
8494 | ret = __netdev_adjacent_dev_insert(dev, adj_dev: upper_dev, dev_list: up_list, |
8495 | private, master); |
8496 | if (ret) |
8497 | return ret; |
8498 | |
8499 | ret = __netdev_adjacent_dev_insert(dev: upper_dev, adj_dev: dev, dev_list: down_list, |
8500 | private, master: false); |
8501 | if (ret) { |
8502 | __netdev_adjacent_dev_remove(dev, adj_dev: upper_dev, ref_nr: 1, dev_list: up_list); |
8503 | return ret; |
8504 | } |
8505 | |
8506 | return 0; |
8507 | } |
8508 | |
8509 | static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, |
8510 | struct net_device *upper_dev, |
8511 | u16 ref_nr, |
8512 | struct list_head *up_list, |
8513 | struct list_head *down_list) |
8514 | { |
8515 | __netdev_adjacent_dev_remove(dev, adj_dev: upper_dev, ref_nr, dev_list: up_list); |
8516 | __netdev_adjacent_dev_remove(dev: upper_dev, adj_dev: dev, ref_nr, dev_list: down_list); |
8517 | } |
8518 | |
8519 | static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, |
8520 | struct net_device *upper_dev, |
8521 | void *private, bool master) |
8522 | { |
8523 | return __netdev_adjacent_dev_link_lists(dev, upper_dev, |
8524 | up_list: &dev->adj_list.upper, |
8525 | down_list: &upper_dev->adj_list.lower, |
8526 | private, master); |
8527 | } |
8528 | |
8529 | static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, |
8530 | struct net_device *upper_dev) |
8531 | { |
8532 | __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr: 1, |
8533 | up_list: &dev->adj_list.upper, |
8534 | down_list: &upper_dev->adj_list.lower); |
8535 | } |
8536 | |
8537 | static int __netdev_upper_dev_link(struct net_device *dev, |
8538 | struct net_device *upper_dev, bool master, |
8539 | void *upper_priv, void *upper_info, |
8540 | struct netdev_nested_priv *priv, |
8541 | struct netlink_ext_ack *extack) |
8542 | { |
8543 | struct netdev_notifier_changeupper_info changeupper_info = { |
8544 | .info = { |
8545 | .dev = dev, |
8546 | .extack = extack, |
8547 | }, |
8548 | .upper_dev = upper_dev, |
8549 | .master = master, |
8550 | .linking = true, |
8551 | .upper_info = upper_info, |
8552 | }; |
8553 | struct net_device *master_dev; |
8554 | int ret = 0; |
8555 | |
8556 | ASSERT_RTNL(); |
8557 | |
8558 | if (dev == upper_dev) |
8559 | return -EBUSY; |
8560 | |
8561 | /* To prevent loops, check if dev is not upper device to upper_dev. */ |
8562 | if (__netdev_has_upper_dev(dev: upper_dev, upper_dev: dev)) |
8563 | return -EBUSY; |
8564 | |
8565 | if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) |
8566 | return -EMLINK; |
8567 | |
8568 | if (!master) { |
8569 | if (__netdev_has_upper_dev(dev, upper_dev)) |
8570 | return -EEXIST; |
8571 | } else { |
8572 | master_dev = __netdev_master_upper_dev_get(dev); |
8573 | if (master_dev) |
8574 | return master_dev == upper_dev ? -EEXIST : -EBUSY; |
8575 | } |
8576 | |
8577 | ret = call_netdevice_notifiers_info(val: NETDEV_PRECHANGEUPPER, |
8578 | info: &changeupper_info.info); |
8579 | ret = notifier_to_errno(ret); |
8580 | if (ret) |
8581 | return ret; |
8582 | |
8583 | ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private: upper_priv, |
8584 | master); |
8585 | if (ret) |
8586 | return ret; |
8587 | |
8588 | ret = call_netdevice_notifiers_info(val: NETDEV_CHANGEUPPER, |
8589 | info: &changeupper_info.info); |
8590 | ret = notifier_to_errno(ret); |
8591 | if (ret) |
8592 | goto rollback; |
8593 | |
8594 | __netdev_update_upper_level(dev, NULL); |
8595 | __netdev_walk_all_lower_dev(dev, fn: __netdev_update_upper_level, NULL); |
8596 | |
8597 | __netdev_update_lower_level(dev: upper_dev, priv); |
8598 | __netdev_walk_all_upper_dev(dev: upper_dev, fn: __netdev_update_lower_level, |
8599 | priv); |
8600 | |
8601 | return 0; |
8602 | |
8603 | rollback: |
8604 | __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); |
8605 | |
8606 | return ret; |
8607 | } |
8608 | |
8609 | /** |
8610 | * netdev_upper_dev_link - Add a link to the upper device |
8611 | * @dev: device |
8612 | * @upper_dev: new upper device |
8613 | * @extack: netlink extended ack |
8614 | * |
8615 | * Adds a link to device which is upper to this one. The caller must hold |
8616 | * the RTNL lock. On a failure a negative errno code is returned. |
8617 | * On success the reference counts are adjusted and the function |
8618 | * returns zero. |
8619 | */ |
8620 | int netdev_upper_dev_link(struct net_device *dev, |
8621 | struct net_device *upper_dev, |
8622 | struct netlink_ext_ack *extack) |
8623 | { |
8624 | struct netdev_nested_priv priv = { |
8625 | .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, |
8626 | .data = NULL, |
8627 | }; |
8628 | |
8629 | return __netdev_upper_dev_link(dev, upper_dev, master: false, |
8630 | NULL, NULL, priv: &priv, extack); |
8631 | } |
8632 | EXPORT_SYMBOL(netdev_upper_dev_link); |
8633 | |
8634 | /** |
8635 | * netdev_master_upper_dev_link - Add a master link to the upper device |
8636 | * @dev: device |
8637 | * @upper_dev: new upper device |
8638 | * @upper_priv: upper device private |
8639 | * @upper_info: upper info to be passed down via notifier |
8640 | * @extack: netlink extended ack |
8641 | * |
8642 | * Adds a link to device which is upper to this one. In this case, only |
8643 | * one master upper device can be linked, although other non-master devices |
8644 | * might be linked as well. The caller must hold the RTNL lock. |
8645 | * On a failure a negative errno code is returned. On success the reference |
8646 | * counts are adjusted and the function returns zero. |
8647 | */ |
8648 | int netdev_master_upper_dev_link(struct net_device *dev, |
8649 | struct net_device *upper_dev, |
8650 | void *upper_priv, void *upper_info, |
8651 | struct netlink_ext_ack *extack) |
8652 | { |
8653 | struct netdev_nested_priv priv = { |
8654 | .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, |
8655 | .data = NULL, |
8656 | }; |
8657 | |
8658 | return __netdev_upper_dev_link(dev, upper_dev, master: true, |
8659 | upper_priv, upper_info, priv: &priv, extack); |
8660 | } |
8661 | EXPORT_SYMBOL(netdev_master_upper_dev_link); |
8662 | |
8663 | static void __netdev_upper_dev_unlink(struct net_device *dev, |
8664 | struct net_device *upper_dev, |
8665 | struct netdev_nested_priv *priv) |
8666 | { |
8667 | struct netdev_notifier_changeupper_info changeupper_info = { |
8668 | .info = { |
8669 | .dev = dev, |
8670 | }, |
8671 | .upper_dev = upper_dev, |
8672 | .linking = false, |
8673 | }; |
8674 | |
8675 | ASSERT_RTNL(); |
8676 | |
8677 | changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; |
8678 | |
8679 | call_netdevice_notifiers_info(val: NETDEV_PRECHANGEUPPER, |
8680 | info: &changeupper_info.info); |
8681 | |
8682 | __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); |
8683 | |
8684 | call_netdevice_notifiers_info(val: NETDEV_CHANGEUPPER, |
8685 | info: &changeupper_info.info); |
8686 | |
8687 | __netdev_update_upper_level(dev, NULL); |
8688 | __netdev_walk_all_lower_dev(dev, fn: __netdev_update_upper_level, NULL); |
8689 | |
8690 | __netdev_update_lower_level(dev: upper_dev, priv); |
8691 | __netdev_walk_all_upper_dev(dev: upper_dev, fn: __netdev_update_lower_level, |
8692 | priv); |
8693 | } |
8694 | |
8695 | /** |
8696 | * netdev_upper_dev_unlink - Removes a link to upper device |
8697 | * @dev: device |
8698 | * @upper_dev: new upper device |
8699 | * |
8700 | * Removes a link to device which is upper to this one. The caller must hold |
8701 | * the RTNL lock. |
8702 | */ |
8703 | void netdev_upper_dev_unlink(struct net_device *dev, |
8704 | struct net_device *upper_dev) |
8705 | { |
8706 | struct netdev_nested_priv priv = { |
8707 | .flags = NESTED_SYNC_TODO, |
8708 | .data = NULL, |
8709 | }; |
8710 | |
8711 | __netdev_upper_dev_unlink(dev, upper_dev, priv: &priv); |
8712 | } |
8713 | EXPORT_SYMBOL(netdev_upper_dev_unlink); |
8714 | |
8715 | static void __netdev_adjacent_dev_set(struct net_device *upper_dev, |
8716 | struct net_device *lower_dev, |
8717 | bool val) |
8718 | { |
8719 | struct netdev_adjacent *adj; |
8720 | |
8721 | adj = __netdev_find_adj(adj_dev: lower_dev, adj_list: &upper_dev->adj_list.lower); |
8722 | if (adj) |
8723 | adj->ignore = val; |
8724 | |
8725 | adj = __netdev_find_adj(adj_dev: upper_dev, adj_list: &lower_dev->adj_list.upper); |
8726 | if (adj) |
8727 | adj->ignore = val; |
8728 | } |
8729 | |
8730 | static void netdev_adjacent_dev_disable(struct net_device *upper_dev, |
8731 | struct net_device *lower_dev) |
8732 | { |
8733 | __netdev_adjacent_dev_set(upper_dev, lower_dev, val: true); |
8734 | } |
8735 | |
8736 | static void netdev_adjacent_dev_enable(struct net_device *upper_dev, |
8737 | struct net_device *lower_dev) |
8738 | { |
8739 | __netdev_adjacent_dev_set(upper_dev, lower_dev, val: false); |
8740 | } |
8741 | |
8742 | int netdev_adjacent_change_prepare(struct net_device *old_dev, |
8743 | struct net_device *new_dev, |
8744 | struct net_device *dev, |
8745 | struct netlink_ext_ack *extack) |
8746 | { |
8747 | struct netdev_nested_priv priv = { |
8748 | .flags = 0, |
8749 | .data = NULL, |
8750 | }; |
8751 | int err; |
8752 | |
8753 | if (!new_dev) |
8754 | return 0; |
8755 | |
8756 | if (old_dev && new_dev != old_dev) |
8757 | netdev_adjacent_dev_disable(upper_dev: dev, lower_dev: old_dev); |
8758 | err = __netdev_upper_dev_link(dev: new_dev, upper_dev: dev, master: false, NULL, NULL, priv: &priv, |
8759 | extack); |
8760 | if (err) { |
8761 | if (old_dev && new_dev != old_dev) |
8762 | netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev); |
8763 | return err; |
8764 | } |
8765 | |
8766 | return 0; |
8767 | } |
8768 | EXPORT_SYMBOL(netdev_adjacent_change_prepare); |
8769 | |
8770 | void netdev_adjacent_change_commit(struct net_device *old_dev, |
8771 | struct net_device *new_dev, |
8772 | struct net_device *dev) |
8773 | { |
8774 | struct netdev_nested_priv priv = { |
8775 | .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, |
8776 | .data = NULL, |
8777 | }; |
8778 | |
8779 | if (!new_dev || !old_dev) |
8780 | return; |
8781 | |
8782 | if (new_dev == old_dev) |
8783 | return; |
8784 | |
8785 | netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev); |
8786 | __netdev_upper_dev_unlink(dev: old_dev, upper_dev: dev, priv: &priv); |
8787 | } |
8788 | EXPORT_SYMBOL(netdev_adjacent_change_commit); |
8789 | |
8790 | void netdev_adjacent_change_abort(struct net_device *old_dev, |
8791 | struct net_device *new_dev, |
8792 | struct net_device *dev) |
8793 | { |
8794 | struct netdev_nested_priv priv = { |
8795 | .flags = 0, |
8796 | .data = NULL, |
8797 | }; |
8798 | |
8799 | if (!new_dev) |
8800 | return; |
8801 | |
8802 | if (old_dev && new_dev != old_dev) |
8803 | netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev); |
8804 | |
8805 | __netdev_upper_dev_unlink(dev: new_dev, upper_dev: dev, priv: &priv); |
8806 | } |
8807 | EXPORT_SYMBOL(netdev_adjacent_change_abort); |
8808 | |
8809 | /** |
8810 | * netdev_bonding_info_change - Dispatch event about slave change |
8811 | * @dev: device |
8812 | * @bonding_info: info to dispatch |
8813 | * |
8814 | * Send NETDEV_BONDING_INFO to netdev notifiers with info. |
8815 | * The caller must hold the RTNL lock. |
8816 | */ |
8817 | void netdev_bonding_info_change(struct net_device *dev, |
8818 | struct netdev_bonding_info *bonding_info) |
8819 | { |
8820 | struct netdev_notifier_bonding_info info = { |
8821 | .info.dev = dev, |
8822 | }; |
8823 | |
8824 | memcpy(&info.bonding_info, bonding_info, |
8825 | sizeof(struct netdev_bonding_info)); |
8826 | call_netdevice_notifiers_info(val: NETDEV_BONDING_INFO, |
8827 | info: &info.info); |
8828 | } |
8829 | EXPORT_SYMBOL(netdev_bonding_info_change); |
8830 | |
8831 | static int netdev_offload_xstats_enable_l3(struct net_device *dev, |
8832 | struct netlink_ext_ack *extack) |
8833 | { |
8834 | struct netdev_notifier_offload_xstats_info info = { |
8835 | .info.dev = dev, |
8836 | .info.extack = extack, |
8837 | .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, |
8838 | }; |
8839 | int err; |
8840 | int rc; |
8841 | |
8842 | dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), |
8843 | GFP_KERNEL); |
8844 | if (!dev->offload_xstats_l3) |
8845 | return -ENOMEM; |
8846 | |
8847 | rc = call_netdevice_notifiers_info_robust(val_up: NETDEV_OFFLOAD_XSTATS_ENABLE, |
8848 | val_down: NETDEV_OFFLOAD_XSTATS_DISABLE, |
8849 | info: &info.info); |
8850 | err = notifier_to_errno(ret: rc); |
8851 | if (err) |
8852 | goto free_stats; |
8853 | |
8854 | return 0; |
8855 | |
8856 | free_stats: |
8857 | kfree(objp: dev->offload_xstats_l3); |
8858 | dev->offload_xstats_l3 = NULL; |
8859 | return err; |
8860 | } |
8861 | |
8862 | int netdev_offload_xstats_enable(struct net_device *dev, |
8863 | enum netdev_offload_xstats_type type, |
8864 | struct netlink_ext_ack *extack) |
8865 | { |
8866 | ASSERT_RTNL(); |
8867 | |
8868 | if (netdev_offload_xstats_enabled(dev, type)) |
8869 | return -EALREADY; |
8870 | |
8871 | switch (type) { |
8872 | case NETDEV_OFFLOAD_XSTATS_TYPE_L3: |
8873 | return netdev_offload_xstats_enable_l3(dev, extack); |
8874 | } |
8875 | |
8876 | WARN_ON(1); |
8877 | return -EINVAL; |
8878 | } |
8879 | EXPORT_SYMBOL(netdev_offload_xstats_enable); |
8880 | |
8881 | static void netdev_offload_xstats_disable_l3(struct net_device *dev) |
8882 | { |
8883 | struct netdev_notifier_offload_xstats_info info = { |
8884 | .info.dev = dev, |
8885 | .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, |
8886 | }; |
8887 | |
8888 | call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_DISABLE, |
8889 | info: &info.info); |
8890 | kfree(objp: dev->offload_xstats_l3); |
8891 | dev->offload_xstats_l3 = NULL; |
8892 | } |
8893 | |
8894 | int netdev_offload_xstats_disable(struct net_device *dev, |
8895 | enum netdev_offload_xstats_type type) |
8896 | { |
8897 | ASSERT_RTNL(); |
8898 | |
8899 | if (!netdev_offload_xstats_enabled(dev, type)) |
8900 | return -EALREADY; |
8901 | |
8902 | switch (type) { |
8903 | case NETDEV_OFFLOAD_XSTATS_TYPE_L3: |
8904 | netdev_offload_xstats_disable_l3(dev); |
8905 | return 0; |
8906 | } |
8907 | |
8908 | WARN_ON(1); |
8909 | return -EINVAL; |
8910 | } |
8911 | EXPORT_SYMBOL(netdev_offload_xstats_disable); |
8912 | |
8913 | static void netdev_offload_xstats_disable_all(struct net_device *dev) |
8914 | { |
8915 | netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); |
8916 | } |
8917 | |
8918 | static struct rtnl_hw_stats64 * |
8919 | netdev_offload_xstats_get_ptr(const struct net_device *dev, |
8920 | enum netdev_offload_xstats_type type) |
8921 | { |
8922 | switch (type) { |
8923 | case NETDEV_OFFLOAD_XSTATS_TYPE_L3: |
8924 | return dev->offload_xstats_l3; |
8925 | } |
8926 | |
8927 | WARN_ON(1); |
8928 | return NULL; |
8929 | } |
8930 | |
8931 | bool netdev_offload_xstats_enabled(const struct net_device *dev, |
8932 | enum netdev_offload_xstats_type type) |
8933 | { |
8934 | ASSERT_RTNL(); |
8935 | |
8936 | return netdev_offload_xstats_get_ptr(dev, type); |
8937 | } |
8938 | EXPORT_SYMBOL(netdev_offload_xstats_enabled); |
8939 | |
8940 | struct netdev_notifier_offload_xstats_ru { |
8941 | bool used; |
8942 | }; |
8943 | |
8944 | struct netdev_notifier_offload_xstats_rd { |
8945 | struct rtnl_hw_stats64 stats; |
8946 | bool used; |
8947 | }; |
8948 | |
8949 | static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, |
8950 | const struct rtnl_hw_stats64 *src) |
8951 | { |
8952 | dest->rx_packets += src->rx_packets; |
8953 | dest->tx_packets += src->tx_packets; |
8954 | dest->rx_bytes += src->rx_bytes; |
8955 | dest->tx_bytes += src->tx_bytes; |
8956 | dest->rx_errors += src->rx_errors; |
8957 | dest->tx_errors += src->tx_errors; |
8958 | dest->rx_dropped += src->rx_dropped; |
8959 | dest->tx_dropped += src->tx_dropped; |
8960 | dest->multicast += src->multicast; |
8961 | } |
8962 | |
8963 | static int netdev_offload_xstats_get_used(struct net_device *dev, |
8964 | enum netdev_offload_xstats_type type, |
8965 | bool *p_used, |
8966 | struct netlink_ext_ack *extack) |
8967 | { |
8968 | struct netdev_notifier_offload_xstats_ru report_used = {}; |
8969 | struct netdev_notifier_offload_xstats_info info = { |
8970 | .info.dev = dev, |
8971 | .info.extack = extack, |
8972 | .type = type, |
8973 | .report_used = &report_used, |
8974 | }; |
8975 | int rc; |
8976 | |
8977 | WARN_ON(!netdev_offload_xstats_enabled(dev, type)); |
8978 | rc = call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_REPORT_USED, |
8979 | info: &info.info); |
8980 | *p_used = report_used.used; |
8981 | return notifier_to_errno(ret: rc); |
8982 | } |
8983 | |
8984 | static int netdev_offload_xstats_get_stats(struct net_device *dev, |
8985 | enum netdev_offload_xstats_type type, |
8986 | struct rtnl_hw_stats64 *p_stats, |
8987 | bool *p_used, |
8988 | struct netlink_ext_ack *extack) |
8989 | { |
8990 | struct netdev_notifier_offload_xstats_rd report_delta = {}; |
8991 | struct netdev_notifier_offload_xstats_info info = { |
8992 | .info.dev = dev, |
8993 | .info.extack = extack, |
8994 | .type = type, |
8995 | .report_delta = &report_delta, |
8996 | }; |
8997 | struct rtnl_hw_stats64 *stats; |
8998 | int rc; |
8999 | |
9000 | stats = netdev_offload_xstats_get_ptr(dev, type); |
9001 | if (WARN_ON(!stats)) |
9002 | return -EINVAL; |
9003 | |
9004 | rc = call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, |
9005 | info: &info.info); |
9006 | |
9007 | /* Cache whatever we got, even if there was an error, otherwise the |
9008 | * successful stats retrievals would get lost. |
9009 | */ |
9010 | netdev_hw_stats64_add(dest: stats, src: &report_delta.stats); |
9011 | |
9012 | if (p_stats) |
9013 | *p_stats = *stats; |
9014 | *p_used = report_delta.used; |
9015 | |
9016 | return notifier_to_errno(ret: rc); |
9017 | } |
9018 | |
9019 | int netdev_offload_xstats_get(struct net_device *dev, |
9020 | enum netdev_offload_xstats_type type, |
9021 | struct rtnl_hw_stats64 *p_stats, bool *p_used, |
9022 | struct netlink_ext_ack *extack) |
9023 | { |
9024 | ASSERT_RTNL(); |
9025 | |
9026 | if (p_stats) |
9027 | return netdev_offload_xstats_get_stats(dev, type, p_stats, |
9028 | p_used, extack); |
9029 | else |
9030 | return netdev_offload_xstats_get_used(dev, type, p_used, |
9031 | extack); |
9032 | } |
9033 | EXPORT_SYMBOL(netdev_offload_xstats_get); |
9034 | |
9035 | void |
9036 | netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, |
9037 | const struct rtnl_hw_stats64 *stats) |
9038 | { |
9039 | report_delta->used = true; |
9040 | netdev_hw_stats64_add(dest: &report_delta->stats, src: stats); |
9041 | } |
9042 | EXPORT_SYMBOL(netdev_offload_xstats_report_delta); |
9043 | |
9044 | void |
9045 | netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) |
9046 | { |
9047 | report_used->used = true; |
9048 | } |
9049 | EXPORT_SYMBOL(netdev_offload_xstats_report_used); |
9050 | |
9051 | void netdev_offload_xstats_push_delta(struct net_device *dev, |
9052 | enum netdev_offload_xstats_type type, |
9053 | const struct rtnl_hw_stats64 *p_stats) |
9054 | { |
9055 | struct rtnl_hw_stats64 *stats; |
9056 | |
9057 | ASSERT_RTNL(); |
9058 | |
9059 | stats = netdev_offload_xstats_get_ptr(dev, type); |
9060 | if (WARN_ON(!stats)) |
9061 | return; |
9062 | |
9063 | netdev_hw_stats64_add(dest: stats, src: p_stats); |
9064 | } |
9065 | EXPORT_SYMBOL(netdev_offload_xstats_push_delta); |
9066 | |
9067 | /** |
9068 | * netdev_get_xmit_slave - Get the xmit slave of master device |
9069 | * @dev: device |
9070 | * @skb: The packet |
9071 | * @all_slaves: assume all the slaves are active |
9072 | * |
9073 | * The reference counters are not incremented so the caller must be |
9074 | * careful with locks. The caller must hold RCU lock. |
9075 | * %NULL is returned if no slave is found. |
9076 | */ |
9077 | |
9078 | struct net_device *netdev_get_xmit_slave(struct net_device *dev, |
9079 | struct sk_buff *skb, |
9080 | bool all_slaves) |
9081 | { |
9082 | const struct net_device_ops *ops = dev->netdev_ops; |
9083 | |
9084 | if (!ops->ndo_get_xmit_slave) |
9085 | return NULL; |
9086 | return ops->ndo_get_xmit_slave(dev, skb, all_slaves); |
9087 | } |
9088 | EXPORT_SYMBOL(netdev_get_xmit_slave); |
9089 | |
9090 | static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, |
9091 | struct sock *sk) |
9092 | { |
9093 | const struct net_device_ops *ops = dev->netdev_ops; |
9094 | |
9095 | if (!ops->ndo_sk_get_lower_dev) |
9096 | return NULL; |
9097 | return ops->ndo_sk_get_lower_dev(dev, sk); |
9098 | } |
9099 | |
9100 | /** |
9101 | * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket |
9102 | * @dev: device |
9103 | * @sk: the socket |
9104 | * |
9105 | * %NULL is returned if no lower device is found. |
9106 | */ |
9107 | |
9108 | struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, |
9109 | struct sock *sk) |
9110 | { |
9111 | struct net_device *lower; |
9112 | |
9113 | lower = netdev_sk_get_lower_dev(dev, sk); |
9114 | while (lower) { |
9115 | dev = lower; |
9116 | lower = netdev_sk_get_lower_dev(dev, sk); |
9117 | } |
9118 | |
9119 | return dev; |
9120 | } |
9121 | EXPORT_SYMBOL(netdev_sk_get_lowest_dev); |
9122 | |
9123 | static void netdev_adjacent_add_links(struct net_device *dev) |
9124 | { |
9125 | struct netdev_adjacent *iter; |
9126 | |
9127 | struct net *net = dev_net(dev); |
9128 | |
9129 | list_for_each_entry(iter, &dev->adj_list.upper, list) { |
9130 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
9131 | continue; |
9132 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
9133 | dev_list: &iter->dev->adj_list.lower); |
9134 | netdev_adjacent_sysfs_add(dev, adj_dev: iter->dev, |
9135 | dev_list: &dev->adj_list.upper); |
9136 | } |
9137 | |
9138 | list_for_each_entry(iter, &dev->adj_list.lower, list) { |
9139 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
9140 | continue; |
9141 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
9142 | dev_list: &iter->dev->adj_list.upper); |
9143 | netdev_adjacent_sysfs_add(dev, adj_dev: iter->dev, |
9144 | dev_list: &dev->adj_list.lower); |
9145 | } |
9146 | } |
9147 | |
9148 | static void netdev_adjacent_del_links(struct net_device *dev) |
9149 | { |
9150 | struct netdev_adjacent *iter; |
9151 | |
9152 | struct net *net = dev_net(dev); |
9153 | |
9154 | list_for_each_entry(iter, &dev->adj_list.upper, list) { |
9155 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
9156 | continue; |
9157 | netdev_adjacent_sysfs_del(dev: iter->dev, name: dev->name, |
9158 | dev_list: &iter->dev->adj_list.lower); |
9159 | netdev_adjacent_sysfs_del(dev, name: iter->dev->name, |
9160 | dev_list: &dev->adj_list.upper); |
9161 | } |
9162 | |
9163 | list_for_each_entry(iter, &dev->adj_list.lower, list) { |
9164 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
9165 | continue; |
9166 | netdev_adjacent_sysfs_del(dev: iter->dev, name: dev->name, |
9167 | dev_list: &iter->dev->adj_list.upper); |
9168 | netdev_adjacent_sysfs_del(dev, name: iter->dev->name, |
9169 | dev_list: &dev->adj_list.lower); |
9170 | } |
9171 | } |
9172 | |
9173 | void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) |
9174 | { |
9175 | struct netdev_adjacent *iter; |
9176 | |
9177 | struct net *net = dev_net(dev); |
9178 | |
9179 | list_for_each_entry(iter, &dev->adj_list.upper, list) { |
9180 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
9181 | continue; |
9182 | netdev_adjacent_sysfs_del(dev: iter->dev, name: oldname, |
9183 | dev_list: &iter->dev->adj_list.lower); |
9184 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
9185 | dev_list: &iter->dev->adj_list.lower); |
9186 | } |
9187 | |
9188 | list_for_each_entry(iter, &dev->adj_list.lower, list) { |
9189 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
9190 | continue; |
9191 | netdev_adjacent_sysfs_del(dev: iter->dev, name: oldname, |
9192 | dev_list: &iter->dev->adj_list.upper); |
9193 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
9194 | dev_list: &iter->dev->adj_list.upper); |
9195 | } |
9196 | } |
9197 | |
9198 | void *netdev_lower_dev_get_private(struct net_device *dev, |
9199 | struct net_device *lower_dev) |
9200 | { |
9201 | struct netdev_adjacent *lower; |
9202 | |
9203 | if (!lower_dev) |
9204 | return NULL; |
9205 | lower = __netdev_find_adj(adj_dev: lower_dev, adj_list: &dev->adj_list.lower); |
9206 | if (!lower) |
9207 | return NULL; |
9208 | |
9209 | return lower->private; |
9210 | } |
9211 | EXPORT_SYMBOL(netdev_lower_dev_get_private); |
9212 | |
9213 | |
9214 | /** |
9215 | * netdev_lower_state_changed - Dispatch event about lower device state change |
9216 | * @lower_dev: device |
9217 | * @lower_state_info: state to dispatch |
9218 | * |
9219 | * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. |
9220 | * The caller must hold the RTNL lock. |
9221 | */ |
9222 | void netdev_lower_state_changed(struct net_device *lower_dev, |
9223 | void *lower_state_info) |
9224 | { |
9225 | struct netdev_notifier_changelowerstate_info changelowerstate_info = { |
9226 | .info.dev = lower_dev, |
9227 | }; |
9228 | |
9229 | ASSERT_RTNL(); |
9230 | changelowerstate_info.lower_state_info = lower_state_info; |
9231 | call_netdevice_notifiers_info(val: NETDEV_CHANGELOWERSTATE, |
9232 | info: &changelowerstate_info.info); |
9233 | } |
9234 | EXPORT_SYMBOL(netdev_lower_state_changed); |
9235 | |
9236 | static void dev_change_rx_flags(struct net_device *dev, int flags) |
9237 | { |
9238 | const struct net_device_ops *ops = dev->netdev_ops; |
9239 | |
9240 | if (ops->ndo_change_rx_flags) |
9241 | ops->ndo_change_rx_flags(dev, flags); |
9242 | } |
9243 | |
9244 | static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) |
9245 | { |
9246 | unsigned int old_flags = dev->flags; |
9247 | unsigned int promiscuity, flags; |
9248 | kuid_t uid; |
9249 | kgid_t gid; |
9250 | |
9251 | ASSERT_RTNL(); |
9252 | |
9253 | promiscuity = dev->promiscuity + inc; |
9254 | if (promiscuity == 0) { |
9255 | /* |
9256 | * Avoid overflow. |
9257 | * If inc causes overflow, untouch promisc and return error. |
9258 | */ |
9259 | if (unlikely(inc > 0)) { |
9260 | netdev_warn(dev, format: "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); |
9261 | return -EOVERFLOW; |
9262 | } |
9263 | flags = old_flags & ~IFF_PROMISC; |
9264 | } else { |
9265 | flags = old_flags | IFF_PROMISC; |
9266 | } |
9267 | WRITE_ONCE(dev->promiscuity, promiscuity); |
9268 | if (flags != old_flags) { |
9269 | WRITE_ONCE(dev->flags, flags); |
9270 | netdev_info(dev, format: "%s promiscuous mode\n", |
9271 | dev->flags & IFF_PROMISC ? "entered": "left"); |
9272 | if (audit_enabled) { |
9273 | current_uid_gid(&uid, &gid); |
9274 | audit_log(ctx: audit_context(), GFP_ATOMIC, |
9275 | AUDIT_ANOM_PROMISCUOUS, |
9276 | fmt: "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", |
9277 | dev->name, (dev->flags & IFF_PROMISC), |
9278 | (old_flags & IFF_PROMISC), |
9279 | from_kuid(to: &init_user_ns, uid: audit_get_loginuid(current)), |
9280 | from_kuid(to: &init_user_ns, uid), |
9281 | from_kgid(to: &init_user_ns, gid), |
9282 | audit_get_sessionid(current)); |
9283 | } |
9284 | |
9285 | dev_change_rx_flags(dev, IFF_PROMISC); |
9286 | } |
9287 | if (notify) { |
9288 | /* The ops lock is only required to ensure consistent locking |
9289 | * for `NETDEV_CHANGE` notifiers. This function is sometimes |
9290 | * called without the lock, even for devices that are ops |
9291 | * locked, such as in `dev_uc_sync_multiple` when using |
9292 | * bonding or teaming. |
9293 | */ |
9294 | netdev_ops_assert_locked(dev); |
9295 | __dev_notify_flags(dev, old_flags, IFF_PROMISC, portid: 0, NULL); |
9296 | } |
9297 | return 0; |
9298 | } |
9299 | |
9300 | int netif_set_promiscuity(struct net_device *dev, int inc) |
9301 | { |
9302 | unsigned int old_flags = dev->flags; |
9303 | int err; |
9304 | |
9305 | err = __dev_set_promiscuity(dev, inc, notify: true); |
9306 | if (err < 0) |
9307 | return err; |
9308 | if (dev->flags != old_flags) |
9309 | dev_set_rx_mode(dev); |
9310 | return err; |
9311 | } |
9312 | |
9313 | int netif_set_allmulti(struct net_device *dev, int inc, bool notify) |
9314 | { |
9315 | unsigned int old_flags = dev->flags, old_gflags = dev->gflags; |
9316 | unsigned int allmulti, flags; |
9317 | |
9318 | ASSERT_RTNL(); |
9319 | |
9320 | allmulti = dev->allmulti + inc; |
9321 | if (allmulti == 0) { |
9322 | /* |
9323 | * Avoid overflow. |
9324 | * If inc causes overflow, untouch allmulti and return error. |
9325 | */ |
9326 | if (unlikely(inc > 0)) { |
9327 | netdev_warn(dev, format: "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); |
9328 | return -EOVERFLOW; |
9329 | } |
9330 | flags = old_flags & ~IFF_ALLMULTI; |
9331 | } else { |
9332 | flags = old_flags | IFF_ALLMULTI; |
9333 | } |
9334 | WRITE_ONCE(dev->allmulti, allmulti); |
9335 | if (flags != old_flags) { |
9336 | WRITE_ONCE(dev->flags, flags); |
9337 | netdev_info(dev, format: "%s allmulticast mode\n", |
9338 | dev->flags & IFF_ALLMULTI ? "entered": "left"); |
9339 | dev_change_rx_flags(dev, IFF_ALLMULTI); |
9340 | dev_set_rx_mode(dev); |
9341 | if (notify) |
9342 | __dev_notify_flags(dev, old_flags, |
9343 | gchanges: dev->gflags ^ old_gflags, portid: 0, NULL); |
9344 | } |
9345 | return 0; |
9346 | } |
9347 | |
9348 | /* |
9349 | * Upload unicast and multicast address lists to device and |
9350 | * configure RX filtering. When the device doesn't support unicast |
9351 | * filtering it is put in promiscuous mode while unicast addresses |
9352 | * are present. |
9353 | */ |
9354 | void __dev_set_rx_mode(struct net_device *dev) |
9355 | { |
9356 | const struct net_device_ops *ops = dev->netdev_ops; |
9357 | |
9358 | /* dev_open will call this function so the list will stay sane. */ |
9359 | if (!(dev->flags&IFF_UP)) |
9360 | return; |
9361 | |
9362 | if (!netif_device_present(dev)) |
9363 | return; |
9364 | |
9365 | if (!(dev->priv_flags & IFF_UNICAST_FLT)) { |
9366 | /* Unicast addresses changes may only happen under the rtnl, |
9367 | * therefore calling __dev_set_promiscuity here is safe. |
9368 | */ |
9369 | if (!netdev_uc_empty(dev) && !dev->uc_promisc) { |
9370 | __dev_set_promiscuity(dev, inc: 1, notify: false); |
9371 | dev->uc_promisc = true; |
9372 | } else if (netdev_uc_empty(dev) && dev->uc_promisc) { |
9373 | __dev_set_promiscuity(dev, inc: -1, notify: false); |
9374 | dev->uc_promisc = false; |
9375 | } |
9376 | } |
9377 | |
9378 | if (ops->ndo_set_rx_mode) |
9379 | ops->ndo_set_rx_mode(dev); |
9380 | } |
9381 | |
9382 | void dev_set_rx_mode(struct net_device *dev) |
9383 | { |
9384 | netif_addr_lock_bh(dev); |
9385 | __dev_set_rx_mode(dev); |
9386 | netif_addr_unlock_bh(dev); |
9387 | } |
9388 | |
9389 | /** |
9390 | * dev_get_flags - get flags reported to userspace |
9391 | * @dev: device |
9392 | * |
9393 | * Get the combination of flag bits exported through APIs to userspace. |
9394 | */ |
9395 | unsigned int dev_get_flags(const struct net_device *dev) |
9396 | { |
9397 | unsigned int flags; |
9398 | |
9399 | flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | |
9400 | IFF_ALLMULTI | |
9401 | IFF_RUNNING | |
9402 | IFF_LOWER_UP | |
9403 | IFF_DORMANT)) | |
9404 | (READ_ONCE(dev->gflags) & (IFF_PROMISC | |
9405 | IFF_ALLMULTI)); |
9406 | |
9407 | if (netif_running(dev)) { |
9408 | if (netif_oper_up(dev)) |
9409 | flags |= IFF_RUNNING; |
9410 | if (netif_carrier_ok(dev)) |
9411 | flags |= IFF_LOWER_UP; |
9412 | if (netif_dormant(dev)) |
9413 | flags |= IFF_DORMANT; |
9414 | } |
9415 | |
9416 | return flags; |
9417 | } |
9418 | EXPORT_SYMBOL(dev_get_flags); |
9419 | |
9420 | int __dev_change_flags(struct net_device *dev, unsigned int flags, |
9421 | struct netlink_ext_ack *extack) |
9422 | { |
9423 | unsigned int old_flags = dev->flags; |
9424 | int ret; |
9425 | |
9426 | ASSERT_RTNL(); |
9427 | |
9428 | /* |
9429 | * Set the flags on our device. |
9430 | */ |
9431 | |
9432 | dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | |
9433 | IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | |
9434 | IFF_AUTOMEDIA)) | |
9435 | (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | |
9436 | IFF_ALLMULTI)); |
9437 | |
9438 | /* |
9439 | * Load in the correct multicast list now the flags have changed. |
9440 | */ |
9441 | |
9442 | if ((old_flags ^ flags) & IFF_MULTICAST) |
9443 | dev_change_rx_flags(dev, IFF_MULTICAST); |
9444 | |
9445 | dev_set_rx_mode(dev); |
9446 | |
9447 | /* |
9448 | * Have we downed the interface. We handle IFF_UP ourselves |
9449 | * according to user attempts to set it, rather than blindly |
9450 | * setting it. |
9451 | */ |
9452 | |
9453 | ret = 0; |
9454 | if ((old_flags ^ flags) & IFF_UP) { |
9455 | if (old_flags & IFF_UP) |
9456 | __dev_close(dev); |
9457 | else |
9458 | ret = __dev_open(dev, extack); |
9459 | } |
9460 | |
9461 | if ((flags ^ dev->gflags) & IFF_PROMISC) { |
9462 | int inc = (flags & IFF_PROMISC) ? 1 : -1; |
9463 | old_flags = dev->flags; |
9464 | |
9465 | dev->gflags ^= IFF_PROMISC; |
9466 | |
9467 | if (__dev_set_promiscuity(dev, inc, notify: false) >= 0) |
9468 | if (dev->flags != old_flags) |
9469 | dev_set_rx_mode(dev); |
9470 | } |
9471 | |
9472 | /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI |
9473 | * is important. Some (broken) drivers set IFF_PROMISC, when |
9474 | * IFF_ALLMULTI is requested not asking us and not reporting. |
9475 | */ |
9476 | if ((flags ^ dev->gflags) & IFF_ALLMULTI) { |
9477 | int inc = (flags & IFF_ALLMULTI) ? 1 : -1; |
9478 | |
9479 | dev->gflags ^= IFF_ALLMULTI; |
9480 | netif_set_allmulti(dev, inc, notify: false); |
9481 | } |
9482 | |
9483 | return ret; |
9484 | } |
9485 | |
9486 | void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, |
9487 | unsigned int gchanges, u32 portid, |
9488 | const struct nlmsghdr *nlh) |
9489 | { |
9490 | unsigned int changes = dev->flags ^ old_flags; |
9491 | |
9492 | if (gchanges) |
9493 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: gchanges, GFP_ATOMIC, portid, nlh); |
9494 | |
9495 | if (changes & IFF_UP) { |
9496 | if (dev->flags & IFF_UP) |
9497 | call_netdevice_notifiers(NETDEV_UP, dev); |
9498 | else |
9499 | call_netdevice_notifiers(NETDEV_DOWN, dev); |
9500 | } |
9501 | |
9502 | if (dev->flags & IFF_UP && |
9503 | (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { |
9504 | struct netdev_notifier_change_info change_info = { |
9505 | .info = { |
9506 | .dev = dev, |
9507 | }, |
9508 | .flags_changed = changes, |
9509 | }; |
9510 | |
9511 | call_netdevice_notifiers_info(val: NETDEV_CHANGE, info: &change_info.info); |
9512 | } |
9513 | } |
9514 | |
9515 | int netif_change_flags(struct net_device *dev, unsigned int flags, |
9516 | struct netlink_ext_ack *extack) |
9517 | { |
9518 | int ret; |
9519 | unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; |
9520 | |
9521 | ret = __dev_change_flags(dev, flags, extack); |
9522 | if (ret < 0) |
9523 | return ret; |
9524 | |
9525 | changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); |
9526 | __dev_notify_flags(dev, old_flags, gchanges: changes, portid: 0, NULL); |
9527 | return ret; |
9528 | } |
9529 | |
9530 | int __dev_set_mtu(struct net_device *dev, int new_mtu) |
9531 | { |
9532 | const struct net_device_ops *ops = dev->netdev_ops; |
9533 | |
9534 | if (ops->ndo_change_mtu) |
9535 | return ops->ndo_change_mtu(dev, new_mtu); |
9536 | |
9537 | /* Pairs with all the lockless reads of dev->mtu in the stack */ |
9538 | WRITE_ONCE(dev->mtu, new_mtu); |
9539 | return 0; |
9540 | } |
9541 | EXPORT_SYMBOL(__dev_set_mtu); |
9542 | |
9543 | int dev_validate_mtu(struct net_device *dev, int new_mtu, |
9544 | struct netlink_ext_ack *extack) |
9545 | { |
9546 | /* MTU must be positive, and in range */ |
9547 | if (new_mtu < 0 || new_mtu < dev->min_mtu) { |
9548 | NL_SET_ERR_MSG(extack, "mtu less than device minimum"); |
9549 | return -EINVAL; |
9550 | } |
9551 | |
9552 | if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { |
9553 | NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); |
9554 | return -EINVAL; |
9555 | } |
9556 | return 0; |
9557 | } |
9558 | |
9559 | /** |
9560 | * netif_set_mtu_ext - Change maximum transfer unit |
9561 | * @dev: device |
9562 | * @new_mtu: new transfer unit |
9563 | * @extack: netlink extended ack |
9564 | * |
9565 | * Change the maximum transfer size of the network device. |
9566 | */ |
9567 | int netif_set_mtu_ext(struct net_device *dev, int new_mtu, |
9568 | struct netlink_ext_ack *extack) |
9569 | { |
9570 | int err, orig_mtu; |
9571 | |
9572 | if (new_mtu == dev->mtu) |
9573 | return 0; |
9574 | |
9575 | err = dev_validate_mtu(dev, new_mtu, extack); |
9576 | if (err) |
9577 | return err; |
9578 | |
9579 | if (!netif_device_present(dev)) |
9580 | return -ENODEV; |
9581 | |
9582 | err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); |
9583 | err = notifier_to_errno(ret: err); |
9584 | if (err) |
9585 | return err; |
9586 | |
9587 | orig_mtu = dev->mtu; |
9588 | err = __dev_set_mtu(dev, new_mtu); |
9589 | |
9590 | if (!err) { |
9591 | err = call_netdevice_notifiers_mtu(val: NETDEV_CHANGEMTU, dev, |
9592 | arg: orig_mtu); |
9593 | err = notifier_to_errno(ret: err); |
9594 | if (err) { |
9595 | /* setting mtu back and notifying everyone again, |
9596 | * so that they have a chance to revert changes. |
9597 | */ |
9598 | __dev_set_mtu(dev, orig_mtu); |
9599 | call_netdevice_notifiers_mtu(val: NETDEV_CHANGEMTU, dev, |
9600 | arg: new_mtu); |
9601 | } |
9602 | } |
9603 | return err; |
9604 | } |
9605 | |
9606 | int netif_set_mtu(struct net_device *dev, int new_mtu) |
9607 | { |
9608 | struct netlink_ext_ack extack; |
9609 | int err; |
9610 | |
9611 | memset(&extack, 0, sizeof(extack)); |
9612 | err = netif_set_mtu_ext(dev, new_mtu, extack: &extack); |
9613 | if (err && extack._msg) |
9614 | net_err_ratelimited("%s: %s\n", dev->name, extack._msg); |
9615 | return err; |
9616 | } |
9617 | EXPORT_SYMBOL(netif_set_mtu); |
9618 | |
9619 | int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) |
9620 | { |
9621 | unsigned int orig_len = dev->tx_queue_len; |
9622 | int res; |
9623 | |
9624 | if (new_len != (unsigned int)new_len) |
9625 | return -ERANGE; |
9626 | |
9627 | if (new_len != orig_len) { |
9628 | WRITE_ONCE(dev->tx_queue_len, new_len); |
9629 | res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); |
9630 | res = notifier_to_errno(ret: res); |
9631 | if (res) |
9632 | goto err_rollback; |
9633 | res = dev_qdisc_change_tx_queue_len(dev); |
9634 | if (res) |
9635 | goto err_rollback; |
9636 | } |
9637 | |
9638 | return 0; |
9639 | |
9640 | err_rollback: |
9641 | netdev_err(dev, format: "refused to change device tx_queue_len\n"); |
9642 | WRITE_ONCE(dev->tx_queue_len, orig_len); |
9643 | return res; |
9644 | } |
9645 | |
9646 | void netif_set_group(struct net_device *dev, int new_group) |
9647 | { |
9648 | dev->group = new_group; |
9649 | } |
9650 | |
9651 | /** |
9652 | * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. |
9653 | * @dev: device |
9654 | * @addr: new address |
9655 | * @extack: netlink extended ack |
9656 | */ |
9657 | int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, |
9658 | struct netlink_ext_ack *extack) |
9659 | { |
9660 | struct netdev_notifier_pre_changeaddr_info info = { |
9661 | .info.dev = dev, |
9662 | .info.extack = extack, |
9663 | .dev_addr = addr, |
9664 | }; |
9665 | int rc; |
9666 | |
9667 | rc = call_netdevice_notifiers_info(val: NETDEV_PRE_CHANGEADDR, info: &info.info); |
9668 | return notifier_to_errno(ret: rc); |
9669 | } |
9670 | EXPORT_SYMBOL(dev_pre_changeaddr_notify); |
9671 | |
9672 | int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, |
9673 | struct netlink_ext_ack *extack) |
9674 | { |
9675 | const struct net_device_ops *ops = dev->netdev_ops; |
9676 | int err; |
9677 | |
9678 | if (!ops->ndo_set_mac_address) |
9679 | return -EOPNOTSUPP; |
9680 | if (ss->ss_family != dev->type) |
9681 | return -EINVAL; |
9682 | if (!netif_device_present(dev)) |
9683 | return -ENODEV; |
9684 | err = dev_pre_changeaddr_notify(dev, ss->__data, extack); |
9685 | if (err) |
9686 | return err; |
9687 | if (memcmp(p: dev->dev_addr, q: ss->__data, size: dev->addr_len)) { |
9688 | err = ops->ndo_set_mac_address(dev, ss); |
9689 | if (err) |
9690 | return err; |
9691 | } |
9692 | dev->addr_assign_type = NET_ADDR_SET; |
9693 | call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); |
9694 | add_device_randomness(buf: dev->dev_addr, len: dev->addr_len); |
9695 | return 0; |
9696 | } |
9697 | |
9698 | DECLARE_RWSEM(dev_addr_sem); |
9699 | |
9700 | /* "sa" is a true struct sockaddr with limited "sa_data" member. */ |
9701 | int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) |
9702 | { |
9703 | size_t size = sizeof(sa->sa_data_min); |
9704 | struct net_device *dev; |
9705 | int ret = 0; |
9706 | |
9707 | down_read(sem: &dev_addr_sem); |
9708 | rcu_read_lock(); |
9709 | |
9710 | dev = dev_get_by_name_rcu(net, dev_name); |
9711 | if (!dev) { |
9712 | ret = -ENODEV; |
9713 | goto unlock; |
9714 | } |
9715 | if (!dev->addr_len) |
9716 | memset(sa->sa_data, 0, size); |
9717 | else |
9718 | memcpy(sa->sa_data, dev->dev_addr, |
9719 | min_t(size_t, size, dev->addr_len)); |
9720 | sa->sa_family = dev->type; |
9721 | |
9722 | unlock: |
9723 | rcu_read_unlock(); |
9724 | up_read(sem: &dev_addr_sem); |
9725 | return ret; |
9726 | } |
9727 | EXPORT_SYMBOL(dev_get_mac_address); |
9728 | |
9729 | int netif_change_carrier(struct net_device *dev, bool new_carrier) |
9730 | { |
9731 | const struct net_device_ops *ops = dev->netdev_ops; |
9732 | |
9733 | if (!ops->ndo_change_carrier) |
9734 | return -EOPNOTSUPP; |
9735 | if (!netif_device_present(dev)) |
9736 | return -ENODEV; |
9737 | return ops->ndo_change_carrier(dev, new_carrier); |
9738 | } |
9739 | |
9740 | /** |
9741 | * dev_get_phys_port_id - Get device physical port ID |
9742 | * @dev: device |
9743 | * @ppid: port ID |
9744 | * |
9745 | * Get device physical port ID |
9746 | */ |
9747 | int dev_get_phys_port_id(struct net_device *dev, |
9748 | struct netdev_phys_item_id *ppid) |
9749 | { |
9750 | const struct net_device_ops *ops = dev->netdev_ops; |
9751 | |
9752 | if (!ops->ndo_get_phys_port_id) |
9753 | return -EOPNOTSUPP; |
9754 | return ops->ndo_get_phys_port_id(dev, ppid); |
9755 | } |
9756 | |
9757 | /** |
9758 | * dev_get_phys_port_name - Get device physical port name |
9759 | * @dev: device |
9760 | * @name: port name |
9761 | * @len: limit of bytes to copy to name |
9762 | * |
9763 | * Get device physical port name |
9764 | */ |
9765 | int dev_get_phys_port_name(struct net_device *dev, |
9766 | char *name, size_t len) |
9767 | { |
9768 | const struct net_device_ops *ops = dev->netdev_ops; |
9769 | int err; |
9770 | |
9771 | if (ops->ndo_get_phys_port_name) { |
9772 | err = ops->ndo_get_phys_port_name(dev, name, len); |
9773 | if (err != -EOPNOTSUPP) |
9774 | return err; |
9775 | } |
9776 | return devlink_compat_phys_port_name_get(dev, name, len); |
9777 | } |
9778 | |
9779 | /** |
9780 | * dev_get_port_parent_id - Get the device's port parent identifier |
9781 | * @dev: network device |
9782 | * @ppid: pointer to a storage for the port's parent identifier |
9783 | * @recurse: allow/disallow recursion to lower devices |
9784 | * |
9785 | * Get the devices's port parent identifier |
9786 | */ |
9787 | int dev_get_port_parent_id(struct net_device *dev, |
9788 | struct netdev_phys_item_id *ppid, |
9789 | bool recurse) |
9790 | { |
9791 | const struct net_device_ops *ops = dev->netdev_ops; |
9792 | struct netdev_phys_item_id first = { }; |
9793 | struct net_device *lower_dev; |
9794 | struct list_head *iter; |
9795 | int err; |
9796 | |
9797 | if (ops->ndo_get_port_parent_id) { |
9798 | err = ops->ndo_get_port_parent_id(dev, ppid); |
9799 | if (err != -EOPNOTSUPP) |
9800 | return err; |
9801 | } |
9802 | |
9803 | err = devlink_compat_switch_id_get(dev, ppid); |
9804 | if (!recurse || err != -EOPNOTSUPP) |
9805 | return err; |
9806 | |
9807 | netdev_for_each_lower_dev(dev, lower_dev, iter) { |
9808 | err = dev_get_port_parent_id(dev: lower_dev, ppid, recurse: true); |
9809 | if (err) |
9810 | break; |
9811 | if (!first.id_len) |
9812 | first = *ppid; |
9813 | else if (memcmp(p: &first, q: ppid, size: sizeof(*ppid))) |
9814 | return -EOPNOTSUPP; |
9815 | } |
9816 | |
9817 | return err; |
9818 | } |
9819 | EXPORT_SYMBOL(dev_get_port_parent_id); |
9820 | |
9821 | /** |
9822 | * netdev_port_same_parent_id - Indicate if two network devices have |
9823 | * the same port parent identifier |
9824 | * @a: first network device |
9825 | * @b: second network device |
9826 | */ |
9827 | bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) |
9828 | { |
9829 | struct netdev_phys_item_id a_id = { }; |
9830 | struct netdev_phys_item_id b_id = { }; |
9831 | |
9832 | if (dev_get_port_parent_id(a, &a_id, true) || |
9833 | dev_get_port_parent_id(b, &b_id, true)) |
9834 | return false; |
9835 | |
9836 | return netdev_phys_item_id_same(a: &a_id, b: &b_id); |
9837 | } |
9838 | EXPORT_SYMBOL(netdev_port_same_parent_id); |
9839 | |
9840 | int netif_change_proto_down(struct net_device *dev, bool proto_down) |
9841 | { |
9842 | if (!dev->change_proto_down) |
9843 | return -EOPNOTSUPP; |
9844 | if (!netif_device_present(dev)) |
9845 | return -ENODEV; |
9846 | if (proto_down) |
9847 | netif_carrier_off(dev); |
9848 | else |
9849 | netif_carrier_on(dev); |
9850 | WRITE_ONCE(dev->proto_down, proto_down); |
9851 | return 0; |
9852 | } |
9853 | |
9854 | /** |
9855 | * netdev_change_proto_down_reason_locked - proto down reason |
9856 | * |
9857 | * @dev: device |
9858 | * @mask: proto down mask |
9859 | * @value: proto down value |
9860 | */ |
9861 | void netdev_change_proto_down_reason_locked(struct net_device *dev, |
9862 | unsigned long mask, u32 value) |
9863 | { |
9864 | u32 proto_down_reason; |
9865 | int b; |
9866 | |
9867 | if (!mask) { |
9868 | proto_down_reason = value; |
9869 | } else { |
9870 | proto_down_reason = dev->proto_down_reason; |
9871 | for_each_set_bit(b, &mask, 32) { |
9872 | if (value & (1 << b)) |
9873 | proto_down_reason |= BIT(b); |
9874 | else |
9875 | proto_down_reason &= ~BIT(b); |
9876 | } |
9877 | } |
9878 | WRITE_ONCE(dev->proto_down_reason, proto_down_reason); |
9879 | } |
9880 | |
9881 | struct bpf_xdp_link { |
9882 | struct bpf_link link; |
9883 | struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ |
9884 | int flags; |
9885 | }; |
9886 | |
9887 | static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) |
9888 | { |
9889 | if (flags & XDP_FLAGS_HW_MODE) |
9890 | return XDP_MODE_HW; |
9891 | if (flags & XDP_FLAGS_DRV_MODE) |
9892 | return XDP_MODE_DRV; |
9893 | if (flags & XDP_FLAGS_SKB_MODE) |
9894 | return XDP_MODE_SKB; |
9895 | return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; |
9896 | } |
9897 | |
9898 | static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) |
9899 | { |
9900 | switch (mode) { |
9901 | case XDP_MODE_SKB: |
9902 | return generic_xdp_install; |
9903 | case XDP_MODE_DRV: |
9904 | case XDP_MODE_HW: |
9905 | return dev->netdev_ops->ndo_bpf; |
9906 | default: |
9907 | return NULL; |
9908 | } |
9909 | } |
9910 | |
9911 | static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, |
9912 | enum bpf_xdp_mode mode) |
9913 | { |
9914 | return dev->xdp_state[mode].link; |
9915 | } |
9916 | |
9917 | static struct bpf_prog *dev_xdp_prog(struct net_device *dev, |
9918 | enum bpf_xdp_mode mode) |
9919 | { |
9920 | struct bpf_xdp_link *link = dev_xdp_link(dev, mode); |
9921 | |
9922 | if (link) |
9923 | return link->link.prog; |
9924 | return dev->xdp_state[mode].prog; |
9925 | } |
9926 | |
9927 | u8 dev_xdp_prog_count(struct net_device *dev) |
9928 | { |
9929 | u8 count = 0; |
9930 | int i; |
9931 | |
9932 | for (i = 0; i < __MAX_XDP_MODE; i++) |
9933 | if (dev->xdp_state[i].prog || dev->xdp_state[i].link) |
9934 | count++; |
9935 | return count; |
9936 | } |
9937 | EXPORT_SYMBOL_GPL(dev_xdp_prog_count); |
9938 | |
9939 | u8 dev_xdp_sb_prog_count(struct net_device *dev) |
9940 | { |
9941 | u8 count = 0; |
9942 | int i; |
9943 | |
9944 | for (i = 0; i < __MAX_XDP_MODE; i++) |
9945 | if (dev->xdp_state[i].prog && |
9946 | !dev->xdp_state[i].prog->aux->xdp_has_frags) |
9947 | count++; |
9948 | return count; |
9949 | } |
9950 | |
9951 | int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) |
9952 | { |
9953 | if (!dev->netdev_ops->ndo_bpf) |
9954 | return -EOPNOTSUPP; |
9955 | |
9956 | if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && |
9957 | bpf->command == XDP_SETUP_PROG && |
9958 | bpf->prog && !bpf->prog->aux->xdp_has_frags) { |
9959 | NL_SET_ERR_MSG(bpf->extack, |
9960 | "unable to propagate XDP to device using tcp-data-split"); |
9961 | return -EBUSY; |
9962 | } |
9963 | |
9964 | if (dev_get_min_mp_channel_count(dev)) { |
9965 | NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); |
9966 | return -EBUSY; |
9967 | } |
9968 | |
9969 | return dev->netdev_ops->ndo_bpf(dev, bpf); |
9970 | } |
9971 | EXPORT_SYMBOL_GPL(netif_xdp_propagate); |
9972 | |
9973 | u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) |
9974 | { |
9975 | struct bpf_prog *prog = dev_xdp_prog(dev, mode); |
9976 | |
9977 | return prog ? prog->aux->id : 0; |
9978 | } |
9979 | |
9980 | static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, |
9981 | struct bpf_xdp_link *link) |
9982 | { |
9983 | dev->xdp_state[mode].link = link; |
9984 | dev->xdp_state[mode].prog = NULL; |
9985 | } |
9986 | |
9987 | static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, |
9988 | struct bpf_prog *prog) |
9989 | { |
9990 | dev->xdp_state[mode].link = NULL; |
9991 | dev->xdp_state[mode].prog = prog; |
9992 | } |
9993 | |
9994 | static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, |
9995 | bpf_op_t bpf_op, struct netlink_ext_ack *extack, |
9996 | u32 flags, struct bpf_prog *prog) |
9997 | { |
9998 | struct netdev_bpf xdp; |
9999 | int err; |
10000 | |
10001 | netdev_ops_assert_locked(dev); |
10002 | |
10003 | if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && |
10004 | prog && !prog->aux->xdp_has_frags) { |
10005 | NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); |
10006 | return -EBUSY; |
10007 | } |
10008 | |
10009 | if (dev_get_min_mp_channel_count(dev)) { |
10010 | NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); |
10011 | return -EBUSY; |
10012 | } |
10013 | |
10014 | memset(&xdp, 0, sizeof(xdp)); |
10015 | xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; |
10016 | xdp.extack = extack; |
10017 | xdp.flags = flags; |
10018 | xdp.prog = prog; |
10019 | |
10020 | /* Drivers assume refcnt is already incremented (i.e, prog pointer is |
10021 | * "moved" into driver), so they don't increment it on their own, but |
10022 | * they do decrement refcnt when program is detached or replaced. |
10023 | * Given net_device also owns link/prog, we need to bump refcnt here |
10024 | * to prevent drivers from underflowing it. |
10025 | */ |
10026 | if (prog) |
10027 | bpf_prog_inc(prog); |
10028 | err = bpf_op(dev, &xdp); |
10029 | if (err) { |
10030 | if (prog) |
10031 | bpf_prog_put(prog); |
10032 | return err; |
10033 | } |
10034 | |
10035 | if (mode != XDP_MODE_HW) |
10036 | bpf_prog_change_xdp(prev_prog: dev_xdp_prog(dev, mode), prog); |
10037 | |
10038 | return 0; |
10039 | } |
10040 | |
10041 | static void dev_xdp_uninstall(struct net_device *dev) |
10042 | { |
10043 | struct bpf_xdp_link *link; |
10044 | struct bpf_prog *prog; |
10045 | enum bpf_xdp_mode mode; |
10046 | bpf_op_t bpf_op; |
10047 | |
10048 | ASSERT_RTNL(); |
10049 | |
10050 | for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { |
10051 | prog = dev_xdp_prog(dev, mode); |
10052 | if (!prog) |
10053 | continue; |
10054 | |
10055 | bpf_op = dev_xdp_bpf_op(dev, mode); |
10056 | if (!bpf_op) |
10057 | continue; |
10058 | |
10059 | WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); |
10060 | |
10061 | /* auto-detach link from net device */ |
10062 | link = dev_xdp_link(dev, mode); |
10063 | if (link) |
10064 | link->dev = NULL; |
10065 | else |
10066 | bpf_prog_put(prog); |
10067 | |
10068 | dev_xdp_set_link(dev, mode, NULL); |
10069 | } |
10070 | } |
10071 | |
10072 | static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, |
10073 | struct bpf_xdp_link *link, struct bpf_prog *new_prog, |
10074 | struct bpf_prog *old_prog, u32 flags) |
10075 | { |
10076 | unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); |
10077 | struct bpf_prog *cur_prog; |
10078 | struct net_device *upper; |
10079 | struct list_head *iter; |
10080 | enum bpf_xdp_mode mode; |
10081 | bpf_op_t bpf_op; |
10082 | int err; |
10083 | |
10084 | ASSERT_RTNL(); |
10085 | |
10086 | /* either link or prog attachment, never both */ |
10087 | if (link && (new_prog || old_prog)) |
10088 | return -EINVAL; |
10089 | /* link supports only XDP mode flags */ |
10090 | if (link && (flags & ~XDP_FLAGS_MODES)) { |
10091 | NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); |
10092 | return -EINVAL; |
10093 | } |
10094 | /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ |
10095 | if (num_modes > 1) { |
10096 | NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); |
10097 | return -EINVAL; |
10098 | } |
10099 | /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ |
10100 | if (!num_modes && dev_xdp_prog_count(dev) > 1) { |
10101 | NL_SET_ERR_MSG(extack, |
10102 | "More than one program loaded, unset mode is ambiguous"); |
10103 | return -EINVAL; |
10104 | } |
10105 | /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ |
10106 | if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { |
10107 | NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); |
10108 | return -EINVAL; |
10109 | } |
10110 | |
10111 | mode = dev_xdp_mode(dev, flags); |
10112 | /* can't replace attached link */ |
10113 | if (dev_xdp_link(dev, mode)) { |
10114 | NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); |
10115 | return -EBUSY; |
10116 | } |
10117 | |
10118 | /* don't allow if an upper device already has a program */ |
10119 | netdev_for_each_upper_dev_rcu(dev, upper, iter) { |
10120 | if (dev_xdp_prog_count(upper) > 0) { |
10121 | NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); |
10122 | return -EEXIST; |
10123 | } |
10124 | } |
10125 | |
10126 | cur_prog = dev_xdp_prog(dev, mode); |
10127 | /* can't replace attached prog with link */ |
10128 | if (link && cur_prog) { |
10129 | NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); |
10130 | return -EBUSY; |
10131 | } |
10132 | if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { |
10133 | NL_SET_ERR_MSG(extack, "Active program does not match expected"); |
10134 | return -EEXIST; |
10135 | } |
10136 | |
10137 | /* put effective new program into new_prog */ |
10138 | if (link) |
10139 | new_prog = link->link.prog; |
10140 | |
10141 | if (new_prog) { |
10142 | bool offload = mode == XDP_MODE_HW; |
10143 | enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB |
10144 | ? XDP_MODE_DRV : XDP_MODE_SKB; |
10145 | |
10146 | if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { |
10147 | NL_SET_ERR_MSG(extack, "XDP program already attached"); |
10148 | return -EBUSY; |
10149 | } |
10150 | if (!offload && dev_xdp_prog(dev, mode: other_mode)) { |
10151 | NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); |
10152 | return -EEXIST; |
10153 | } |
10154 | if (!offload && bpf_prog_is_offloaded(aux: new_prog->aux)) { |
10155 | NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); |
10156 | return -EINVAL; |
10157 | } |
10158 | if (bpf_prog_is_dev_bound(aux: new_prog->aux) && !bpf_offload_dev_match(prog: new_prog, netdev: dev)) { |
10159 | NL_SET_ERR_MSG(extack, "Program bound to different device"); |
10160 | return -EINVAL; |
10161 | } |
10162 | if (bpf_prog_is_dev_bound(aux: new_prog->aux) && mode == XDP_MODE_SKB) { |
10163 | NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); |
10164 | return -EINVAL; |
10165 | } |
10166 | if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { |
10167 | NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); |
10168 | return -EINVAL; |
10169 | } |
10170 | if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { |
10171 | NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); |
10172 | return -EINVAL; |
10173 | } |
10174 | } |
10175 | |
10176 | /* don't call drivers if the effective program didn't change */ |
10177 | if (new_prog != cur_prog) { |
10178 | bpf_op = dev_xdp_bpf_op(dev, mode); |
10179 | if (!bpf_op) { |
10180 | NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); |
10181 | return -EOPNOTSUPP; |
10182 | } |
10183 | |
10184 | err = dev_xdp_install(dev, mode, bpf_op, extack, flags, prog: new_prog); |
10185 | if (err) |
10186 | return err; |
10187 | } |
10188 | |
10189 | if (link) |
10190 | dev_xdp_set_link(dev, mode, link); |
10191 | else |
10192 | dev_xdp_set_prog(dev, mode, prog: new_prog); |
10193 | if (cur_prog) |
10194 | bpf_prog_put(prog: cur_prog); |
10195 | |
10196 | return 0; |
10197 | } |
10198 | |
10199 | static int dev_xdp_attach_link(struct net_device *dev, |
10200 | struct netlink_ext_ack *extack, |
10201 | struct bpf_xdp_link *link) |
10202 | { |
10203 | return dev_xdp_attach(dev, extack, link, NULL, NULL, flags: link->flags); |
10204 | } |
10205 | |
10206 | static int dev_xdp_detach_link(struct net_device *dev, |
10207 | struct netlink_ext_ack *extack, |
10208 | struct bpf_xdp_link *link) |
10209 | { |
10210 | enum bpf_xdp_mode mode; |
10211 | bpf_op_t bpf_op; |
10212 | |
10213 | ASSERT_RTNL(); |
10214 | |
10215 | mode = dev_xdp_mode(dev, flags: link->flags); |
10216 | if (dev_xdp_link(dev, mode) != link) |
10217 | return -EINVAL; |
10218 | |
10219 | bpf_op = dev_xdp_bpf_op(dev, mode); |
10220 | WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); |
10221 | dev_xdp_set_link(dev, mode, NULL); |
10222 | return 0; |
10223 | } |
10224 | |
10225 | static void bpf_xdp_link_release(struct bpf_link *link) |
10226 | { |
10227 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
10228 | |
10229 | rtnl_lock(); |
10230 | |
10231 | /* if racing with net_device's tear down, xdp_link->dev might be |
10232 | * already NULL, in which case link was already auto-detached |
10233 | */ |
10234 | if (xdp_link->dev) { |
10235 | netdev_lock_ops(dev: xdp_link->dev); |
10236 | WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); |
10237 | netdev_unlock_ops(dev: xdp_link->dev); |
10238 | xdp_link->dev = NULL; |
10239 | } |
10240 | |
10241 | rtnl_unlock(); |
10242 | } |
10243 | |
10244 | static int bpf_xdp_link_detach(struct bpf_link *link) |
10245 | { |
10246 | bpf_xdp_link_release(link); |
10247 | return 0; |
10248 | } |
10249 | |
10250 | static void bpf_xdp_link_dealloc(struct bpf_link *link) |
10251 | { |
10252 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
10253 | |
10254 | kfree(objp: xdp_link); |
10255 | } |
10256 | |
10257 | static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, |
10258 | struct seq_file *seq) |
10259 | { |
10260 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
10261 | u32 ifindex = 0; |
10262 | |
10263 | rtnl_lock(); |
10264 | if (xdp_link->dev) |
10265 | ifindex = xdp_link->dev->ifindex; |
10266 | rtnl_unlock(); |
10267 | |
10268 | seq_printf(m: seq, fmt: "ifindex:\t%u\n", ifindex); |
10269 | } |
10270 | |
10271 | static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, |
10272 | struct bpf_link_info *info) |
10273 | { |
10274 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
10275 | u32 ifindex = 0; |
10276 | |
10277 | rtnl_lock(); |
10278 | if (xdp_link->dev) |
10279 | ifindex = xdp_link->dev->ifindex; |
10280 | rtnl_unlock(); |
10281 | |
10282 | info->xdp.ifindex = ifindex; |
10283 | return 0; |
10284 | } |
10285 | |
10286 | static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, |
10287 | struct bpf_prog *old_prog) |
10288 | { |
10289 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
10290 | enum bpf_xdp_mode mode; |
10291 | bpf_op_t bpf_op; |
10292 | int err = 0; |
10293 | |
10294 | rtnl_lock(); |
10295 | |
10296 | /* link might have been auto-released already, so fail */ |
10297 | if (!xdp_link->dev) { |
10298 | err = -ENOLINK; |
10299 | goto out_unlock; |
10300 | } |
10301 | |
10302 | if (old_prog && link->prog != old_prog) { |
10303 | err = -EPERM; |
10304 | goto out_unlock; |
10305 | } |
10306 | old_prog = link->prog; |
10307 | if (old_prog->type != new_prog->type || |
10308 | old_prog->expected_attach_type != new_prog->expected_attach_type) { |
10309 | err = -EINVAL; |
10310 | goto out_unlock; |
10311 | } |
10312 | |
10313 | if (old_prog == new_prog) { |
10314 | /* no-op, don't disturb drivers */ |
10315 | bpf_prog_put(prog: new_prog); |
10316 | goto out_unlock; |
10317 | } |
10318 | |
10319 | netdev_lock_ops(dev: xdp_link->dev); |
10320 | mode = dev_xdp_mode(dev: xdp_link->dev, flags: xdp_link->flags); |
10321 | bpf_op = dev_xdp_bpf_op(dev: xdp_link->dev, mode); |
10322 | err = dev_xdp_install(dev: xdp_link->dev, mode, bpf_op, NULL, |
10323 | flags: xdp_link->flags, prog: new_prog); |
10324 | netdev_unlock_ops(dev: xdp_link->dev); |
10325 | if (err) |
10326 | goto out_unlock; |
10327 | |
10328 | old_prog = xchg(&link->prog, new_prog); |
10329 | bpf_prog_put(prog: old_prog); |
10330 | |
10331 | out_unlock: |
10332 | rtnl_unlock(); |
10333 | return err; |
10334 | } |
10335 | |
10336 | static const struct bpf_link_ops bpf_xdp_link_lops = { |
10337 | .release = bpf_xdp_link_release, |
10338 | .dealloc = bpf_xdp_link_dealloc, |
10339 | .detach = bpf_xdp_link_detach, |
10340 | .show_fdinfo = bpf_xdp_link_show_fdinfo, |
10341 | .fill_link_info = bpf_xdp_link_fill_link_info, |
10342 | .update_prog = bpf_xdp_link_update, |
10343 | }; |
10344 | |
10345 | int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) |
10346 | { |
10347 | struct net *net = current->nsproxy->net_ns; |
10348 | struct bpf_link_primer link_primer; |
10349 | struct netlink_ext_ack extack = {}; |
10350 | struct bpf_xdp_link *link; |
10351 | struct net_device *dev; |
10352 | int err, fd; |
10353 | |
10354 | rtnl_lock(); |
10355 | dev = dev_get_by_index(net, attr->link_create.target_ifindex); |
10356 | if (!dev) { |
10357 | rtnl_unlock(); |
10358 | return -EINVAL; |
10359 | } |
10360 | |
10361 | link = kzalloc(sizeof(*link), GFP_USER); |
10362 | if (!link) { |
10363 | err = -ENOMEM; |
10364 | goto unlock; |
10365 | } |
10366 | |
10367 | bpf_link_init(link: &link->link, type: BPF_LINK_TYPE_XDP, ops: &bpf_xdp_link_lops, prog); |
10368 | link->dev = dev; |
10369 | link->flags = attr->link_create.flags; |
10370 | |
10371 | err = bpf_link_prime(link: &link->link, primer: &link_primer); |
10372 | if (err) { |
10373 | kfree(objp: link); |
10374 | goto unlock; |
10375 | } |
10376 | |
10377 | netdev_lock_ops(dev); |
10378 | err = dev_xdp_attach_link(dev, extack: &extack, link); |
10379 | netdev_unlock_ops(dev); |
10380 | rtnl_unlock(); |
10381 | |
10382 | if (err) { |
10383 | link->dev = NULL; |
10384 | bpf_link_cleanup(primer: &link_primer); |
10385 | trace_bpf_xdp_link_attach_failed(msg: extack._msg); |
10386 | goto out_put_dev; |
10387 | } |
10388 | |
10389 | fd = bpf_link_settle(primer: &link_primer); |
10390 | /* link itself doesn't hold dev's refcnt to not complicate shutdown */ |
10391 | dev_put(dev); |
10392 | return fd; |
10393 | |
10394 | unlock: |
10395 | rtnl_unlock(); |
10396 | |
10397 | out_put_dev: |
10398 | dev_put(dev); |
10399 | return err; |
10400 | } |
10401 | |
10402 | /** |
10403 | * dev_change_xdp_fd - set or clear a bpf program for a device rx path |
10404 | * @dev: device |
10405 | * @extack: netlink extended ack |
10406 | * @fd: new program fd or negative value to clear |
10407 | * @expected_fd: old program fd that userspace expects to replace or clear |
10408 | * @flags: xdp-related flags |
10409 | * |
10410 | * Set or clear a bpf program for a device |
10411 | */ |
10412 | int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, |
10413 | int fd, int expected_fd, u32 flags) |
10414 | { |
10415 | enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); |
10416 | struct bpf_prog *new_prog = NULL, *old_prog = NULL; |
10417 | int err; |
10418 | |
10419 | ASSERT_RTNL(); |
10420 | |
10421 | if (fd >= 0) { |
10422 | new_prog = bpf_prog_get_type_dev(ufd: fd, type: BPF_PROG_TYPE_XDP, |
10423 | attach_drv: mode != XDP_MODE_SKB); |
10424 | if (IS_ERR(ptr: new_prog)) |
10425 | return PTR_ERR(ptr: new_prog); |
10426 | } |
10427 | |
10428 | if (expected_fd >= 0) { |
10429 | old_prog = bpf_prog_get_type_dev(ufd: expected_fd, type: BPF_PROG_TYPE_XDP, |
10430 | attach_drv: mode != XDP_MODE_SKB); |
10431 | if (IS_ERR(ptr: old_prog)) { |
10432 | err = PTR_ERR(ptr: old_prog); |
10433 | old_prog = NULL; |
10434 | goto err_out; |
10435 | } |
10436 | } |
10437 | |
10438 | err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); |
10439 | |
10440 | err_out: |
10441 | if (err && new_prog) |
10442 | bpf_prog_put(prog: new_prog); |
10443 | if (old_prog) |
10444 | bpf_prog_put(prog: old_prog); |
10445 | return err; |
10446 | } |
10447 | |
10448 | u32 dev_get_min_mp_channel_count(const struct net_device *dev) |
10449 | { |
10450 | int i; |
10451 | |
10452 | netdev_ops_assert_locked(dev); |
10453 | |
10454 | for (i = dev->real_num_rx_queues - 1; i >= 0; i--) |
10455 | if (dev->_rx[i].mp_params.mp_priv) |
10456 | /* The channel count is the idx plus 1. */ |
10457 | return i + 1; |
10458 | |
10459 | return 0; |
10460 | } |
10461 | |
10462 | /** |
10463 | * dev_index_reserve() - allocate an ifindex in a namespace |
10464 | * @net: the applicable net namespace |
10465 | * @ifindex: requested ifindex, pass %0 to get one allocated |
10466 | * |
10467 | * Allocate a ifindex for a new device. Caller must either use the ifindex |
10468 | * to store the device (via list_netdevice()) or call dev_index_release() |
10469 | * to give the index up. |
10470 | * |
10471 | * Return: a suitable unique value for a new device interface number or -errno. |
10472 | */ |
10473 | static int dev_index_reserve(struct net *net, u32 ifindex) |
10474 | { |
10475 | int err; |
10476 | |
10477 | if (ifindex > INT_MAX) { |
10478 | DEBUG_NET_WARN_ON_ONCE(1); |
10479 | return -EINVAL; |
10480 | } |
10481 | |
10482 | if (!ifindex) |
10483 | err = xa_alloc_cyclic(xa: &net->dev_by_index, id: &ifindex, NULL, |
10484 | xa_limit_31b, next: &net->ifindex, GFP_KERNEL); |
10485 | else |
10486 | err = xa_insert(xa: &net->dev_by_index, index: ifindex, NULL, GFP_KERNEL); |
10487 | if (err < 0) |
10488 | return err; |
10489 | |
10490 | return ifindex; |
10491 | } |
10492 | |
10493 | static void dev_index_release(struct net *net, int ifindex) |
10494 | { |
10495 | /* Expect only unused indexes, unlist_netdevice() removes the used */ |
10496 | WARN_ON(xa_erase(&net->dev_by_index, ifindex)); |
10497 | } |
10498 | |
10499 | static bool from_cleanup_net(void) |
10500 | { |
10501 | #ifdef CONFIG_NET_NS |
10502 | return current == READ_ONCE(cleanup_net_task); |
10503 | #else |
10504 | return false; |
10505 | #endif |
10506 | } |
10507 | |
10508 | /* Delayed registration/unregisteration */ |
10509 | LIST_HEAD(net_todo_list); |
10510 | DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); |
10511 | atomic_t dev_unreg_count = ATOMIC_INIT(0); |
10512 | |
10513 | static void net_set_todo(struct net_device *dev) |
10514 | { |
10515 | list_add_tail(new: &dev->todo_list, head: &net_todo_list); |
10516 | } |
10517 | |
10518 | static netdev_features_t netdev_sync_upper_features(struct net_device *lower, |
10519 | struct net_device *upper, netdev_features_t features) |
10520 | { |
10521 | netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; |
10522 | netdev_features_t feature; |
10523 | int feature_bit; |
10524 | |
10525 | for_each_netdev_feature(upper_disables, feature_bit) { |
10526 | feature = __NETIF_F_BIT(feature_bit); |
10527 | if (!(upper->wanted_features & feature) |
10528 | && (features & feature)) { |
10529 | netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", |
10530 | &feature, upper->name); |
10531 | features &= ~feature; |
10532 | } |
10533 | } |
10534 | |
10535 | return features; |
10536 | } |
10537 | |
10538 | static void netdev_sync_lower_features(struct net_device *upper, |
10539 | struct net_device *lower, netdev_features_t features) |
10540 | { |
10541 | netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; |
10542 | netdev_features_t feature; |
10543 | int feature_bit; |
10544 | |
10545 | for_each_netdev_feature(upper_disables, feature_bit) { |
10546 | feature = __NETIF_F_BIT(feature_bit); |
10547 | if (!(features & feature) && (lower->features & feature)) { |
10548 | netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", |
10549 | &feature, lower->name); |
10550 | netdev_lock_ops(dev: lower); |
10551 | lower->wanted_features &= ~feature; |
10552 | __netdev_update_features(dev: lower); |
10553 | |
10554 | if (unlikely(lower->features & feature)) |
10555 | netdev_WARN(upper, "failed to disable %pNF on %s!\n", |
10556 | &feature, lower->name); |
10557 | else |
10558 | netdev_features_change(lower); |
10559 | netdev_unlock_ops(dev: lower); |
10560 | } |
10561 | } |
10562 | } |
10563 | |
10564 | static bool netdev_has_ip_or_hw_csum(netdev_features_t features) |
10565 | { |
10566 | netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; |
10567 | bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; |
10568 | bool hw_csum = features & NETIF_F_HW_CSUM; |
10569 | |
10570 | return ip_csum || hw_csum; |
10571 | } |
10572 | |
10573 | static netdev_features_t netdev_fix_features(struct net_device *dev, |
10574 | netdev_features_t features) |
10575 | { |
10576 | /* Fix illegal checksum combinations */ |
10577 | if ((features & NETIF_F_HW_CSUM) && |
10578 | (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { |
10579 | netdev_warn(dev, format: "mixed HW and IP checksum settings.\n"); |
10580 | features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); |
10581 | } |
10582 | |
10583 | /* TSO requires that SG is present as well. */ |
10584 | if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { |
10585 | netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); |
10586 | features &= ~NETIF_F_ALL_TSO; |
10587 | } |
10588 | |
10589 | if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && |
10590 | !(features & NETIF_F_IP_CSUM)) { |
10591 | netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); |
10592 | features &= ~NETIF_F_TSO; |
10593 | features &= ~NETIF_F_TSO_ECN; |
10594 | } |
10595 | |
10596 | if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && |
10597 | !(features & NETIF_F_IPV6_CSUM)) { |
10598 | netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); |
10599 | features &= ~NETIF_F_TSO6; |
10600 | } |
10601 | |
10602 | /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ |
10603 | if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) |
10604 | features &= ~NETIF_F_TSO_MANGLEID; |
10605 | |
10606 | /* TSO ECN requires that TSO is present as well. */ |
10607 | if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) |
10608 | features &= ~NETIF_F_TSO_ECN; |
10609 | |
10610 | /* Software GSO depends on SG. */ |
10611 | if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { |
10612 | netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); |
10613 | features &= ~NETIF_F_GSO; |
10614 | } |
10615 | |
10616 | /* GSO partial features require GSO partial be set */ |
10617 | if ((features & dev->gso_partial_features) && |
10618 | !(features & NETIF_F_GSO_PARTIAL)) { |
10619 | netdev_dbg(dev, |
10620 | "Dropping partially supported GSO features since no GSO partial.\n"); |
10621 | features &= ~dev->gso_partial_features; |
10622 | } |
10623 | |
10624 | if (!(features & NETIF_F_RXCSUM)) { |
10625 | /* NETIF_F_GRO_HW implies doing RXCSUM since every packet |
10626 | * successfully merged by hardware must also have the |
10627 | * checksum verified by hardware. If the user does not |
10628 | * want to enable RXCSUM, logically, we should disable GRO_HW. |
10629 | */ |
10630 | if (features & NETIF_F_GRO_HW) { |
10631 | netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); |
10632 | features &= ~NETIF_F_GRO_HW; |
10633 | } |
10634 | } |
10635 | |
10636 | /* LRO/HW-GRO features cannot be combined with RX-FCS */ |
10637 | if (features & NETIF_F_RXFCS) { |
10638 | if (features & NETIF_F_LRO) { |
10639 | netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); |
10640 | features &= ~NETIF_F_LRO; |
10641 | } |
10642 | |
10643 | if (features & NETIF_F_GRO_HW) { |
10644 | netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); |
10645 | features &= ~NETIF_F_GRO_HW; |
10646 | } |
10647 | } |
10648 | |
10649 | if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { |
10650 | netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); |
10651 | features &= ~NETIF_F_LRO; |
10652 | } |
10653 | |
10654 | if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { |
10655 | netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); |
10656 | features &= ~NETIF_F_HW_TLS_TX; |
10657 | } |
10658 | |
10659 | if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { |
10660 | netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); |
10661 | features &= ~NETIF_F_HW_TLS_RX; |
10662 | } |
10663 | |
10664 | if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { |
10665 | netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); |
10666 | features &= ~NETIF_F_GSO_UDP_L4; |
10667 | } |
10668 | |
10669 | return features; |
10670 | } |
10671 | |
10672 | int __netdev_update_features(struct net_device *dev) |
10673 | { |
10674 | struct net_device *upper, *lower; |
10675 | netdev_features_t features; |
10676 | struct list_head *iter; |
10677 | int err = -1; |
10678 | |
10679 | ASSERT_RTNL(); |
10680 | netdev_ops_assert_locked(dev); |
10681 | |
10682 | features = netdev_get_wanted_features(dev); |
10683 | |
10684 | if (dev->netdev_ops->ndo_fix_features) |
10685 | features = dev->netdev_ops->ndo_fix_features(dev, features); |
10686 | |
10687 | /* driver might be less strict about feature dependencies */ |
10688 | features = netdev_fix_features(dev, features); |
10689 | |
10690 | /* some features can't be enabled if they're off on an upper device */ |
10691 | netdev_for_each_upper_dev_rcu(dev, upper, iter) |
10692 | features = netdev_sync_upper_features(lower: dev, upper, features); |
10693 | |
10694 | if (dev->features == features) |
10695 | goto sync_lower; |
10696 | |
10697 | netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", |
10698 | &dev->features, &features); |
10699 | |
10700 | if (dev->netdev_ops->ndo_set_features) |
10701 | err = dev->netdev_ops->ndo_set_features(dev, features); |
10702 | else |
10703 | err = 0; |
10704 | |
10705 | if (unlikely(err < 0)) { |
10706 | netdev_err(dev, |
10707 | format: "set_features() failed (%d); wanted %pNF, left %pNF\n", |
10708 | err, &features, &dev->features); |
10709 | /* return non-0 since some features might have changed and |
10710 | * it's better to fire a spurious notification than miss it |
10711 | */ |
10712 | return -1; |
10713 | } |
10714 | |
10715 | sync_lower: |
10716 | /* some features must be disabled on lower devices when disabled |
10717 | * on an upper device (think: bonding master or bridge) |
10718 | */ |
10719 | netdev_for_each_lower_dev(dev, lower, iter) |
10720 | netdev_sync_lower_features(upper: dev, lower, features); |
10721 | |
10722 | if (!err) { |
10723 | netdev_features_t diff = features ^ dev->features; |
10724 | |
10725 | if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { |
10726 | /* udp_tunnel_{get,drop}_rx_info both need |
10727 | * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the |
10728 | * device, or they won't do anything. |
10729 | * Thus we need to update dev->features |
10730 | * *before* calling udp_tunnel_get_rx_info, |
10731 | * but *after* calling udp_tunnel_drop_rx_info. |
10732 | */ |
10733 | if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { |
10734 | dev->features = features; |
10735 | udp_tunnel_get_rx_info(dev); |
10736 | } else { |
10737 | udp_tunnel_drop_rx_info(dev); |
10738 | } |
10739 | } |
10740 | |
10741 | if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { |
10742 | if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { |
10743 | dev->features = features; |
10744 | err |= vlan_get_rx_ctag_filter_info(dev); |
10745 | } else { |
10746 | vlan_drop_rx_ctag_filter_info(dev); |
10747 | } |
10748 | } |
10749 | |
10750 | if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { |
10751 | if (features & NETIF_F_HW_VLAN_STAG_FILTER) { |
10752 | dev->features = features; |
10753 | err |= vlan_get_rx_stag_filter_info(dev); |
10754 | } else { |
10755 | vlan_drop_rx_stag_filter_info(dev); |
10756 | } |
10757 | } |
10758 | |
10759 | dev->features = features; |
10760 | } |
10761 | |
10762 | return err < 0 ? 0 : 1; |
10763 | } |
10764 | |
10765 | /** |
10766 | * netdev_update_features - recalculate device features |
10767 | * @dev: the device to check |
10768 | * |
10769 | * Recalculate dev->features set and send notifications if it |
10770 | * has changed. Should be called after driver or hardware dependent |
10771 | * conditions might have changed that influence the features. |
10772 | */ |
10773 | void netdev_update_features(struct net_device *dev) |
10774 | { |
10775 | if (__netdev_update_features(dev)) |
10776 | netdev_features_change(dev); |
10777 | } |
10778 | EXPORT_SYMBOL(netdev_update_features); |
10779 | |
10780 | /** |
10781 | * netdev_change_features - recalculate device features |
10782 | * @dev: the device to check |
10783 | * |
10784 | * Recalculate dev->features set and send notifications even |
10785 | * if they have not changed. Should be called instead of |
10786 | * netdev_update_features() if also dev->vlan_features might |
10787 | * have changed to allow the changes to be propagated to stacked |
10788 | * VLAN devices. |
10789 | */ |
10790 | void netdev_change_features(struct net_device *dev) |
10791 | { |
10792 | __netdev_update_features(dev); |
10793 | netdev_features_change(dev); |
10794 | } |
10795 | EXPORT_SYMBOL(netdev_change_features); |
10796 | |
10797 | /** |
10798 | * netif_stacked_transfer_operstate - transfer operstate |
10799 | * @rootdev: the root or lower level device to transfer state from |
10800 | * @dev: the device to transfer operstate to |
10801 | * |
10802 | * Transfer operational state from root to device. This is normally |
10803 | * called when a stacking relationship exists between the root |
10804 | * device and the device(a leaf device). |
10805 | */ |
10806 | void netif_stacked_transfer_operstate(const struct net_device *rootdev, |
10807 | struct net_device *dev) |
10808 | { |
10809 | if (rootdev->operstate == IF_OPER_DORMANT) |
10810 | netif_dormant_on(dev); |
10811 | else |
10812 | netif_dormant_off(dev); |
10813 | |
10814 | if (rootdev->operstate == IF_OPER_TESTING) |
10815 | netif_testing_on(dev); |
10816 | else |
10817 | netif_testing_off(dev); |
10818 | |
10819 | if (netif_carrier_ok(dev: rootdev)) |
10820 | netif_carrier_on(dev); |
10821 | else |
10822 | netif_carrier_off(dev); |
10823 | } |
10824 | EXPORT_SYMBOL(netif_stacked_transfer_operstate); |
10825 | |
10826 | static int netif_alloc_rx_queues(struct net_device *dev) |
10827 | { |
10828 | unsigned int i, count = dev->num_rx_queues; |
10829 | struct netdev_rx_queue *rx; |
10830 | size_t sz = count * sizeof(*rx); |
10831 | int err = 0; |
10832 | |
10833 | BUG_ON(count < 1); |
10834 | |
10835 | rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); |
10836 | if (!rx) |
10837 | return -ENOMEM; |
10838 | |
10839 | dev->_rx = rx; |
10840 | |
10841 | for (i = 0; i < count; i++) { |
10842 | rx[i].dev = dev; |
10843 | |
10844 | /* XDP RX-queue setup */ |
10845 | err = xdp_rxq_info_reg(xdp_rxq: &rx[i].xdp_rxq, dev, queue_index: i, napi_id: 0); |
10846 | if (err < 0) |
10847 | goto err_rxq_info; |
10848 | } |
10849 | return 0; |
10850 | |
10851 | err_rxq_info: |
10852 | /* Rollback successful reg's and free other resources */ |
10853 | while (i--) |
10854 | xdp_rxq_info_unreg(xdp_rxq: &rx[i].xdp_rxq); |
10855 | kvfree(addr: dev->_rx); |
10856 | dev->_rx = NULL; |
10857 | return err; |
10858 | } |
10859 | |
10860 | static void netif_free_rx_queues(struct net_device *dev) |
10861 | { |
10862 | unsigned int i, count = dev->num_rx_queues; |
10863 | |
10864 | /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ |
10865 | if (!dev->_rx) |
10866 | return; |
10867 | |
10868 | for (i = 0; i < count; i++) |
10869 | xdp_rxq_info_unreg(xdp_rxq: &dev->_rx[i].xdp_rxq); |
10870 | |
10871 | kvfree(addr: dev->_rx); |
10872 | } |
10873 | |
10874 | static void netdev_init_one_queue(struct net_device *dev, |
10875 | struct netdev_queue *queue, void *_unused) |
10876 | { |
10877 | /* Initialize queue lock */ |
10878 | spin_lock_init(&queue->_xmit_lock); |
10879 | netdev_set_xmit_lockdep_class(lock: &queue->_xmit_lock, dev_type: dev->type); |
10880 | queue->xmit_lock_owner = -1; |
10881 | netdev_queue_numa_node_write(q: queue, NUMA_NO_NODE); |
10882 | queue->dev = dev; |
10883 | #ifdef CONFIG_BQL |
10884 | dql_init(dql: &queue->dql, HZ); |
10885 | #endif |
10886 | } |
10887 | |
10888 | static void netif_free_tx_queues(struct net_device *dev) |
10889 | { |
10890 | kvfree(addr: dev->_tx); |
10891 | } |
10892 | |
10893 | static int netif_alloc_netdev_queues(struct net_device *dev) |
10894 | { |
10895 | unsigned int count = dev->num_tx_queues; |
10896 | struct netdev_queue *tx; |
10897 | size_t sz = count * sizeof(*tx); |
10898 | |
10899 | if (count < 1 || count > 0xffff) |
10900 | return -EINVAL; |
10901 | |
10902 | tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); |
10903 | if (!tx) |
10904 | return -ENOMEM; |
10905 | |
10906 | dev->_tx = tx; |
10907 | |
10908 | netdev_for_each_tx_queue(dev, f: netdev_init_one_queue, NULL); |
10909 | spin_lock_init(&dev->tx_global_lock); |
10910 | |
10911 | return 0; |
10912 | } |
10913 | |
10914 | void netif_tx_stop_all_queues(struct net_device *dev) |
10915 | { |
10916 | unsigned int i; |
10917 | |
10918 | for (i = 0; i < dev->num_tx_queues; i++) { |
10919 | struct netdev_queue *txq = netdev_get_tx_queue(dev, index: i); |
10920 | |
10921 | netif_tx_stop_queue(dev_queue: txq); |
10922 | } |
10923 | } |
10924 | EXPORT_SYMBOL(netif_tx_stop_all_queues); |
10925 | |
10926 | static int netdev_do_alloc_pcpu_stats(struct net_device *dev) |
10927 | { |
10928 | void __percpu *v; |
10929 | |
10930 | /* Drivers implementing ndo_get_peer_dev must support tstat |
10931 | * accounting, so that skb_do_redirect() can bump the dev's |
10932 | * RX stats upon network namespace switch. |
10933 | */ |
10934 | if (dev->netdev_ops->ndo_get_peer_dev && |
10935 | dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) |
10936 | return -EOPNOTSUPP; |
10937 | |
10938 | switch (dev->pcpu_stat_type) { |
10939 | case NETDEV_PCPU_STAT_NONE: |
10940 | return 0; |
10941 | case NETDEV_PCPU_STAT_LSTATS: |
10942 | v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); |
10943 | break; |
10944 | case NETDEV_PCPU_STAT_TSTATS: |
10945 | v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); |
10946 | break; |
10947 | case NETDEV_PCPU_STAT_DSTATS: |
10948 | v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); |
10949 | break; |
10950 | default: |
10951 | return -EINVAL; |
10952 | } |
10953 | |
10954 | return v ? 0 : -ENOMEM; |
10955 | } |
10956 | |
10957 | static void netdev_do_free_pcpu_stats(struct net_device *dev) |
10958 | { |
10959 | switch (dev->pcpu_stat_type) { |
10960 | case NETDEV_PCPU_STAT_NONE: |
10961 | return; |
10962 | case NETDEV_PCPU_STAT_LSTATS: |
10963 | free_percpu(pdata: dev->lstats); |
10964 | break; |
10965 | case NETDEV_PCPU_STAT_TSTATS: |
10966 | free_percpu(pdata: dev->tstats); |
10967 | break; |
10968 | case NETDEV_PCPU_STAT_DSTATS: |
10969 | free_percpu(pdata: dev->dstats); |
10970 | break; |
10971 | } |
10972 | } |
10973 | |
10974 | static void netdev_free_phy_link_topology(struct net_device *dev) |
10975 | { |
10976 | struct phy_link_topology *topo = dev->link_topo; |
10977 | |
10978 | if (IS_ENABLED(CONFIG_PHYLIB) && topo) { |
10979 | xa_destroy(&topo->phys); |
10980 | kfree(objp: topo); |
10981 | dev->link_topo = NULL; |
10982 | } |
10983 | } |
10984 | |
10985 | /** |
10986 | * register_netdevice() - register a network device |
10987 | * @dev: device to register |
10988 | * |
10989 | * Take a prepared network device structure and make it externally accessible. |
10990 | * A %NETDEV_REGISTER message is sent to the netdev notifier chain. |
10991 | * Callers must hold the rtnl lock - you may want register_netdev() |
10992 | * instead of this. |
10993 | */ |
10994 | int register_netdevice(struct net_device *dev) |
10995 | { |
10996 | int ret; |
10997 | struct net *net = dev_net(dev); |
10998 | |
10999 | BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < |
11000 | NETDEV_FEATURE_COUNT); |
11001 | BUG_ON(dev_boot_phase); |
11002 | ASSERT_RTNL(); |
11003 | |
11004 | might_sleep(); |
11005 | |
11006 | /* When net_device's are persistent, this will be fatal. */ |
11007 | BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); |
11008 | BUG_ON(!net); |
11009 | |
11010 | ret = ethtool_check_ops(ops: dev->ethtool_ops); |
11011 | if (ret) |
11012 | return ret; |
11013 | |
11014 | /* rss ctx ID 0 is reserved for the default context, start from 1 */ |
11015 | xa_init_flags(xa: &dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); |
11016 | mutex_init(&dev->ethtool->rss_lock); |
11017 | |
11018 | spin_lock_init(&dev->addr_list_lock); |
11019 | netdev_set_addr_lockdep_class(dev); |
11020 | |
11021 | ret = dev_get_valid_name(net, dev, name: dev->name); |
11022 | if (ret < 0) |
11023 | goto out; |
11024 | |
11025 | ret = -ENOMEM; |
11026 | dev->name_node = netdev_name_node_head_alloc(dev); |
11027 | if (!dev->name_node) |
11028 | goto out; |
11029 | |
11030 | /* Init, if this function is available */ |
11031 | if (dev->netdev_ops->ndo_init) { |
11032 | ret = dev->netdev_ops->ndo_init(dev); |
11033 | if (ret) { |
11034 | if (ret > 0) |
11035 | ret = -EIO; |
11036 | goto err_free_name; |
11037 | } |
11038 | } |
11039 | |
11040 | if (((dev->hw_features | dev->features) & |
11041 | NETIF_F_HW_VLAN_CTAG_FILTER) && |
11042 | (!dev->netdev_ops->ndo_vlan_rx_add_vid || |
11043 | !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { |
11044 | netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); |
11045 | ret = -EINVAL; |
11046 | goto err_uninit; |
11047 | } |
11048 | |
11049 | ret = netdev_do_alloc_pcpu_stats(dev); |
11050 | if (ret) |
11051 | goto err_uninit; |
11052 | |
11053 | ret = dev_index_reserve(net, ifindex: dev->ifindex); |
11054 | if (ret < 0) |
11055 | goto err_free_pcpu; |
11056 | dev->ifindex = ret; |
11057 | |
11058 | /* Transfer changeable features to wanted_features and enable |
11059 | * software offloads (GSO and GRO). |
11060 | */ |
11061 | dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); |
11062 | dev->features |= NETIF_F_SOFT_FEATURES; |
11063 | |
11064 | if (dev->udp_tunnel_nic_info) { |
11065 | dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; |
11066 | dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; |
11067 | } |
11068 | |
11069 | dev->wanted_features = dev->features & dev->hw_features; |
11070 | |
11071 | if (!(dev->flags & IFF_LOOPBACK)) |
11072 | dev->hw_features |= NETIF_F_NOCACHE_COPY; |
11073 | |
11074 | /* If IPv4 TCP segmentation offload is supported we should also |
11075 | * allow the device to enable segmenting the frame with the option |
11076 | * of ignoring a static IP ID value. This doesn't enable the |
11077 | * feature itself but allows the user to enable it later. |
11078 | */ |
11079 | if (dev->hw_features & NETIF_F_TSO) |
11080 | dev->hw_features |= NETIF_F_TSO_MANGLEID; |
11081 | if (dev->vlan_features & NETIF_F_TSO) |
11082 | dev->vlan_features |= NETIF_F_TSO_MANGLEID; |
11083 | if (dev->mpls_features & NETIF_F_TSO) |
11084 | dev->mpls_features |= NETIF_F_TSO_MANGLEID; |
11085 | if (dev->hw_enc_features & NETIF_F_TSO) |
11086 | dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; |
11087 | |
11088 | /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. |
11089 | */ |
11090 | dev->vlan_features |= NETIF_F_HIGHDMA; |
11091 | |
11092 | /* Make NETIF_F_SG inheritable to tunnel devices. |
11093 | */ |
11094 | dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; |
11095 | |
11096 | /* Make NETIF_F_SG inheritable to MPLS. |
11097 | */ |
11098 | dev->mpls_features |= NETIF_F_SG; |
11099 | |
11100 | ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); |
11101 | ret = notifier_to_errno(ret); |
11102 | if (ret) |
11103 | goto err_ifindex_release; |
11104 | |
11105 | ret = netdev_register_kobject(dev); |
11106 | |
11107 | netdev_lock(dev); |
11108 | WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); |
11109 | netdev_unlock(dev); |
11110 | |
11111 | if (ret) |
11112 | goto err_uninit_notify; |
11113 | |
11114 | netdev_lock_ops(dev); |
11115 | __netdev_update_features(dev); |
11116 | netdev_unlock_ops(dev); |
11117 | |
11118 | /* |
11119 | * Default initial state at registry is that the |
11120 | * device is present. |
11121 | */ |
11122 | |
11123 | set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state); |
11124 | |
11125 | linkwatch_init_dev(dev); |
11126 | |
11127 | dev_init_scheduler(dev); |
11128 | |
11129 | netdev_hold(dev, tracker: &dev->dev_registered_tracker, GFP_KERNEL); |
11130 | list_netdevice(dev); |
11131 | |
11132 | add_device_randomness(buf: dev->dev_addr, len: dev->addr_len); |
11133 | |
11134 | /* If the device has permanent device address, driver should |
11135 | * set dev_addr and also addr_assign_type should be set to |
11136 | * NET_ADDR_PERM (default value). |
11137 | */ |
11138 | if (dev->addr_assign_type == NET_ADDR_PERM) |
11139 | memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); |
11140 | |
11141 | /* Notify protocols, that a new device appeared. */ |
11142 | netdev_lock_ops(dev); |
11143 | ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); |
11144 | netdev_unlock_ops(dev); |
11145 | ret = notifier_to_errno(ret); |
11146 | if (ret) { |
11147 | /* Expect explicit free_netdev() on failure */ |
11148 | dev->needs_free_netdev = false; |
11149 | unregister_netdevice_queue(dev, NULL); |
11150 | goto out; |
11151 | } |
11152 | /* |
11153 | * Prevent userspace races by waiting until the network |
11154 | * device is fully setup before sending notifications. |
11155 | */ |
11156 | if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) |
11157 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: ~0U, GFP_KERNEL, portid: 0, NULL); |
11158 | |
11159 | out: |
11160 | return ret; |
11161 | |
11162 | err_uninit_notify: |
11163 | call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); |
11164 | err_ifindex_release: |
11165 | dev_index_release(net, ifindex: dev->ifindex); |
11166 | err_free_pcpu: |
11167 | netdev_do_free_pcpu_stats(dev); |
11168 | err_uninit: |
11169 | if (dev->netdev_ops->ndo_uninit) |
11170 | dev->netdev_ops->ndo_uninit(dev); |
11171 | if (dev->priv_destructor) |
11172 | dev->priv_destructor(dev); |
11173 | err_free_name: |
11174 | netdev_name_node_free(name_node: dev->name_node); |
11175 | goto out; |
11176 | } |
11177 | EXPORT_SYMBOL(register_netdevice); |
11178 | |
11179 | /* Initialize the core of a dummy net device. |
11180 | * The setup steps dummy netdevs need which normal netdevs get by going |
11181 | * through register_netdevice(). |
11182 | */ |
11183 | static void init_dummy_netdev(struct net_device *dev) |
11184 | { |
11185 | /* make sure we BUG if trying to hit standard |
11186 | * register/unregister code path |
11187 | */ |
11188 | dev->reg_state = NETREG_DUMMY; |
11189 | |
11190 | /* a dummy interface is started by default */ |
11191 | set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state); |
11192 | set_bit(nr: __LINK_STATE_START, addr: &dev->state); |
11193 | |
11194 | /* Note : We dont allocate pcpu_refcnt for dummy devices, |
11195 | * because users of this 'device' dont need to change |
11196 | * its refcount. |
11197 | */ |
11198 | } |
11199 | |
11200 | /** |
11201 | * register_netdev - register a network device |
11202 | * @dev: device to register |
11203 | * |
11204 | * Take a completed network device structure and add it to the kernel |
11205 | * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier |
11206 | * chain. 0 is returned on success. A negative errno code is returned |
11207 | * on a failure to set up the device, or if the name is a duplicate. |
11208 | * |
11209 | * This is a wrapper around register_netdevice that takes the rtnl semaphore |
11210 | * and expands the device name if you passed a format string to |
11211 | * alloc_netdev. |
11212 | */ |
11213 | int register_netdev(struct net_device *dev) |
11214 | { |
11215 | struct net *net = dev_net(dev); |
11216 | int err; |
11217 | |
11218 | if (rtnl_net_lock_killable(net)) |
11219 | return -EINTR; |
11220 | |
11221 | err = register_netdevice(dev); |
11222 | |
11223 | rtnl_net_unlock(net); |
11224 | |
11225 | return err; |
11226 | } |
11227 | EXPORT_SYMBOL(register_netdev); |
11228 | |
11229 | int netdev_refcnt_read(const struct net_device *dev) |
11230 | { |
11231 | #ifdef CONFIG_PCPU_DEV_REFCNT |
11232 | int i, refcnt = 0; |
11233 | |
11234 | for_each_possible_cpu(i) |
11235 | refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); |
11236 | return refcnt; |
11237 | #else |
11238 | return refcount_read(&dev->dev_refcnt); |
11239 | #endif |
11240 | } |
11241 | EXPORT_SYMBOL(netdev_refcnt_read); |
11242 | |
11243 | int netdev_unregister_timeout_secs __read_mostly = 10; |
11244 | |
11245 | #define WAIT_REFS_MIN_MSECS 1 |
11246 | #define WAIT_REFS_MAX_MSECS 250 |
11247 | /** |
11248 | * netdev_wait_allrefs_any - wait until all references are gone. |
11249 | * @list: list of net_devices to wait on |
11250 | * |
11251 | * This is called when unregistering network devices. |
11252 | * |
11253 | * Any protocol or device that holds a reference should register |
11254 | * for netdevice notification, and cleanup and put back the |
11255 | * reference if they receive an UNREGISTER event. |
11256 | * We can get stuck here if buggy protocols don't correctly |
11257 | * call dev_put. |
11258 | */ |
11259 | static struct net_device *netdev_wait_allrefs_any(struct list_head *list) |
11260 | { |
11261 | unsigned long rebroadcast_time, warning_time; |
11262 | struct net_device *dev; |
11263 | int wait = 0; |
11264 | |
11265 | rebroadcast_time = warning_time = jiffies; |
11266 | |
11267 | list_for_each_entry(dev, list, todo_list) |
11268 | if (netdev_refcnt_read(dev) == 1) |
11269 | return dev; |
11270 | |
11271 | while (true) { |
11272 | if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { |
11273 | rtnl_lock(); |
11274 | |
11275 | /* Rebroadcast unregister notification */ |
11276 | list_for_each_entry(dev, list, todo_list) |
11277 | call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
11278 | |
11279 | __rtnl_unlock(); |
11280 | rcu_barrier(); |
11281 | rtnl_lock(); |
11282 | |
11283 | list_for_each_entry(dev, list, todo_list) |
11284 | if (test_bit(__LINK_STATE_LINKWATCH_PENDING, |
11285 | &dev->state)) { |
11286 | /* We must not have linkwatch events |
11287 | * pending on unregister. If this |
11288 | * happens, we simply run the queue |
11289 | * unscheduled, resulting in a noop |
11290 | * for this device. |
11291 | */ |
11292 | linkwatch_run_queue(); |
11293 | break; |
11294 | } |
11295 | |
11296 | __rtnl_unlock(); |
11297 | |
11298 | rebroadcast_time = jiffies; |
11299 | } |
11300 | |
11301 | rcu_barrier(); |
11302 | |
11303 | if (!wait) { |
11304 | wait = WAIT_REFS_MIN_MSECS; |
11305 | } else { |
11306 | msleep(msecs: wait); |
11307 | wait = min(wait << 1, WAIT_REFS_MAX_MSECS); |
11308 | } |
11309 | |
11310 | list_for_each_entry(dev, list, todo_list) |
11311 | if (netdev_refcnt_read(dev) == 1) |
11312 | return dev; |
11313 | |
11314 | if (time_after(jiffies, warning_time + |
11315 | READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { |
11316 | list_for_each_entry(dev, list, todo_list) { |
11317 | pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", |
11318 | dev->name, netdev_refcnt_read(dev)); |
11319 | ref_tracker_dir_print(dir: &dev->refcnt_tracker, display_limit: 10); |
11320 | } |
11321 | |
11322 | warning_time = jiffies; |
11323 | } |
11324 | } |
11325 | } |
11326 | |
11327 | /* The sequence is: |
11328 | * |
11329 | * rtnl_lock(); |
11330 | * ... |
11331 | * register_netdevice(x1); |
11332 | * register_netdevice(x2); |
11333 | * ... |
11334 | * unregister_netdevice(y1); |
11335 | * unregister_netdevice(y2); |
11336 | * ... |
11337 | * rtnl_unlock(); |
11338 | * free_netdev(y1); |
11339 | * free_netdev(y2); |
11340 | * |
11341 | * We are invoked by rtnl_unlock(). |
11342 | * This allows us to deal with problems: |
11343 | * 1) We can delete sysfs objects which invoke hotplug |
11344 | * without deadlocking with linkwatch via keventd. |
11345 | * 2) Since we run with the RTNL semaphore not held, we can sleep |
11346 | * safely in order to wait for the netdev refcnt to drop to zero. |
11347 | * |
11348 | * We must not return until all unregister events added during |
11349 | * the interval the lock was held have been completed. |
11350 | */ |
11351 | void netdev_run_todo(void) |
11352 | { |
11353 | struct net_device *dev, *tmp; |
11354 | struct list_head list; |
11355 | int cnt; |
11356 | #ifdef CONFIG_LOCKDEP |
11357 | struct list_head unlink_list; |
11358 | |
11359 | list_replace_init(old: &net_unlink_list, new: &unlink_list); |
11360 | |
11361 | while (!list_empty(head: &unlink_list)) { |
11362 | dev = list_first_entry(&unlink_list, struct net_device, |
11363 | unlink_list); |
11364 | list_del_init(entry: &dev->unlink_list); |
11365 | dev->nested_level = dev->lower_level - 1; |
11366 | } |
11367 | #endif |
11368 | |
11369 | /* Snapshot list, allow later requests */ |
11370 | list_replace_init(old: &net_todo_list, new: &list); |
11371 | |
11372 | __rtnl_unlock(); |
11373 | |
11374 | /* Wait for rcu callbacks to finish before next phase */ |
11375 | if (!list_empty(head: &list)) |
11376 | rcu_barrier(); |
11377 | |
11378 | list_for_each_entry_safe(dev, tmp, &list, todo_list) { |
11379 | if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { |
11380 | netdev_WARN(dev, "run_todo but not unregistering\n"); |
11381 | list_del(entry: &dev->todo_list); |
11382 | continue; |
11383 | } |
11384 | |
11385 | netdev_lock(dev); |
11386 | WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); |
11387 | netdev_unlock(dev); |
11388 | linkwatch_sync_dev(dev); |
11389 | } |
11390 | |
11391 | cnt = 0; |
11392 | while (!list_empty(head: &list)) { |
11393 | dev = netdev_wait_allrefs_any(list: &list); |
11394 | list_del(entry: &dev->todo_list); |
11395 | |
11396 | /* paranoia */ |
11397 | BUG_ON(netdev_refcnt_read(dev) != 1); |
11398 | BUG_ON(!list_empty(&dev->ptype_all)); |
11399 | BUG_ON(!list_empty(&dev->ptype_specific)); |
11400 | WARN_ON(rcu_access_pointer(dev->ip_ptr)); |
11401 | WARN_ON(rcu_access_pointer(dev->ip6_ptr)); |
11402 | |
11403 | netdev_do_free_pcpu_stats(dev); |
11404 | if (dev->priv_destructor) |
11405 | dev->priv_destructor(dev); |
11406 | if (dev->needs_free_netdev) |
11407 | free_netdev(dev); |
11408 | |
11409 | cnt++; |
11410 | |
11411 | /* Free network device */ |
11412 | kobject_put(kobj: &dev->dev.kobj); |
11413 | } |
11414 | if (cnt && atomic_sub_and_test(i: cnt, v: &dev_unreg_count)) |
11415 | wake_up(&netdev_unregistering_wq); |
11416 | } |
11417 | |
11418 | /* Collate per-cpu network dstats statistics |
11419 | * |
11420 | * Read per-cpu network statistics from dev->dstats and populate the related |
11421 | * fields in @s. |
11422 | */ |
11423 | static void dev_fetch_dstats(struct rtnl_link_stats64 *s, |
11424 | const struct pcpu_dstats __percpu *dstats) |
11425 | { |
11426 | int cpu; |
11427 | |
11428 | for_each_possible_cpu(cpu) { |
11429 | u64 rx_packets, rx_bytes, rx_drops; |
11430 | u64 tx_packets, tx_bytes, tx_drops; |
11431 | const struct pcpu_dstats *stats; |
11432 | unsigned int start; |
11433 | |
11434 | stats = per_cpu_ptr(dstats, cpu); |
11435 | do { |
11436 | start = u64_stats_fetch_begin(syncp: &stats->syncp); |
11437 | rx_packets = u64_stats_read(p: &stats->rx_packets); |
11438 | rx_bytes = u64_stats_read(p: &stats->rx_bytes); |
11439 | rx_drops = u64_stats_read(p: &stats->rx_drops); |
11440 | tx_packets = u64_stats_read(p: &stats->tx_packets); |
11441 | tx_bytes = u64_stats_read(p: &stats->tx_bytes); |
11442 | tx_drops = u64_stats_read(p: &stats->tx_drops); |
11443 | } while (u64_stats_fetch_retry(syncp: &stats->syncp, start)); |
11444 | |
11445 | s->rx_packets += rx_packets; |
11446 | s->rx_bytes += rx_bytes; |
11447 | s->rx_dropped += rx_drops; |
11448 | s->tx_packets += tx_packets; |
11449 | s->tx_bytes += tx_bytes; |
11450 | s->tx_dropped += tx_drops; |
11451 | } |
11452 | } |
11453 | |
11454 | /* ndo_get_stats64 implementation for dtstats-based accounting. |
11455 | * |
11456 | * Populate @s from dev->stats and dev->dstats. This is used internally by the |
11457 | * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. |
11458 | */ |
11459 | static void dev_get_dstats64(const struct net_device *dev, |
11460 | struct rtnl_link_stats64 *s) |
11461 | { |
11462 | netdev_stats_to_stats64(stats64: s, netdev_stats: &dev->stats); |
11463 | dev_fetch_dstats(s, dstats: dev->dstats); |
11464 | } |
11465 | |
11466 | /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has |
11467 | * all the same fields in the same order as net_device_stats, with only |
11468 | * the type differing, but rtnl_link_stats64 may have additional fields |
11469 | * at the end for newer counters. |
11470 | */ |
11471 | void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, |
11472 | const struct net_device_stats *netdev_stats) |
11473 | { |
11474 | size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); |
11475 | const atomic_long_t *src = (atomic_long_t *)netdev_stats; |
11476 | u64 *dst = (u64 *)stats64; |
11477 | |
11478 | BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); |
11479 | for (i = 0; i < n; i++) |
11480 | dst[i] = (unsigned long)atomic_long_read(v: &src[i]); |
11481 | /* zero out counters that only exist in rtnl_link_stats64 */ |
11482 | memset((char *)stats64 + n * sizeof(u64), 0, |
11483 | sizeof(*stats64) - n * sizeof(u64)); |
11484 | } |
11485 | EXPORT_SYMBOL(netdev_stats_to_stats64); |
11486 | |
11487 | static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( |
11488 | struct net_device *dev) |
11489 | { |
11490 | struct net_device_core_stats __percpu *p; |
11491 | |
11492 | p = alloc_percpu_gfp(struct net_device_core_stats, |
11493 | GFP_ATOMIC | __GFP_NOWARN); |
11494 | |
11495 | if (p && cmpxchg(&dev->core_stats, NULL, p)) |
11496 | free_percpu(pdata: p); |
11497 | |
11498 | /* This READ_ONCE() pairs with the cmpxchg() above */ |
11499 | return READ_ONCE(dev->core_stats); |
11500 | } |
11501 | |
11502 | noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) |
11503 | { |
11504 | /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ |
11505 | struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); |
11506 | unsigned long __percpu *field; |
11507 | |
11508 | if (unlikely(!p)) { |
11509 | p = netdev_core_stats_alloc(dev); |
11510 | if (!p) |
11511 | return; |
11512 | } |
11513 | |
11514 | field = (unsigned long __percpu *)((void __percpu *)p + offset); |
11515 | this_cpu_inc(*field); |
11516 | } |
11517 | EXPORT_SYMBOL_GPL(netdev_core_stats_inc); |
11518 | |
11519 | /** |
11520 | * dev_get_stats - get network device statistics |
11521 | * @dev: device to get statistics from |
11522 | * @storage: place to store stats |
11523 | * |
11524 | * Get network statistics from device. Return @storage. |
11525 | * The device driver may provide its own method by setting |
11526 | * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; |
11527 | * otherwise the internal statistics structure is used. |
11528 | */ |
11529 | struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, |
11530 | struct rtnl_link_stats64 *storage) |
11531 | { |
11532 | const struct net_device_ops *ops = dev->netdev_ops; |
11533 | const struct net_device_core_stats __percpu *p; |
11534 | |
11535 | /* |
11536 | * IPv{4,6} and udp tunnels share common stat helpers and use |
11537 | * different stat type (NETDEV_PCPU_STAT_TSTATS vs |
11538 | * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. |
11539 | */ |
11540 | BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != |
11541 | offsetof(struct pcpu_dstats, rx_bytes)); |
11542 | BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != |
11543 | offsetof(struct pcpu_dstats, rx_packets)); |
11544 | BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != |
11545 | offsetof(struct pcpu_dstats, tx_bytes)); |
11546 | BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != |
11547 | offsetof(struct pcpu_dstats, tx_packets)); |
11548 | |
11549 | if (ops->ndo_get_stats64) { |
11550 | memset(storage, 0, sizeof(*storage)); |
11551 | ops->ndo_get_stats64(dev, storage); |
11552 | } else if (ops->ndo_get_stats) { |
11553 | netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); |
11554 | } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { |
11555 | dev_get_tstats64(dev, s: storage); |
11556 | } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { |
11557 | dev_get_dstats64(dev, s: storage); |
11558 | } else { |
11559 | netdev_stats_to_stats64(storage, &dev->stats); |
11560 | } |
11561 | |
11562 | /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ |
11563 | p = READ_ONCE(dev->core_stats); |
11564 | if (p) { |
11565 | const struct net_device_core_stats *core_stats; |
11566 | int i; |
11567 | |
11568 | for_each_possible_cpu(i) { |
11569 | core_stats = per_cpu_ptr(p, i); |
11570 | storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); |
11571 | storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); |
11572 | storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); |
11573 | storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); |
11574 | } |
11575 | } |
11576 | return storage; |
11577 | } |
11578 | EXPORT_SYMBOL(dev_get_stats); |
11579 | |
11580 | /** |
11581 | * dev_fetch_sw_netstats - get per-cpu network device statistics |
11582 | * @s: place to store stats |
11583 | * @netstats: per-cpu network stats to read from |
11584 | * |
11585 | * Read per-cpu network statistics and populate the related fields in @s. |
11586 | */ |
11587 | void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, |
11588 | const struct pcpu_sw_netstats __percpu *netstats) |
11589 | { |
11590 | int cpu; |
11591 | |
11592 | for_each_possible_cpu(cpu) { |
11593 | u64 rx_packets, rx_bytes, tx_packets, tx_bytes; |
11594 | const struct pcpu_sw_netstats *stats; |
11595 | unsigned int start; |
11596 | |
11597 | stats = per_cpu_ptr(netstats, cpu); |
11598 | do { |
11599 | start = u64_stats_fetch_begin(syncp: &stats->syncp); |
11600 | rx_packets = u64_stats_read(p: &stats->rx_packets); |
11601 | rx_bytes = u64_stats_read(p: &stats->rx_bytes); |
11602 | tx_packets = u64_stats_read(p: &stats->tx_packets); |
11603 | tx_bytes = u64_stats_read(p: &stats->tx_bytes); |
11604 | } while (u64_stats_fetch_retry(syncp: &stats->syncp, start)); |
11605 | |
11606 | s->rx_packets += rx_packets; |
11607 | s->rx_bytes += rx_bytes; |
11608 | s->tx_packets += tx_packets; |
11609 | s->tx_bytes += tx_bytes; |
11610 | } |
11611 | } |
11612 | EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); |
11613 | |
11614 | /** |
11615 | * dev_get_tstats64 - ndo_get_stats64 implementation |
11616 | * @dev: device to get statistics from |
11617 | * @s: place to store stats |
11618 | * |
11619 | * Populate @s from dev->stats and dev->tstats. Can be used as |
11620 | * ndo_get_stats64() callback. |
11621 | */ |
11622 | void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) |
11623 | { |
11624 | netdev_stats_to_stats64(s, &dev->stats); |
11625 | dev_fetch_sw_netstats(s, dev->tstats); |
11626 | } |
11627 | EXPORT_SYMBOL_GPL(dev_get_tstats64); |
11628 | |
11629 | struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) |
11630 | { |
11631 | struct netdev_queue *queue = dev_ingress_queue(dev); |
11632 | |
11633 | #ifdef CONFIG_NET_CLS_ACT |
11634 | if (queue) |
11635 | return queue; |
11636 | queue = kzalloc(sizeof(*queue), GFP_KERNEL); |
11637 | if (!queue) |
11638 | return NULL; |
11639 | netdev_init_one_queue(dev, queue, NULL); |
11640 | RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); |
11641 | RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); |
11642 | rcu_assign_pointer(dev->ingress_queue, queue); |
11643 | #endif |
11644 | return queue; |
11645 | } |
11646 | |
11647 | static const struct ethtool_ops default_ethtool_ops; |
11648 | |
11649 | void netdev_set_default_ethtool_ops(struct net_device *dev, |
11650 | const struct ethtool_ops *ops) |
11651 | { |
11652 | if (dev->ethtool_ops == &default_ethtool_ops) |
11653 | dev->ethtool_ops = ops; |
11654 | } |
11655 | EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); |
11656 | |
11657 | /** |
11658 | * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default |
11659 | * @dev: netdev to enable the IRQ coalescing on |
11660 | * |
11661 | * Sets a conservative default for SW IRQ coalescing. Users can use |
11662 | * sysfs attributes to override the default values. |
11663 | */ |
11664 | void netdev_sw_irq_coalesce_default_on(struct net_device *dev) |
11665 | { |
11666 | WARN_ON(dev->reg_state == NETREG_REGISTERED); |
11667 | |
11668 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { |
11669 | netdev_set_gro_flush_timeout(netdev: dev, timeout: 20000); |
11670 | netdev_set_defer_hard_irqs(netdev: dev, defer: 1); |
11671 | } |
11672 | } |
11673 | EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); |
11674 | |
11675 | /** |
11676 | * alloc_netdev_mqs - allocate network device |
11677 | * @sizeof_priv: size of private data to allocate space for |
11678 | * @name: device name format string |
11679 | * @name_assign_type: origin of device name |
11680 | * @setup: callback to initialize device |
11681 | * @txqs: the number of TX subqueues to allocate |
11682 | * @rxqs: the number of RX subqueues to allocate |
11683 | * |
11684 | * Allocates a struct net_device with private data area for driver use |
11685 | * and performs basic initialization. Also allocates subqueue structs |
11686 | * for each queue on the device. |
11687 | */ |
11688 | struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, |
11689 | unsigned char name_assign_type, |
11690 | void (*setup)(struct net_device *), |
11691 | unsigned int txqs, unsigned int rxqs) |
11692 | { |
11693 | struct net_device *dev; |
11694 | size_t napi_config_sz; |
11695 | unsigned int maxqs; |
11696 | |
11697 | BUG_ON(strlen(name) >= sizeof(dev->name)); |
11698 | |
11699 | if (txqs < 1) { |
11700 | pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); |
11701 | return NULL; |
11702 | } |
11703 | |
11704 | if (rxqs < 1) { |
11705 | pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); |
11706 | return NULL; |
11707 | } |
11708 | |
11709 | maxqs = max(txqs, rxqs); |
11710 | |
11711 | dev = kvzalloc(struct_size(dev, priv, sizeof_priv), |
11712 | GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); |
11713 | if (!dev) |
11714 | return NULL; |
11715 | |
11716 | dev->priv_len = sizeof_priv; |
11717 | |
11718 | ref_tracker_dir_init(dir: &dev->refcnt_tracker, quarantine_count: 128, name); |
11719 | #ifdef CONFIG_PCPU_DEV_REFCNT |
11720 | dev->pcpu_refcnt = alloc_percpu(int); |
11721 | if (!dev->pcpu_refcnt) |
11722 | goto free_dev; |
11723 | __dev_hold(dev); |
11724 | #else |
11725 | refcount_set(&dev->dev_refcnt, 1); |
11726 | #endif |
11727 | |
11728 | if (dev_addr_init(dev)) |
11729 | goto free_pcpu; |
11730 | |
11731 | dev_mc_init(dev); |
11732 | dev_uc_init(dev); |
11733 | |
11734 | dev_net_set(dev, net: &init_net); |
11735 | |
11736 | dev->gso_max_size = GSO_LEGACY_MAX_SIZE; |
11737 | dev->xdp_zc_max_segs = 1; |
11738 | dev->gso_max_segs = GSO_MAX_SEGS; |
11739 | dev->gro_max_size = GRO_LEGACY_MAX_SIZE; |
11740 | dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; |
11741 | dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; |
11742 | dev->tso_max_size = TSO_LEGACY_MAX_SIZE; |
11743 | dev->tso_max_segs = TSO_MAX_SEGS; |
11744 | dev->upper_level = 1; |
11745 | dev->lower_level = 1; |
11746 | #ifdef CONFIG_LOCKDEP |
11747 | dev->nested_level = 0; |
11748 | INIT_LIST_HEAD(list: &dev->unlink_list); |
11749 | #endif |
11750 | |
11751 | INIT_LIST_HEAD(list: &dev->napi_list); |
11752 | INIT_LIST_HEAD(list: &dev->unreg_list); |
11753 | INIT_LIST_HEAD(list: &dev->close_list); |
11754 | INIT_LIST_HEAD(list: &dev->link_watch_list); |
11755 | INIT_LIST_HEAD(list: &dev->adj_list.upper); |
11756 | INIT_LIST_HEAD(list: &dev->adj_list.lower); |
11757 | INIT_LIST_HEAD(list: &dev->ptype_all); |
11758 | INIT_LIST_HEAD(list: &dev->ptype_specific); |
11759 | INIT_LIST_HEAD(list: &dev->net_notifier_list); |
11760 | #ifdef CONFIG_NET_SCHED |
11761 | hash_init(dev->qdisc_hash); |
11762 | #endif |
11763 | |
11764 | mutex_init(&dev->lock); |
11765 | |
11766 | dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; |
11767 | setup(dev); |
11768 | |
11769 | if (!dev->tx_queue_len) { |
11770 | dev->priv_flags |= IFF_NO_QUEUE; |
11771 | dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; |
11772 | } |
11773 | |
11774 | dev->num_tx_queues = txqs; |
11775 | dev->real_num_tx_queues = txqs; |
11776 | if (netif_alloc_netdev_queues(dev)) |
11777 | goto free_all; |
11778 | |
11779 | dev->num_rx_queues = rxqs; |
11780 | dev->real_num_rx_queues = rxqs; |
11781 | if (netif_alloc_rx_queues(dev)) |
11782 | goto free_all; |
11783 | dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); |
11784 | if (!dev->ethtool) |
11785 | goto free_all; |
11786 | |
11787 | dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); |
11788 | if (!dev->cfg) |
11789 | goto free_all; |
11790 | dev->cfg_pending = dev->cfg; |
11791 | |
11792 | napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); |
11793 | dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); |
11794 | if (!dev->napi_config) |
11795 | goto free_all; |
11796 | |
11797 | strscpy(dev->name, name); |
11798 | dev->name_assign_type = name_assign_type; |
11799 | dev->group = INIT_NETDEV_GROUP; |
11800 | if (!dev->ethtool_ops) |
11801 | dev->ethtool_ops = &default_ethtool_ops; |
11802 | |
11803 | nf_hook_netdev_init(dev); |
11804 | |
11805 | return dev; |
11806 | |
11807 | free_all: |
11808 | free_netdev(dev); |
11809 | return NULL; |
11810 | |
11811 | free_pcpu: |
11812 | #ifdef CONFIG_PCPU_DEV_REFCNT |
11813 | free_percpu(pdata: dev->pcpu_refcnt); |
11814 | free_dev: |
11815 | #endif |
11816 | kvfree(addr: dev); |
11817 | return NULL; |
11818 | } |
11819 | EXPORT_SYMBOL(alloc_netdev_mqs); |
11820 | |
11821 | static void netdev_napi_exit(struct net_device *dev) |
11822 | { |
11823 | if (!list_empty(head: &dev->napi_list)) { |
11824 | struct napi_struct *p, *n; |
11825 | |
11826 | netdev_lock(dev); |
11827 | list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) |
11828 | __netif_napi_del_locked(p); |
11829 | netdev_unlock(dev); |
11830 | |
11831 | synchronize_net(); |
11832 | } |
11833 | |
11834 | kvfree(addr: dev->napi_config); |
11835 | } |
11836 | |
11837 | /** |
11838 | * free_netdev - free network device |
11839 | * @dev: device |
11840 | * |
11841 | * This function does the last stage of destroying an allocated device |
11842 | * interface. The reference to the device object is released. If this |
11843 | * is the last reference then it will be freed.Must be called in process |
11844 | * context. |
11845 | */ |
11846 | void free_netdev(struct net_device *dev) |
11847 | { |
11848 | might_sleep(); |
11849 | |
11850 | /* When called immediately after register_netdevice() failed the unwind |
11851 | * handling may still be dismantling the device. Handle that case by |
11852 | * deferring the free. |
11853 | */ |
11854 | if (dev->reg_state == NETREG_UNREGISTERING) { |
11855 | ASSERT_RTNL(); |
11856 | dev->needs_free_netdev = true; |
11857 | return; |
11858 | } |
11859 | |
11860 | WARN_ON(dev->cfg != dev->cfg_pending); |
11861 | kfree(objp: dev->cfg); |
11862 | kfree(objp: dev->ethtool); |
11863 | netif_free_tx_queues(dev); |
11864 | netif_free_rx_queues(dev); |
11865 | |
11866 | kfree(rcu_dereference_protected(dev->ingress_queue, 1)); |
11867 | |
11868 | /* Flush device addresses */ |
11869 | dev_addr_flush(dev); |
11870 | |
11871 | netdev_napi_exit(dev); |
11872 | |
11873 | netif_del_cpu_rmap(dev); |
11874 | |
11875 | ref_tracker_dir_exit(dir: &dev->refcnt_tracker); |
11876 | #ifdef CONFIG_PCPU_DEV_REFCNT |
11877 | free_percpu(pdata: dev->pcpu_refcnt); |
11878 | dev->pcpu_refcnt = NULL; |
11879 | #endif |
11880 | free_percpu(pdata: dev->core_stats); |
11881 | dev->core_stats = NULL; |
11882 | free_percpu(pdata: dev->xdp_bulkq); |
11883 | dev->xdp_bulkq = NULL; |
11884 | |
11885 | netdev_free_phy_link_topology(dev); |
11886 | |
11887 | mutex_destroy(lock: &dev->lock); |
11888 | |
11889 | /* Compatibility with error handling in drivers */ |
11890 | if (dev->reg_state == NETREG_UNINITIALIZED || |
11891 | dev->reg_state == NETREG_DUMMY) { |
11892 | kvfree(addr: dev); |
11893 | return; |
11894 | } |
11895 | |
11896 | BUG_ON(dev->reg_state != NETREG_UNREGISTERED); |
11897 | WRITE_ONCE(dev->reg_state, NETREG_RELEASED); |
11898 | |
11899 | /* will free via device release */ |
11900 | put_device(dev: &dev->dev); |
11901 | } |
11902 | EXPORT_SYMBOL(free_netdev); |
11903 | |
11904 | /** |
11905 | * alloc_netdev_dummy - Allocate and initialize a dummy net device. |
11906 | * @sizeof_priv: size of private data to allocate space for |
11907 | * |
11908 | * Return: the allocated net_device on success, NULL otherwise |
11909 | */ |
11910 | struct net_device *alloc_netdev_dummy(int sizeof_priv) |
11911 | { |
11912 | return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, |
11913 | init_dummy_netdev); |
11914 | } |
11915 | EXPORT_SYMBOL_GPL(alloc_netdev_dummy); |
11916 | |
11917 | /** |
11918 | * synchronize_net - Synchronize with packet receive processing |
11919 | * |
11920 | * Wait for packets currently being received to be done. |
11921 | * Does not block later packets from starting. |
11922 | */ |
11923 | void synchronize_net(void) |
11924 | { |
11925 | might_sleep(); |
11926 | if (from_cleanup_net() || rtnl_is_locked()) |
11927 | synchronize_rcu_expedited(); |
11928 | else |
11929 | synchronize_rcu(); |
11930 | } |
11931 | EXPORT_SYMBOL(synchronize_net); |
11932 | |
11933 | static void netdev_rss_contexts_free(struct net_device *dev) |
11934 | { |
11935 | struct ethtool_rxfh_context *ctx; |
11936 | unsigned long context; |
11937 | |
11938 | mutex_lock(&dev->ethtool->rss_lock); |
11939 | xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { |
11940 | struct ethtool_rxfh_param rxfh; |
11941 | |
11942 | rxfh.indir = ethtool_rxfh_context_indir(ctx); |
11943 | rxfh.key = ethtool_rxfh_context_key(ctx); |
11944 | rxfh.hfunc = ctx->hfunc; |
11945 | rxfh.input_xfrm = ctx->input_xfrm; |
11946 | rxfh.rss_context = context; |
11947 | rxfh.rss_delete = true; |
11948 | |
11949 | xa_erase(&dev->ethtool->rss_ctx, index: context); |
11950 | if (dev->ethtool_ops->create_rxfh_context) |
11951 | dev->ethtool_ops->remove_rxfh_context(dev, ctx, |
11952 | context, NULL); |
11953 | else |
11954 | dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); |
11955 | kfree(objp: ctx); |
11956 | } |
11957 | xa_destroy(&dev->ethtool->rss_ctx); |
11958 | mutex_unlock(lock: &dev->ethtool->rss_lock); |
11959 | } |
11960 | |
11961 | /** |
11962 | * unregister_netdevice_queue - remove device from the kernel |
11963 | * @dev: device |
11964 | * @head: list |
11965 | * |
11966 | * This function shuts down a device interface and removes it |
11967 | * from the kernel tables. |
11968 | * If head not NULL, device is queued to be unregistered later. |
11969 | * |
11970 | * Callers must hold the rtnl semaphore. You may want |
11971 | * unregister_netdev() instead of this. |
11972 | */ |
11973 | |
11974 | void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) |
11975 | { |
11976 | ASSERT_RTNL(); |
11977 | |
11978 | if (head) { |
11979 | list_move_tail(list: &dev->unreg_list, head); |
11980 | } else { |
11981 | LIST_HEAD(single); |
11982 | |
11983 | list_add(new: &dev->unreg_list, head: &single); |
11984 | unregister_netdevice_many(head: &single); |
11985 | } |
11986 | } |
11987 | EXPORT_SYMBOL(unregister_netdevice_queue); |
11988 | |
11989 | static void dev_memory_provider_uninstall(struct net_device *dev) |
11990 | { |
11991 | unsigned int i; |
11992 | |
11993 | for (i = 0; i < dev->real_num_rx_queues; i++) { |
11994 | struct netdev_rx_queue *rxq = &dev->_rx[i]; |
11995 | struct pp_memory_provider_params *p = &rxq->mp_params; |
11996 | |
11997 | if (p->mp_ops && p->mp_ops->uninstall) |
11998 | p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); |
11999 | } |
12000 | } |
12001 | |
12002 | void unregister_netdevice_many_notify(struct list_head *head, |
12003 | u32 portid, const struct nlmsghdr *nlh) |
12004 | { |
12005 | struct net_device *dev, *tmp; |
12006 | LIST_HEAD(close_head); |
12007 | int cnt = 0; |
12008 | |
12009 | BUG_ON(dev_boot_phase); |
12010 | ASSERT_RTNL(); |
12011 | |
12012 | if (list_empty(head)) |
12013 | return; |
12014 | |
12015 | list_for_each_entry_safe(dev, tmp, head, unreg_list) { |
12016 | /* Some devices call without registering |
12017 | * for initialization unwind. Remove those |
12018 | * devices and proceed with the remaining. |
12019 | */ |
12020 | if (dev->reg_state == NETREG_UNINITIALIZED) { |
12021 | pr_debug("unregister_netdevice: device %s/%p never was registered\n", |
12022 | dev->name, dev); |
12023 | |
12024 | WARN_ON(1); |
12025 | list_del(entry: &dev->unreg_list); |
12026 | continue; |
12027 | } |
12028 | dev->dismantle = true; |
12029 | BUG_ON(dev->reg_state != NETREG_REGISTERED); |
12030 | } |
12031 | |
12032 | /* If device is running, close it first. Start with ops locked... */ |
12033 | list_for_each_entry(dev, head, unreg_list) { |
12034 | if (netdev_need_ops_lock(dev)) { |
12035 | list_add_tail(new: &dev->close_list, head: &close_head); |
12036 | netdev_lock(dev); |
12037 | } |
12038 | } |
12039 | dev_close_many(&close_head, true); |
12040 | /* ... now unlock them and go over the rest. */ |
12041 | list_for_each_entry(dev, head, unreg_list) { |
12042 | if (netdev_need_ops_lock(dev)) |
12043 | netdev_unlock(dev); |
12044 | else |
12045 | list_add_tail(new: &dev->close_list, head: &close_head); |
12046 | } |
12047 | dev_close_many(&close_head, true); |
12048 | |
12049 | list_for_each_entry(dev, head, unreg_list) { |
12050 | /* And unlink it from device chain. */ |
12051 | unlist_netdevice(dev); |
12052 | netdev_lock(dev); |
12053 | WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); |
12054 | netdev_unlock(dev); |
12055 | } |
12056 | flush_all_backlogs(); |
12057 | |
12058 | synchronize_net(); |
12059 | |
12060 | list_for_each_entry(dev, head, unreg_list) { |
12061 | struct sk_buff *skb = NULL; |
12062 | |
12063 | /* Shutdown queueing discipline. */ |
12064 | netdev_lock_ops(dev); |
12065 | dev_shutdown(dev); |
12066 | dev_tcx_uninstall(dev); |
12067 | dev_xdp_uninstall(dev); |
12068 | dev_memory_provider_uninstall(dev); |
12069 | netdev_unlock_ops(dev); |
12070 | bpf_dev_bound_netdev_unregister(dev); |
12071 | |
12072 | netdev_offload_xstats_disable_all(dev); |
12073 | |
12074 | /* Notify protocols, that we are about to destroy |
12075 | * this device. They should clean all the things. |
12076 | */ |
12077 | call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
12078 | |
12079 | if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) |
12080 | skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, change: ~0U, event: 0, |
12081 | GFP_KERNEL, NULL, new_ifindex: 0, |
12082 | portid, nlh); |
12083 | |
12084 | /* |
12085 | * Flush the unicast and multicast chains |
12086 | */ |
12087 | dev_uc_flush(dev); |
12088 | dev_mc_flush(dev); |
12089 | |
12090 | netdev_name_node_alt_flush(dev); |
12091 | netdev_name_node_free(name_node: dev->name_node); |
12092 | |
12093 | netdev_rss_contexts_free(dev); |
12094 | |
12095 | call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); |
12096 | |
12097 | if (dev->netdev_ops->ndo_uninit) |
12098 | dev->netdev_ops->ndo_uninit(dev); |
12099 | |
12100 | mutex_destroy(lock: &dev->ethtool->rss_lock); |
12101 | |
12102 | net_shaper_flush_netdev(dev); |
12103 | |
12104 | if (skb) |
12105 | rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); |
12106 | |
12107 | /* Notifier chain MUST detach us all upper devices. */ |
12108 | WARN_ON(netdev_has_any_upper_dev(dev)); |
12109 | WARN_ON(netdev_has_any_lower_dev(dev)); |
12110 | |
12111 | /* Remove entries from kobject tree */ |
12112 | netdev_unregister_kobject(dev); |
12113 | #ifdef CONFIG_XPS |
12114 | /* Remove XPS queueing entries */ |
12115 | netif_reset_xps_queues_gt(dev, index: 0); |
12116 | #endif |
12117 | } |
12118 | |
12119 | synchronize_net(); |
12120 | |
12121 | list_for_each_entry(dev, head, unreg_list) { |
12122 | netdev_put(dev, tracker: &dev->dev_registered_tracker); |
12123 | net_set_todo(dev); |
12124 | cnt++; |
12125 | } |
12126 | atomic_add(i: cnt, v: &dev_unreg_count); |
12127 | |
12128 | list_del(entry: head); |
12129 | } |
12130 | |
12131 | /** |
12132 | * unregister_netdevice_many - unregister many devices |
12133 | * @head: list of devices |
12134 | * |
12135 | * Note: As most callers use a stack allocated list_head, |
12136 | * we force a list_del() to make sure stack won't be corrupted later. |
12137 | */ |
12138 | void unregister_netdevice_many(struct list_head *head) |
12139 | { |
12140 | unregister_netdevice_many_notify(head, portid: 0, NULL); |
12141 | } |
12142 | EXPORT_SYMBOL(unregister_netdevice_many); |
12143 | |
12144 | /** |
12145 | * unregister_netdev - remove device from the kernel |
12146 | * @dev: device |
12147 | * |
12148 | * This function shuts down a device interface and removes it |
12149 | * from the kernel tables. |
12150 | * |
12151 | * This is just a wrapper for unregister_netdevice that takes |
12152 | * the rtnl semaphore. In general you want to use this and not |
12153 | * unregister_netdevice. |
12154 | */ |
12155 | void unregister_netdev(struct net_device *dev) |
12156 | { |
12157 | rtnl_net_dev_lock(dev); |
12158 | unregister_netdevice(dev); |
12159 | rtnl_net_dev_unlock(dev); |
12160 | } |
12161 | EXPORT_SYMBOL(unregister_netdev); |
12162 | |
12163 | int __dev_change_net_namespace(struct net_device *dev, struct net *net, |
12164 | const char *pat, int new_ifindex, |
12165 | struct netlink_ext_ack *extack) |
12166 | { |
12167 | struct netdev_name_node *name_node; |
12168 | struct net *net_old = dev_net(dev); |
12169 | char new_name[IFNAMSIZ] = {}; |
12170 | int err, new_nsid; |
12171 | |
12172 | ASSERT_RTNL(); |
12173 | |
12174 | /* Don't allow namespace local devices to be moved. */ |
12175 | err = -EINVAL; |
12176 | if (dev->netns_immutable) { |
12177 | NL_SET_ERR_MSG(extack, "The interface netns is immutable"); |
12178 | goto out; |
12179 | } |
12180 | |
12181 | /* Ensure the device has been registered */ |
12182 | if (dev->reg_state != NETREG_REGISTERED) { |
12183 | NL_SET_ERR_MSG(extack, "The interface isn't registered"); |
12184 | goto out; |
12185 | } |
12186 | |
12187 | /* Get out if there is nothing todo */ |
12188 | err = 0; |
12189 | if (net_eq(net1: net_old, net2: net)) |
12190 | goto out; |
12191 | |
12192 | /* Pick the destination device name, and ensure |
12193 | * we can use it in the destination network namespace. |
12194 | */ |
12195 | err = -EEXIST; |
12196 | if (netdev_name_in_use(net, dev->name)) { |
12197 | /* We get here if we can't use the current device name */ |
12198 | if (!pat) { |
12199 | NL_SET_ERR_MSG(extack, |
12200 | "An interface with the same name exists in the target netns"); |
12201 | goto out; |
12202 | } |
12203 | err = dev_prep_valid_name(net, dev, want_name: pat, out_name: new_name, EEXIST); |
12204 | if (err < 0) { |
12205 | NL_SET_ERR_MSG_FMT(extack, |
12206 | "Unable to use '%s' for the new interface name in the target netns", |
12207 | pat); |
12208 | goto out; |
12209 | } |
12210 | } |
12211 | /* Check that none of the altnames conflicts. */ |
12212 | err = -EEXIST; |
12213 | netdev_for_each_altname(dev, name_node) { |
12214 | if (netdev_name_in_use(net, name_node->name)) { |
12215 | NL_SET_ERR_MSG_FMT(extack, |
12216 | "An interface with the altname %s exists in the target netns", |
12217 | name_node->name); |
12218 | goto out; |
12219 | } |
12220 | } |
12221 | |
12222 | /* Check that new_ifindex isn't used yet. */ |
12223 | if (new_ifindex) { |
12224 | err = dev_index_reserve(net, ifindex: new_ifindex); |
12225 | if (err < 0) { |
12226 | NL_SET_ERR_MSG_FMT(extack, |
12227 | "The ifindex %d is not available in the target netns", |
12228 | new_ifindex); |
12229 | goto out; |
12230 | } |
12231 | } else { |
12232 | /* If there is an ifindex conflict assign a new one */ |
12233 | err = dev_index_reserve(net, ifindex: dev->ifindex); |
12234 | if (err == -EBUSY) |
12235 | err = dev_index_reserve(net, ifindex: 0); |
12236 | if (err < 0) { |
12237 | NL_SET_ERR_MSG(extack, |
12238 | "Unable to allocate a new ifindex in the target netns"); |
12239 | goto out; |
12240 | } |
12241 | new_ifindex = err; |
12242 | } |
12243 | |
12244 | /* |
12245 | * And now a mini version of register_netdevice unregister_netdevice. |
12246 | */ |
12247 | |
12248 | netdev_lock_ops(dev); |
12249 | /* If device is running close it first. */ |
12250 | netif_close(dev); |
12251 | /* And unlink it from device chain */ |
12252 | unlist_netdevice(dev); |
12253 | |
12254 | if (!netdev_need_ops_lock(dev)) |
12255 | netdev_lock(dev); |
12256 | dev->moving_ns = true; |
12257 | netdev_unlock(dev); |
12258 | |
12259 | synchronize_net(); |
12260 | |
12261 | /* Shutdown queueing discipline. */ |
12262 | netdev_lock_ops(dev); |
12263 | dev_shutdown(dev); |
12264 | netdev_unlock_ops(dev); |
12265 | |
12266 | /* Notify protocols, that we are about to destroy |
12267 | * this device. They should clean all the things. |
12268 | * |
12269 | * Note that dev->reg_state stays at NETREG_REGISTERED. |
12270 | * This is wanted because this way 8021q and macvlan know |
12271 | * the device is just moving and can keep their slaves up. |
12272 | */ |
12273 | call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
12274 | rcu_barrier(); |
12275 | |
12276 | new_nsid = peernet2id_alloc(net: dev_net(dev), peer: net, GFP_KERNEL); |
12277 | |
12278 | rtmsg_ifinfo_newnet(RTM_DELLINK, dev, change: ~0U, GFP_KERNEL, new_nsid: &new_nsid, |
12279 | new_ifindex); |
12280 | |
12281 | /* |
12282 | * Flush the unicast and multicast chains |
12283 | */ |
12284 | dev_uc_flush(dev); |
12285 | dev_mc_flush(dev); |
12286 | |
12287 | /* Send a netdev-removed uevent to the old namespace */ |
12288 | kobject_uevent(kobj: &dev->dev.kobj, action: KOBJ_REMOVE); |
12289 | netdev_adjacent_del_links(dev); |
12290 | |
12291 | /* Move per-net netdevice notifiers that are following the netdevice */ |
12292 | move_netdevice_notifiers_dev_net(dev, net); |
12293 | |
12294 | /* Actually switch the network namespace */ |
12295 | netdev_lock(dev); |
12296 | dev_net_set(dev, net); |
12297 | netdev_unlock(dev); |
12298 | dev->ifindex = new_ifindex; |
12299 | |
12300 | if (new_name[0]) { |
12301 | /* Rename the netdev to prepared name */ |
12302 | write_seqlock_bh(sl: &netdev_rename_lock); |
12303 | strscpy(dev->name, new_name, IFNAMSIZ); |
12304 | write_sequnlock_bh(sl: &netdev_rename_lock); |
12305 | } |
12306 | |
12307 | /* Fixup kobjects */ |
12308 | dev_set_uevent_suppress(dev: &dev->dev, val: 1); |
12309 | err = device_rename(dev: &dev->dev, new_name: dev->name); |
12310 | dev_set_uevent_suppress(dev: &dev->dev, val: 0); |
12311 | WARN_ON(err); |
12312 | |
12313 | /* Send a netdev-add uevent to the new namespace */ |
12314 | kobject_uevent(kobj: &dev->dev.kobj, action: KOBJ_ADD); |
12315 | netdev_adjacent_add_links(dev); |
12316 | |
12317 | /* Adapt owner in case owning user namespace of target network |
12318 | * namespace is different from the original one. |
12319 | */ |
12320 | err = netdev_change_owner(dev, net_old, net_new: net); |
12321 | WARN_ON(err); |
12322 | |
12323 | netdev_lock(dev); |
12324 | dev->moving_ns = false; |
12325 | if (!netdev_need_ops_lock(dev)) |
12326 | netdev_unlock(dev); |
12327 | |
12328 | /* Add the device back in the hashes */ |
12329 | list_netdevice(dev); |
12330 | /* Notify protocols, that a new device appeared. */ |
12331 | call_netdevice_notifiers(NETDEV_REGISTER, dev); |
12332 | netdev_unlock_ops(dev); |
12333 | |
12334 | /* |
12335 | * Prevent userspace races by waiting until the network |
12336 | * device is fully setup before sending notifications. |
12337 | */ |
12338 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: ~0U, GFP_KERNEL, portid: 0, NULL); |
12339 | |
12340 | synchronize_net(); |
12341 | err = 0; |
12342 | out: |
12343 | return err; |
12344 | } |
12345 | |
12346 | static int dev_cpu_dead(unsigned int oldcpu) |
12347 | { |
12348 | struct sk_buff **list_skb; |
12349 | struct sk_buff *skb; |
12350 | unsigned int cpu; |
12351 | struct softnet_data *sd, *oldsd, *remsd = NULL; |
12352 | |
12353 | local_irq_disable(); |
12354 | cpu = smp_processor_id(); |
12355 | sd = &per_cpu(softnet_data, cpu); |
12356 | oldsd = &per_cpu(softnet_data, oldcpu); |
12357 | |
12358 | /* Find end of our completion_queue. */ |
12359 | list_skb = &sd->completion_queue; |
12360 | while (*list_skb) |
12361 | list_skb = &(*list_skb)->next; |
12362 | /* Append completion queue from offline CPU. */ |
12363 | *list_skb = oldsd->completion_queue; |
12364 | oldsd->completion_queue = NULL; |
12365 | |
12366 | /* Append output queue from offline CPU. */ |
12367 | if (oldsd->output_queue) { |
12368 | *sd->output_queue_tailp = oldsd->output_queue; |
12369 | sd->output_queue_tailp = oldsd->output_queue_tailp; |
12370 | oldsd->output_queue = NULL; |
12371 | oldsd->output_queue_tailp = &oldsd->output_queue; |
12372 | } |
12373 | /* Append NAPI poll list from offline CPU, with one exception : |
12374 | * process_backlog() must be called by cpu owning percpu backlog. |
12375 | * We properly handle process_queue & input_pkt_queue later. |
12376 | */ |
12377 | while (!list_empty(head: &oldsd->poll_list)) { |
12378 | struct napi_struct *napi = list_first_entry(&oldsd->poll_list, |
12379 | struct napi_struct, |
12380 | poll_list); |
12381 | |
12382 | list_del_init(entry: &napi->poll_list); |
12383 | if (napi->poll == process_backlog) |
12384 | napi->state &= NAPIF_STATE_THREADED; |
12385 | else |
12386 | ____napi_schedule(sd, napi); |
12387 | } |
12388 | |
12389 | raise_softirq_irqoff(nr: NET_TX_SOFTIRQ); |
12390 | local_irq_enable(); |
12391 | |
12392 | if (!use_backlog_threads()) { |
12393 | #ifdef CONFIG_RPS |
12394 | remsd = oldsd->rps_ipi_list; |
12395 | oldsd->rps_ipi_list = NULL; |
12396 | #endif |
12397 | /* send out pending IPI's on offline CPU */ |
12398 | net_rps_send_ipi(remsd); |
12399 | } |
12400 | |
12401 | /* Process offline CPU's input_pkt_queue */ |
12402 | while ((skb = __skb_dequeue(list: &oldsd->process_queue))) { |
12403 | netif_rx(skb); |
12404 | rps_input_queue_head_incr(sd: oldsd); |
12405 | } |
12406 | while ((skb = skb_dequeue(list: &oldsd->input_pkt_queue))) { |
12407 | netif_rx(skb); |
12408 | rps_input_queue_head_incr(sd: oldsd); |
12409 | } |
12410 | |
12411 | return 0; |
12412 | } |
12413 | |
12414 | /** |
12415 | * netdev_increment_features - increment feature set by one |
12416 | * @all: current feature set |
12417 | * @one: new feature set |
12418 | * @mask: mask feature set |
12419 | * |
12420 | * Computes a new feature set after adding a device with feature set |
12421 | * @one to the master device with current feature set @all. Will not |
12422 | * enable anything that is off in @mask. Returns the new feature set. |
12423 | */ |
12424 | netdev_features_t netdev_increment_features(netdev_features_t all, |
12425 | netdev_features_t one, netdev_features_t mask) |
12426 | { |
12427 | if (mask & NETIF_F_HW_CSUM) |
12428 | mask |= NETIF_F_CSUM_MASK; |
12429 | mask |= NETIF_F_VLAN_CHALLENGED; |
12430 | |
12431 | all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; |
12432 | all &= one | ~NETIF_F_ALL_FOR_ALL; |
12433 | |
12434 | /* If one device supports hw checksumming, set for all. */ |
12435 | if (all & NETIF_F_HW_CSUM) |
12436 | all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); |
12437 | |
12438 | return all; |
12439 | } |
12440 | EXPORT_SYMBOL(netdev_increment_features); |
12441 | |
12442 | static struct hlist_head * __net_init netdev_create_hash(void) |
12443 | { |
12444 | int i; |
12445 | struct hlist_head *hash; |
12446 | |
12447 | hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); |
12448 | if (hash != NULL) |
12449 | for (i = 0; i < NETDEV_HASHENTRIES; i++) |
12450 | INIT_HLIST_HEAD(&hash[i]); |
12451 | |
12452 | return hash; |
12453 | } |
12454 | |
12455 | /* Initialize per network namespace state */ |
12456 | static int __net_init netdev_init(struct net *net) |
12457 | { |
12458 | BUILD_BUG_ON(GRO_HASH_BUCKETS > |
12459 | BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); |
12460 | |
12461 | INIT_LIST_HEAD(list: &net->dev_base_head); |
12462 | |
12463 | net->dev_name_head = netdev_create_hash(); |
12464 | if (net->dev_name_head == NULL) |
12465 | goto err_name; |
12466 | |
12467 | net->dev_index_head = netdev_create_hash(); |
12468 | if (net->dev_index_head == NULL) |
12469 | goto err_idx; |
12470 | |
12471 | xa_init_flags(xa: &net->dev_by_index, XA_FLAGS_ALLOC1); |
12472 | |
12473 | RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); |
12474 | |
12475 | return 0; |
12476 | |
12477 | err_idx: |
12478 | kfree(objp: net->dev_name_head); |
12479 | err_name: |
12480 | return -ENOMEM; |
12481 | } |
12482 | |
12483 | /** |
12484 | * netdev_drivername - network driver for the device |
12485 | * @dev: network device |
12486 | * |
12487 | * Determine network driver for device. |
12488 | */ |
12489 | const char *netdev_drivername(const struct net_device *dev) |
12490 | { |
12491 | const struct device_driver *driver; |
12492 | const struct device *parent; |
12493 | const char *empty = ""; |
12494 | |
12495 | parent = dev->dev.parent; |
12496 | if (!parent) |
12497 | return empty; |
12498 | |
12499 | driver = parent->driver; |
12500 | if (driver && driver->name) |
12501 | return driver->name; |
12502 | return empty; |
12503 | } |
12504 | |
12505 | static void __netdev_printk(const char *level, const struct net_device *dev, |
12506 | struct va_format *vaf) |
12507 | { |
12508 | if (dev && dev->dev.parent) { |
12509 | dev_printk_emit(level: level[1] - '0', |
12510 | dev: dev->dev.parent, |
12511 | fmt: "%s %s %s%s: %pV", |
12512 | dev_driver_string(dev: dev->dev.parent), |
12513 | dev_name(dev: dev->dev.parent), |
12514 | netdev_name(dev), netdev_reg_state(dev), |
12515 | vaf); |
12516 | } else if (dev) { |
12517 | printk("%s%s%s: %pV", |
12518 | level, netdev_name(dev), netdev_reg_state(dev), vaf); |
12519 | } else { |
12520 | printk("%s(NULL net_device): %pV", level, vaf); |
12521 | } |
12522 | } |
12523 | |
12524 | void netdev_printk(const char *level, const struct net_device *dev, |
12525 | const char *format, ...) |
12526 | { |
12527 | struct va_format vaf; |
12528 | va_list args; |
12529 | |
12530 | va_start(args, format); |
12531 | |
12532 | vaf.fmt = format; |
12533 | vaf.va = &args; |
12534 | |
12535 | __netdev_printk(level, dev, vaf: &vaf); |
12536 | |
12537 | va_end(args); |
12538 | } |
12539 | EXPORT_SYMBOL(netdev_printk); |
12540 | |
12541 | #define define_netdev_printk_level(func, level) \ |
12542 | void func(const struct net_device *dev, const char *fmt, ...) \ |
12543 | { \ |
12544 | struct va_format vaf; \ |
12545 | va_list args; \ |
12546 | \ |
12547 | va_start(args, fmt); \ |
12548 | \ |
12549 | vaf.fmt = fmt; \ |
12550 | vaf.va = &args; \ |
12551 | \ |
12552 | __netdev_printk(level, dev, &vaf); \ |
12553 | \ |
12554 | va_end(args); \ |
12555 | } \ |
12556 | EXPORT_SYMBOL(func); |
12557 | |
12558 | define_netdev_printk_level(netdev_emerg, KERN_EMERG); |
12559 | define_netdev_printk_level(netdev_alert, KERN_ALERT); |
12560 | define_netdev_printk_level(netdev_crit, KERN_CRIT); |
12561 | define_netdev_printk_level(netdev_err, KERN_ERR); |
12562 | define_netdev_printk_level(netdev_warn, KERN_WARNING); |
12563 | define_netdev_printk_level(netdev_notice, KERN_NOTICE); |
12564 | define_netdev_printk_level(netdev_info, KERN_INFO); |
12565 | |
12566 | static void __net_exit netdev_exit(struct net *net) |
12567 | { |
12568 | kfree(objp: net->dev_name_head); |
12569 | kfree(objp: net->dev_index_head); |
12570 | xa_destroy(&net->dev_by_index); |
12571 | if (net != &init_net) |
12572 | WARN_ON_ONCE(!list_empty(&net->dev_base_head)); |
12573 | } |
12574 | |
12575 | static struct pernet_operations __net_initdata netdev_net_ops = { |
12576 | .init = netdev_init, |
12577 | .exit = netdev_exit, |
12578 | }; |
12579 | |
12580 | static void __net_exit default_device_exit_net(struct net *net) |
12581 | { |
12582 | struct netdev_name_node *name_node, *tmp; |
12583 | struct net_device *dev, *aux; |
12584 | /* |
12585 | * Push all migratable network devices back to the |
12586 | * initial network namespace |
12587 | */ |
12588 | ASSERT_RTNL(); |
12589 | for_each_netdev_safe(net, dev, aux) { |
12590 | int err; |
12591 | char fb_name[IFNAMSIZ]; |
12592 | |
12593 | /* Ignore unmoveable devices (i.e. loopback) */ |
12594 | if (dev->netns_immutable) |
12595 | continue; |
12596 | |
12597 | /* Leave virtual devices for the generic cleanup */ |
12598 | if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) |
12599 | continue; |
12600 | |
12601 | /* Push remaining network devices to init_net */ |
12602 | snprintf(buf: fb_name, IFNAMSIZ, fmt: "dev%d", dev->ifindex); |
12603 | if (netdev_name_in_use(&init_net, fb_name)) |
12604 | snprintf(buf: fb_name, IFNAMSIZ, fmt: "dev%%d"); |
12605 | |
12606 | netdev_for_each_altname_safe(dev, name_node, tmp) |
12607 | if (netdev_name_in_use(&init_net, name_node->name)) |
12608 | __netdev_name_node_alt_destroy(name_node); |
12609 | |
12610 | err = dev_change_net_namespace(dev, net: &init_net, pat: fb_name); |
12611 | if (err) { |
12612 | pr_emerg("%s: failed to move %s to init_net: %d\n", |
12613 | __func__, dev->name, err); |
12614 | BUG(); |
12615 | } |
12616 | } |
12617 | } |
12618 | |
12619 | static void __net_exit default_device_exit_batch(struct list_head *net_list) |
12620 | { |
12621 | /* At exit all network devices most be removed from a network |
12622 | * namespace. Do this in the reverse order of registration. |
12623 | * Do this across as many network namespaces as possible to |
12624 | * improve batching efficiency. |
12625 | */ |
12626 | struct net_device *dev; |
12627 | struct net *net; |
12628 | LIST_HEAD(dev_kill_list); |
12629 | |
12630 | rtnl_lock(); |
12631 | list_for_each_entry(net, net_list, exit_list) { |
12632 | default_device_exit_net(net); |
12633 | cond_resched(); |
12634 | } |
12635 | |
12636 | list_for_each_entry(net, net_list, exit_list) { |
12637 | for_each_netdev_reverse(net, dev) { |
12638 | if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) |
12639 | dev->rtnl_link_ops->dellink(dev, &dev_kill_list); |
12640 | else |
12641 | unregister_netdevice_queue(dev, &dev_kill_list); |
12642 | } |
12643 | } |
12644 | unregister_netdevice_many(&dev_kill_list); |
12645 | rtnl_unlock(); |
12646 | } |
12647 | |
12648 | static struct pernet_operations __net_initdata default_device_ops = { |
12649 | .exit_batch = default_device_exit_batch, |
12650 | }; |
12651 | |
12652 | static void __init net_dev_struct_check(void) |
12653 | { |
12654 | /* TX read-mostly hotpath */ |
12655 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); |
12656 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); |
12657 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); |
12658 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); |
12659 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); |
12660 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); |
12661 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); |
12662 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); |
12663 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); |
12664 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); |
12665 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); |
12666 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); |
12667 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); |
12668 | #ifdef CONFIG_XPS |
12669 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); |
12670 | #endif |
12671 | #ifdef CONFIG_NETFILTER_EGRESS |
12672 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); |
12673 | #endif |
12674 | #ifdef CONFIG_NET_XGRESS |
12675 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); |
12676 | #endif |
12677 | CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); |
12678 | |
12679 | /* TXRX read-mostly hotpath */ |
12680 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); |
12681 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); |
12682 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); |
12683 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); |
12684 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); |
12685 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); |
12686 | CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); |
12687 | |
12688 | /* RX read-mostly hotpath */ |
12689 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); |
12690 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); |
12691 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); |
12692 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); |
12693 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); |
12694 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); |
12695 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); |
12696 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); |
12697 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); |
12698 | #ifdef CONFIG_NETPOLL |
12699 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); |
12700 | #endif |
12701 | #ifdef CONFIG_NET_XGRESS |
12702 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); |
12703 | #endif |
12704 | CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); |
12705 | } |
12706 | |
12707 | /* |
12708 | * Initialize the DEV module. At boot time this walks the device list and |
12709 | * unhooks any devices that fail to initialise (normally hardware not |
12710 | * present) and leaves us with a valid list of present and active devices. |
12711 | * |
12712 | */ |
12713 | |
12714 | /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ |
12715 | #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) |
12716 | |
12717 | static int net_page_pool_create(int cpuid) |
12718 | { |
12719 | #if IS_ENABLED(CONFIG_PAGE_POOL) |
12720 | struct page_pool_params page_pool_params = { |
12721 | .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, |
12722 | .flags = PP_FLAG_SYSTEM_POOL, |
12723 | .nid = cpu_to_mem(cpu: cpuid), |
12724 | }; |
12725 | struct page_pool *pp_ptr; |
12726 | int err; |
12727 | |
12728 | pp_ptr = page_pool_create_percpu(params: &page_pool_params, cpuid); |
12729 | if (IS_ERR(ptr: pp_ptr)) |
12730 | return -ENOMEM; |
12731 | |
12732 | err = xdp_reg_page_pool(pool: pp_ptr); |
12733 | if (err) { |
12734 | page_pool_destroy(pool: pp_ptr); |
12735 | return err; |
12736 | } |
12737 | |
12738 | per_cpu(system_page_pool.pool, cpuid) = pp_ptr; |
12739 | #endif |
12740 | return 0; |
12741 | } |
12742 | |
12743 | static int backlog_napi_should_run(unsigned int cpu) |
12744 | { |
12745 | struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); |
12746 | struct napi_struct *napi = &sd->backlog; |
12747 | |
12748 | return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); |
12749 | } |
12750 | |
12751 | static void run_backlog_napi(unsigned int cpu) |
12752 | { |
12753 | struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); |
12754 | |
12755 | napi_threaded_poll_loop(napi: &sd->backlog); |
12756 | } |
12757 | |
12758 | static void backlog_napi_setup(unsigned int cpu) |
12759 | { |
12760 | struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); |
12761 | struct napi_struct *napi = &sd->backlog; |
12762 | |
12763 | napi->thread = this_cpu_read(backlog_napi); |
12764 | set_bit(nr: NAPI_STATE_THREADED, addr: &napi->state); |
12765 | } |
12766 | |
12767 | static struct smp_hotplug_thread backlog_threads = { |
12768 | .store = &backlog_napi, |
12769 | .thread_should_run = backlog_napi_should_run, |
12770 | .thread_fn = run_backlog_napi, |
12771 | .thread_comm = "backlog_napi/%u", |
12772 | .setup = backlog_napi_setup, |
12773 | }; |
12774 | |
12775 | /* |
12776 | * This is called single threaded during boot, so no need |
12777 | * to take the rtnl semaphore. |
12778 | */ |
12779 | static int __init net_dev_init(void) |
12780 | { |
12781 | int i, rc = -ENOMEM; |
12782 | |
12783 | BUG_ON(!dev_boot_phase); |
12784 | |
12785 | net_dev_struct_check(); |
12786 | |
12787 | if (dev_proc_init()) |
12788 | goto out; |
12789 | |
12790 | if (netdev_kobject_init()) |
12791 | goto out; |
12792 | |
12793 | for (i = 0; i < PTYPE_HASH_SIZE; i++) |
12794 | INIT_LIST_HEAD(list: &ptype_base[i]); |
12795 | |
12796 | if (register_pernet_subsys(&netdev_net_ops)) |
12797 | goto out; |
12798 | |
12799 | /* |
12800 | * Initialise the packet receive queues. |
12801 | */ |
12802 | |
12803 | flush_backlogs_fallback = flush_backlogs_alloc(); |
12804 | if (!flush_backlogs_fallback) |
12805 | goto out; |
12806 | |
12807 | for_each_possible_cpu(i) { |
12808 | struct softnet_data *sd = &per_cpu(softnet_data, i); |
12809 | |
12810 | skb_queue_head_init(list: &sd->input_pkt_queue); |
12811 | skb_queue_head_init(list: &sd->process_queue); |
12812 | #ifdef CONFIG_XFRM_OFFLOAD |
12813 | skb_queue_head_init(list: &sd->xfrm_backlog); |
12814 | #endif |
12815 | INIT_LIST_HEAD(list: &sd->poll_list); |
12816 | sd->output_queue_tailp = &sd->output_queue; |
12817 | #ifdef CONFIG_RPS |
12818 | INIT_CSD(&sd->csd, rps_trigger_softirq, sd); |
12819 | sd->cpu = i; |
12820 | #endif |
12821 | INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); |
12822 | spin_lock_init(&sd->defer_lock); |
12823 | |
12824 | gro_init(gro: &sd->backlog.gro); |
12825 | sd->backlog.poll = process_backlog; |
12826 | sd->backlog.weight = weight_p; |
12827 | INIT_LIST_HEAD(list: &sd->backlog.poll_list); |
12828 | |
12829 | if (net_page_pool_create(cpuid: i)) |
12830 | goto out; |
12831 | } |
12832 | if (use_backlog_threads()) |
12833 | smpboot_register_percpu_thread(plug_thread: &backlog_threads); |
12834 | |
12835 | dev_boot_phase = 0; |
12836 | |
12837 | /* The loopback device is special if any other network devices |
12838 | * is present in a network namespace the loopback device must |
12839 | * be present. Since we now dynamically allocate and free the |
12840 | * loopback device ensure this invariant is maintained by |
12841 | * keeping the loopback device as the first device on the |
12842 | * list of network devices. Ensuring the loopback devices |
12843 | * is the first device that appears and the last network device |
12844 | * that disappears. |
12845 | */ |
12846 | if (register_pernet_device(&loopback_net_ops)) |
12847 | goto out; |
12848 | |
12849 | if (register_pernet_device(&default_device_ops)) |
12850 | goto out; |
12851 | |
12852 | open_softirq(nr: NET_TX_SOFTIRQ, action: net_tx_action); |
12853 | open_softirq(nr: NET_RX_SOFTIRQ, action: net_rx_action); |
12854 | |
12855 | rc = cpuhp_setup_state_nocalls(state: CPUHP_NET_DEV_DEAD, name: "net/dev:dead", |
12856 | NULL, teardown: dev_cpu_dead); |
12857 | WARN_ON(rc < 0); |
12858 | rc = 0; |
12859 | |
12860 | /* avoid static key IPIs to isolated CPUs */ |
12861 | if (housekeeping_enabled(type: HK_TYPE_MISC)) |
12862 | net_enable_timestamp(); |
12863 | out: |
12864 | if (rc < 0) { |
12865 | for_each_possible_cpu(i) { |
12866 | struct page_pool *pp_ptr; |
12867 | |
12868 | pp_ptr = per_cpu(system_page_pool.pool, i); |
12869 | if (!pp_ptr) |
12870 | continue; |
12871 | |
12872 | xdp_unreg_page_pool(pool: pp_ptr); |
12873 | page_pool_destroy(pool: pp_ptr); |
12874 | per_cpu(system_page_pool.pool, i) = NULL; |
12875 | } |
12876 | } |
12877 | |
12878 | return rc; |
12879 | } |
12880 | |
12881 | subsys_initcall(net_dev_init); |
12882 |
Definitions
- ptype_lock
- ptype_base
- ifalias_mutex
- napi_hash_lock
- napi_gen_id
- napi_hash
- dev_base_seq_inc
- dev_name_hash
- dev_index_hash
- use_backlog_threads_key
- setup_backlog_napi_threads
- use_backlog_threads
- backlog_lock_irq_save
- backlog_lock_irq_disable
- backlog_unlock_irq_restore
- backlog_unlock_irq_enable
- netdev_name_node_alloc
- netdev_name_node_head_alloc
- netdev_name_node_free
- netdev_name_node_add
- netdev_name_node_del
- netdev_name_node_lookup
- netdev_name_node_lookup_rcu
- netdev_name_in_use
- netdev_name_node_alt_create
- netdev_name_node_alt_free
- __netdev_name_node_alt_destroy
- netdev_name_node_alt_destroy
- netdev_name_node_alt_flush
- list_netdevice
- unlist_netdevice
- netdev_chain
- softnet_data
- system_page_pool
- netdev_lock_type
- netdev_lock_name
- netdev_xmit_lock_key
- netdev_addr_lock_key
- netdev_lock_pos
- netdev_set_xmit_lockdep_class
- netdev_set_addr_lockdep_class
- ptype_head
- dev_add_pack
- __dev_remove_pack
- dev_remove_pack
- dev_get_iflink
- dev_fill_metadata_dst
- dev_fwd_path
- dev_fill_forward_path
- napi_by_id
- netdev_napi_by_id
- netdev_napi_by_id_lock
- __dev_get_by_name
- dev_get_by_name_rcu
- dev_get_by_name
- netdev_get_by_name
- __dev_get_by_index
- dev_get_by_index_rcu
- dev_get_by_index
- netdev_get_by_index
- dev_get_by_napi_id
- __netdev_put_lock
- __netdev_put_lock_ops_compat
- netdev_get_by_index_lock
- netdev_get_by_index_lock_ops_compat
- netdev_xa_find_lock
- netdev_xa_find_lock_ops_compat
- netdev_rename_lock
- netdev_copy_name
- netdev_get_name
- dev_addr_cmp
- dev_getbyhwaddr_rcu
- dev_getbyhwaddr
- dev_getfirstbyhwtype
- __dev_get_by_flags
- dev_valid_name
- __dev_alloc_name
- dev_prep_valid_name
- dev_alloc_name
- dev_get_valid_name
- netif_change_name
- netif_set_alias
- dev_get_alias
- netdev_features_change
- netif_state_change
- __netdev_notify_peers
- netdev_notify_peers
- napi_kthread_create
- __dev_open
- netif_open
- __dev_close_many
- __dev_close
- dev_close_many
- netif_close
- netif_disable_lro
- dev_disable_gro_hw
- netdev_cmd_to_name
- call_netdevice_notifier
- call_netdevice_register_notifiers
- call_netdevice_unregister_notifiers
- call_netdevice_register_net_notifiers
- call_netdevice_unregister_net_notifiers
- dev_boot_phase
- register_netdevice_notifier
- unregister_netdevice_notifier
- __register_netdevice_notifier_net
- __unregister_netdevice_notifier_net
- register_netdevice_notifier_net
- unregister_netdevice_notifier_net
- __move_netdevice_notifier_net
- rtnl_net_dev_lock
- rtnl_net_dev_unlock
- register_netdevice_notifier_dev_net
- unregister_netdevice_notifier_dev_net
- move_netdevice_notifiers_dev_net
- call_netdevice_notifiers_info
- call_netdevice_notifiers_info_robust
- call_netdevice_notifiers_extack
- call_netdevice_notifiers
- call_netdevice_notifiers_mtu
- ingress_needed_key
- net_inc_ingress_queue
- net_dec_ingress_queue
- egress_needed_key
- net_inc_egress_queue
- net_dec_egress_queue
- tcf_sw_enabled_key
- netstamp_needed_key
- netstamp_needed_deferred
- netstamp_wanted
- netstamp_clear
- netstamp_work
- net_enable_timestamp
- net_disable_timestamp
- net_timestamp_set
- is_skb_forwardable
- __dev_forward_skb2
- __dev_forward_skb
- dev_forward_skb
- dev_forward_skb_nomtu
- deliver_skb
- deliver_ptype_list_skb
- skb_loop_sk
- dev_nit_active_rcu
- dev_queue_xmit_nit
- netif_setup_tc
- netdev_txq_to_tc
- xps_needed
- xps_rxqs_needed
- xps_map_mutex
- remove_xps_queue
- remove_xps_queue_cpu
- reset_xps_maps
- clean_xps_maps
- netif_reset_xps_queues
- netif_reset_xps_queues_gt
- expand_xps_map
- xps_copy_dev_maps
- __netif_set_xps_queue
- netif_set_xps_queue
- netdev_unbind_all_sb_channels
- netdev_reset_tc
- netdev_set_tc_queue
- netdev_set_num_tc
- netdev_unbind_sb_channel
- netdev_bind_sb_channel_queue
- netdev_set_sb_channel
- netif_set_real_num_tx_queues
- netif_set_real_num_rx_queues
- netif_set_real_num_queues
- netif_set_tso_max_size
- netif_set_tso_max_segs
- netif_inherit_tso_max
- netif_get_num_default_rss_queues
- __netif_reschedule
- __netif_schedule
- dev_kfree_skb_cb
- get_kfree_skb_cb
- netif_schedule_queue
- netif_tx_wake_queue
- dev_kfree_skb_irq_reason
- dev_kfree_skb_any_reason
- netif_device_detach
- netif_device_attach
- skb_tx_hash
- skb_warn_bad_offload
- skb_checksum_help
- skb_crc32c_csum_help
- skb_network_protocol
- do_netdev_rx_csum_fault
- netdev_rx_csum_fault
- illegal_highdma
- net_mpls_features
- harmonize_features
- passthru_features_check
- dflt_features_check
- gso_features_check
- netif_skb_features
- xmit_one
- dev_hard_start_xmit
- validate_xmit_vlan
- skb_csum_hwoffload_help
- validate_xmit_unreadable_skb
- validate_xmit_skb
- validate_xmit_skb_list
- qdisc_pkt_len_init
- dev_qdisc_enqueue
- __dev_xmit_skb
- skb_update_prio
- dev_loopback_xmit
- netdev_tx_queue_mapping
- netdev_xmit_txqueue_skipped
- netdev_xmit_skip_txqueue
- tc_run
- tcx_needed_key
- tcx_inc
- tcx_dec
- tcx_run
- sch_handle_ingress
- sch_handle_egress
- __get_xps_queue_idx
- get_xps_queue
- dev_pick_tx_zero
- netdev_pick_tx
- netdev_core_pick_tx
- __dev_queue_xmit
- __dev_direct_xmit
- backlog_napi
- weight_p
- dev_weight_rx_bias
- dev_weight_tx_bias
- ____napi_schedule
- rps_needed
- rfs_needed
- rfs_slot
- set_rps_cpu
- get_rps_cpu
- rps_may_expire_flow
- rps_trigger_softirq
- trigger_rx_softirq
- napi_schedule_rps
- kick_defer_list_purge
- netdev_flow_limit_table_len
- skb_flow_limit
- enqueue_to_backlog
- netif_get_rxqueue
- bpf_prog_run_generic_xdp
- netif_skb_check_for_xdp
- netif_receive_generic_xdp
- generic_xdp_tx
- generic_xdp_needed_key
- do_xdp_generic
- netif_rx_internal
- __netif_rx
- netif_rx
- net_tx_action
- br_fdb_test_addr_hook
- netdev_is_rx_handler_busy
- netdev_rx_handler_register
- netdev_rx_handler_unregister
- skb_pfmemalloc_protocol
- nf_ingress
- __netif_receive_skb_core
- __netif_receive_skb_one_core
- netif_receive_skb_core
- __netif_receive_skb_list_ptype
- __netif_receive_skb_list_core
- __netif_receive_skb
- __netif_receive_skb_list
- generic_xdp_install
- netif_receive_skb_internal
- netif_receive_skb_list_internal
- netif_receive_skb
- netif_receive_skb_list
- flush_backlog
- flush_required
- flush_backlogs
- flush_backlogs_alloc
- flush_backlogs_fallback
- flush_backlogs_mutex
- flush_all_backlogs
- net_rps_send_ipi
- net_rps_action_and_irq_enable
- sd_has_rps_ipi_waiting
- process_backlog
- __napi_schedule
- napi_schedule_prep
- __napi_schedule_irqoff
- napi_complete_done
- skb_defer_free_flush
- __busy_poll_stop
- busy_poll_stop
- __napi_busy_loop
- napi_busy_loop_rcu
- napi_busy_loop
- napi_suspend_irqs
- napi_resume_irqs
- __napi_hash_add_with_id
- napi_hash_add_with_id
- napi_hash_add
- napi_hash_del
- napi_watchdog
- dev_set_threaded
- netif_queue_set_napi
- netif_napi_irq_notify
- netif_napi_affinity_release
- netif_enable_cpu_rmap
- netif_del_cpu_rmap
- netif_set_affinity_auto
- netif_napi_set_irq_locked
- napi_restore_config
- napi_save_config
- netif_napi_dev_list_add
- napi_get_frags_check
- netif_napi_add_weight_locked
- napi_disable_locked
- napi_disable
- napi_enable_locked
- napi_enable
- __netif_napi_del_locked
- __napi_poll
- napi_poll
- napi_thread_wait
- napi_threaded_poll_loop
- napi_threaded_poll
- net_rx_action
- netdev_adjacent
- __netdev_find_adj
- ____netdev_has_upper_dev
- netdev_has_upper_dev
- netdev_has_upper_dev_all_rcu
- netdev_has_any_upper_dev
- netdev_master_upper_dev_get
- __netdev_master_upper_dev_get
- netdev_has_any_lower_dev
- netdev_adjacent_get_private
- netdev_upper_get_next_dev_rcu
- __netdev_next_upper_dev
- netdev_next_upper_dev_rcu
- __netdev_walk_all_upper_dev
- netdev_walk_all_upper_dev_rcu
- __netdev_has_upper_dev
- netdev_lower_get_next_private
- netdev_lower_get_next_private_rcu
- netdev_lower_get_next
- netdev_next_lower_dev
- __netdev_next_lower_dev
- netdev_walk_all_lower_dev
- __netdev_walk_all_lower_dev
- netdev_next_lower_dev_rcu
- __netdev_upper_depth
- __netdev_lower_depth
- __netdev_update_upper_level
- net_unlink_list
- net_unlink_todo
- __netdev_update_lower_level
- netdev_walk_all_lower_dev_rcu
- netdev_lower_get_first_private_rcu
- netdev_master_upper_dev_get_rcu
- netdev_adjacent_sysfs_add
- netdev_adjacent_sysfs_del
- netdev_adjacent_is_neigh_list
- __netdev_adjacent_dev_insert
- __netdev_adjacent_dev_remove
- __netdev_adjacent_dev_link_lists
- __netdev_adjacent_dev_unlink_lists
- __netdev_adjacent_dev_link_neighbour
- __netdev_adjacent_dev_unlink_neighbour
- __netdev_upper_dev_link
- netdev_upper_dev_link
- netdev_master_upper_dev_link
- __netdev_upper_dev_unlink
- netdev_upper_dev_unlink
- __netdev_adjacent_dev_set
- netdev_adjacent_dev_disable
- netdev_adjacent_dev_enable
- netdev_adjacent_change_prepare
- netdev_adjacent_change_commit
- netdev_adjacent_change_abort
- netdev_bonding_info_change
- netdev_offload_xstats_enable_l3
- netdev_offload_xstats_enable
- netdev_offload_xstats_disable_l3
- netdev_offload_xstats_disable
- netdev_offload_xstats_disable_all
- netdev_offload_xstats_get_ptr
- netdev_offload_xstats_enabled
- netdev_notifier_offload_xstats_ru
- netdev_notifier_offload_xstats_rd
- netdev_hw_stats64_add
- netdev_offload_xstats_get_used
- netdev_offload_xstats_get_stats
- netdev_offload_xstats_get
- netdev_offload_xstats_report_delta
- netdev_offload_xstats_report_used
- netdev_offload_xstats_push_delta
- netdev_get_xmit_slave
- netdev_sk_get_lower_dev
- netdev_sk_get_lowest_dev
- netdev_adjacent_add_links
- netdev_adjacent_del_links
- netdev_adjacent_rename_links
- netdev_lower_dev_get_private
- netdev_lower_state_changed
- dev_change_rx_flags
- __dev_set_promiscuity
- netif_set_promiscuity
- netif_set_allmulti
- __dev_set_rx_mode
- dev_set_rx_mode
- dev_get_flags
- __dev_change_flags
- __dev_notify_flags
- netif_change_flags
- __dev_set_mtu
- dev_validate_mtu
- netif_set_mtu_ext
- netif_set_mtu
- netif_change_tx_queue_len
- netif_set_group
- dev_pre_changeaddr_notify
- netif_set_mac_address
- dev_addr_sem
- dev_get_mac_address
- netif_change_carrier
- dev_get_phys_port_id
- dev_get_phys_port_name
- dev_get_port_parent_id
- netdev_port_same_parent_id
- netif_change_proto_down
- netdev_change_proto_down_reason_locked
- bpf_xdp_link
- dev_xdp_mode
- dev_xdp_bpf_op
- dev_xdp_link
- dev_xdp_prog
- dev_xdp_prog_count
- dev_xdp_sb_prog_count
- netif_xdp_propagate
- dev_xdp_prog_id
- dev_xdp_set_link
- dev_xdp_set_prog
- dev_xdp_install
- dev_xdp_uninstall
- dev_xdp_attach
- dev_xdp_attach_link
- dev_xdp_detach_link
- bpf_xdp_link_release
- bpf_xdp_link_detach
- bpf_xdp_link_dealloc
- bpf_xdp_link_show_fdinfo
- bpf_xdp_link_fill_link_info
- bpf_xdp_link_update
- bpf_xdp_link_lops
- bpf_xdp_link_attach
- dev_change_xdp_fd
- dev_get_min_mp_channel_count
- dev_index_reserve
- dev_index_release
- from_cleanup_net
- net_todo_list
- netdev_unregistering_wq
- dev_unreg_count
- net_set_todo
- netdev_sync_upper_features
- netdev_sync_lower_features
- netdev_has_ip_or_hw_csum
- netdev_fix_features
- __netdev_update_features
- netdev_update_features
- netdev_change_features
- netif_stacked_transfer_operstate
- netif_alloc_rx_queues
- netif_free_rx_queues
- netdev_init_one_queue
- netif_free_tx_queues
- netif_alloc_netdev_queues
- netif_tx_stop_all_queues
- netdev_do_alloc_pcpu_stats
- netdev_do_free_pcpu_stats
- netdev_free_phy_link_topology
- register_netdevice
- init_dummy_netdev
- register_netdev
- netdev_refcnt_read
- netdev_unregister_timeout_secs
- netdev_wait_allrefs_any
- netdev_run_todo
- dev_fetch_dstats
- dev_get_dstats64
- netdev_stats_to_stats64
- netdev_core_stats_alloc
- netdev_core_stats_inc
- dev_get_stats
- dev_fetch_sw_netstats
- dev_get_tstats64
- dev_ingress_queue_create
- default_ethtool_ops
- netdev_set_default_ethtool_ops
- netdev_sw_irq_coalesce_default_on
- alloc_netdev_mqs
- netdev_napi_exit
- free_netdev
- alloc_netdev_dummy
- synchronize_net
- netdev_rss_contexts_free
- unregister_netdevice_queue
- dev_memory_provider_uninstall
- unregister_netdevice_many_notify
- unregister_netdevice_many
- unregister_netdev
- __dev_change_net_namespace
- dev_cpu_dead
- netdev_increment_features
- netdev_create_hash
- netdev_init
- netdev_drivername
- __netdev_printk
- netdev_printk
- netdev_emerg
- netdev_alert
- netdev_crit
- netdev_err
- netdev_warn
- netdev_notice
- netdev_info
- netdev_exit
- netdev_net_ops
- default_device_exit_net
- default_device_exit_batch
- default_device_ops
- net_dev_struct_check
- net_page_pool_create
- backlog_napi_should_run
- run_backlog_napi
- backlog_napi_setup
- backlog_threads
Improve your Profiling and Debugging skills
Find out more