1 | // SPDX-License-Identifier: GPL-2.0-or-later |
2 | /* |
3 | * NET3 Protocol independent device support routines. |
4 | * |
5 | * Derived from the non IP parts of dev.c 1.0.19 |
6 | * Authors: Ross Biro |
7 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
8 | * Mark Evans, <evansmp@uhura.aston.ac.uk> |
9 | * |
10 | * Additional Authors: |
11 | * Florian la Roche <rzsfl@rz.uni-sb.de> |
12 | * Alan Cox <gw4pts@gw4pts.ampr.org> |
13 | * David Hinds <dahinds@users.sourceforge.net> |
14 | * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> |
15 | * Adam Sulmicki <adam@cfar.umd.edu> |
16 | * Pekka Riikonen <priikone@poesidon.pspt.fi> |
17 | * |
18 | * Changes: |
19 | * D.J. Barrow : Fixed bug where dev->refcnt gets set |
20 | * to 2 if register_netdev gets called |
21 | * before net_dev_init & also removed a |
22 | * few lines of code in the process. |
23 | * Alan Cox : device private ioctl copies fields back. |
24 | * Alan Cox : Transmit queue code does relevant |
25 | * stunts to keep the queue safe. |
26 | * Alan Cox : Fixed double lock. |
27 | * Alan Cox : Fixed promisc NULL pointer trap |
28 | * ???????? : Support the full private ioctl range |
29 | * Alan Cox : Moved ioctl permission check into |
30 | * drivers |
31 | * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI |
32 | * Alan Cox : 100 backlog just doesn't cut it when |
33 | * you start doing multicast video 8) |
34 | * Alan Cox : Rewrote net_bh and list manager. |
35 | * Alan Cox : Fix ETH_P_ALL echoback lengths. |
36 | * Alan Cox : Took out transmit every packet pass |
37 | * Saved a few bytes in the ioctl handler |
38 | * Alan Cox : Network driver sets packet type before |
39 | * calling netif_rx. Saves a function |
40 | * call a packet. |
41 | * Alan Cox : Hashed net_bh() |
42 | * Richard Kooijman: Timestamp fixes. |
43 | * Alan Cox : Wrong field in SIOCGIFDSTADDR |
44 | * Alan Cox : Device lock protection. |
45 | * Alan Cox : Fixed nasty side effect of device close |
46 | * changes. |
47 | * Rudi Cilibrasi : Pass the right thing to |
48 | * set_mac_address() |
49 | * Dave Miller : 32bit quantity for the device lock to |
50 | * make it work out on a Sparc. |
51 | * Bjorn Ekwall : Added KERNELD hack. |
52 | * Alan Cox : Cleaned up the backlog initialise. |
53 | * Craig Metz : SIOCGIFCONF fix if space for under |
54 | * 1 device. |
55 | * Thomas Bogendoerfer : Return ENODEV for dev_open, if there |
56 | * is no device open function. |
57 | * Andi Kleen : Fix error reporting for SIOCGIFCONF |
58 | * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF |
59 | * Cyrus Durgin : Cleaned for KMOD |
60 | * Adam Sulmicki : Bug Fix : Network Device Unload |
61 | * A network device unload needs to purge |
62 | * the backlog queue. |
63 | * Paul Rusty Russell : SIOCSIFNAME |
64 | * Pekka Riikonen : Netdev boot-time settings code |
65 | * Andrew Morton : Make unregister_netdevice wait |
66 | * indefinitely on dev->refcnt |
67 | * J Hadi Salim : - Backlog queue sampling |
68 | * - netif_rx() feedback |
69 | */ |
70 | |
71 | #include <linux/uaccess.h> |
72 | #include <linux/bitmap.h> |
73 | #include <linux/capability.h> |
74 | #include <linux/cpu.h> |
75 | #include <linux/types.h> |
76 | #include <linux/kernel.h> |
77 | #include <linux/hash.h> |
78 | #include <linux/slab.h> |
79 | #include <linux/sched.h> |
80 | #include <linux/sched/mm.h> |
81 | #include <linux/mutex.h> |
82 | #include <linux/rwsem.h> |
83 | #include <linux/string.h> |
84 | #include <linux/mm.h> |
85 | #include <linux/socket.h> |
86 | #include <linux/sockios.h> |
87 | #include <linux/errno.h> |
88 | #include <linux/interrupt.h> |
89 | #include <linux/if_ether.h> |
90 | #include <linux/netdevice.h> |
91 | #include <linux/etherdevice.h> |
92 | #include <linux/ethtool.h> |
93 | #include <linux/skbuff.h> |
94 | #include <linux/kthread.h> |
95 | #include <linux/bpf.h> |
96 | #include <linux/bpf_trace.h> |
97 | #include <net/net_namespace.h> |
98 | #include <net/sock.h> |
99 | #include <net/busy_poll.h> |
100 | #include <linux/rtnetlink.h> |
101 | #include <linux/stat.h> |
102 | #include <net/dsa.h> |
103 | #include <net/dst.h> |
104 | #include <net/dst_metadata.h> |
105 | #include <net/gro.h> |
106 | #include <net/pkt_sched.h> |
107 | #include <net/pkt_cls.h> |
108 | #include <net/checksum.h> |
109 | #include <net/xfrm.h> |
110 | #include <net/tcx.h> |
111 | #include <linux/highmem.h> |
112 | #include <linux/init.h> |
113 | #include <linux/module.h> |
114 | #include <linux/netpoll.h> |
115 | #include <linux/rcupdate.h> |
116 | #include <linux/delay.h> |
117 | #include <net/iw_handler.h> |
118 | #include <asm/current.h> |
119 | #include <linux/audit.h> |
120 | #include <linux/dmaengine.h> |
121 | #include <linux/err.h> |
122 | #include <linux/ctype.h> |
123 | #include <linux/if_arp.h> |
124 | #include <linux/if_vlan.h> |
125 | #include <linux/ip.h> |
126 | #include <net/ip.h> |
127 | #include <net/mpls.h> |
128 | #include <linux/ipv6.h> |
129 | #include <linux/in.h> |
130 | #include <linux/jhash.h> |
131 | #include <linux/random.h> |
132 | #include <trace/events/napi.h> |
133 | #include <trace/events/net.h> |
134 | #include <trace/events/skb.h> |
135 | #include <trace/events/qdisc.h> |
136 | #include <trace/events/xdp.h> |
137 | #include <linux/inetdevice.h> |
138 | #include <linux/cpu_rmap.h> |
139 | #include <linux/static_key.h> |
140 | #include <linux/hashtable.h> |
141 | #include <linux/vmalloc.h> |
142 | #include <linux/if_macvlan.h> |
143 | #include <linux/errqueue.h> |
144 | #include <linux/hrtimer.h> |
145 | #include <linux/netfilter_netdev.h> |
146 | #include <linux/crash_dump.h> |
147 | #include <linux/sctp.h> |
148 | #include <net/udp_tunnel.h> |
149 | #include <linux/net_namespace.h> |
150 | #include <linux/indirect_call_wrapper.h> |
151 | #include <net/devlink.h> |
152 | #include <linux/pm_runtime.h> |
153 | #include <linux/prandom.h> |
154 | #include <linux/once_lite.h> |
155 | #include <net/netdev_rx_queue.h> |
156 | #include <net/page_pool/types.h> |
157 | #include <net/page_pool/helpers.h> |
158 | #include <net/rps.h> |
159 | |
160 | #include "dev.h" |
161 | #include "net-sysfs.h" |
162 | |
163 | static DEFINE_SPINLOCK(ptype_lock); |
164 | struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; |
165 | |
166 | static int netif_rx_internal(struct sk_buff *skb); |
167 | static int call_netdevice_notifiers_extack(unsigned long val, |
168 | struct net_device *dev, |
169 | struct netlink_ext_ack *extack); |
170 | |
171 | static DEFINE_MUTEX(ifalias_mutex); |
172 | |
173 | /* protects napi_hash addition/deletion and napi_gen_id */ |
174 | static DEFINE_SPINLOCK(napi_hash_lock); |
175 | |
176 | static unsigned int napi_gen_id = NR_CPUS; |
177 | static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); |
178 | |
179 | static DECLARE_RWSEM(devnet_rename_sem); |
180 | |
181 | static inline void dev_base_seq_inc(struct net *net) |
182 | { |
183 | unsigned int val = net->dev_base_seq + 1; |
184 | |
185 | WRITE_ONCE(net->dev_base_seq, val ?: 1); |
186 | } |
187 | |
188 | static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) |
189 | { |
190 | unsigned int hash = full_name_hash(salt: net, name, strnlen(p: name, IFNAMSIZ)); |
191 | |
192 | return &net->dev_name_head[hash_32(val: hash, NETDEV_HASHBITS)]; |
193 | } |
194 | |
195 | static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) |
196 | { |
197 | return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; |
198 | } |
199 | |
200 | static inline void rps_lock_irqsave(struct softnet_data *sd, |
201 | unsigned long *flags) |
202 | { |
203 | if (IS_ENABLED(CONFIG_RPS)) |
204 | spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); |
205 | else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
206 | local_irq_save(*flags); |
207 | } |
208 | |
209 | static inline void rps_lock_irq_disable(struct softnet_data *sd) |
210 | { |
211 | if (IS_ENABLED(CONFIG_RPS)) |
212 | spin_lock_irq(lock: &sd->input_pkt_queue.lock); |
213 | else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
214 | local_irq_disable(); |
215 | } |
216 | |
217 | static inline void rps_unlock_irq_restore(struct softnet_data *sd, |
218 | unsigned long *flags) |
219 | { |
220 | if (IS_ENABLED(CONFIG_RPS)) |
221 | spin_unlock_irqrestore(lock: &sd->input_pkt_queue.lock, flags: *flags); |
222 | else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
223 | local_irq_restore(*flags); |
224 | } |
225 | |
226 | static inline void rps_unlock_irq_enable(struct softnet_data *sd) |
227 | { |
228 | if (IS_ENABLED(CONFIG_RPS)) |
229 | spin_unlock_irq(lock: &sd->input_pkt_queue.lock); |
230 | else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
231 | local_irq_enable(); |
232 | } |
233 | |
234 | static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, |
235 | const char *name) |
236 | { |
237 | struct netdev_name_node *name_node; |
238 | |
239 | name_node = kmalloc(size: sizeof(*name_node), GFP_KERNEL); |
240 | if (!name_node) |
241 | return NULL; |
242 | INIT_HLIST_NODE(h: &name_node->hlist); |
243 | name_node->dev = dev; |
244 | name_node->name = name; |
245 | return name_node; |
246 | } |
247 | |
248 | static struct netdev_name_node * |
249 | netdev_name_node_head_alloc(struct net_device *dev) |
250 | { |
251 | struct netdev_name_node *name_node; |
252 | |
253 | name_node = netdev_name_node_alloc(dev, name: dev->name); |
254 | if (!name_node) |
255 | return NULL; |
256 | INIT_LIST_HEAD(list: &name_node->list); |
257 | return name_node; |
258 | } |
259 | |
260 | static void netdev_name_node_free(struct netdev_name_node *name_node) |
261 | { |
262 | kfree(objp: name_node); |
263 | } |
264 | |
265 | static void netdev_name_node_add(struct net *net, |
266 | struct netdev_name_node *name_node) |
267 | { |
268 | hlist_add_head_rcu(n: &name_node->hlist, |
269 | h: dev_name_hash(net, name: name_node->name)); |
270 | } |
271 | |
272 | static void netdev_name_node_del(struct netdev_name_node *name_node) |
273 | { |
274 | hlist_del_rcu(n: &name_node->hlist); |
275 | } |
276 | |
277 | static struct netdev_name_node *netdev_name_node_lookup(struct net *net, |
278 | const char *name) |
279 | { |
280 | struct hlist_head *head = dev_name_hash(net, name); |
281 | struct netdev_name_node *name_node; |
282 | |
283 | hlist_for_each_entry(name_node, head, hlist) |
284 | if (!strcmp(name_node->name, name)) |
285 | return name_node; |
286 | return NULL; |
287 | } |
288 | |
289 | static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, |
290 | const char *name) |
291 | { |
292 | struct hlist_head *head = dev_name_hash(net, name); |
293 | struct netdev_name_node *name_node; |
294 | |
295 | hlist_for_each_entry_rcu(name_node, head, hlist) |
296 | if (!strcmp(name_node->name, name)) |
297 | return name_node; |
298 | return NULL; |
299 | } |
300 | |
301 | bool netdev_name_in_use(struct net *net, const char *name) |
302 | { |
303 | return netdev_name_node_lookup(net, name); |
304 | } |
305 | EXPORT_SYMBOL(netdev_name_in_use); |
306 | |
307 | int netdev_name_node_alt_create(struct net_device *dev, const char *name) |
308 | { |
309 | struct netdev_name_node *name_node; |
310 | struct net *net = dev_net(dev); |
311 | |
312 | name_node = netdev_name_node_lookup(net, name); |
313 | if (name_node) |
314 | return -EEXIST; |
315 | name_node = netdev_name_node_alloc(dev, name); |
316 | if (!name_node) |
317 | return -ENOMEM; |
318 | netdev_name_node_add(net, name_node); |
319 | /* The node that holds dev->name acts as a head of per-device list. */ |
320 | list_add_tail_rcu(new: &name_node->list, head: &dev->name_node->list); |
321 | |
322 | return 0; |
323 | } |
324 | |
325 | static void netdev_name_node_alt_free(struct rcu_head *head) |
326 | { |
327 | struct netdev_name_node *name_node = |
328 | container_of(head, struct netdev_name_node, rcu); |
329 | |
330 | kfree(objp: name_node->name); |
331 | netdev_name_node_free(name_node); |
332 | } |
333 | |
334 | static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) |
335 | { |
336 | netdev_name_node_del(name_node); |
337 | list_del(entry: &name_node->list); |
338 | call_rcu(head: &name_node->rcu, func: netdev_name_node_alt_free); |
339 | } |
340 | |
341 | int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) |
342 | { |
343 | struct netdev_name_node *name_node; |
344 | struct net *net = dev_net(dev); |
345 | |
346 | name_node = netdev_name_node_lookup(net, name); |
347 | if (!name_node) |
348 | return -ENOENT; |
349 | /* lookup might have found our primary name or a name belonging |
350 | * to another device. |
351 | */ |
352 | if (name_node == dev->name_node || name_node->dev != dev) |
353 | return -EINVAL; |
354 | |
355 | __netdev_name_node_alt_destroy(name_node); |
356 | return 0; |
357 | } |
358 | |
359 | static void netdev_name_node_alt_flush(struct net_device *dev) |
360 | { |
361 | struct netdev_name_node *name_node, *tmp; |
362 | |
363 | list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { |
364 | list_del(entry: &name_node->list); |
365 | netdev_name_node_alt_free(head: &name_node->rcu); |
366 | } |
367 | } |
368 | |
369 | /* Device list insertion */ |
370 | static void list_netdevice(struct net_device *dev) |
371 | { |
372 | struct netdev_name_node *name_node; |
373 | struct net *net = dev_net(dev); |
374 | |
375 | ASSERT_RTNL(); |
376 | |
377 | list_add_tail_rcu(new: &dev->dev_list, head: &net->dev_base_head); |
378 | netdev_name_node_add(net, name_node: dev->name_node); |
379 | hlist_add_head_rcu(n: &dev->index_hlist, |
380 | h: dev_index_hash(net, ifindex: dev->ifindex)); |
381 | |
382 | netdev_for_each_altname(dev, name_node) |
383 | netdev_name_node_add(net, name_node); |
384 | |
385 | /* We reserved the ifindex, this can't fail */ |
386 | WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); |
387 | |
388 | dev_base_seq_inc(net); |
389 | } |
390 | |
391 | /* Device list removal |
392 | * caller must respect a RCU grace period before freeing/reusing dev |
393 | */ |
394 | static void unlist_netdevice(struct net_device *dev) |
395 | { |
396 | struct netdev_name_node *name_node; |
397 | struct net *net = dev_net(dev); |
398 | |
399 | ASSERT_RTNL(); |
400 | |
401 | xa_erase(&net->dev_by_index, index: dev->ifindex); |
402 | |
403 | netdev_for_each_altname(dev, name_node) |
404 | netdev_name_node_del(name_node); |
405 | |
406 | /* Unlink dev from the device chain */ |
407 | list_del_rcu(entry: &dev->dev_list); |
408 | netdev_name_node_del(name_node: dev->name_node); |
409 | hlist_del_rcu(n: &dev->index_hlist); |
410 | |
411 | dev_base_seq_inc(net: dev_net(dev)); |
412 | } |
413 | |
414 | /* |
415 | * Our notifier list |
416 | */ |
417 | |
418 | static RAW_NOTIFIER_HEAD(netdev_chain); |
419 | |
420 | /* |
421 | * Device drivers call our routines to queue packets here. We empty the |
422 | * queue in the local softnet handler. |
423 | */ |
424 | |
425 | DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); |
426 | EXPORT_PER_CPU_SYMBOL(softnet_data); |
427 | |
428 | /* Page_pool has a lockless array/stack to alloc/recycle pages. |
429 | * PP consumers must pay attention to run APIs in the appropriate context |
430 | * (e.g. NAPI context). |
431 | */ |
432 | static DEFINE_PER_CPU(struct page_pool *, system_page_pool); |
433 | |
434 | #ifdef CONFIG_LOCKDEP |
435 | /* |
436 | * register_netdevice() inits txq->_xmit_lock and sets lockdep class |
437 | * according to dev->type |
438 | */ |
439 | static const unsigned short netdev_lock_type[] = { |
440 | ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, |
441 | ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, |
442 | ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, |
443 | ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, |
444 | ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, |
445 | ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, |
446 | ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, |
447 | ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, |
448 | ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, |
449 | ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, |
450 | ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, |
451 | ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, |
452 | ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, |
453 | ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, |
454 | ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; |
455 | |
456 | static const char *const netdev_lock_name[] = { |
457 | "_xmit_NETROM" , "_xmit_ETHER" , "_xmit_EETHER" , "_xmit_AX25" , |
458 | "_xmit_PRONET" , "_xmit_CHAOS" , "_xmit_IEEE802" , "_xmit_ARCNET" , |
459 | "_xmit_APPLETLK" , "_xmit_DLCI" , "_xmit_ATM" , "_xmit_METRICOM" , |
460 | "_xmit_IEEE1394" , "_xmit_EUI64" , "_xmit_INFINIBAND" , "_xmit_SLIP" , |
461 | "_xmit_CSLIP" , "_xmit_SLIP6" , "_xmit_CSLIP6" , "_xmit_RSRVD" , |
462 | "_xmit_ADAPT" , "_xmit_ROSE" , "_xmit_X25" , "_xmit_HWX25" , |
463 | "_xmit_PPP" , "_xmit_CISCO" , "_xmit_LAPB" , "_xmit_DDCMP" , |
464 | "_xmit_RAWHDLC" , "_xmit_TUNNEL" , "_xmit_TUNNEL6" , "_xmit_FRAD" , |
465 | "_xmit_SKIP" , "_xmit_LOOPBACK" , "_xmit_LOCALTLK" , "_xmit_FDDI" , |
466 | "_xmit_BIF" , "_xmit_SIT" , "_xmit_IPDDP" , "_xmit_IPGRE" , |
467 | "_xmit_PIMREG" , "_xmit_HIPPI" , "_xmit_ASH" , "_xmit_ECONET" , |
468 | "_xmit_IRDA" , "_xmit_FCPP" , "_xmit_FCAL" , "_xmit_FCPL" , |
469 | "_xmit_FCFABRIC" , "_xmit_IEEE80211" , "_xmit_IEEE80211_PRISM" , |
470 | "_xmit_IEEE80211_RADIOTAP" , "_xmit_PHONET" , "_xmit_PHONET_PIPE" , |
471 | "_xmit_IEEE802154" , "_xmit_VOID" , "_xmit_NONE" }; |
472 | |
473 | static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; |
474 | static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; |
475 | |
476 | static inline unsigned short netdev_lock_pos(unsigned short dev_type) |
477 | { |
478 | int i; |
479 | |
480 | for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) |
481 | if (netdev_lock_type[i] == dev_type) |
482 | return i; |
483 | /* the last key is used by default */ |
484 | return ARRAY_SIZE(netdev_lock_type) - 1; |
485 | } |
486 | |
487 | static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, |
488 | unsigned short dev_type) |
489 | { |
490 | int i; |
491 | |
492 | i = netdev_lock_pos(dev_type); |
493 | lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], |
494 | netdev_lock_name[i]); |
495 | } |
496 | |
497 | static inline void netdev_set_addr_lockdep_class(struct net_device *dev) |
498 | { |
499 | int i; |
500 | |
501 | i = netdev_lock_pos(dev_type: dev->type); |
502 | lockdep_set_class_and_name(&dev->addr_list_lock, |
503 | &netdev_addr_lock_key[i], |
504 | netdev_lock_name[i]); |
505 | } |
506 | #else |
507 | static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, |
508 | unsigned short dev_type) |
509 | { |
510 | } |
511 | |
512 | static inline void netdev_set_addr_lockdep_class(struct net_device *dev) |
513 | { |
514 | } |
515 | #endif |
516 | |
517 | /******************************************************************************* |
518 | * |
519 | * Protocol management and registration routines |
520 | * |
521 | *******************************************************************************/ |
522 | |
523 | |
524 | /* |
525 | * Add a protocol ID to the list. Now that the input handler is |
526 | * smarter we can dispense with all the messy stuff that used to be |
527 | * here. |
528 | * |
529 | * BEWARE!!! Protocol handlers, mangling input packets, |
530 | * MUST BE last in hash buckets and checking protocol handlers |
531 | * MUST start from promiscuous ptype_all chain in net_bh. |
532 | * It is true now, do not change it. |
533 | * Explanation follows: if protocol handler, mangling packet, will |
534 | * be the first on list, it is not able to sense, that packet |
535 | * is cloned and should be copied-on-write, so that it will |
536 | * change it and subsequent readers will get broken packet. |
537 | * --ANK (980803) |
538 | */ |
539 | |
540 | static inline struct list_head *ptype_head(const struct packet_type *pt) |
541 | { |
542 | if (pt->type == htons(ETH_P_ALL)) |
543 | return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all; |
544 | else |
545 | return pt->dev ? &pt->dev->ptype_specific : |
546 | &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; |
547 | } |
548 | |
549 | /** |
550 | * dev_add_pack - add packet handler |
551 | * @pt: packet type declaration |
552 | * |
553 | * Add a protocol handler to the networking stack. The passed &packet_type |
554 | * is linked into kernel lists and may not be freed until it has been |
555 | * removed from the kernel lists. |
556 | * |
557 | * This call does not sleep therefore it can not |
558 | * guarantee all CPU's that are in middle of receiving packets |
559 | * will see the new packet type (until the next received packet). |
560 | */ |
561 | |
562 | void dev_add_pack(struct packet_type *pt) |
563 | { |
564 | struct list_head *head = ptype_head(pt); |
565 | |
566 | spin_lock(lock: &ptype_lock); |
567 | list_add_rcu(new: &pt->list, head); |
568 | spin_unlock(lock: &ptype_lock); |
569 | } |
570 | EXPORT_SYMBOL(dev_add_pack); |
571 | |
572 | /** |
573 | * __dev_remove_pack - remove packet handler |
574 | * @pt: packet type declaration |
575 | * |
576 | * Remove a protocol handler that was previously added to the kernel |
577 | * protocol handlers by dev_add_pack(). The passed &packet_type is removed |
578 | * from the kernel lists and can be freed or reused once this function |
579 | * returns. |
580 | * |
581 | * The packet type might still be in use by receivers |
582 | * and must not be freed until after all the CPU's have gone |
583 | * through a quiescent state. |
584 | */ |
585 | void __dev_remove_pack(struct packet_type *pt) |
586 | { |
587 | struct list_head *head = ptype_head(pt); |
588 | struct packet_type *pt1; |
589 | |
590 | spin_lock(lock: &ptype_lock); |
591 | |
592 | list_for_each_entry(pt1, head, list) { |
593 | if (pt == pt1) { |
594 | list_del_rcu(entry: &pt->list); |
595 | goto out; |
596 | } |
597 | } |
598 | |
599 | pr_warn("dev_remove_pack: %p not found\n" , pt); |
600 | out: |
601 | spin_unlock(lock: &ptype_lock); |
602 | } |
603 | EXPORT_SYMBOL(__dev_remove_pack); |
604 | |
605 | /** |
606 | * dev_remove_pack - remove packet handler |
607 | * @pt: packet type declaration |
608 | * |
609 | * Remove a protocol handler that was previously added to the kernel |
610 | * protocol handlers by dev_add_pack(). The passed &packet_type is removed |
611 | * from the kernel lists and can be freed or reused once this function |
612 | * returns. |
613 | * |
614 | * This call sleeps to guarantee that no CPU is looking at the packet |
615 | * type after return. |
616 | */ |
617 | void dev_remove_pack(struct packet_type *pt) |
618 | { |
619 | __dev_remove_pack(pt); |
620 | |
621 | synchronize_net(); |
622 | } |
623 | EXPORT_SYMBOL(dev_remove_pack); |
624 | |
625 | |
626 | /******************************************************************************* |
627 | * |
628 | * Device Interface Subroutines |
629 | * |
630 | *******************************************************************************/ |
631 | |
632 | /** |
633 | * dev_get_iflink - get 'iflink' value of a interface |
634 | * @dev: targeted interface |
635 | * |
636 | * Indicates the ifindex the interface is linked to. |
637 | * Physical interfaces have the same 'ifindex' and 'iflink' values. |
638 | */ |
639 | |
640 | int dev_get_iflink(const struct net_device *dev) |
641 | { |
642 | if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) |
643 | return dev->netdev_ops->ndo_get_iflink(dev); |
644 | |
645 | return READ_ONCE(dev->ifindex); |
646 | } |
647 | EXPORT_SYMBOL(dev_get_iflink); |
648 | |
649 | /** |
650 | * dev_fill_metadata_dst - Retrieve tunnel egress information. |
651 | * @dev: targeted interface |
652 | * @skb: The packet. |
653 | * |
654 | * For better visibility of tunnel traffic OVS needs to retrieve |
655 | * egress tunnel information for a packet. Following API allows |
656 | * user to get this info. |
657 | */ |
658 | int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) |
659 | { |
660 | struct ip_tunnel_info *info; |
661 | |
662 | if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) |
663 | return -EINVAL; |
664 | |
665 | info = skb_tunnel_info_unclone(skb); |
666 | if (!info) |
667 | return -ENOMEM; |
668 | if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) |
669 | return -EINVAL; |
670 | |
671 | return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); |
672 | } |
673 | EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); |
674 | |
675 | static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) |
676 | { |
677 | int k = stack->num_paths++; |
678 | |
679 | if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) |
680 | return NULL; |
681 | |
682 | return &stack->path[k]; |
683 | } |
684 | |
685 | int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, |
686 | struct net_device_path_stack *stack) |
687 | { |
688 | const struct net_device *last_dev; |
689 | struct net_device_path_ctx ctx = { |
690 | .dev = dev, |
691 | }; |
692 | struct net_device_path *path; |
693 | int ret = 0; |
694 | |
695 | memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); |
696 | stack->num_paths = 0; |
697 | while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { |
698 | last_dev = ctx.dev; |
699 | path = dev_fwd_path(stack); |
700 | if (!path) |
701 | return -1; |
702 | |
703 | memset(path, 0, sizeof(struct net_device_path)); |
704 | ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); |
705 | if (ret < 0) |
706 | return -1; |
707 | |
708 | if (WARN_ON_ONCE(last_dev == ctx.dev)) |
709 | return -1; |
710 | } |
711 | |
712 | if (!ctx.dev) |
713 | return ret; |
714 | |
715 | path = dev_fwd_path(stack); |
716 | if (!path) |
717 | return -1; |
718 | path->type = DEV_PATH_ETHERNET; |
719 | path->dev = ctx.dev; |
720 | |
721 | return ret; |
722 | } |
723 | EXPORT_SYMBOL_GPL(dev_fill_forward_path); |
724 | |
725 | /** |
726 | * __dev_get_by_name - find a device by its name |
727 | * @net: the applicable net namespace |
728 | * @name: name to find |
729 | * |
730 | * Find an interface by name. Must be called under RTNL semaphore. |
731 | * If the name is found a pointer to the device is returned. |
732 | * If the name is not found then %NULL is returned. The |
733 | * reference counters are not incremented so the caller must be |
734 | * careful with locks. |
735 | */ |
736 | |
737 | struct net_device *__dev_get_by_name(struct net *net, const char *name) |
738 | { |
739 | struct netdev_name_node *node_name; |
740 | |
741 | node_name = netdev_name_node_lookup(net, name); |
742 | return node_name ? node_name->dev : NULL; |
743 | } |
744 | EXPORT_SYMBOL(__dev_get_by_name); |
745 | |
746 | /** |
747 | * dev_get_by_name_rcu - find a device by its name |
748 | * @net: the applicable net namespace |
749 | * @name: name to find |
750 | * |
751 | * Find an interface by name. |
752 | * If the name is found a pointer to the device is returned. |
753 | * If the name is not found then %NULL is returned. |
754 | * The reference counters are not incremented so the caller must be |
755 | * careful with locks. The caller must hold RCU lock. |
756 | */ |
757 | |
758 | struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) |
759 | { |
760 | struct netdev_name_node *node_name; |
761 | |
762 | node_name = netdev_name_node_lookup_rcu(net, name); |
763 | return node_name ? node_name->dev : NULL; |
764 | } |
765 | EXPORT_SYMBOL(dev_get_by_name_rcu); |
766 | |
767 | /* Deprecated for new users, call netdev_get_by_name() instead */ |
768 | struct net_device *dev_get_by_name(struct net *net, const char *name) |
769 | { |
770 | struct net_device *dev; |
771 | |
772 | rcu_read_lock(); |
773 | dev = dev_get_by_name_rcu(net, name); |
774 | dev_hold(dev); |
775 | rcu_read_unlock(); |
776 | return dev; |
777 | } |
778 | EXPORT_SYMBOL(dev_get_by_name); |
779 | |
780 | /** |
781 | * netdev_get_by_name() - find a device by its name |
782 | * @net: the applicable net namespace |
783 | * @name: name to find |
784 | * @tracker: tracking object for the acquired reference |
785 | * @gfp: allocation flags for the tracker |
786 | * |
787 | * Find an interface by name. This can be called from any |
788 | * context and does its own locking. The returned handle has |
789 | * the usage count incremented and the caller must use netdev_put() to |
790 | * release it when it is no longer needed. %NULL is returned if no |
791 | * matching device is found. |
792 | */ |
793 | struct net_device *netdev_get_by_name(struct net *net, const char *name, |
794 | netdevice_tracker *tracker, gfp_t gfp) |
795 | { |
796 | struct net_device *dev; |
797 | |
798 | dev = dev_get_by_name(net, name); |
799 | if (dev) |
800 | netdev_tracker_alloc(dev, tracker, gfp); |
801 | return dev; |
802 | } |
803 | EXPORT_SYMBOL(netdev_get_by_name); |
804 | |
805 | /** |
806 | * __dev_get_by_index - find a device by its ifindex |
807 | * @net: the applicable net namespace |
808 | * @ifindex: index of device |
809 | * |
810 | * Search for an interface by index. Returns %NULL if the device |
811 | * is not found or a pointer to the device. The device has not |
812 | * had its reference counter increased so the caller must be careful |
813 | * about locking. The caller must hold the RTNL semaphore. |
814 | */ |
815 | |
816 | struct net_device *__dev_get_by_index(struct net *net, int ifindex) |
817 | { |
818 | struct net_device *dev; |
819 | struct hlist_head *head = dev_index_hash(net, ifindex); |
820 | |
821 | hlist_for_each_entry(dev, head, index_hlist) |
822 | if (dev->ifindex == ifindex) |
823 | return dev; |
824 | |
825 | return NULL; |
826 | } |
827 | EXPORT_SYMBOL(__dev_get_by_index); |
828 | |
829 | /** |
830 | * dev_get_by_index_rcu - find a device by its ifindex |
831 | * @net: the applicable net namespace |
832 | * @ifindex: index of device |
833 | * |
834 | * Search for an interface by index. Returns %NULL if the device |
835 | * is not found or a pointer to the device. The device has not |
836 | * had its reference counter increased so the caller must be careful |
837 | * about locking. The caller must hold RCU lock. |
838 | */ |
839 | |
840 | struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) |
841 | { |
842 | struct net_device *dev; |
843 | struct hlist_head *head = dev_index_hash(net, ifindex); |
844 | |
845 | hlist_for_each_entry_rcu(dev, head, index_hlist) |
846 | if (dev->ifindex == ifindex) |
847 | return dev; |
848 | |
849 | return NULL; |
850 | } |
851 | EXPORT_SYMBOL(dev_get_by_index_rcu); |
852 | |
853 | /* Deprecated for new users, call netdev_get_by_index() instead */ |
854 | struct net_device *dev_get_by_index(struct net *net, int ifindex) |
855 | { |
856 | struct net_device *dev; |
857 | |
858 | rcu_read_lock(); |
859 | dev = dev_get_by_index_rcu(net, ifindex); |
860 | dev_hold(dev); |
861 | rcu_read_unlock(); |
862 | return dev; |
863 | } |
864 | EXPORT_SYMBOL(dev_get_by_index); |
865 | |
866 | /** |
867 | * netdev_get_by_index() - find a device by its ifindex |
868 | * @net: the applicable net namespace |
869 | * @ifindex: index of device |
870 | * @tracker: tracking object for the acquired reference |
871 | * @gfp: allocation flags for the tracker |
872 | * |
873 | * Search for an interface by index. Returns NULL if the device |
874 | * is not found or a pointer to the device. The device returned has |
875 | * had a reference added and the pointer is safe until the user calls |
876 | * netdev_put() to indicate they have finished with it. |
877 | */ |
878 | struct net_device *netdev_get_by_index(struct net *net, int ifindex, |
879 | netdevice_tracker *tracker, gfp_t gfp) |
880 | { |
881 | struct net_device *dev; |
882 | |
883 | dev = dev_get_by_index(net, ifindex); |
884 | if (dev) |
885 | netdev_tracker_alloc(dev, tracker, gfp); |
886 | return dev; |
887 | } |
888 | EXPORT_SYMBOL(netdev_get_by_index); |
889 | |
890 | /** |
891 | * dev_get_by_napi_id - find a device by napi_id |
892 | * @napi_id: ID of the NAPI struct |
893 | * |
894 | * Search for an interface by NAPI ID. Returns %NULL if the device |
895 | * is not found or a pointer to the device. The device has not had |
896 | * its reference counter increased so the caller must be careful |
897 | * about locking. The caller must hold RCU lock. |
898 | */ |
899 | |
900 | struct net_device *dev_get_by_napi_id(unsigned int napi_id) |
901 | { |
902 | struct napi_struct *napi; |
903 | |
904 | WARN_ON_ONCE(!rcu_read_lock_held()); |
905 | |
906 | if (napi_id < MIN_NAPI_ID) |
907 | return NULL; |
908 | |
909 | napi = napi_by_id(napi_id); |
910 | |
911 | return napi ? napi->dev : NULL; |
912 | } |
913 | EXPORT_SYMBOL(dev_get_by_napi_id); |
914 | |
915 | /** |
916 | * netdev_get_name - get a netdevice name, knowing its ifindex. |
917 | * @net: network namespace |
918 | * @name: a pointer to the buffer where the name will be stored. |
919 | * @ifindex: the ifindex of the interface to get the name from. |
920 | */ |
921 | int netdev_get_name(struct net *net, char *name, int ifindex) |
922 | { |
923 | struct net_device *dev; |
924 | int ret; |
925 | |
926 | down_read(sem: &devnet_rename_sem); |
927 | rcu_read_lock(); |
928 | |
929 | dev = dev_get_by_index_rcu(net, ifindex); |
930 | if (!dev) { |
931 | ret = -ENODEV; |
932 | goto out; |
933 | } |
934 | |
935 | strcpy(p: name, q: dev->name); |
936 | |
937 | ret = 0; |
938 | out: |
939 | rcu_read_unlock(); |
940 | up_read(sem: &devnet_rename_sem); |
941 | return ret; |
942 | } |
943 | |
944 | /** |
945 | * dev_getbyhwaddr_rcu - find a device by its hardware address |
946 | * @net: the applicable net namespace |
947 | * @type: media type of device |
948 | * @ha: hardware address |
949 | * |
950 | * Search for an interface by MAC address. Returns NULL if the device |
951 | * is not found or a pointer to the device. |
952 | * The caller must hold RCU or RTNL. |
953 | * The returned device has not had its ref count increased |
954 | * and the caller must therefore be careful about locking |
955 | * |
956 | */ |
957 | |
958 | struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, |
959 | const char *ha) |
960 | { |
961 | struct net_device *dev; |
962 | |
963 | for_each_netdev_rcu(net, dev) |
964 | if (dev->type == type && |
965 | !memcmp(p: dev->dev_addr, q: ha, size: dev->addr_len)) |
966 | return dev; |
967 | |
968 | return NULL; |
969 | } |
970 | EXPORT_SYMBOL(dev_getbyhwaddr_rcu); |
971 | |
972 | struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) |
973 | { |
974 | struct net_device *dev, *ret = NULL; |
975 | |
976 | rcu_read_lock(); |
977 | for_each_netdev_rcu(net, dev) |
978 | if (dev->type == type) { |
979 | dev_hold(dev); |
980 | ret = dev; |
981 | break; |
982 | } |
983 | rcu_read_unlock(); |
984 | return ret; |
985 | } |
986 | EXPORT_SYMBOL(dev_getfirstbyhwtype); |
987 | |
988 | /** |
989 | * __dev_get_by_flags - find any device with given flags |
990 | * @net: the applicable net namespace |
991 | * @if_flags: IFF_* values |
992 | * @mask: bitmask of bits in if_flags to check |
993 | * |
994 | * Search for any interface with the given flags. Returns NULL if a device |
995 | * is not found or a pointer to the device. Must be called inside |
996 | * rtnl_lock(), and result refcount is unchanged. |
997 | */ |
998 | |
999 | struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, |
1000 | unsigned short mask) |
1001 | { |
1002 | struct net_device *dev, *ret; |
1003 | |
1004 | ASSERT_RTNL(); |
1005 | |
1006 | ret = NULL; |
1007 | for_each_netdev(net, dev) { |
1008 | if (((dev->flags ^ if_flags) & mask) == 0) { |
1009 | ret = dev; |
1010 | break; |
1011 | } |
1012 | } |
1013 | return ret; |
1014 | } |
1015 | EXPORT_SYMBOL(__dev_get_by_flags); |
1016 | |
1017 | /** |
1018 | * dev_valid_name - check if name is okay for network device |
1019 | * @name: name string |
1020 | * |
1021 | * Network device names need to be valid file names to |
1022 | * allow sysfs to work. We also disallow any kind of |
1023 | * whitespace. |
1024 | */ |
1025 | bool dev_valid_name(const char *name) |
1026 | { |
1027 | if (*name == '\0') |
1028 | return false; |
1029 | if (strnlen(p: name, IFNAMSIZ) == IFNAMSIZ) |
1030 | return false; |
1031 | if (!strcmp(name, "." ) || !strcmp(name, ".." )) |
1032 | return false; |
1033 | |
1034 | while (*name) { |
1035 | if (*name == '/' || *name == ':' || isspace(*name)) |
1036 | return false; |
1037 | name++; |
1038 | } |
1039 | return true; |
1040 | } |
1041 | EXPORT_SYMBOL(dev_valid_name); |
1042 | |
1043 | /** |
1044 | * __dev_alloc_name - allocate a name for a device |
1045 | * @net: network namespace to allocate the device name in |
1046 | * @name: name format string |
1047 | * @res: result name string |
1048 | * |
1049 | * Passed a format string - eg "lt%d" it will try and find a suitable |
1050 | * id. It scans list of devices to build up a free map, then chooses |
1051 | * the first empty slot. The caller must hold the dev_base or rtnl lock |
1052 | * while allocating the name and adding the device in order to avoid |
1053 | * duplicates. |
1054 | * Limited to bits_per_byte * page size devices (ie 32K on most platforms). |
1055 | * Returns the number of the unit assigned or a negative errno code. |
1056 | */ |
1057 | |
1058 | static int __dev_alloc_name(struct net *net, const char *name, char *res) |
1059 | { |
1060 | int i = 0; |
1061 | const char *p; |
1062 | const int max_netdevices = 8*PAGE_SIZE; |
1063 | unsigned long *inuse; |
1064 | struct net_device *d; |
1065 | char buf[IFNAMSIZ]; |
1066 | |
1067 | /* Verify the string as this thing may have come from the user. |
1068 | * There must be one "%d" and no other "%" characters. |
1069 | */ |
1070 | p = strchr(name, '%'); |
1071 | if (!p || p[1] != 'd' || strchr(p + 2, '%')) |
1072 | return -EINVAL; |
1073 | |
1074 | /* Use one page as a bit array of possible slots */ |
1075 | inuse = bitmap_zalloc(nbits: max_netdevices, GFP_ATOMIC); |
1076 | if (!inuse) |
1077 | return -ENOMEM; |
1078 | |
1079 | for_each_netdev(net, d) { |
1080 | struct netdev_name_node *name_node; |
1081 | |
1082 | netdev_for_each_altname(d, name_node) { |
1083 | if (!sscanf(name_node->name, name, &i)) |
1084 | continue; |
1085 | if (i < 0 || i >= max_netdevices) |
1086 | continue; |
1087 | |
1088 | /* avoid cases where sscanf is not exact inverse of printf */ |
1089 | snprintf(buf, IFNAMSIZ, fmt: name, i); |
1090 | if (!strncmp(buf, name_node->name, IFNAMSIZ)) |
1091 | __set_bit(i, inuse); |
1092 | } |
1093 | if (!sscanf(d->name, name, &i)) |
1094 | continue; |
1095 | if (i < 0 || i >= max_netdevices) |
1096 | continue; |
1097 | |
1098 | /* avoid cases where sscanf is not exact inverse of printf */ |
1099 | snprintf(buf, IFNAMSIZ, fmt: name, i); |
1100 | if (!strncmp(buf, d->name, IFNAMSIZ)) |
1101 | __set_bit(i, inuse); |
1102 | } |
1103 | |
1104 | i = find_first_zero_bit(addr: inuse, size: max_netdevices); |
1105 | bitmap_free(bitmap: inuse); |
1106 | if (i == max_netdevices) |
1107 | return -ENFILE; |
1108 | |
1109 | /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ |
1110 | strscpy(buf, name, IFNAMSIZ); |
1111 | snprintf(buf: res, IFNAMSIZ, fmt: buf, i); |
1112 | return i; |
1113 | } |
1114 | |
1115 | /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ |
1116 | static int dev_prep_valid_name(struct net *net, struct net_device *dev, |
1117 | const char *want_name, char *out_name, |
1118 | int dup_errno) |
1119 | { |
1120 | if (!dev_valid_name(want_name)) |
1121 | return -EINVAL; |
1122 | |
1123 | if (strchr(want_name, '%')) |
1124 | return __dev_alloc_name(net, name: want_name, res: out_name); |
1125 | |
1126 | if (netdev_name_in_use(net, want_name)) |
1127 | return -dup_errno; |
1128 | if (out_name != want_name) |
1129 | strscpy(out_name, want_name, IFNAMSIZ); |
1130 | return 0; |
1131 | } |
1132 | |
1133 | /** |
1134 | * dev_alloc_name - allocate a name for a device |
1135 | * @dev: device |
1136 | * @name: name format string |
1137 | * |
1138 | * Passed a format string - eg "lt%d" it will try and find a suitable |
1139 | * id. It scans list of devices to build up a free map, then chooses |
1140 | * the first empty slot. The caller must hold the dev_base or rtnl lock |
1141 | * while allocating the name and adding the device in order to avoid |
1142 | * duplicates. |
1143 | * Limited to bits_per_byte * page size devices (ie 32K on most platforms). |
1144 | * Returns the number of the unit assigned or a negative errno code. |
1145 | */ |
1146 | |
1147 | int dev_alloc_name(struct net_device *dev, const char *name) |
1148 | { |
1149 | return dev_prep_valid_name(net: dev_net(dev), dev, want_name: name, out_name: dev->name, ENFILE); |
1150 | } |
1151 | EXPORT_SYMBOL(dev_alloc_name); |
1152 | |
1153 | static int dev_get_valid_name(struct net *net, struct net_device *dev, |
1154 | const char *name) |
1155 | { |
1156 | int ret; |
1157 | |
1158 | ret = dev_prep_valid_name(net, dev, want_name: name, out_name: dev->name, EEXIST); |
1159 | return ret < 0 ? ret : 0; |
1160 | } |
1161 | |
1162 | /** |
1163 | * dev_change_name - change name of a device |
1164 | * @dev: device |
1165 | * @newname: name (or format string) must be at least IFNAMSIZ |
1166 | * |
1167 | * Change name of a device, can pass format strings "eth%d". |
1168 | * for wildcarding. |
1169 | */ |
1170 | int dev_change_name(struct net_device *dev, const char *newname) |
1171 | { |
1172 | unsigned char old_assign_type; |
1173 | char oldname[IFNAMSIZ]; |
1174 | int err = 0; |
1175 | int ret; |
1176 | struct net *net; |
1177 | |
1178 | ASSERT_RTNL(); |
1179 | BUG_ON(!dev_net(dev)); |
1180 | |
1181 | net = dev_net(dev); |
1182 | |
1183 | down_write(sem: &devnet_rename_sem); |
1184 | |
1185 | if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { |
1186 | up_write(sem: &devnet_rename_sem); |
1187 | return 0; |
1188 | } |
1189 | |
1190 | memcpy(oldname, dev->name, IFNAMSIZ); |
1191 | |
1192 | err = dev_get_valid_name(net, dev, name: newname); |
1193 | if (err < 0) { |
1194 | up_write(sem: &devnet_rename_sem); |
1195 | return err; |
1196 | } |
1197 | |
1198 | if (oldname[0] && !strchr(oldname, '%')) |
1199 | netdev_info(dev, format: "renamed from %s%s\n" , oldname, |
1200 | dev->flags & IFF_UP ? " (while UP)" : "" ); |
1201 | |
1202 | old_assign_type = dev->name_assign_type; |
1203 | WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); |
1204 | |
1205 | rollback: |
1206 | ret = device_rename(dev: &dev->dev, new_name: dev->name); |
1207 | if (ret) { |
1208 | memcpy(dev->name, oldname, IFNAMSIZ); |
1209 | WRITE_ONCE(dev->name_assign_type, old_assign_type); |
1210 | up_write(sem: &devnet_rename_sem); |
1211 | return ret; |
1212 | } |
1213 | |
1214 | up_write(sem: &devnet_rename_sem); |
1215 | |
1216 | netdev_adjacent_rename_links(dev, oldname); |
1217 | |
1218 | netdev_name_node_del(name_node: dev->name_node); |
1219 | |
1220 | synchronize_net(); |
1221 | |
1222 | netdev_name_node_add(net, name_node: dev->name_node); |
1223 | |
1224 | ret = call_netdevice_notifiers(val: NETDEV_CHANGENAME, dev); |
1225 | ret = notifier_to_errno(ret); |
1226 | |
1227 | if (ret) { |
1228 | /* err >= 0 after dev_alloc_name() or stores the first errno */ |
1229 | if (err >= 0) { |
1230 | err = ret; |
1231 | down_write(sem: &devnet_rename_sem); |
1232 | memcpy(dev->name, oldname, IFNAMSIZ); |
1233 | memcpy(oldname, newname, IFNAMSIZ); |
1234 | WRITE_ONCE(dev->name_assign_type, old_assign_type); |
1235 | old_assign_type = NET_NAME_RENAMED; |
1236 | goto rollback; |
1237 | } else { |
1238 | netdev_err(dev, format: "name change rollback failed: %d\n" , |
1239 | ret); |
1240 | } |
1241 | } |
1242 | |
1243 | return err; |
1244 | } |
1245 | |
1246 | /** |
1247 | * dev_set_alias - change ifalias of a device |
1248 | * @dev: device |
1249 | * @alias: name up to IFALIASZ |
1250 | * @len: limit of bytes to copy from info |
1251 | * |
1252 | * Set ifalias for a device, |
1253 | */ |
1254 | int dev_set_alias(struct net_device *dev, const char *alias, size_t len) |
1255 | { |
1256 | struct dev_ifalias *new_alias = NULL; |
1257 | |
1258 | if (len >= IFALIASZ) |
1259 | return -EINVAL; |
1260 | |
1261 | if (len) { |
1262 | new_alias = kmalloc(size: sizeof(*new_alias) + len + 1, GFP_KERNEL); |
1263 | if (!new_alias) |
1264 | return -ENOMEM; |
1265 | |
1266 | memcpy(new_alias->ifalias, alias, len); |
1267 | new_alias->ifalias[len] = 0; |
1268 | } |
1269 | |
1270 | mutex_lock(&ifalias_mutex); |
1271 | new_alias = rcu_replace_pointer(dev->ifalias, new_alias, |
1272 | mutex_is_locked(&ifalias_mutex)); |
1273 | mutex_unlock(lock: &ifalias_mutex); |
1274 | |
1275 | if (new_alias) |
1276 | kfree_rcu(new_alias, rcuhead); |
1277 | |
1278 | return len; |
1279 | } |
1280 | EXPORT_SYMBOL(dev_set_alias); |
1281 | |
1282 | /** |
1283 | * dev_get_alias - get ifalias of a device |
1284 | * @dev: device |
1285 | * @name: buffer to store name of ifalias |
1286 | * @len: size of buffer |
1287 | * |
1288 | * get ifalias for a device. Caller must make sure dev cannot go |
1289 | * away, e.g. rcu read lock or own a reference count to device. |
1290 | */ |
1291 | int dev_get_alias(const struct net_device *dev, char *name, size_t len) |
1292 | { |
1293 | const struct dev_ifalias *alias; |
1294 | int ret = 0; |
1295 | |
1296 | rcu_read_lock(); |
1297 | alias = rcu_dereference(dev->ifalias); |
1298 | if (alias) |
1299 | ret = snprintf(buf: name, size: len, fmt: "%s" , alias->ifalias); |
1300 | rcu_read_unlock(); |
1301 | |
1302 | return ret; |
1303 | } |
1304 | |
1305 | /** |
1306 | * netdev_features_change - device changes features |
1307 | * @dev: device to cause notification |
1308 | * |
1309 | * Called to indicate a device has changed features. |
1310 | */ |
1311 | void netdev_features_change(struct net_device *dev) |
1312 | { |
1313 | call_netdevice_notifiers(val: NETDEV_FEAT_CHANGE, dev); |
1314 | } |
1315 | EXPORT_SYMBOL(netdev_features_change); |
1316 | |
1317 | /** |
1318 | * netdev_state_change - device changes state |
1319 | * @dev: device to cause notification |
1320 | * |
1321 | * Called to indicate a device has changed state. This function calls |
1322 | * the notifier chains for netdev_chain and sends a NEWLINK message |
1323 | * to the routing socket. |
1324 | */ |
1325 | void netdev_state_change(struct net_device *dev) |
1326 | { |
1327 | if (dev->flags & IFF_UP) { |
1328 | struct netdev_notifier_change_info change_info = { |
1329 | .info.dev = dev, |
1330 | }; |
1331 | |
1332 | call_netdevice_notifiers_info(val: NETDEV_CHANGE, |
1333 | info: &change_info.info); |
1334 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: 0, GFP_KERNEL, portid: 0, NULL); |
1335 | } |
1336 | } |
1337 | EXPORT_SYMBOL(netdev_state_change); |
1338 | |
1339 | /** |
1340 | * __netdev_notify_peers - notify network peers about existence of @dev, |
1341 | * to be called when rtnl lock is already held. |
1342 | * @dev: network device |
1343 | * |
1344 | * Generate traffic such that interested network peers are aware of |
1345 | * @dev, such as by generating a gratuitous ARP. This may be used when |
1346 | * a device wants to inform the rest of the network about some sort of |
1347 | * reconfiguration such as a failover event or virtual machine |
1348 | * migration. |
1349 | */ |
1350 | void __netdev_notify_peers(struct net_device *dev) |
1351 | { |
1352 | ASSERT_RTNL(); |
1353 | call_netdevice_notifiers(val: NETDEV_NOTIFY_PEERS, dev); |
1354 | call_netdevice_notifiers(val: NETDEV_RESEND_IGMP, dev); |
1355 | } |
1356 | EXPORT_SYMBOL(__netdev_notify_peers); |
1357 | |
1358 | /** |
1359 | * netdev_notify_peers - notify network peers about existence of @dev |
1360 | * @dev: network device |
1361 | * |
1362 | * Generate traffic such that interested network peers are aware of |
1363 | * @dev, such as by generating a gratuitous ARP. This may be used when |
1364 | * a device wants to inform the rest of the network about some sort of |
1365 | * reconfiguration such as a failover event or virtual machine |
1366 | * migration. |
1367 | */ |
1368 | void netdev_notify_peers(struct net_device *dev) |
1369 | { |
1370 | rtnl_lock(); |
1371 | __netdev_notify_peers(dev); |
1372 | rtnl_unlock(); |
1373 | } |
1374 | EXPORT_SYMBOL(netdev_notify_peers); |
1375 | |
1376 | static int napi_threaded_poll(void *data); |
1377 | |
1378 | static int napi_kthread_create(struct napi_struct *n) |
1379 | { |
1380 | int err = 0; |
1381 | |
1382 | /* Create and wake up the kthread once to put it in |
1383 | * TASK_INTERRUPTIBLE mode to avoid the blocked task |
1384 | * warning and work with loadavg. |
1385 | */ |
1386 | n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d" , |
1387 | n->dev->name, n->napi_id); |
1388 | if (IS_ERR(ptr: n->thread)) { |
1389 | err = PTR_ERR(ptr: n->thread); |
1390 | pr_err("kthread_run failed with err %d\n" , err); |
1391 | n->thread = NULL; |
1392 | } |
1393 | |
1394 | return err; |
1395 | } |
1396 | |
1397 | static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) |
1398 | { |
1399 | const struct net_device_ops *ops = dev->netdev_ops; |
1400 | int ret; |
1401 | |
1402 | ASSERT_RTNL(); |
1403 | dev_addr_check(dev); |
1404 | |
1405 | if (!netif_device_present(dev)) { |
1406 | /* may be detached because parent is runtime-suspended */ |
1407 | if (dev->dev.parent) |
1408 | pm_runtime_resume(dev: dev->dev.parent); |
1409 | if (!netif_device_present(dev)) |
1410 | return -ENODEV; |
1411 | } |
1412 | |
1413 | /* Block netpoll from trying to do any rx path servicing. |
1414 | * If we don't do this there is a chance ndo_poll_controller |
1415 | * or ndo_poll may be running while we open the device |
1416 | */ |
1417 | netpoll_poll_disable(dev); |
1418 | |
1419 | ret = call_netdevice_notifiers_extack(val: NETDEV_PRE_UP, dev, extack); |
1420 | ret = notifier_to_errno(ret); |
1421 | if (ret) |
1422 | return ret; |
1423 | |
1424 | set_bit(nr: __LINK_STATE_START, addr: &dev->state); |
1425 | |
1426 | if (ops->ndo_validate_addr) |
1427 | ret = ops->ndo_validate_addr(dev); |
1428 | |
1429 | if (!ret && ops->ndo_open) |
1430 | ret = ops->ndo_open(dev); |
1431 | |
1432 | netpoll_poll_enable(dev); |
1433 | |
1434 | if (ret) |
1435 | clear_bit(nr: __LINK_STATE_START, addr: &dev->state); |
1436 | else { |
1437 | dev->flags |= IFF_UP; |
1438 | dev_set_rx_mode(dev); |
1439 | dev_activate(dev); |
1440 | add_device_randomness(buf: dev->dev_addr, len: dev->addr_len); |
1441 | } |
1442 | |
1443 | return ret; |
1444 | } |
1445 | |
1446 | /** |
1447 | * dev_open - prepare an interface for use. |
1448 | * @dev: device to open |
1449 | * @extack: netlink extended ack |
1450 | * |
1451 | * Takes a device from down to up state. The device's private open |
1452 | * function is invoked and then the multicast lists are loaded. Finally |
1453 | * the device is moved into the up state and a %NETDEV_UP message is |
1454 | * sent to the netdev notifier chain. |
1455 | * |
1456 | * Calling this function on an active interface is a nop. On a failure |
1457 | * a negative errno code is returned. |
1458 | */ |
1459 | int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) |
1460 | { |
1461 | int ret; |
1462 | |
1463 | if (dev->flags & IFF_UP) |
1464 | return 0; |
1465 | |
1466 | ret = __dev_open(dev, extack); |
1467 | if (ret < 0) |
1468 | return ret; |
1469 | |
1470 | rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, portid: 0, NULL); |
1471 | call_netdevice_notifiers(val: NETDEV_UP, dev); |
1472 | |
1473 | return ret; |
1474 | } |
1475 | EXPORT_SYMBOL(dev_open); |
1476 | |
1477 | static void __dev_close_many(struct list_head *head) |
1478 | { |
1479 | struct net_device *dev; |
1480 | |
1481 | ASSERT_RTNL(); |
1482 | might_sleep(); |
1483 | |
1484 | list_for_each_entry(dev, head, close_list) { |
1485 | /* Temporarily disable netpoll until the interface is down */ |
1486 | netpoll_poll_disable(dev); |
1487 | |
1488 | call_netdevice_notifiers(val: NETDEV_GOING_DOWN, dev); |
1489 | |
1490 | clear_bit(nr: __LINK_STATE_START, addr: &dev->state); |
1491 | |
1492 | /* Synchronize to scheduled poll. We cannot touch poll list, it |
1493 | * can be even on different cpu. So just clear netif_running(). |
1494 | * |
1495 | * dev->stop() will invoke napi_disable() on all of it's |
1496 | * napi_struct instances on this device. |
1497 | */ |
1498 | smp_mb__after_atomic(); /* Commit netif_running(). */ |
1499 | } |
1500 | |
1501 | dev_deactivate_many(head); |
1502 | |
1503 | list_for_each_entry(dev, head, close_list) { |
1504 | const struct net_device_ops *ops = dev->netdev_ops; |
1505 | |
1506 | /* |
1507 | * Call the device specific close. This cannot fail. |
1508 | * Only if device is UP |
1509 | * |
1510 | * We allow it to be called even after a DETACH hot-plug |
1511 | * event. |
1512 | */ |
1513 | if (ops->ndo_stop) |
1514 | ops->ndo_stop(dev); |
1515 | |
1516 | dev->flags &= ~IFF_UP; |
1517 | netpoll_poll_enable(dev); |
1518 | } |
1519 | } |
1520 | |
1521 | static void __dev_close(struct net_device *dev) |
1522 | { |
1523 | LIST_HEAD(single); |
1524 | |
1525 | list_add(new: &dev->close_list, head: &single); |
1526 | __dev_close_many(head: &single); |
1527 | list_del(entry: &single); |
1528 | } |
1529 | |
1530 | void dev_close_many(struct list_head *head, bool unlink) |
1531 | { |
1532 | struct net_device *dev, *tmp; |
1533 | |
1534 | /* Remove the devices that don't need to be closed */ |
1535 | list_for_each_entry_safe(dev, tmp, head, close_list) |
1536 | if (!(dev->flags & IFF_UP)) |
1537 | list_del_init(entry: &dev->close_list); |
1538 | |
1539 | __dev_close_many(head); |
1540 | |
1541 | list_for_each_entry_safe(dev, tmp, head, close_list) { |
1542 | rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, portid: 0, NULL); |
1543 | call_netdevice_notifiers(val: NETDEV_DOWN, dev); |
1544 | if (unlink) |
1545 | list_del_init(entry: &dev->close_list); |
1546 | } |
1547 | } |
1548 | EXPORT_SYMBOL(dev_close_many); |
1549 | |
1550 | /** |
1551 | * dev_close - shutdown an interface. |
1552 | * @dev: device to shutdown |
1553 | * |
1554 | * This function moves an active device into down state. A |
1555 | * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device |
1556 | * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier |
1557 | * chain. |
1558 | */ |
1559 | void dev_close(struct net_device *dev) |
1560 | { |
1561 | if (dev->flags & IFF_UP) { |
1562 | LIST_HEAD(single); |
1563 | |
1564 | list_add(new: &dev->close_list, head: &single); |
1565 | dev_close_many(&single, true); |
1566 | list_del(entry: &single); |
1567 | } |
1568 | } |
1569 | EXPORT_SYMBOL(dev_close); |
1570 | |
1571 | |
1572 | /** |
1573 | * dev_disable_lro - disable Large Receive Offload on a device |
1574 | * @dev: device |
1575 | * |
1576 | * Disable Large Receive Offload (LRO) on a net device. Must be |
1577 | * called under RTNL. This is needed if received packets may be |
1578 | * forwarded to another interface. |
1579 | */ |
1580 | void dev_disable_lro(struct net_device *dev) |
1581 | { |
1582 | struct net_device *lower_dev; |
1583 | struct list_head *iter; |
1584 | |
1585 | dev->wanted_features &= ~NETIF_F_LRO; |
1586 | netdev_update_features(dev); |
1587 | |
1588 | if (unlikely(dev->features & NETIF_F_LRO)) |
1589 | netdev_WARN(dev, "failed to disable LRO!\n" ); |
1590 | |
1591 | netdev_for_each_lower_dev(dev, lower_dev, iter) |
1592 | dev_disable_lro(dev: lower_dev); |
1593 | } |
1594 | EXPORT_SYMBOL(dev_disable_lro); |
1595 | |
1596 | /** |
1597 | * dev_disable_gro_hw - disable HW Generic Receive Offload on a device |
1598 | * @dev: device |
1599 | * |
1600 | * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be |
1601 | * called under RTNL. This is needed if Generic XDP is installed on |
1602 | * the device. |
1603 | */ |
1604 | static void dev_disable_gro_hw(struct net_device *dev) |
1605 | { |
1606 | dev->wanted_features &= ~NETIF_F_GRO_HW; |
1607 | netdev_update_features(dev); |
1608 | |
1609 | if (unlikely(dev->features & NETIF_F_GRO_HW)) |
1610 | netdev_WARN(dev, "failed to disable GRO_HW!\n" ); |
1611 | } |
1612 | |
1613 | const char *netdev_cmd_to_name(enum netdev_cmd cmd) |
1614 | { |
1615 | #define N(val) \ |
1616 | case NETDEV_##val: \ |
1617 | return "NETDEV_" __stringify(val); |
1618 | switch (cmd) { |
1619 | N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) |
1620 | N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) |
1621 | N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) |
1622 | N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) |
1623 | N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) |
1624 | N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) |
1625 | N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) |
1626 | N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) |
1627 | N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) |
1628 | N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) |
1629 | N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) |
1630 | N(XDP_FEAT_CHANGE) |
1631 | } |
1632 | #undef N |
1633 | return "UNKNOWN_NETDEV_EVENT" ; |
1634 | } |
1635 | EXPORT_SYMBOL_GPL(netdev_cmd_to_name); |
1636 | |
1637 | static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, |
1638 | struct net_device *dev) |
1639 | { |
1640 | struct netdev_notifier_info info = { |
1641 | .dev = dev, |
1642 | }; |
1643 | |
1644 | return nb->notifier_call(nb, val, &info); |
1645 | } |
1646 | |
1647 | static int call_netdevice_register_notifiers(struct notifier_block *nb, |
1648 | struct net_device *dev) |
1649 | { |
1650 | int err; |
1651 | |
1652 | err = call_netdevice_notifier(nb, val: NETDEV_REGISTER, dev); |
1653 | err = notifier_to_errno(ret: err); |
1654 | if (err) |
1655 | return err; |
1656 | |
1657 | if (!(dev->flags & IFF_UP)) |
1658 | return 0; |
1659 | |
1660 | call_netdevice_notifier(nb, val: NETDEV_UP, dev); |
1661 | return 0; |
1662 | } |
1663 | |
1664 | static void call_netdevice_unregister_notifiers(struct notifier_block *nb, |
1665 | struct net_device *dev) |
1666 | { |
1667 | if (dev->flags & IFF_UP) { |
1668 | call_netdevice_notifier(nb, val: NETDEV_GOING_DOWN, |
1669 | dev); |
1670 | call_netdevice_notifier(nb, val: NETDEV_DOWN, dev); |
1671 | } |
1672 | call_netdevice_notifier(nb, val: NETDEV_UNREGISTER, dev); |
1673 | } |
1674 | |
1675 | static int call_netdevice_register_net_notifiers(struct notifier_block *nb, |
1676 | struct net *net) |
1677 | { |
1678 | struct net_device *dev; |
1679 | int err; |
1680 | |
1681 | for_each_netdev(net, dev) { |
1682 | err = call_netdevice_register_notifiers(nb, dev); |
1683 | if (err) |
1684 | goto rollback; |
1685 | } |
1686 | return 0; |
1687 | |
1688 | rollback: |
1689 | for_each_netdev_continue_reverse(net, dev) |
1690 | call_netdevice_unregister_notifiers(nb, dev); |
1691 | return err; |
1692 | } |
1693 | |
1694 | static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, |
1695 | struct net *net) |
1696 | { |
1697 | struct net_device *dev; |
1698 | |
1699 | for_each_netdev(net, dev) |
1700 | call_netdevice_unregister_notifiers(nb, dev); |
1701 | } |
1702 | |
1703 | static int dev_boot_phase = 1; |
1704 | |
1705 | /** |
1706 | * register_netdevice_notifier - register a network notifier block |
1707 | * @nb: notifier |
1708 | * |
1709 | * Register a notifier to be called when network device events occur. |
1710 | * The notifier passed is linked into the kernel structures and must |
1711 | * not be reused until it has been unregistered. A negative errno code |
1712 | * is returned on a failure. |
1713 | * |
1714 | * When registered all registration and up events are replayed |
1715 | * to the new notifier to allow device to have a race free |
1716 | * view of the network device list. |
1717 | */ |
1718 | |
1719 | int register_netdevice_notifier(struct notifier_block *nb) |
1720 | { |
1721 | struct net *net; |
1722 | int err; |
1723 | |
1724 | /* Close race with setup_net() and cleanup_net() */ |
1725 | down_write(sem: &pernet_ops_rwsem); |
1726 | rtnl_lock(); |
1727 | err = raw_notifier_chain_register(nh: &netdev_chain, nb); |
1728 | if (err) |
1729 | goto unlock; |
1730 | if (dev_boot_phase) |
1731 | goto unlock; |
1732 | for_each_net(net) { |
1733 | err = call_netdevice_register_net_notifiers(nb, net); |
1734 | if (err) |
1735 | goto rollback; |
1736 | } |
1737 | |
1738 | unlock: |
1739 | rtnl_unlock(); |
1740 | up_write(sem: &pernet_ops_rwsem); |
1741 | return err; |
1742 | |
1743 | rollback: |
1744 | for_each_net_continue_reverse(net) |
1745 | call_netdevice_unregister_net_notifiers(nb, net); |
1746 | |
1747 | raw_notifier_chain_unregister(nh: &netdev_chain, nb); |
1748 | goto unlock; |
1749 | } |
1750 | EXPORT_SYMBOL(register_netdevice_notifier); |
1751 | |
1752 | /** |
1753 | * unregister_netdevice_notifier - unregister a network notifier block |
1754 | * @nb: notifier |
1755 | * |
1756 | * Unregister a notifier previously registered by |
1757 | * register_netdevice_notifier(). The notifier is unlinked into the |
1758 | * kernel structures and may then be reused. A negative errno code |
1759 | * is returned on a failure. |
1760 | * |
1761 | * After unregistering unregister and down device events are synthesized |
1762 | * for all devices on the device list to the removed notifier to remove |
1763 | * the need for special case cleanup code. |
1764 | */ |
1765 | |
1766 | int unregister_netdevice_notifier(struct notifier_block *nb) |
1767 | { |
1768 | struct net *net; |
1769 | int err; |
1770 | |
1771 | /* Close race with setup_net() and cleanup_net() */ |
1772 | down_write(sem: &pernet_ops_rwsem); |
1773 | rtnl_lock(); |
1774 | err = raw_notifier_chain_unregister(nh: &netdev_chain, nb); |
1775 | if (err) |
1776 | goto unlock; |
1777 | |
1778 | for_each_net(net) |
1779 | call_netdevice_unregister_net_notifiers(nb, net); |
1780 | |
1781 | unlock: |
1782 | rtnl_unlock(); |
1783 | up_write(sem: &pernet_ops_rwsem); |
1784 | return err; |
1785 | } |
1786 | EXPORT_SYMBOL(unregister_netdevice_notifier); |
1787 | |
1788 | static int __register_netdevice_notifier_net(struct net *net, |
1789 | struct notifier_block *nb, |
1790 | bool ignore_call_fail) |
1791 | { |
1792 | int err; |
1793 | |
1794 | err = raw_notifier_chain_register(nh: &net->netdev_chain, nb); |
1795 | if (err) |
1796 | return err; |
1797 | if (dev_boot_phase) |
1798 | return 0; |
1799 | |
1800 | err = call_netdevice_register_net_notifiers(nb, net); |
1801 | if (err && !ignore_call_fail) |
1802 | goto chain_unregister; |
1803 | |
1804 | return 0; |
1805 | |
1806 | chain_unregister: |
1807 | raw_notifier_chain_unregister(nh: &net->netdev_chain, nb); |
1808 | return err; |
1809 | } |
1810 | |
1811 | static int __unregister_netdevice_notifier_net(struct net *net, |
1812 | struct notifier_block *nb) |
1813 | { |
1814 | int err; |
1815 | |
1816 | err = raw_notifier_chain_unregister(nh: &net->netdev_chain, nb); |
1817 | if (err) |
1818 | return err; |
1819 | |
1820 | call_netdevice_unregister_net_notifiers(nb, net); |
1821 | return 0; |
1822 | } |
1823 | |
1824 | /** |
1825 | * register_netdevice_notifier_net - register a per-netns network notifier block |
1826 | * @net: network namespace |
1827 | * @nb: notifier |
1828 | * |
1829 | * Register a notifier to be called when network device events occur. |
1830 | * The notifier passed is linked into the kernel structures and must |
1831 | * not be reused until it has been unregistered. A negative errno code |
1832 | * is returned on a failure. |
1833 | * |
1834 | * When registered all registration and up events are replayed |
1835 | * to the new notifier to allow device to have a race free |
1836 | * view of the network device list. |
1837 | */ |
1838 | |
1839 | int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) |
1840 | { |
1841 | int err; |
1842 | |
1843 | rtnl_lock(); |
1844 | err = __register_netdevice_notifier_net(net, nb, ignore_call_fail: false); |
1845 | rtnl_unlock(); |
1846 | return err; |
1847 | } |
1848 | EXPORT_SYMBOL(register_netdevice_notifier_net); |
1849 | |
1850 | /** |
1851 | * unregister_netdevice_notifier_net - unregister a per-netns |
1852 | * network notifier block |
1853 | * @net: network namespace |
1854 | * @nb: notifier |
1855 | * |
1856 | * Unregister a notifier previously registered by |
1857 | * register_netdevice_notifier_net(). The notifier is unlinked from the |
1858 | * kernel structures and may then be reused. A negative errno code |
1859 | * is returned on a failure. |
1860 | * |
1861 | * After unregistering unregister and down device events are synthesized |
1862 | * for all devices on the device list to the removed notifier to remove |
1863 | * the need for special case cleanup code. |
1864 | */ |
1865 | |
1866 | int unregister_netdevice_notifier_net(struct net *net, |
1867 | struct notifier_block *nb) |
1868 | { |
1869 | int err; |
1870 | |
1871 | rtnl_lock(); |
1872 | err = __unregister_netdevice_notifier_net(net, nb); |
1873 | rtnl_unlock(); |
1874 | return err; |
1875 | } |
1876 | EXPORT_SYMBOL(unregister_netdevice_notifier_net); |
1877 | |
1878 | static void __move_netdevice_notifier_net(struct net *src_net, |
1879 | struct net *dst_net, |
1880 | struct notifier_block *nb) |
1881 | { |
1882 | __unregister_netdevice_notifier_net(net: src_net, nb); |
1883 | __register_netdevice_notifier_net(net: dst_net, nb, ignore_call_fail: true); |
1884 | } |
1885 | |
1886 | int register_netdevice_notifier_dev_net(struct net_device *dev, |
1887 | struct notifier_block *nb, |
1888 | struct netdev_net_notifier *nn) |
1889 | { |
1890 | int err; |
1891 | |
1892 | rtnl_lock(); |
1893 | err = __register_netdevice_notifier_net(net: dev_net(dev), nb, ignore_call_fail: false); |
1894 | if (!err) { |
1895 | nn->nb = nb; |
1896 | list_add(new: &nn->list, head: &dev->net_notifier_list); |
1897 | } |
1898 | rtnl_unlock(); |
1899 | return err; |
1900 | } |
1901 | EXPORT_SYMBOL(register_netdevice_notifier_dev_net); |
1902 | |
1903 | int unregister_netdevice_notifier_dev_net(struct net_device *dev, |
1904 | struct notifier_block *nb, |
1905 | struct netdev_net_notifier *nn) |
1906 | { |
1907 | int err; |
1908 | |
1909 | rtnl_lock(); |
1910 | list_del(entry: &nn->list); |
1911 | err = __unregister_netdevice_notifier_net(net: dev_net(dev), nb); |
1912 | rtnl_unlock(); |
1913 | return err; |
1914 | } |
1915 | EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); |
1916 | |
1917 | static void move_netdevice_notifiers_dev_net(struct net_device *dev, |
1918 | struct net *net) |
1919 | { |
1920 | struct netdev_net_notifier *nn; |
1921 | |
1922 | list_for_each_entry(nn, &dev->net_notifier_list, list) |
1923 | __move_netdevice_notifier_net(src_net: dev_net(dev), dst_net: net, nb: nn->nb); |
1924 | } |
1925 | |
1926 | /** |
1927 | * call_netdevice_notifiers_info - call all network notifier blocks |
1928 | * @val: value passed unmodified to notifier function |
1929 | * @info: notifier information data |
1930 | * |
1931 | * Call all network notifier blocks. Parameters and return value |
1932 | * are as for raw_notifier_call_chain(). |
1933 | */ |
1934 | |
1935 | int call_netdevice_notifiers_info(unsigned long val, |
1936 | struct netdev_notifier_info *info) |
1937 | { |
1938 | struct net *net = dev_net(dev: info->dev); |
1939 | int ret; |
1940 | |
1941 | ASSERT_RTNL(); |
1942 | |
1943 | /* Run per-netns notifier block chain first, then run the global one. |
1944 | * Hopefully, one day, the global one is going to be removed after |
1945 | * all notifier block registrators get converted to be per-netns. |
1946 | */ |
1947 | ret = raw_notifier_call_chain(nh: &net->netdev_chain, val, v: info); |
1948 | if (ret & NOTIFY_STOP_MASK) |
1949 | return ret; |
1950 | return raw_notifier_call_chain(nh: &netdev_chain, val, v: info); |
1951 | } |
1952 | |
1953 | /** |
1954 | * call_netdevice_notifiers_info_robust - call per-netns notifier blocks |
1955 | * for and rollback on error |
1956 | * @val_up: value passed unmodified to notifier function |
1957 | * @val_down: value passed unmodified to the notifier function when |
1958 | * recovering from an error on @val_up |
1959 | * @info: notifier information data |
1960 | * |
1961 | * Call all per-netns network notifier blocks, but not notifier blocks on |
1962 | * the global notifier chain. Parameters and return value are as for |
1963 | * raw_notifier_call_chain_robust(). |
1964 | */ |
1965 | |
1966 | static int |
1967 | call_netdevice_notifiers_info_robust(unsigned long val_up, |
1968 | unsigned long val_down, |
1969 | struct netdev_notifier_info *info) |
1970 | { |
1971 | struct net *net = dev_net(dev: info->dev); |
1972 | |
1973 | ASSERT_RTNL(); |
1974 | |
1975 | return raw_notifier_call_chain_robust(nh: &net->netdev_chain, |
1976 | val_up, val_down, v: info); |
1977 | } |
1978 | |
1979 | static int call_netdevice_notifiers_extack(unsigned long val, |
1980 | struct net_device *dev, |
1981 | struct netlink_ext_ack *extack) |
1982 | { |
1983 | struct netdev_notifier_info info = { |
1984 | .dev = dev, |
1985 | .extack = extack, |
1986 | }; |
1987 | |
1988 | return call_netdevice_notifiers_info(val, info: &info); |
1989 | } |
1990 | |
1991 | /** |
1992 | * call_netdevice_notifiers - call all network notifier blocks |
1993 | * @val: value passed unmodified to notifier function |
1994 | * @dev: net_device pointer passed unmodified to notifier function |
1995 | * |
1996 | * Call all network notifier blocks. Parameters and return value |
1997 | * are as for raw_notifier_call_chain(). |
1998 | */ |
1999 | |
2000 | int call_netdevice_notifiers(unsigned long val, struct net_device *dev) |
2001 | { |
2002 | return call_netdevice_notifiers_extack(val, dev, NULL); |
2003 | } |
2004 | EXPORT_SYMBOL(call_netdevice_notifiers); |
2005 | |
2006 | /** |
2007 | * call_netdevice_notifiers_mtu - call all network notifier blocks |
2008 | * @val: value passed unmodified to notifier function |
2009 | * @dev: net_device pointer passed unmodified to notifier function |
2010 | * @arg: additional u32 argument passed to the notifier function |
2011 | * |
2012 | * Call all network notifier blocks. Parameters and return value |
2013 | * are as for raw_notifier_call_chain(). |
2014 | */ |
2015 | static int call_netdevice_notifiers_mtu(unsigned long val, |
2016 | struct net_device *dev, u32 arg) |
2017 | { |
2018 | struct netdev_notifier_info_ext info = { |
2019 | .info.dev = dev, |
2020 | .ext.mtu = arg, |
2021 | }; |
2022 | |
2023 | BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); |
2024 | |
2025 | return call_netdevice_notifiers_info(val, info: &info.info); |
2026 | } |
2027 | |
2028 | #ifdef CONFIG_NET_INGRESS |
2029 | static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); |
2030 | |
2031 | void net_inc_ingress_queue(void) |
2032 | { |
2033 | static_branch_inc(&ingress_needed_key); |
2034 | } |
2035 | EXPORT_SYMBOL_GPL(net_inc_ingress_queue); |
2036 | |
2037 | void net_dec_ingress_queue(void) |
2038 | { |
2039 | static_branch_dec(&ingress_needed_key); |
2040 | } |
2041 | EXPORT_SYMBOL_GPL(net_dec_ingress_queue); |
2042 | #endif |
2043 | |
2044 | #ifdef CONFIG_NET_EGRESS |
2045 | static DEFINE_STATIC_KEY_FALSE(egress_needed_key); |
2046 | |
2047 | void net_inc_egress_queue(void) |
2048 | { |
2049 | static_branch_inc(&egress_needed_key); |
2050 | } |
2051 | EXPORT_SYMBOL_GPL(net_inc_egress_queue); |
2052 | |
2053 | void net_dec_egress_queue(void) |
2054 | { |
2055 | static_branch_dec(&egress_needed_key); |
2056 | } |
2057 | EXPORT_SYMBOL_GPL(net_dec_egress_queue); |
2058 | #endif |
2059 | |
2060 | DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); |
2061 | EXPORT_SYMBOL(netstamp_needed_key); |
2062 | #ifdef CONFIG_JUMP_LABEL |
2063 | static atomic_t netstamp_needed_deferred; |
2064 | static atomic_t netstamp_wanted; |
2065 | static void netstamp_clear(struct work_struct *work) |
2066 | { |
2067 | int deferred = atomic_xchg(v: &netstamp_needed_deferred, new: 0); |
2068 | int wanted; |
2069 | |
2070 | wanted = atomic_add_return(i: deferred, v: &netstamp_wanted); |
2071 | if (wanted > 0) |
2072 | static_branch_enable(&netstamp_needed_key); |
2073 | else |
2074 | static_branch_disable(&netstamp_needed_key); |
2075 | } |
2076 | static DECLARE_WORK(netstamp_work, netstamp_clear); |
2077 | #endif |
2078 | |
2079 | void net_enable_timestamp(void) |
2080 | { |
2081 | #ifdef CONFIG_JUMP_LABEL |
2082 | int wanted = atomic_read(v: &netstamp_wanted); |
2083 | |
2084 | while (wanted > 0) { |
2085 | if (atomic_try_cmpxchg(v: &netstamp_wanted, old: &wanted, new: wanted + 1)) |
2086 | return; |
2087 | } |
2088 | atomic_inc(v: &netstamp_needed_deferred); |
2089 | schedule_work(work: &netstamp_work); |
2090 | #else |
2091 | static_branch_inc(&netstamp_needed_key); |
2092 | #endif |
2093 | } |
2094 | EXPORT_SYMBOL(net_enable_timestamp); |
2095 | |
2096 | void net_disable_timestamp(void) |
2097 | { |
2098 | #ifdef CONFIG_JUMP_LABEL |
2099 | int wanted = atomic_read(v: &netstamp_wanted); |
2100 | |
2101 | while (wanted > 1) { |
2102 | if (atomic_try_cmpxchg(v: &netstamp_wanted, old: &wanted, new: wanted - 1)) |
2103 | return; |
2104 | } |
2105 | atomic_dec(v: &netstamp_needed_deferred); |
2106 | schedule_work(work: &netstamp_work); |
2107 | #else |
2108 | static_branch_dec(&netstamp_needed_key); |
2109 | #endif |
2110 | } |
2111 | EXPORT_SYMBOL(net_disable_timestamp); |
2112 | |
2113 | static inline void net_timestamp_set(struct sk_buff *skb) |
2114 | { |
2115 | skb->tstamp = 0; |
2116 | skb->mono_delivery_time = 0; |
2117 | if (static_branch_unlikely(&netstamp_needed_key)) |
2118 | skb->tstamp = ktime_get_real(); |
2119 | } |
2120 | |
2121 | #define net_timestamp_check(COND, SKB) \ |
2122 | if (static_branch_unlikely(&netstamp_needed_key)) { \ |
2123 | if ((COND) && !(SKB)->tstamp) \ |
2124 | (SKB)->tstamp = ktime_get_real(); \ |
2125 | } \ |
2126 | |
2127 | bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) |
2128 | { |
2129 | return __is_skb_forwardable(dev, skb, check_mtu: true); |
2130 | } |
2131 | EXPORT_SYMBOL_GPL(is_skb_forwardable); |
2132 | |
2133 | static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, |
2134 | bool check_mtu) |
2135 | { |
2136 | int ret = ____dev_forward_skb(dev, skb, check_mtu); |
2137 | |
2138 | if (likely(!ret)) { |
2139 | skb->protocol = eth_type_trans(skb, dev); |
2140 | skb_postpull_rcsum(skb, start: eth_hdr(skb), ETH_HLEN); |
2141 | } |
2142 | |
2143 | return ret; |
2144 | } |
2145 | |
2146 | int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) |
2147 | { |
2148 | return __dev_forward_skb2(dev, skb, check_mtu: true); |
2149 | } |
2150 | EXPORT_SYMBOL_GPL(__dev_forward_skb); |
2151 | |
2152 | /** |
2153 | * dev_forward_skb - loopback an skb to another netif |
2154 | * |
2155 | * @dev: destination network device |
2156 | * @skb: buffer to forward |
2157 | * |
2158 | * return values: |
2159 | * NET_RX_SUCCESS (no congestion) |
2160 | * NET_RX_DROP (packet was dropped, but freed) |
2161 | * |
2162 | * dev_forward_skb can be used for injecting an skb from the |
2163 | * start_xmit function of one device into the receive queue |
2164 | * of another device. |
2165 | * |
2166 | * The receiving device may be in another namespace, so |
2167 | * we have to clear all information in the skb that could |
2168 | * impact namespace isolation. |
2169 | */ |
2170 | int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) |
2171 | { |
2172 | return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); |
2173 | } |
2174 | EXPORT_SYMBOL_GPL(dev_forward_skb); |
2175 | |
2176 | int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) |
2177 | { |
2178 | return __dev_forward_skb2(dev, skb, check_mtu: false) ?: netif_rx_internal(skb); |
2179 | } |
2180 | |
2181 | static inline int deliver_skb(struct sk_buff *skb, |
2182 | struct packet_type *pt_prev, |
2183 | struct net_device *orig_dev) |
2184 | { |
2185 | if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) |
2186 | return -ENOMEM; |
2187 | refcount_inc(r: &skb->users); |
2188 | return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); |
2189 | } |
2190 | |
2191 | static inline void deliver_ptype_list_skb(struct sk_buff *skb, |
2192 | struct packet_type **pt, |
2193 | struct net_device *orig_dev, |
2194 | __be16 type, |
2195 | struct list_head *ptype_list) |
2196 | { |
2197 | struct packet_type *ptype, *pt_prev = *pt; |
2198 | |
2199 | list_for_each_entry_rcu(ptype, ptype_list, list) { |
2200 | if (ptype->type != type) |
2201 | continue; |
2202 | if (pt_prev) |
2203 | deliver_skb(skb, pt_prev, orig_dev); |
2204 | pt_prev = ptype; |
2205 | } |
2206 | *pt = pt_prev; |
2207 | } |
2208 | |
2209 | static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) |
2210 | { |
2211 | if (!ptype->af_packet_priv || !skb->sk) |
2212 | return false; |
2213 | |
2214 | if (ptype->id_match) |
2215 | return ptype->id_match(ptype, skb->sk); |
2216 | else if ((struct sock *)ptype->af_packet_priv == skb->sk) |
2217 | return true; |
2218 | |
2219 | return false; |
2220 | } |
2221 | |
2222 | /** |
2223 | * dev_nit_active - return true if any network interface taps are in use |
2224 | * |
2225 | * @dev: network device to check for the presence of taps |
2226 | */ |
2227 | bool dev_nit_active(struct net_device *dev) |
2228 | { |
2229 | return !list_empty(head: &net_hotdata.ptype_all) || |
2230 | !list_empty(head: &dev->ptype_all); |
2231 | } |
2232 | EXPORT_SYMBOL_GPL(dev_nit_active); |
2233 | |
2234 | /* |
2235 | * Support routine. Sends outgoing frames to any network |
2236 | * taps currently in use. |
2237 | */ |
2238 | |
2239 | void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) |
2240 | { |
2241 | struct list_head *ptype_list = &net_hotdata.ptype_all; |
2242 | struct packet_type *ptype, *pt_prev = NULL; |
2243 | struct sk_buff *skb2 = NULL; |
2244 | |
2245 | rcu_read_lock(); |
2246 | again: |
2247 | list_for_each_entry_rcu(ptype, ptype_list, list) { |
2248 | if (READ_ONCE(ptype->ignore_outgoing)) |
2249 | continue; |
2250 | |
2251 | /* Never send packets back to the socket |
2252 | * they originated from - MvS (miquels@drinkel.ow.org) |
2253 | */ |
2254 | if (skb_loop_sk(ptype, skb)) |
2255 | continue; |
2256 | |
2257 | if (pt_prev) { |
2258 | deliver_skb(skb: skb2, pt_prev, orig_dev: skb->dev); |
2259 | pt_prev = ptype; |
2260 | continue; |
2261 | } |
2262 | |
2263 | /* need to clone skb, done only once */ |
2264 | skb2 = skb_clone(skb, GFP_ATOMIC); |
2265 | if (!skb2) |
2266 | goto out_unlock; |
2267 | |
2268 | net_timestamp_set(skb: skb2); |
2269 | |
2270 | /* skb->nh should be correctly |
2271 | * set by sender, so that the second statement is |
2272 | * just protection against buggy protocols. |
2273 | */ |
2274 | skb_reset_mac_header(skb: skb2); |
2275 | |
2276 | if (skb_network_header(skb: skb2) < skb2->data || |
2277 | skb_network_header(skb: skb2) > skb_tail_pointer(skb: skb2)) { |
2278 | net_crit_ratelimited("protocol %04x is buggy, dev %s\n" , |
2279 | ntohs(skb2->protocol), |
2280 | dev->name); |
2281 | skb_reset_network_header(skb: skb2); |
2282 | } |
2283 | |
2284 | skb2->transport_header = skb2->network_header; |
2285 | skb2->pkt_type = PACKET_OUTGOING; |
2286 | pt_prev = ptype; |
2287 | } |
2288 | |
2289 | if (ptype_list == &net_hotdata.ptype_all) { |
2290 | ptype_list = &dev->ptype_all; |
2291 | goto again; |
2292 | } |
2293 | out_unlock: |
2294 | if (pt_prev) { |
2295 | if (!skb_orphan_frags_rx(skb: skb2, GFP_ATOMIC)) |
2296 | pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); |
2297 | else |
2298 | kfree_skb(skb: skb2); |
2299 | } |
2300 | rcu_read_unlock(); |
2301 | } |
2302 | EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); |
2303 | |
2304 | /** |
2305 | * netif_setup_tc - Handle tc mappings on real_num_tx_queues change |
2306 | * @dev: Network device |
2307 | * @txq: number of queues available |
2308 | * |
2309 | * If real_num_tx_queues is changed the tc mappings may no longer be |
2310 | * valid. To resolve this verify the tc mapping remains valid and if |
2311 | * not NULL the mapping. With no priorities mapping to this |
2312 | * offset/count pair it will no longer be used. In the worst case TC0 |
2313 | * is invalid nothing can be done so disable priority mappings. If is |
2314 | * expected that drivers will fix this mapping if they can before |
2315 | * calling netif_set_real_num_tx_queues. |
2316 | */ |
2317 | static void netif_setup_tc(struct net_device *dev, unsigned int txq) |
2318 | { |
2319 | int i; |
2320 | struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; |
2321 | |
2322 | /* If TC0 is invalidated disable TC mapping */ |
2323 | if (tc->offset + tc->count > txq) { |
2324 | netdev_warn(dev, format: "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n" ); |
2325 | dev->num_tc = 0; |
2326 | return; |
2327 | } |
2328 | |
2329 | /* Invalidated prio to tc mappings set to TC0 */ |
2330 | for (i = 1; i < TC_BITMASK + 1; i++) { |
2331 | int q = netdev_get_prio_tc_map(dev, prio: i); |
2332 | |
2333 | tc = &dev->tc_to_txq[q]; |
2334 | if (tc->offset + tc->count > txq) { |
2335 | netdev_warn(dev, format: "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n" , |
2336 | i, q); |
2337 | netdev_set_prio_tc_map(dev, prio: i, tc: 0); |
2338 | } |
2339 | } |
2340 | } |
2341 | |
2342 | int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) |
2343 | { |
2344 | if (dev->num_tc) { |
2345 | struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; |
2346 | int i; |
2347 | |
2348 | /* walk through the TCs and see if it falls into any of them */ |
2349 | for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { |
2350 | if ((txq - tc->offset) < tc->count) |
2351 | return i; |
2352 | } |
2353 | |
2354 | /* didn't find it, just return -1 to indicate no match */ |
2355 | return -1; |
2356 | } |
2357 | |
2358 | return 0; |
2359 | } |
2360 | EXPORT_SYMBOL(netdev_txq_to_tc); |
2361 | |
2362 | #ifdef CONFIG_XPS |
2363 | static struct static_key xps_needed __read_mostly; |
2364 | static struct static_key xps_rxqs_needed __read_mostly; |
2365 | static DEFINE_MUTEX(xps_map_mutex); |
2366 | #define xmap_dereference(P) \ |
2367 | rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) |
2368 | |
2369 | static bool remove_xps_queue(struct xps_dev_maps *dev_maps, |
2370 | struct xps_dev_maps *old_maps, int tci, u16 index) |
2371 | { |
2372 | struct xps_map *map = NULL; |
2373 | int pos; |
2374 | |
2375 | map = xmap_dereference(dev_maps->attr_map[tci]); |
2376 | if (!map) |
2377 | return false; |
2378 | |
2379 | for (pos = map->len; pos--;) { |
2380 | if (map->queues[pos] != index) |
2381 | continue; |
2382 | |
2383 | if (map->len > 1) { |
2384 | map->queues[pos] = map->queues[--map->len]; |
2385 | break; |
2386 | } |
2387 | |
2388 | if (old_maps) |
2389 | RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); |
2390 | RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); |
2391 | kfree_rcu(map, rcu); |
2392 | return false; |
2393 | } |
2394 | |
2395 | return true; |
2396 | } |
2397 | |
2398 | static bool remove_xps_queue_cpu(struct net_device *dev, |
2399 | struct xps_dev_maps *dev_maps, |
2400 | int cpu, u16 offset, u16 count) |
2401 | { |
2402 | int num_tc = dev_maps->num_tc; |
2403 | bool active = false; |
2404 | int tci; |
2405 | |
2406 | for (tci = cpu * num_tc; num_tc--; tci++) { |
2407 | int i, j; |
2408 | |
2409 | for (i = count, j = offset; i--; j++) { |
2410 | if (!remove_xps_queue(dev_maps, NULL, tci, index: j)) |
2411 | break; |
2412 | } |
2413 | |
2414 | active |= i < 0; |
2415 | } |
2416 | |
2417 | return active; |
2418 | } |
2419 | |
2420 | static void reset_xps_maps(struct net_device *dev, |
2421 | struct xps_dev_maps *dev_maps, |
2422 | enum xps_map_type type) |
2423 | { |
2424 | static_key_slow_dec_cpuslocked(key: &xps_needed); |
2425 | if (type == XPS_RXQS) |
2426 | static_key_slow_dec_cpuslocked(key: &xps_rxqs_needed); |
2427 | |
2428 | RCU_INIT_POINTER(dev->xps_maps[type], NULL); |
2429 | |
2430 | kfree_rcu(dev_maps, rcu); |
2431 | } |
2432 | |
2433 | static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, |
2434 | u16 offset, u16 count) |
2435 | { |
2436 | struct xps_dev_maps *dev_maps; |
2437 | bool active = false; |
2438 | int i, j; |
2439 | |
2440 | dev_maps = xmap_dereference(dev->xps_maps[type]); |
2441 | if (!dev_maps) |
2442 | return; |
2443 | |
2444 | for (j = 0; j < dev_maps->nr_ids; j++) |
2445 | active |= remove_xps_queue_cpu(dev, dev_maps, cpu: j, offset, count); |
2446 | if (!active) |
2447 | reset_xps_maps(dev, dev_maps, type); |
2448 | |
2449 | if (type == XPS_CPUS) { |
2450 | for (i = offset + (count - 1); count--; i--) |
2451 | netdev_queue_numa_node_write( |
2452 | q: netdev_get_tx_queue(dev, index: i), NUMA_NO_NODE); |
2453 | } |
2454 | } |
2455 | |
2456 | static void netif_reset_xps_queues(struct net_device *dev, u16 offset, |
2457 | u16 count) |
2458 | { |
2459 | if (!static_key_false(key: &xps_needed)) |
2460 | return; |
2461 | |
2462 | cpus_read_lock(); |
2463 | mutex_lock(&xps_map_mutex); |
2464 | |
2465 | if (static_key_false(key: &xps_rxqs_needed)) |
2466 | clean_xps_maps(dev, type: XPS_RXQS, offset, count); |
2467 | |
2468 | clean_xps_maps(dev, type: XPS_CPUS, offset, count); |
2469 | |
2470 | mutex_unlock(lock: &xps_map_mutex); |
2471 | cpus_read_unlock(); |
2472 | } |
2473 | |
2474 | static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) |
2475 | { |
2476 | netif_reset_xps_queues(dev, offset: index, count: dev->num_tx_queues - index); |
2477 | } |
2478 | |
2479 | static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, |
2480 | u16 index, bool is_rxqs_map) |
2481 | { |
2482 | struct xps_map *new_map; |
2483 | int alloc_len = XPS_MIN_MAP_ALLOC; |
2484 | int i, pos; |
2485 | |
2486 | for (pos = 0; map && pos < map->len; pos++) { |
2487 | if (map->queues[pos] != index) |
2488 | continue; |
2489 | return map; |
2490 | } |
2491 | |
2492 | /* Need to add tx-queue to this CPU's/rx-queue's existing map */ |
2493 | if (map) { |
2494 | if (pos < map->alloc_len) |
2495 | return map; |
2496 | |
2497 | alloc_len = map->alloc_len * 2; |
2498 | } |
2499 | |
2500 | /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's |
2501 | * map |
2502 | */ |
2503 | if (is_rxqs_map) |
2504 | new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); |
2505 | else |
2506 | new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, |
2507 | cpu_to_node(cpu: attr_index)); |
2508 | if (!new_map) |
2509 | return NULL; |
2510 | |
2511 | for (i = 0; i < pos; i++) |
2512 | new_map->queues[i] = map->queues[i]; |
2513 | new_map->alloc_len = alloc_len; |
2514 | new_map->len = pos; |
2515 | |
2516 | return new_map; |
2517 | } |
2518 | |
2519 | /* Copy xps maps at a given index */ |
2520 | static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, |
2521 | struct xps_dev_maps *new_dev_maps, int index, |
2522 | int tc, bool skip_tc) |
2523 | { |
2524 | int i, tci = index * dev_maps->num_tc; |
2525 | struct xps_map *map; |
2526 | |
2527 | /* copy maps belonging to foreign traffic classes */ |
2528 | for (i = 0; i < dev_maps->num_tc; i++, tci++) { |
2529 | if (i == tc && skip_tc) |
2530 | continue; |
2531 | |
2532 | /* fill in the new device map from the old device map */ |
2533 | map = xmap_dereference(dev_maps->attr_map[tci]); |
2534 | RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); |
2535 | } |
2536 | } |
2537 | |
2538 | /* Must be called under cpus_read_lock */ |
2539 | int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, |
2540 | u16 index, enum xps_map_type type) |
2541 | { |
2542 | struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; |
2543 | const unsigned long *online_mask = NULL; |
2544 | bool active = false, copy = false; |
2545 | int i, j, tci, numa_node_id = -2; |
2546 | int maps_sz, num_tc = 1, tc = 0; |
2547 | struct xps_map *map, *new_map; |
2548 | unsigned int nr_ids; |
2549 | |
2550 | WARN_ON_ONCE(index >= dev->num_tx_queues); |
2551 | |
2552 | if (dev->num_tc) { |
2553 | /* Do not allow XPS on subordinate device directly */ |
2554 | num_tc = dev->num_tc; |
2555 | if (num_tc < 0) |
2556 | return -EINVAL; |
2557 | |
2558 | /* If queue belongs to subordinate dev use its map */ |
2559 | dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; |
2560 | |
2561 | tc = netdev_txq_to_tc(dev, index); |
2562 | if (tc < 0) |
2563 | return -EINVAL; |
2564 | } |
2565 | |
2566 | mutex_lock(&xps_map_mutex); |
2567 | |
2568 | dev_maps = xmap_dereference(dev->xps_maps[type]); |
2569 | if (type == XPS_RXQS) { |
2570 | maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); |
2571 | nr_ids = dev->num_rx_queues; |
2572 | } else { |
2573 | maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); |
2574 | if (num_possible_cpus() > 1) |
2575 | online_mask = cpumask_bits(cpu_online_mask); |
2576 | nr_ids = nr_cpu_ids; |
2577 | } |
2578 | |
2579 | if (maps_sz < L1_CACHE_BYTES) |
2580 | maps_sz = L1_CACHE_BYTES; |
2581 | |
2582 | /* The old dev_maps could be larger or smaller than the one we're |
2583 | * setting up now, as dev->num_tc or nr_ids could have been updated in |
2584 | * between. We could try to be smart, but let's be safe instead and only |
2585 | * copy foreign traffic classes if the two map sizes match. |
2586 | */ |
2587 | if (dev_maps && |
2588 | dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) |
2589 | copy = true; |
2590 | |
2591 | /* allocate memory for queue storage */ |
2592 | for (j = -1; j = netif_attrmask_next_and(n: j, src1p: online_mask, src2p: mask, nr_bits: nr_ids), |
2593 | j < nr_ids;) { |
2594 | if (!new_dev_maps) { |
2595 | new_dev_maps = kzalloc(size: maps_sz, GFP_KERNEL); |
2596 | if (!new_dev_maps) { |
2597 | mutex_unlock(lock: &xps_map_mutex); |
2598 | return -ENOMEM; |
2599 | } |
2600 | |
2601 | new_dev_maps->nr_ids = nr_ids; |
2602 | new_dev_maps->num_tc = num_tc; |
2603 | } |
2604 | |
2605 | tci = j * num_tc + tc; |
2606 | map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; |
2607 | |
2608 | map = expand_xps_map(map, attr_index: j, index, is_rxqs_map: type == XPS_RXQS); |
2609 | if (!map) |
2610 | goto error; |
2611 | |
2612 | RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); |
2613 | } |
2614 | |
2615 | if (!new_dev_maps) |
2616 | goto out_no_new_maps; |
2617 | |
2618 | if (!dev_maps) { |
2619 | /* Increment static keys at most once per type */ |
2620 | static_key_slow_inc_cpuslocked(key: &xps_needed); |
2621 | if (type == XPS_RXQS) |
2622 | static_key_slow_inc_cpuslocked(key: &xps_rxqs_needed); |
2623 | } |
2624 | |
2625 | for (j = 0; j < nr_ids; j++) { |
2626 | bool skip_tc = false; |
2627 | |
2628 | tci = j * num_tc + tc; |
2629 | if (netif_attr_test_mask(j, mask, nr_bits: nr_ids) && |
2630 | netif_attr_test_online(j, online_mask, nr_bits: nr_ids)) { |
2631 | /* add tx-queue to CPU/rx-queue maps */ |
2632 | int pos = 0; |
2633 | |
2634 | skip_tc = true; |
2635 | |
2636 | map = xmap_dereference(new_dev_maps->attr_map[tci]); |
2637 | while ((pos < map->len) && (map->queues[pos] != index)) |
2638 | pos++; |
2639 | |
2640 | if (pos == map->len) |
2641 | map->queues[map->len++] = index; |
2642 | #ifdef CONFIG_NUMA |
2643 | if (type == XPS_CPUS) { |
2644 | if (numa_node_id == -2) |
2645 | numa_node_id = cpu_to_node(cpu: j); |
2646 | else if (numa_node_id != cpu_to_node(cpu: j)) |
2647 | numa_node_id = -1; |
2648 | } |
2649 | #endif |
2650 | } |
2651 | |
2652 | if (copy) |
2653 | xps_copy_dev_maps(dev_maps, new_dev_maps, index: j, tc, |
2654 | skip_tc); |
2655 | } |
2656 | |
2657 | rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); |
2658 | |
2659 | /* Cleanup old maps */ |
2660 | if (!dev_maps) |
2661 | goto out_no_old_maps; |
2662 | |
2663 | for (j = 0; j < dev_maps->nr_ids; j++) { |
2664 | for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { |
2665 | map = xmap_dereference(dev_maps->attr_map[tci]); |
2666 | if (!map) |
2667 | continue; |
2668 | |
2669 | if (copy) { |
2670 | new_map = xmap_dereference(new_dev_maps->attr_map[tci]); |
2671 | if (map == new_map) |
2672 | continue; |
2673 | } |
2674 | |
2675 | RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); |
2676 | kfree_rcu(map, rcu); |
2677 | } |
2678 | } |
2679 | |
2680 | old_dev_maps = dev_maps; |
2681 | |
2682 | out_no_old_maps: |
2683 | dev_maps = new_dev_maps; |
2684 | active = true; |
2685 | |
2686 | out_no_new_maps: |
2687 | if (type == XPS_CPUS) |
2688 | /* update Tx queue numa node */ |
2689 | netdev_queue_numa_node_write(q: netdev_get_tx_queue(dev, index), |
2690 | node: (numa_node_id >= 0) ? |
2691 | numa_node_id : NUMA_NO_NODE); |
2692 | |
2693 | if (!dev_maps) |
2694 | goto out_no_maps; |
2695 | |
2696 | /* removes tx-queue from unused CPUs/rx-queues */ |
2697 | for (j = 0; j < dev_maps->nr_ids; j++) { |
2698 | tci = j * dev_maps->num_tc; |
2699 | |
2700 | for (i = 0; i < dev_maps->num_tc; i++, tci++) { |
2701 | if (i == tc && |
2702 | netif_attr_test_mask(j, mask, nr_bits: dev_maps->nr_ids) && |
2703 | netif_attr_test_online(j, online_mask, nr_bits: dev_maps->nr_ids)) |
2704 | continue; |
2705 | |
2706 | active |= remove_xps_queue(dev_maps, |
2707 | old_maps: copy ? old_dev_maps : NULL, |
2708 | tci, index); |
2709 | } |
2710 | } |
2711 | |
2712 | if (old_dev_maps) |
2713 | kfree_rcu(old_dev_maps, rcu); |
2714 | |
2715 | /* free map if not active */ |
2716 | if (!active) |
2717 | reset_xps_maps(dev, dev_maps, type); |
2718 | |
2719 | out_no_maps: |
2720 | mutex_unlock(lock: &xps_map_mutex); |
2721 | |
2722 | return 0; |
2723 | error: |
2724 | /* remove any maps that we added */ |
2725 | for (j = 0; j < nr_ids; j++) { |
2726 | for (i = num_tc, tci = j * num_tc; i--; tci++) { |
2727 | new_map = xmap_dereference(new_dev_maps->attr_map[tci]); |
2728 | map = copy ? |
2729 | xmap_dereference(dev_maps->attr_map[tci]) : |
2730 | NULL; |
2731 | if (new_map && new_map != map) |
2732 | kfree(objp: new_map); |
2733 | } |
2734 | } |
2735 | |
2736 | mutex_unlock(lock: &xps_map_mutex); |
2737 | |
2738 | kfree(objp: new_dev_maps); |
2739 | return -ENOMEM; |
2740 | } |
2741 | EXPORT_SYMBOL_GPL(__netif_set_xps_queue); |
2742 | |
2743 | int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, |
2744 | u16 index) |
2745 | { |
2746 | int ret; |
2747 | |
2748 | cpus_read_lock(); |
2749 | ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); |
2750 | cpus_read_unlock(); |
2751 | |
2752 | return ret; |
2753 | } |
2754 | EXPORT_SYMBOL(netif_set_xps_queue); |
2755 | |
2756 | #endif |
2757 | static void netdev_unbind_all_sb_channels(struct net_device *dev) |
2758 | { |
2759 | struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; |
2760 | |
2761 | /* Unbind any subordinate channels */ |
2762 | while (txq-- != &dev->_tx[0]) { |
2763 | if (txq->sb_dev) |
2764 | netdev_unbind_sb_channel(dev, sb_dev: txq->sb_dev); |
2765 | } |
2766 | } |
2767 | |
2768 | void netdev_reset_tc(struct net_device *dev) |
2769 | { |
2770 | #ifdef CONFIG_XPS |
2771 | netif_reset_xps_queues_gt(dev, index: 0); |
2772 | #endif |
2773 | netdev_unbind_all_sb_channels(dev); |
2774 | |
2775 | /* Reset TC configuration of device */ |
2776 | dev->num_tc = 0; |
2777 | memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); |
2778 | memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); |
2779 | } |
2780 | EXPORT_SYMBOL(netdev_reset_tc); |
2781 | |
2782 | int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) |
2783 | { |
2784 | if (tc >= dev->num_tc) |
2785 | return -EINVAL; |
2786 | |
2787 | #ifdef CONFIG_XPS |
2788 | netif_reset_xps_queues(dev, offset, count); |
2789 | #endif |
2790 | dev->tc_to_txq[tc].count = count; |
2791 | dev->tc_to_txq[tc].offset = offset; |
2792 | return 0; |
2793 | } |
2794 | EXPORT_SYMBOL(netdev_set_tc_queue); |
2795 | |
2796 | int netdev_set_num_tc(struct net_device *dev, u8 num_tc) |
2797 | { |
2798 | if (num_tc > TC_MAX_QUEUE) |
2799 | return -EINVAL; |
2800 | |
2801 | #ifdef CONFIG_XPS |
2802 | netif_reset_xps_queues_gt(dev, index: 0); |
2803 | #endif |
2804 | netdev_unbind_all_sb_channels(dev); |
2805 | |
2806 | dev->num_tc = num_tc; |
2807 | return 0; |
2808 | } |
2809 | EXPORT_SYMBOL(netdev_set_num_tc); |
2810 | |
2811 | void netdev_unbind_sb_channel(struct net_device *dev, |
2812 | struct net_device *sb_dev) |
2813 | { |
2814 | struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; |
2815 | |
2816 | #ifdef CONFIG_XPS |
2817 | netif_reset_xps_queues_gt(dev: sb_dev, index: 0); |
2818 | #endif |
2819 | memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); |
2820 | memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); |
2821 | |
2822 | while (txq-- != &dev->_tx[0]) { |
2823 | if (txq->sb_dev == sb_dev) |
2824 | txq->sb_dev = NULL; |
2825 | } |
2826 | } |
2827 | EXPORT_SYMBOL(netdev_unbind_sb_channel); |
2828 | |
2829 | int netdev_bind_sb_channel_queue(struct net_device *dev, |
2830 | struct net_device *sb_dev, |
2831 | u8 tc, u16 count, u16 offset) |
2832 | { |
2833 | /* Make certain the sb_dev and dev are already configured */ |
2834 | if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) |
2835 | return -EINVAL; |
2836 | |
2837 | /* We cannot hand out queues we don't have */ |
2838 | if ((offset + count) > dev->real_num_tx_queues) |
2839 | return -EINVAL; |
2840 | |
2841 | /* Record the mapping */ |
2842 | sb_dev->tc_to_txq[tc].count = count; |
2843 | sb_dev->tc_to_txq[tc].offset = offset; |
2844 | |
2845 | /* Provide a way for Tx queue to find the tc_to_txq map or |
2846 | * XPS map for itself. |
2847 | */ |
2848 | while (count--) |
2849 | netdev_get_tx_queue(dev, index: count + offset)->sb_dev = sb_dev; |
2850 | |
2851 | return 0; |
2852 | } |
2853 | EXPORT_SYMBOL(netdev_bind_sb_channel_queue); |
2854 | |
2855 | int netdev_set_sb_channel(struct net_device *dev, u16 channel) |
2856 | { |
2857 | /* Do not use a multiqueue device to represent a subordinate channel */ |
2858 | if (netif_is_multiqueue(dev)) |
2859 | return -ENODEV; |
2860 | |
2861 | /* We allow channels 1 - 32767 to be used for subordinate channels. |
2862 | * Channel 0 is meant to be "native" mode and used only to represent |
2863 | * the main root device. We allow writing 0 to reset the device back |
2864 | * to normal mode after being used as a subordinate channel. |
2865 | */ |
2866 | if (channel > S16_MAX) |
2867 | return -EINVAL; |
2868 | |
2869 | dev->num_tc = -channel; |
2870 | |
2871 | return 0; |
2872 | } |
2873 | EXPORT_SYMBOL(netdev_set_sb_channel); |
2874 | |
2875 | /* |
2876 | * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues |
2877 | * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. |
2878 | */ |
2879 | int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) |
2880 | { |
2881 | bool disabling; |
2882 | int rc; |
2883 | |
2884 | disabling = txq < dev->real_num_tx_queues; |
2885 | |
2886 | if (txq < 1 || txq > dev->num_tx_queues) |
2887 | return -EINVAL; |
2888 | |
2889 | if (dev->reg_state == NETREG_REGISTERED || |
2890 | dev->reg_state == NETREG_UNREGISTERING) { |
2891 | ASSERT_RTNL(); |
2892 | |
2893 | rc = netdev_queue_update_kobjects(net: dev, old_num: dev->real_num_tx_queues, |
2894 | new_num: txq); |
2895 | if (rc) |
2896 | return rc; |
2897 | |
2898 | if (dev->num_tc) |
2899 | netif_setup_tc(dev, txq); |
2900 | |
2901 | dev_qdisc_change_real_num_tx(dev, new_real_tx: txq); |
2902 | |
2903 | dev->real_num_tx_queues = txq; |
2904 | |
2905 | if (disabling) { |
2906 | synchronize_net(); |
2907 | qdisc_reset_all_tx_gt(dev, i: txq); |
2908 | #ifdef CONFIG_XPS |
2909 | netif_reset_xps_queues_gt(dev, index: txq); |
2910 | #endif |
2911 | } |
2912 | } else { |
2913 | dev->real_num_tx_queues = txq; |
2914 | } |
2915 | |
2916 | return 0; |
2917 | } |
2918 | EXPORT_SYMBOL(netif_set_real_num_tx_queues); |
2919 | |
2920 | #ifdef CONFIG_SYSFS |
2921 | /** |
2922 | * netif_set_real_num_rx_queues - set actual number of RX queues used |
2923 | * @dev: Network device |
2924 | * @rxq: Actual number of RX queues |
2925 | * |
2926 | * This must be called either with the rtnl_lock held or before |
2927 | * registration of the net device. Returns 0 on success, or a |
2928 | * negative error code. If called before registration, it always |
2929 | * succeeds. |
2930 | */ |
2931 | int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) |
2932 | { |
2933 | int rc; |
2934 | |
2935 | if (rxq < 1 || rxq > dev->num_rx_queues) |
2936 | return -EINVAL; |
2937 | |
2938 | if (dev->reg_state == NETREG_REGISTERED) { |
2939 | ASSERT_RTNL(); |
2940 | |
2941 | rc = net_rx_queue_update_kobjects(dev, old_num: dev->real_num_rx_queues, |
2942 | new_num: rxq); |
2943 | if (rc) |
2944 | return rc; |
2945 | } |
2946 | |
2947 | dev->real_num_rx_queues = rxq; |
2948 | return 0; |
2949 | } |
2950 | EXPORT_SYMBOL(netif_set_real_num_rx_queues); |
2951 | #endif |
2952 | |
2953 | /** |
2954 | * netif_set_real_num_queues - set actual number of RX and TX queues used |
2955 | * @dev: Network device |
2956 | * @txq: Actual number of TX queues |
2957 | * @rxq: Actual number of RX queues |
2958 | * |
2959 | * Set the real number of both TX and RX queues. |
2960 | * Does nothing if the number of queues is already correct. |
2961 | */ |
2962 | int netif_set_real_num_queues(struct net_device *dev, |
2963 | unsigned int txq, unsigned int rxq) |
2964 | { |
2965 | unsigned int old_rxq = dev->real_num_rx_queues; |
2966 | int err; |
2967 | |
2968 | if (txq < 1 || txq > dev->num_tx_queues || |
2969 | rxq < 1 || rxq > dev->num_rx_queues) |
2970 | return -EINVAL; |
2971 | |
2972 | /* Start from increases, so the error path only does decreases - |
2973 | * decreases can't fail. |
2974 | */ |
2975 | if (rxq > dev->real_num_rx_queues) { |
2976 | err = netif_set_real_num_rx_queues(dev, rxq); |
2977 | if (err) |
2978 | return err; |
2979 | } |
2980 | if (txq > dev->real_num_tx_queues) { |
2981 | err = netif_set_real_num_tx_queues(dev, txq); |
2982 | if (err) |
2983 | goto undo_rx; |
2984 | } |
2985 | if (rxq < dev->real_num_rx_queues) |
2986 | WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); |
2987 | if (txq < dev->real_num_tx_queues) |
2988 | WARN_ON(netif_set_real_num_tx_queues(dev, txq)); |
2989 | |
2990 | return 0; |
2991 | undo_rx: |
2992 | WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); |
2993 | return err; |
2994 | } |
2995 | EXPORT_SYMBOL(netif_set_real_num_queues); |
2996 | |
2997 | /** |
2998 | * netif_set_tso_max_size() - set the max size of TSO frames supported |
2999 | * @dev: netdev to update |
3000 | * @size: max skb->len of a TSO frame |
3001 | * |
3002 | * Set the limit on the size of TSO super-frames the device can handle. |
3003 | * Unless explicitly set the stack will assume the value of |
3004 | * %GSO_LEGACY_MAX_SIZE. |
3005 | */ |
3006 | void netif_set_tso_max_size(struct net_device *dev, unsigned int size) |
3007 | { |
3008 | dev->tso_max_size = min(GSO_MAX_SIZE, size); |
3009 | if (size < READ_ONCE(dev->gso_max_size)) |
3010 | netif_set_gso_max_size(dev, size); |
3011 | if (size < READ_ONCE(dev->gso_ipv4_max_size)) |
3012 | netif_set_gso_ipv4_max_size(dev, size); |
3013 | } |
3014 | EXPORT_SYMBOL(netif_set_tso_max_size); |
3015 | |
3016 | /** |
3017 | * netif_set_tso_max_segs() - set the max number of segs supported for TSO |
3018 | * @dev: netdev to update |
3019 | * @segs: max number of TCP segments |
3020 | * |
3021 | * Set the limit on the number of TCP segments the device can generate from |
3022 | * a single TSO super-frame. |
3023 | * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. |
3024 | */ |
3025 | void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) |
3026 | { |
3027 | dev->tso_max_segs = segs; |
3028 | if (segs < READ_ONCE(dev->gso_max_segs)) |
3029 | netif_set_gso_max_segs(dev, segs); |
3030 | } |
3031 | EXPORT_SYMBOL(netif_set_tso_max_segs); |
3032 | |
3033 | /** |
3034 | * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper |
3035 | * @to: netdev to update |
3036 | * @from: netdev from which to copy the limits |
3037 | */ |
3038 | void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) |
3039 | { |
3040 | netif_set_tso_max_size(to, from->tso_max_size); |
3041 | netif_set_tso_max_segs(to, from->tso_max_segs); |
3042 | } |
3043 | EXPORT_SYMBOL(netif_inherit_tso_max); |
3044 | |
3045 | /** |
3046 | * netif_get_num_default_rss_queues - default number of RSS queues |
3047 | * |
3048 | * Default value is the number of physical cores if there are only 1 or 2, or |
3049 | * divided by 2 if there are more. |
3050 | */ |
3051 | int (void) |
3052 | { |
3053 | cpumask_var_t cpus; |
3054 | int cpu, count = 0; |
3055 | |
3056 | if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) |
3057 | return 1; |
3058 | |
3059 | cpumask_copy(dstp: cpus, cpu_online_mask); |
3060 | for_each_cpu(cpu, cpus) { |
3061 | ++count; |
3062 | cpumask_andnot(dstp: cpus, src1p: cpus, topology_sibling_cpumask(cpu)); |
3063 | } |
3064 | free_cpumask_var(mask: cpus); |
3065 | |
3066 | return count > 2 ? DIV_ROUND_UP(count, 2) : count; |
3067 | } |
3068 | EXPORT_SYMBOL(netif_get_num_default_rss_queues); |
3069 | |
3070 | static void __netif_reschedule(struct Qdisc *q) |
3071 | { |
3072 | struct softnet_data *sd; |
3073 | unsigned long flags; |
3074 | |
3075 | local_irq_save(flags); |
3076 | sd = this_cpu_ptr(&softnet_data); |
3077 | q->next_sched = NULL; |
3078 | *sd->output_queue_tailp = q; |
3079 | sd->output_queue_tailp = &q->next_sched; |
3080 | raise_softirq_irqoff(nr: NET_TX_SOFTIRQ); |
3081 | local_irq_restore(flags); |
3082 | } |
3083 | |
3084 | void __netif_schedule(struct Qdisc *q) |
3085 | { |
3086 | if (!test_and_set_bit(nr: __QDISC_STATE_SCHED, addr: &q->state)) |
3087 | __netif_reschedule(q); |
3088 | } |
3089 | EXPORT_SYMBOL(__netif_schedule); |
3090 | |
3091 | struct dev_kfree_skb_cb { |
3092 | enum skb_drop_reason reason; |
3093 | }; |
3094 | |
3095 | static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) |
3096 | { |
3097 | return (struct dev_kfree_skb_cb *)skb->cb; |
3098 | } |
3099 | |
3100 | void netif_schedule_queue(struct netdev_queue *txq) |
3101 | { |
3102 | rcu_read_lock(); |
3103 | if (!netif_xmit_stopped(dev_queue: txq)) { |
3104 | struct Qdisc *q = rcu_dereference(txq->qdisc); |
3105 | |
3106 | __netif_schedule(q); |
3107 | } |
3108 | rcu_read_unlock(); |
3109 | } |
3110 | EXPORT_SYMBOL(netif_schedule_queue); |
3111 | |
3112 | void netif_tx_wake_queue(struct netdev_queue *dev_queue) |
3113 | { |
3114 | if (test_and_clear_bit(nr: __QUEUE_STATE_DRV_XOFF, addr: &dev_queue->state)) { |
3115 | struct Qdisc *q; |
3116 | |
3117 | rcu_read_lock(); |
3118 | q = rcu_dereference(dev_queue->qdisc); |
3119 | __netif_schedule(q); |
3120 | rcu_read_unlock(); |
3121 | } |
3122 | } |
3123 | EXPORT_SYMBOL(netif_tx_wake_queue); |
3124 | |
3125 | void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) |
3126 | { |
3127 | unsigned long flags; |
3128 | |
3129 | if (unlikely(!skb)) |
3130 | return; |
3131 | |
3132 | if (likely(refcount_read(&skb->users) == 1)) { |
3133 | smp_rmb(); |
3134 | refcount_set(r: &skb->users, n: 0); |
3135 | } else if (likely(!refcount_dec_and_test(&skb->users))) { |
3136 | return; |
3137 | } |
3138 | get_kfree_skb_cb(skb)->reason = reason; |
3139 | local_irq_save(flags); |
3140 | skb->next = __this_cpu_read(softnet_data.completion_queue); |
3141 | __this_cpu_write(softnet_data.completion_queue, skb); |
3142 | raise_softirq_irqoff(nr: NET_TX_SOFTIRQ); |
3143 | local_irq_restore(flags); |
3144 | } |
3145 | EXPORT_SYMBOL(dev_kfree_skb_irq_reason); |
3146 | |
3147 | void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) |
3148 | { |
3149 | if (in_hardirq() || irqs_disabled()) |
3150 | dev_kfree_skb_irq_reason(skb, reason); |
3151 | else |
3152 | kfree_skb_reason(skb, reason); |
3153 | } |
3154 | EXPORT_SYMBOL(dev_kfree_skb_any_reason); |
3155 | |
3156 | |
3157 | /** |
3158 | * netif_device_detach - mark device as removed |
3159 | * @dev: network device |
3160 | * |
3161 | * Mark device as removed from system and therefore no longer available. |
3162 | */ |
3163 | void netif_device_detach(struct net_device *dev) |
3164 | { |
3165 | if (test_and_clear_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state) && |
3166 | netif_running(dev)) { |
3167 | netif_tx_stop_all_queues(dev); |
3168 | } |
3169 | } |
3170 | EXPORT_SYMBOL(netif_device_detach); |
3171 | |
3172 | /** |
3173 | * netif_device_attach - mark device as attached |
3174 | * @dev: network device |
3175 | * |
3176 | * Mark device as attached from system and restart if needed. |
3177 | */ |
3178 | void netif_device_attach(struct net_device *dev) |
3179 | { |
3180 | if (!test_and_set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state) && |
3181 | netif_running(dev)) { |
3182 | netif_tx_wake_all_queues(dev); |
3183 | __netdev_watchdog_up(dev); |
3184 | } |
3185 | } |
3186 | EXPORT_SYMBOL(netif_device_attach); |
3187 | |
3188 | /* |
3189 | * Returns a Tx hash based on the given packet descriptor a Tx queues' number |
3190 | * to be used as a distribution range. |
3191 | */ |
3192 | static u16 skb_tx_hash(const struct net_device *dev, |
3193 | const struct net_device *sb_dev, |
3194 | struct sk_buff *skb) |
3195 | { |
3196 | u32 hash; |
3197 | u16 qoffset = 0; |
3198 | u16 qcount = dev->real_num_tx_queues; |
3199 | |
3200 | if (dev->num_tc) { |
3201 | u8 tc = netdev_get_prio_tc_map(dev, prio: skb->priority); |
3202 | |
3203 | qoffset = sb_dev->tc_to_txq[tc].offset; |
3204 | qcount = sb_dev->tc_to_txq[tc].count; |
3205 | if (unlikely(!qcount)) { |
3206 | net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n" , |
3207 | sb_dev->name, qoffset, tc); |
3208 | qoffset = 0; |
3209 | qcount = dev->real_num_tx_queues; |
3210 | } |
3211 | } |
3212 | |
3213 | if (skb_rx_queue_recorded(skb)) { |
3214 | DEBUG_NET_WARN_ON_ONCE(qcount == 0); |
3215 | hash = skb_get_rx_queue(skb); |
3216 | if (hash >= qoffset) |
3217 | hash -= qoffset; |
3218 | while (unlikely(hash >= qcount)) |
3219 | hash -= qcount; |
3220 | return hash + qoffset; |
3221 | } |
3222 | |
3223 | return (u16) reciprocal_scale(val: skb_get_hash(skb), ep_ro: qcount) + qoffset; |
3224 | } |
3225 | |
3226 | void skb_warn_bad_offload(const struct sk_buff *skb) |
3227 | { |
3228 | static const netdev_features_t null_features; |
3229 | struct net_device *dev = skb->dev; |
3230 | const char *name = "" ; |
3231 | |
3232 | if (!net_ratelimit()) |
3233 | return; |
3234 | |
3235 | if (dev) { |
3236 | if (dev->dev.parent) |
3237 | name = dev_driver_string(dev: dev->dev.parent); |
3238 | else |
3239 | name = netdev_name(dev); |
3240 | } |
3241 | skb_dump(KERN_WARNING, skb, full_pkt: false); |
3242 | WARN(1, "%s: caps=(%pNF, %pNF)\n" , |
3243 | name, dev ? &dev->features : &null_features, |
3244 | skb->sk ? &skb->sk->sk_route_caps : &null_features); |
3245 | } |
3246 | |
3247 | /* |
3248 | * Invalidate hardware checksum when packet is to be mangled, and |
3249 | * complete checksum manually on outgoing path. |
3250 | */ |
3251 | int skb_checksum_help(struct sk_buff *skb) |
3252 | { |
3253 | __wsum csum; |
3254 | int ret = 0, offset; |
3255 | |
3256 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
3257 | goto out_set_summed; |
3258 | |
3259 | if (unlikely(skb_is_gso(skb))) { |
3260 | skb_warn_bad_offload(skb); |
3261 | return -EINVAL; |
3262 | } |
3263 | |
3264 | /* Before computing a checksum, we should make sure no frag could |
3265 | * be modified by an external entity : checksum could be wrong. |
3266 | */ |
3267 | if (skb_has_shared_frag(skb)) { |
3268 | ret = __skb_linearize(skb); |
3269 | if (ret) |
3270 | goto out; |
3271 | } |
3272 | |
3273 | offset = skb_checksum_start_offset(skb); |
3274 | ret = -EINVAL; |
3275 | if (unlikely(offset >= skb_headlen(skb))) { |
3276 | DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); |
3277 | WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n" , |
3278 | offset, skb_headlen(skb)); |
3279 | goto out; |
3280 | } |
3281 | csum = skb_checksum(skb, offset, len: skb->len - offset, csum: 0); |
3282 | |
3283 | offset += skb->csum_offset; |
3284 | if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { |
3285 | DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); |
3286 | WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n" , |
3287 | offset + sizeof(__sum16), skb_headlen(skb)); |
3288 | goto out; |
3289 | } |
3290 | ret = skb_ensure_writable(skb, write_len: offset + sizeof(__sum16)); |
3291 | if (ret) |
3292 | goto out; |
3293 | |
3294 | *(__sum16 *)(skb->data + offset) = csum_fold(sum: csum) ?: CSUM_MANGLED_0; |
3295 | out_set_summed: |
3296 | skb->ip_summed = CHECKSUM_NONE; |
3297 | out: |
3298 | return ret; |
3299 | } |
3300 | EXPORT_SYMBOL(skb_checksum_help); |
3301 | |
3302 | int skb_crc32c_csum_help(struct sk_buff *skb) |
3303 | { |
3304 | __le32 crc32c_csum; |
3305 | int ret = 0, offset, start; |
3306 | |
3307 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
3308 | goto out; |
3309 | |
3310 | if (unlikely(skb_is_gso(skb))) |
3311 | goto out; |
3312 | |
3313 | /* Before computing a checksum, we should make sure no frag could |
3314 | * be modified by an external entity : checksum could be wrong. |
3315 | */ |
3316 | if (unlikely(skb_has_shared_frag(skb))) { |
3317 | ret = __skb_linearize(skb); |
3318 | if (ret) |
3319 | goto out; |
3320 | } |
3321 | start = skb_checksum_start_offset(skb); |
3322 | offset = start + offsetof(struct sctphdr, checksum); |
3323 | if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { |
3324 | ret = -EINVAL; |
3325 | goto out; |
3326 | } |
3327 | |
3328 | ret = skb_ensure_writable(skb, write_len: offset + sizeof(__le32)); |
3329 | if (ret) |
3330 | goto out; |
3331 | |
3332 | crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, |
3333 | skb->len - start, ~(__u32)0, |
3334 | crc32c_csum_stub)); |
3335 | *(__le32 *)(skb->data + offset) = crc32c_csum; |
3336 | skb_reset_csum_not_inet(skb); |
3337 | out: |
3338 | return ret; |
3339 | } |
3340 | |
3341 | __be16 skb_network_protocol(struct sk_buff *skb, int *depth) |
3342 | { |
3343 | __be16 type = skb->protocol; |
3344 | |
3345 | /* Tunnel gso handlers can set protocol to ethernet. */ |
3346 | if (type == htons(ETH_P_TEB)) { |
3347 | struct ethhdr *eth; |
3348 | |
3349 | if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) |
3350 | return 0; |
3351 | |
3352 | eth = (struct ethhdr *)skb->data; |
3353 | type = eth->h_proto; |
3354 | } |
3355 | |
3356 | return vlan_get_protocol_and_depth(skb, type, depth); |
3357 | } |
3358 | |
3359 | |
3360 | /* Take action when hardware reception checksum errors are detected. */ |
3361 | #ifdef CONFIG_BUG |
3362 | static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) |
3363 | { |
3364 | netdev_err(dev, format: "hw csum failure\n" ); |
3365 | skb_dump(KERN_ERR, skb, full_pkt: true); |
3366 | dump_stack(); |
3367 | } |
3368 | |
3369 | void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) |
3370 | { |
3371 | DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); |
3372 | } |
3373 | EXPORT_SYMBOL(netdev_rx_csum_fault); |
3374 | #endif |
3375 | |
3376 | /* XXX: check that highmem exists at all on the given machine. */ |
3377 | static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) |
3378 | { |
3379 | #ifdef CONFIG_HIGHMEM |
3380 | int i; |
3381 | |
3382 | if (!(dev->features & NETIF_F_HIGHDMA)) { |
3383 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
3384 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
3385 | |
3386 | if (PageHighMem(skb_frag_page(frag))) |
3387 | return 1; |
3388 | } |
3389 | } |
3390 | #endif |
3391 | return 0; |
3392 | } |
3393 | |
3394 | /* If MPLS offload request, verify we are testing hardware MPLS features |
3395 | * instead of standard features for the netdev. |
3396 | */ |
3397 | #if IS_ENABLED(CONFIG_NET_MPLS_GSO) |
3398 | static netdev_features_t net_mpls_features(struct sk_buff *skb, |
3399 | netdev_features_t features, |
3400 | __be16 type) |
3401 | { |
3402 | if (eth_p_mpls(eth_type: type)) |
3403 | features &= skb->dev->mpls_features; |
3404 | |
3405 | return features; |
3406 | } |
3407 | #else |
3408 | static netdev_features_t net_mpls_features(struct sk_buff *skb, |
3409 | netdev_features_t features, |
3410 | __be16 type) |
3411 | { |
3412 | return features; |
3413 | } |
3414 | #endif |
3415 | |
3416 | static netdev_features_t harmonize_features(struct sk_buff *skb, |
3417 | netdev_features_t features) |
3418 | { |
3419 | __be16 type; |
3420 | |
3421 | type = skb_network_protocol(skb, NULL); |
3422 | features = net_mpls_features(skb, features, type); |
3423 | |
3424 | if (skb->ip_summed != CHECKSUM_NONE && |
3425 | !can_checksum_protocol(features, protocol: type)) { |
3426 | features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
3427 | } |
3428 | if (illegal_highdma(dev: skb->dev, skb)) |
3429 | features &= ~NETIF_F_SG; |
3430 | |
3431 | return features; |
3432 | } |
3433 | |
3434 | netdev_features_t passthru_features_check(struct sk_buff *skb, |
3435 | struct net_device *dev, |
3436 | netdev_features_t features) |
3437 | { |
3438 | return features; |
3439 | } |
3440 | EXPORT_SYMBOL(passthru_features_check); |
3441 | |
3442 | static netdev_features_t dflt_features_check(struct sk_buff *skb, |
3443 | struct net_device *dev, |
3444 | netdev_features_t features) |
3445 | { |
3446 | return vlan_features_check(skb, features); |
3447 | } |
3448 | |
3449 | static netdev_features_t gso_features_check(const struct sk_buff *skb, |
3450 | struct net_device *dev, |
3451 | netdev_features_t features) |
3452 | { |
3453 | u16 gso_segs = skb_shinfo(skb)->gso_segs; |
3454 | |
3455 | if (gso_segs > READ_ONCE(dev->gso_max_segs)) |
3456 | return features & ~NETIF_F_GSO_MASK; |
3457 | |
3458 | if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size))) |
3459 | return features & ~NETIF_F_GSO_MASK; |
3460 | |
3461 | if (!skb_shinfo(skb)->gso_type) { |
3462 | skb_warn_bad_offload(skb); |
3463 | return features & ~NETIF_F_GSO_MASK; |
3464 | } |
3465 | |
3466 | /* Support for GSO partial features requires software |
3467 | * intervention before we can actually process the packets |
3468 | * so we need to strip support for any partial features now |
3469 | * and we can pull them back in after we have partially |
3470 | * segmented the frame. |
3471 | */ |
3472 | if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) |
3473 | features &= ~dev->gso_partial_features; |
3474 | |
3475 | /* Make sure to clear the IPv4 ID mangling feature if the |
3476 | * IPv4 header has the potential to be fragmented. |
3477 | */ |
3478 | if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { |
3479 | struct iphdr *iph = skb->encapsulation ? |
3480 | inner_ip_hdr(skb) : ip_hdr(skb); |
3481 | |
3482 | if (!(iph->frag_off & htons(IP_DF))) |
3483 | features &= ~NETIF_F_TSO_MANGLEID; |
3484 | } |
3485 | |
3486 | return features; |
3487 | } |
3488 | |
3489 | netdev_features_t netif_skb_features(struct sk_buff *skb) |
3490 | { |
3491 | struct net_device *dev = skb->dev; |
3492 | netdev_features_t features = dev->features; |
3493 | |
3494 | if (skb_is_gso(skb)) |
3495 | features = gso_features_check(skb, dev, features); |
3496 | |
3497 | /* If encapsulation offload request, verify we are testing |
3498 | * hardware encapsulation features instead of standard |
3499 | * features for the netdev |
3500 | */ |
3501 | if (skb->encapsulation) |
3502 | features &= dev->hw_enc_features; |
3503 | |
3504 | if (skb_vlan_tagged(skb)) |
3505 | features = netdev_intersect_features(f1: features, |
3506 | f2: dev->vlan_features | |
3507 | NETIF_F_HW_VLAN_CTAG_TX | |
3508 | NETIF_F_HW_VLAN_STAG_TX); |
3509 | |
3510 | if (dev->netdev_ops->ndo_features_check) |
3511 | features &= dev->netdev_ops->ndo_features_check(skb, dev, |
3512 | features); |
3513 | else |
3514 | features &= dflt_features_check(skb, dev, features); |
3515 | |
3516 | return harmonize_features(skb, features); |
3517 | } |
3518 | EXPORT_SYMBOL(netif_skb_features); |
3519 | |
3520 | static int xmit_one(struct sk_buff *skb, struct net_device *dev, |
3521 | struct netdev_queue *txq, bool more) |
3522 | { |
3523 | unsigned int len; |
3524 | int rc; |
3525 | |
3526 | if (dev_nit_active(dev)) |
3527 | dev_queue_xmit_nit(skb, dev); |
3528 | |
3529 | len = skb->len; |
3530 | trace_net_dev_start_xmit(skb, dev); |
3531 | rc = netdev_start_xmit(skb, dev, txq, more); |
3532 | trace_net_dev_xmit(skb, rc, dev, skb_len: len); |
3533 | |
3534 | return rc; |
3535 | } |
3536 | |
3537 | struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, |
3538 | struct netdev_queue *txq, int *ret) |
3539 | { |
3540 | struct sk_buff *skb = first; |
3541 | int rc = NETDEV_TX_OK; |
3542 | |
3543 | while (skb) { |
3544 | struct sk_buff *next = skb->next; |
3545 | |
3546 | skb_mark_not_on_list(skb); |
3547 | rc = xmit_one(skb, dev, txq, more: next != NULL); |
3548 | if (unlikely(!dev_xmit_complete(rc))) { |
3549 | skb->next = next; |
3550 | goto out; |
3551 | } |
3552 | |
3553 | skb = next; |
3554 | if (netif_tx_queue_stopped(dev_queue: txq) && skb) { |
3555 | rc = NETDEV_TX_BUSY; |
3556 | break; |
3557 | } |
3558 | } |
3559 | |
3560 | out: |
3561 | *ret = rc; |
3562 | return skb; |
3563 | } |
3564 | |
3565 | static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, |
3566 | netdev_features_t features) |
3567 | { |
3568 | if (skb_vlan_tag_present(skb) && |
3569 | !vlan_hw_offload_capable(features, proto: skb->vlan_proto)) |
3570 | skb = __vlan_hwaccel_push_inside(skb); |
3571 | return skb; |
3572 | } |
3573 | |
3574 | int skb_csum_hwoffload_help(struct sk_buff *skb, |
3575 | const netdev_features_t features) |
3576 | { |
3577 | if (unlikely(skb_csum_is_sctp(skb))) |
3578 | return !!(features & NETIF_F_SCTP_CRC) ? 0 : |
3579 | skb_crc32c_csum_help(skb); |
3580 | |
3581 | if (features & NETIF_F_HW_CSUM) |
3582 | return 0; |
3583 | |
3584 | if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { |
3585 | switch (skb->csum_offset) { |
3586 | case offsetof(struct tcphdr, check): |
3587 | case offsetof(struct udphdr, check): |
3588 | return 0; |
3589 | } |
3590 | } |
3591 | |
3592 | return skb_checksum_help(skb); |
3593 | } |
3594 | EXPORT_SYMBOL(skb_csum_hwoffload_help); |
3595 | |
3596 | static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) |
3597 | { |
3598 | netdev_features_t features; |
3599 | |
3600 | features = netif_skb_features(skb); |
3601 | skb = validate_xmit_vlan(skb, features); |
3602 | if (unlikely(!skb)) |
3603 | goto out_null; |
3604 | |
3605 | skb = sk_validate_xmit_skb(skb, dev); |
3606 | if (unlikely(!skb)) |
3607 | goto out_null; |
3608 | |
3609 | if (netif_needs_gso(skb, features)) { |
3610 | struct sk_buff *segs; |
3611 | |
3612 | segs = skb_gso_segment(skb, features); |
3613 | if (IS_ERR(ptr: segs)) { |
3614 | goto out_kfree_skb; |
3615 | } else if (segs) { |
3616 | consume_skb(skb); |
3617 | skb = segs; |
3618 | } |
3619 | } else { |
3620 | if (skb_needs_linearize(skb, features) && |
3621 | __skb_linearize(skb)) |
3622 | goto out_kfree_skb; |
3623 | |
3624 | /* If packet is not checksummed and device does not |
3625 | * support checksumming for this protocol, complete |
3626 | * checksumming here. |
3627 | */ |
3628 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
3629 | if (skb->encapsulation) |
3630 | skb_set_inner_transport_header(skb, |
3631 | offset: skb_checksum_start_offset(skb)); |
3632 | else |
3633 | skb_set_transport_header(skb, |
3634 | offset: skb_checksum_start_offset(skb)); |
3635 | if (skb_csum_hwoffload_help(skb, features)) |
3636 | goto out_kfree_skb; |
3637 | } |
3638 | } |
3639 | |
3640 | skb = validate_xmit_xfrm(skb, features, again); |
3641 | |
3642 | return skb; |
3643 | |
3644 | out_kfree_skb: |
3645 | kfree_skb(skb); |
3646 | out_null: |
3647 | dev_core_stats_tx_dropped_inc(dev); |
3648 | return NULL; |
3649 | } |
3650 | |
3651 | struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) |
3652 | { |
3653 | struct sk_buff *next, *head = NULL, *tail; |
3654 | |
3655 | for (; skb != NULL; skb = next) { |
3656 | next = skb->next; |
3657 | skb_mark_not_on_list(skb); |
3658 | |
3659 | /* in case skb wont be segmented, point to itself */ |
3660 | skb->prev = skb; |
3661 | |
3662 | skb = validate_xmit_skb(skb, dev, again); |
3663 | if (!skb) |
3664 | continue; |
3665 | |
3666 | if (!head) |
3667 | head = skb; |
3668 | else |
3669 | tail->next = skb; |
3670 | /* If skb was segmented, skb->prev points to |
3671 | * the last segment. If not, it still contains skb. |
3672 | */ |
3673 | tail = skb->prev; |
3674 | } |
3675 | return head; |
3676 | } |
3677 | EXPORT_SYMBOL_GPL(validate_xmit_skb_list); |
3678 | |
3679 | static void qdisc_pkt_len_init(struct sk_buff *skb) |
3680 | { |
3681 | const struct skb_shared_info *shinfo = skb_shinfo(skb); |
3682 | |
3683 | qdisc_skb_cb(skb)->pkt_len = skb->len; |
3684 | |
3685 | /* To get more precise estimation of bytes sent on wire, |
3686 | * we add to pkt_len the headers size of all segments |
3687 | */ |
3688 | if (shinfo->gso_size && skb_transport_header_was_set(skb)) { |
3689 | u16 gso_segs = shinfo->gso_segs; |
3690 | unsigned int hdr_len; |
3691 | |
3692 | /* mac layer + network layer */ |
3693 | hdr_len = skb_transport_offset(skb); |
3694 | |
3695 | /* + transport layer */ |
3696 | if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { |
3697 | const struct tcphdr *th; |
3698 | struct tcphdr _tcphdr; |
3699 | |
3700 | th = skb_header_pointer(skb, offset: hdr_len, |
3701 | len: sizeof(_tcphdr), buffer: &_tcphdr); |
3702 | if (likely(th)) |
3703 | hdr_len += __tcp_hdrlen(th); |
3704 | } else { |
3705 | struct udphdr _udphdr; |
3706 | |
3707 | if (skb_header_pointer(skb, offset: hdr_len, |
3708 | len: sizeof(_udphdr), buffer: &_udphdr)) |
3709 | hdr_len += sizeof(struct udphdr); |
3710 | } |
3711 | |
3712 | if (shinfo->gso_type & SKB_GSO_DODGY) |
3713 | gso_segs = DIV_ROUND_UP(skb->len - hdr_len, |
3714 | shinfo->gso_size); |
3715 | |
3716 | qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; |
3717 | } |
3718 | } |
3719 | |
3720 | static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, |
3721 | struct sk_buff **to_free, |
3722 | struct netdev_queue *txq) |
3723 | { |
3724 | int rc; |
3725 | |
3726 | rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; |
3727 | if (rc == NET_XMIT_SUCCESS) |
3728 | trace_qdisc_enqueue(qdisc: q, txq, skb); |
3729 | return rc; |
3730 | } |
3731 | |
3732 | static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, |
3733 | struct net_device *dev, |
3734 | struct netdev_queue *txq) |
3735 | { |
3736 | spinlock_t *root_lock = qdisc_lock(qdisc: q); |
3737 | struct sk_buff *to_free = NULL; |
3738 | bool contended; |
3739 | int rc; |
3740 | |
3741 | qdisc_calculate_pkt_len(skb, sch: q); |
3742 | |
3743 | tcf_set_drop_reason(skb, reason: SKB_DROP_REASON_QDISC_DROP); |
3744 | |
3745 | if (q->flags & TCQ_F_NOLOCK) { |
3746 | if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(qdisc: q) && |
3747 | qdisc_run_begin(qdisc: q)) { |
3748 | /* Retest nolock_qdisc_is_empty() within the protection |
3749 | * of q->seqlock to protect from racing with requeuing. |
3750 | */ |
3751 | if (unlikely(!nolock_qdisc_is_empty(q))) { |
3752 | rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq); |
3753 | __qdisc_run(q); |
3754 | qdisc_run_end(qdisc: q); |
3755 | |
3756 | goto no_lock_out; |
3757 | } |
3758 | |
3759 | qdisc_bstats_cpu_update(sch: q, skb); |
3760 | if (sch_direct_xmit(skb, q, dev, txq, NULL, validate: true) && |
3761 | !nolock_qdisc_is_empty(qdisc: q)) |
3762 | __qdisc_run(q); |
3763 | |
3764 | qdisc_run_end(qdisc: q); |
3765 | return NET_XMIT_SUCCESS; |
3766 | } |
3767 | |
3768 | rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq); |
3769 | qdisc_run(q); |
3770 | |
3771 | no_lock_out: |
3772 | if (unlikely(to_free)) |
3773 | kfree_skb_list_reason(segs: to_free, |
3774 | reason: tcf_get_drop_reason(skb: to_free)); |
3775 | return rc; |
3776 | } |
3777 | |
3778 | if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { |
3779 | kfree_skb_reason(skb, reason: SKB_DROP_REASON_TC_RECLASSIFY_LOOP); |
3780 | return NET_XMIT_DROP; |
3781 | } |
3782 | /* |
3783 | * Heuristic to force contended enqueues to serialize on a |
3784 | * separate lock before trying to get qdisc main lock. |
3785 | * This permits qdisc->running owner to get the lock more |
3786 | * often and dequeue packets faster. |
3787 | * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit |
3788 | * and then other tasks will only enqueue packets. The packets will be |
3789 | * sent after the qdisc owner is scheduled again. To prevent this |
3790 | * scenario the task always serialize on the lock. |
3791 | */ |
3792 | contended = qdisc_is_running(qdisc: q) || IS_ENABLED(CONFIG_PREEMPT_RT); |
3793 | if (unlikely(contended)) |
3794 | spin_lock(lock: &q->busylock); |
3795 | |
3796 | spin_lock(lock: root_lock); |
3797 | if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { |
3798 | __qdisc_drop(skb, to_free: &to_free); |
3799 | rc = NET_XMIT_DROP; |
3800 | } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && |
3801 | qdisc_run_begin(qdisc: q)) { |
3802 | /* |
3803 | * This is a work-conserving queue; there are no old skbs |
3804 | * waiting to be sent out; and the qdisc is not running - |
3805 | * xmit the skb directly. |
3806 | */ |
3807 | |
3808 | qdisc_bstats_update(sch: q, skb); |
3809 | |
3810 | if (sch_direct_xmit(skb, q, dev, txq, root_lock, validate: true)) { |
3811 | if (unlikely(contended)) { |
3812 | spin_unlock(lock: &q->busylock); |
3813 | contended = false; |
3814 | } |
3815 | __qdisc_run(q); |
3816 | } |
3817 | |
3818 | qdisc_run_end(qdisc: q); |
3819 | rc = NET_XMIT_SUCCESS; |
3820 | } else { |
3821 | WRITE_ONCE(q->owner, smp_processor_id()); |
3822 | rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq); |
3823 | WRITE_ONCE(q->owner, -1); |
3824 | if (qdisc_run_begin(qdisc: q)) { |
3825 | if (unlikely(contended)) { |
3826 | spin_unlock(lock: &q->busylock); |
3827 | contended = false; |
3828 | } |
3829 | __qdisc_run(q); |
3830 | qdisc_run_end(qdisc: q); |
3831 | } |
3832 | } |
3833 | spin_unlock(lock: root_lock); |
3834 | if (unlikely(to_free)) |
3835 | kfree_skb_list_reason(segs: to_free, |
3836 | reason: tcf_get_drop_reason(skb: to_free)); |
3837 | if (unlikely(contended)) |
3838 | spin_unlock(lock: &q->busylock); |
3839 | return rc; |
3840 | } |
3841 | |
3842 | #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) |
3843 | static void skb_update_prio(struct sk_buff *skb) |
3844 | { |
3845 | const struct netprio_map *map; |
3846 | const struct sock *sk; |
3847 | unsigned int prioidx; |
3848 | |
3849 | if (skb->priority) |
3850 | return; |
3851 | map = rcu_dereference_bh(skb->dev->priomap); |
3852 | if (!map) |
3853 | return; |
3854 | sk = skb_to_full_sk(skb); |
3855 | if (!sk) |
3856 | return; |
3857 | |
3858 | prioidx = sock_cgroup_prioidx(skcd: &sk->sk_cgrp_data); |
3859 | |
3860 | if (prioidx < map->priomap_len) |
3861 | skb->priority = map->priomap[prioidx]; |
3862 | } |
3863 | #else |
3864 | #define skb_update_prio(skb) |
3865 | #endif |
3866 | |
3867 | /** |
3868 | * dev_loopback_xmit - loop back @skb |
3869 | * @net: network namespace this loopback is happening in |
3870 | * @sk: sk needed to be a netfilter okfn |
3871 | * @skb: buffer to transmit |
3872 | */ |
3873 | int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) |
3874 | { |
3875 | skb_reset_mac_header(skb); |
3876 | __skb_pull(skb, len: skb_network_offset(skb)); |
3877 | skb->pkt_type = PACKET_LOOPBACK; |
3878 | if (skb->ip_summed == CHECKSUM_NONE) |
3879 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
3880 | DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); |
3881 | skb_dst_force(skb); |
3882 | netif_rx(skb); |
3883 | return 0; |
3884 | } |
3885 | EXPORT_SYMBOL(dev_loopback_xmit); |
3886 | |
3887 | #ifdef CONFIG_NET_EGRESS |
3888 | static struct netdev_queue * |
3889 | netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) |
3890 | { |
3891 | int qm = skb_get_queue_mapping(skb); |
3892 | |
3893 | return netdev_get_tx_queue(dev, index: netdev_cap_txqueue(dev, queue_index: qm)); |
3894 | } |
3895 | |
3896 | static bool netdev_xmit_txqueue_skipped(void) |
3897 | { |
3898 | return __this_cpu_read(softnet_data.xmit.skip_txqueue); |
3899 | } |
3900 | |
3901 | void netdev_xmit_skip_txqueue(bool skip) |
3902 | { |
3903 | __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); |
3904 | } |
3905 | EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); |
3906 | #endif /* CONFIG_NET_EGRESS */ |
3907 | |
3908 | #ifdef CONFIG_NET_XGRESS |
3909 | static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, |
3910 | enum skb_drop_reason *drop_reason) |
3911 | { |
3912 | int ret = TC_ACT_UNSPEC; |
3913 | #ifdef CONFIG_NET_CLS_ACT |
3914 | struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); |
3915 | struct tcf_result res; |
3916 | |
3917 | if (!miniq) |
3918 | return ret; |
3919 | |
3920 | tc_skb_cb(skb)->mru = 0; |
3921 | tc_skb_cb(skb)->post_ct = false; |
3922 | tcf_set_drop_reason(skb, reason: *drop_reason); |
3923 | |
3924 | mini_qdisc_bstats_cpu_update(miniq, skb); |
3925 | ret = tcf_classify(skb, block: miniq->block, tp: miniq->filter_list, res: &res, compat_mode: false); |
3926 | /* Only tcf related quirks below. */ |
3927 | switch (ret) { |
3928 | case TC_ACT_SHOT: |
3929 | *drop_reason = tcf_get_drop_reason(skb); |
3930 | mini_qdisc_qstats_cpu_drop(miniq); |
3931 | break; |
3932 | case TC_ACT_OK: |
3933 | case TC_ACT_RECLASSIFY: |
3934 | skb->tc_index = TC_H_MIN(res.classid); |
3935 | break; |
3936 | } |
3937 | #endif /* CONFIG_NET_CLS_ACT */ |
3938 | return ret; |
3939 | } |
3940 | |
3941 | static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); |
3942 | |
3943 | void tcx_inc(void) |
3944 | { |
3945 | static_branch_inc(&tcx_needed_key); |
3946 | } |
3947 | |
3948 | void tcx_dec(void) |
3949 | { |
3950 | static_branch_dec(&tcx_needed_key); |
3951 | } |
3952 | |
3953 | static __always_inline enum tcx_action_base |
3954 | tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, |
3955 | const bool needs_mac) |
3956 | { |
3957 | const struct bpf_mprog_fp *fp; |
3958 | const struct bpf_prog *prog; |
3959 | int ret = TCX_NEXT; |
3960 | |
3961 | if (needs_mac) |
3962 | __skb_push(skb, len: skb->mac_len); |
3963 | bpf_mprog_foreach_prog(entry, fp, prog) { |
3964 | bpf_compute_data_pointers(skb); |
3965 | ret = bpf_prog_run(prog, ctx: skb); |
3966 | if (ret != TCX_NEXT) |
3967 | break; |
3968 | } |
3969 | if (needs_mac) |
3970 | __skb_pull(skb, len: skb->mac_len); |
3971 | return tcx_action_code(skb, code: ret); |
3972 | } |
3973 | |
3974 | static __always_inline struct sk_buff * |
3975 | sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, |
3976 | struct net_device *orig_dev, bool *another) |
3977 | { |
3978 | struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); |
3979 | enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; |
3980 | int sch_ret; |
3981 | |
3982 | if (!entry) |
3983 | return skb; |
3984 | if (*pt_prev) { |
3985 | *ret = deliver_skb(skb, pt_prev: *pt_prev, orig_dev); |
3986 | *pt_prev = NULL; |
3987 | } |
3988 | |
3989 | qdisc_skb_cb(skb)->pkt_len = skb->len; |
3990 | tcx_set_ingress(skb, ingress: true); |
3991 | |
3992 | if (static_branch_unlikely(&tcx_needed_key)) { |
3993 | sch_ret = tcx_run(entry, skb, needs_mac: true); |
3994 | if (sch_ret != TC_ACT_UNSPEC) |
3995 | goto ingress_verdict; |
3996 | } |
3997 | sch_ret = tc_run(entry: tcx_entry(entry), skb, drop_reason: &drop_reason); |
3998 | ingress_verdict: |
3999 | switch (sch_ret) { |
4000 | case TC_ACT_REDIRECT: |
4001 | /* skb_mac_header check was done by BPF, so we can safely |
4002 | * push the L2 header back before redirecting to another |
4003 | * netdev. |
4004 | */ |
4005 | __skb_push(skb, len: skb->mac_len); |
4006 | if (skb_do_redirect(skb) == -EAGAIN) { |
4007 | __skb_pull(skb, len: skb->mac_len); |
4008 | *another = true; |
4009 | break; |
4010 | } |
4011 | *ret = NET_RX_SUCCESS; |
4012 | return NULL; |
4013 | case TC_ACT_SHOT: |
4014 | kfree_skb_reason(skb, reason: drop_reason); |
4015 | *ret = NET_RX_DROP; |
4016 | return NULL; |
4017 | /* used by tc_run */ |
4018 | case TC_ACT_STOLEN: |
4019 | case TC_ACT_QUEUED: |
4020 | case TC_ACT_TRAP: |
4021 | consume_skb(skb); |
4022 | fallthrough; |
4023 | case TC_ACT_CONSUMED: |
4024 | *ret = NET_RX_SUCCESS; |
4025 | return NULL; |
4026 | } |
4027 | |
4028 | return skb; |
4029 | } |
4030 | |
4031 | static __always_inline struct sk_buff * |
4032 | sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) |
4033 | { |
4034 | struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); |
4035 | enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; |
4036 | int sch_ret; |
4037 | |
4038 | if (!entry) |
4039 | return skb; |
4040 | |
4041 | /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was |
4042 | * already set by the caller. |
4043 | */ |
4044 | if (static_branch_unlikely(&tcx_needed_key)) { |
4045 | sch_ret = tcx_run(entry, skb, needs_mac: false); |
4046 | if (sch_ret != TC_ACT_UNSPEC) |
4047 | goto egress_verdict; |
4048 | } |
4049 | sch_ret = tc_run(entry: tcx_entry(entry), skb, drop_reason: &drop_reason); |
4050 | egress_verdict: |
4051 | switch (sch_ret) { |
4052 | case TC_ACT_REDIRECT: |
4053 | /* No need to push/pop skb's mac_header here on egress! */ |
4054 | skb_do_redirect(skb); |
4055 | *ret = NET_XMIT_SUCCESS; |
4056 | return NULL; |
4057 | case TC_ACT_SHOT: |
4058 | kfree_skb_reason(skb, reason: drop_reason); |
4059 | *ret = NET_XMIT_DROP; |
4060 | return NULL; |
4061 | /* used by tc_run */ |
4062 | case TC_ACT_STOLEN: |
4063 | case TC_ACT_QUEUED: |
4064 | case TC_ACT_TRAP: |
4065 | consume_skb(skb); |
4066 | fallthrough; |
4067 | case TC_ACT_CONSUMED: |
4068 | *ret = NET_XMIT_SUCCESS; |
4069 | return NULL; |
4070 | } |
4071 | |
4072 | return skb; |
4073 | } |
4074 | #else |
4075 | static __always_inline struct sk_buff * |
4076 | sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, |
4077 | struct net_device *orig_dev, bool *another) |
4078 | { |
4079 | return skb; |
4080 | } |
4081 | |
4082 | static __always_inline struct sk_buff * |
4083 | sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) |
4084 | { |
4085 | return skb; |
4086 | } |
4087 | #endif /* CONFIG_NET_XGRESS */ |
4088 | |
4089 | #ifdef CONFIG_XPS |
4090 | static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, |
4091 | struct xps_dev_maps *dev_maps, unsigned int tci) |
4092 | { |
4093 | int tc = netdev_get_prio_tc_map(dev, prio: skb->priority); |
4094 | struct xps_map *map; |
4095 | int queue_index = -1; |
4096 | |
4097 | if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) |
4098 | return queue_index; |
4099 | |
4100 | tci *= dev_maps->num_tc; |
4101 | tci += tc; |
4102 | |
4103 | map = rcu_dereference(dev_maps->attr_map[tci]); |
4104 | if (map) { |
4105 | if (map->len == 1) |
4106 | queue_index = map->queues[0]; |
4107 | else |
4108 | queue_index = map->queues[reciprocal_scale( |
4109 | val: skb_get_hash(skb), ep_ro: map->len)]; |
4110 | if (unlikely(queue_index >= dev->real_num_tx_queues)) |
4111 | queue_index = -1; |
4112 | } |
4113 | return queue_index; |
4114 | } |
4115 | #endif |
4116 | |
4117 | static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, |
4118 | struct sk_buff *skb) |
4119 | { |
4120 | #ifdef CONFIG_XPS |
4121 | struct xps_dev_maps *dev_maps; |
4122 | struct sock *sk = skb->sk; |
4123 | int queue_index = -1; |
4124 | |
4125 | if (!static_key_false(key: &xps_needed)) |
4126 | return -1; |
4127 | |
4128 | rcu_read_lock(); |
4129 | if (!static_key_false(key: &xps_rxqs_needed)) |
4130 | goto get_cpus_map; |
4131 | |
4132 | dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); |
4133 | if (dev_maps) { |
4134 | int tci = sk_rx_queue_get(sk); |
4135 | |
4136 | if (tci >= 0) |
4137 | queue_index = __get_xps_queue_idx(dev, skb, dev_maps, |
4138 | tci); |
4139 | } |
4140 | |
4141 | get_cpus_map: |
4142 | if (queue_index < 0) { |
4143 | dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); |
4144 | if (dev_maps) { |
4145 | unsigned int tci = skb->sender_cpu - 1; |
4146 | |
4147 | queue_index = __get_xps_queue_idx(dev, skb, dev_maps, |
4148 | tci); |
4149 | } |
4150 | } |
4151 | rcu_read_unlock(); |
4152 | |
4153 | return queue_index; |
4154 | #else |
4155 | return -1; |
4156 | #endif |
4157 | } |
4158 | |
4159 | u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, |
4160 | struct net_device *sb_dev) |
4161 | { |
4162 | return 0; |
4163 | } |
4164 | EXPORT_SYMBOL(dev_pick_tx_zero); |
4165 | |
4166 | u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, |
4167 | struct net_device *sb_dev) |
4168 | { |
4169 | return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; |
4170 | } |
4171 | EXPORT_SYMBOL(dev_pick_tx_cpu_id); |
4172 | |
4173 | u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, |
4174 | struct net_device *sb_dev) |
4175 | { |
4176 | struct sock *sk = skb->sk; |
4177 | int queue_index = sk_tx_queue_get(sk); |
4178 | |
4179 | sb_dev = sb_dev ? : dev; |
4180 | |
4181 | if (queue_index < 0 || skb->ooo_okay || |
4182 | queue_index >= dev->real_num_tx_queues) { |
4183 | int new_index = get_xps_queue(dev, sb_dev, skb); |
4184 | |
4185 | if (new_index < 0) |
4186 | new_index = skb_tx_hash(dev, sb_dev, skb); |
4187 | |
4188 | if (queue_index != new_index && sk && |
4189 | sk_fullsock(sk) && |
4190 | rcu_access_pointer(sk->sk_dst_cache)) |
4191 | sk_tx_queue_set(sk, tx_queue: new_index); |
4192 | |
4193 | queue_index = new_index; |
4194 | } |
4195 | |
4196 | return queue_index; |
4197 | } |
4198 | EXPORT_SYMBOL(netdev_pick_tx); |
4199 | |
4200 | struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, |
4201 | struct sk_buff *skb, |
4202 | struct net_device *sb_dev) |
4203 | { |
4204 | int queue_index = 0; |
4205 | |
4206 | #ifdef CONFIG_XPS |
4207 | u32 sender_cpu = skb->sender_cpu - 1; |
4208 | |
4209 | if (sender_cpu >= (u32)NR_CPUS) |
4210 | skb->sender_cpu = raw_smp_processor_id() + 1; |
4211 | #endif |
4212 | |
4213 | if (dev->real_num_tx_queues != 1) { |
4214 | const struct net_device_ops *ops = dev->netdev_ops; |
4215 | |
4216 | if (ops->ndo_select_queue) |
4217 | queue_index = ops->ndo_select_queue(dev, skb, sb_dev); |
4218 | else |
4219 | queue_index = netdev_pick_tx(dev, skb, sb_dev); |
4220 | |
4221 | queue_index = netdev_cap_txqueue(dev, queue_index); |
4222 | } |
4223 | |
4224 | skb_set_queue_mapping(skb, queue_mapping: queue_index); |
4225 | return netdev_get_tx_queue(dev, index: queue_index); |
4226 | } |
4227 | |
4228 | /** |
4229 | * __dev_queue_xmit() - transmit a buffer |
4230 | * @skb: buffer to transmit |
4231 | * @sb_dev: suboordinate device used for L2 forwarding offload |
4232 | * |
4233 | * Queue a buffer for transmission to a network device. The caller must |
4234 | * have set the device and priority and built the buffer before calling |
4235 | * this function. The function can be called from an interrupt. |
4236 | * |
4237 | * When calling this method, interrupts MUST be enabled. This is because |
4238 | * the BH enable code must have IRQs enabled so that it will not deadlock. |
4239 | * |
4240 | * Regardless of the return value, the skb is consumed, so it is currently |
4241 | * difficult to retry a send to this method. (You can bump the ref count |
4242 | * before sending to hold a reference for retry if you are careful.) |
4243 | * |
4244 | * Return: |
4245 | * * 0 - buffer successfully transmitted |
4246 | * * positive qdisc return code - NET_XMIT_DROP etc. |
4247 | * * negative errno - other errors |
4248 | */ |
4249 | int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) |
4250 | { |
4251 | struct net_device *dev = skb->dev; |
4252 | struct netdev_queue *txq = NULL; |
4253 | struct Qdisc *q; |
4254 | int rc = -ENOMEM; |
4255 | bool again = false; |
4256 | |
4257 | skb_reset_mac_header(skb); |
4258 | skb_assert_len(skb); |
4259 | |
4260 | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) |
4261 | __skb_tstamp_tx(orig_skb: skb, NULL, NULL, sk: skb->sk, tstype: SCM_TSTAMP_SCHED); |
4262 | |
4263 | /* Disable soft irqs for various locks below. Also |
4264 | * stops preemption for RCU. |
4265 | */ |
4266 | rcu_read_lock_bh(); |
4267 | |
4268 | skb_update_prio(skb); |
4269 | |
4270 | qdisc_pkt_len_init(skb); |
4271 | tcx_set_ingress(skb, ingress: false); |
4272 | #ifdef CONFIG_NET_EGRESS |
4273 | if (static_branch_unlikely(&egress_needed_key)) { |
4274 | if (nf_hook_egress_active()) { |
4275 | skb = nf_hook_egress(skb, rc: &rc, dev); |
4276 | if (!skb) |
4277 | goto out; |
4278 | } |
4279 | |
4280 | netdev_xmit_skip_txqueue(false); |
4281 | |
4282 | nf_skip_egress(skb, skip: true); |
4283 | skb = sch_handle_egress(skb, ret: &rc, dev); |
4284 | if (!skb) |
4285 | goto out; |
4286 | nf_skip_egress(skb, skip: false); |
4287 | |
4288 | if (netdev_xmit_txqueue_skipped()) |
4289 | txq = netdev_tx_queue_mapping(dev, skb); |
4290 | } |
4291 | #endif |
4292 | /* If device/qdisc don't need skb->dst, release it right now while |
4293 | * its hot in this cpu cache. |
4294 | */ |
4295 | if (dev->priv_flags & IFF_XMIT_DST_RELEASE) |
4296 | skb_dst_drop(skb); |
4297 | else |
4298 | skb_dst_force(skb); |
4299 | |
4300 | if (!txq) |
4301 | txq = netdev_core_pick_tx(dev, skb, sb_dev); |
4302 | |
4303 | q = rcu_dereference_bh(txq->qdisc); |
4304 | |
4305 | trace_net_dev_queue(skb); |
4306 | if (q->enqueue) { |
4307 | rc = __dev_xmit_skb(skb, q, dev, txq); |
4308 | goto out; |
4309 | } |
4310 | |
4311 | /* The device has no queue. Common case for software devices: |
4312 | * loopback, all the sorts of tunnels... |
4313 | |
4314 | * Really, it is unlikely that netif_tx_lock protection is necessary |
4315 | * here. (f.e. loopback and IP tunnels are clean ignoring statistics |
4316 | * counters.) |
4317 | * However, it is possible, that they rely on protection |
4318 | * made by us here. |
4319 | |
4320 | * Check this and shot the lock. It is not prone from deadlocks. |
4321 | *Either shot noqueue qdisc, it is even simpler 8) |
4322 | */ |
4323 | if (dev->flags & IFF_UP) { |
4324 | int cpu = smp_processor_id(); /* ok because BHs are off */ |
4325 | |
4326 | /* Other cpus might concurrently change txq->xmit_lock_owner |
4327 | * to -1 or to their cpu id, but not to our id. |
4328 | */ |
4329 | if (READ_ONCE(txq->xmit_lock_owner) != cpu) { |
4330 | if (dev_xmit_recursion()) |
4331 | goto recursion_alert; |
4332 | |
4333 | skb = validate_xmit_skb(skb, dev, again: &again); |
4334 | if (!skb) |
4335 | goto out; |
4336 | |
4337 | HARD_TX_LOCK(dev, txq, cpu); |
4338 | |
4339 | if (!netif_xmit_stopped(dev_queue: txq)) { |
4340 | dev_xmit_recursion_inc(); |
4341 | skb = dev_hard_start_xmit(first: skb, dev, txq, ret: &rc); |
4342 | dev_xmit_recursion_dec(); |
4343 | if (dev_xmit_complete(rc)) { |
4344 | HARD_TX_UNLOCK(dev, txq); |
4345 | goto out; |
4346 | } |
4347 | } |
4348 | HARD_TX_UNLOCK(dev, txq); |
4349 | net_crit_ratelimited("Virtual device %s asks to queue packet!\n" , |
4350 | dev->name); |
4351 | } else { |
4352 | /* Recursion is detected! It is possible, |
4353 | * unfortunately |
4354 | */ |
4355 | recursion_alert: |
4356 | net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n" , |
4357 | dev->name); |
4358 | } |
4359 | } |
4360 | |
4361 | rc = -ENETDOWN; |
4362 | rcu_read_unlock_bh(); |
4363 | |
4364 | dev_core_stats_tx_dropped_inc(dev); |
4365 | kfree_skb_list(segs: skb); |
4366 | return rc; |
4367 | out: |
4368 | rcu_read_unlock_bh(); |
4369 | return rc; |
4370 | } |
4371 | EXPORT_SYMBOL(__dev_queue_xmit); |
4372 | |
4373 | int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) |
4374 | { |
4375 | struct net_device *dev = skb->dev; |
4376 | struct sk_buff *orig_skb = skb; |
4377 | struct netdev_queue *txq; |
4378 | int ret = NETDEV_TX_BUSY; |
4379 | bool again = false; |
4380 | |
4381 | if (unlikely(!netif_running(dev) || |
4382 | !netif_carrier_ok(dev))) |
4383 | goto drop; |
4384 | |
4385 | skb = validate_xmit_skb_list(skb, dev, &again); |
4386 | if (skb != orig_skb) |
4387 | goto drop; |
4388 | |
4389 | skb_set_queue_mapping(skb, queue_mapping: queue_id); |
4390 | txq = skb_get_tx_queue(dev, skb); |
4391 | |
4392 | local_bh_disable(); |
4393 | |
4394 | dev_xmit_recursion_inc(); |
4395 | HARD_TX_LOCK(dev, txq, smp_processor_id()); |
4396 | if (!netif_xmit_frozen_or_drv_stopped(dev_queue: txq)) |
4397 | ret = netdev_start_xmit(skb, dev, txq, more: false); |
4398 | HARD_TX_UNLOCK(dev, txq); |
4399 | dev_xmit_recursion_dec(); |
4400 | |
4401 | local_bh_enable(); |
4402 | return ret; |
4403 | drop: |
4404 | dev_core_stats_tx_dropped_inc(dev); |
4405 | kfree_skb_list(segs: skb); |
4406 | return NET_XMIT_DROP; |
4407 | } |
4408 | EXPORT_SYMBOL(__dev_direct_xmit); |
4409 | |
4410 | /************************************************************************* |
4411 | * Receiver routines |
4412 | *************************************************************************/ |
4413 | |
4414 | unsigned int sysctl_skb_defer_max __read_mostly = 64; |
4415 | int weight_p __read_mostly = 64; /* old backlog weight */ |
4416 | int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ |
4417 | int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ |
4418 | |
4419 | /* Called with irq disabled */ |
4420 | static inline void ____napi_schedule(struct softnet_data *sd, |
4421 | struct napi_struct *napi) |
4422 | { |
4423 | struct task_struct *thread; |
4424 | |
4425 | lockdep_assert_irqs_disabled(); |
4426 | |
4427 | if (test_bit(NAPI_STATE_THREADED, &napi->state)) { |
4428 | /* Paired with smp_mb__before_atomic() in |
4429 | * napi_enable()/dev_set_threaded(). |
4430 | * Use READ_ONCE() to guarantee a complete |
4431 | * read on napi->thread. Only call |
4432 | * wake_up_process() when it's not NULL. |
4433 | */ |
4434 | thread = READ_ONCE(napi->thread); |
4435 | if (thread) { |
4436 | /* Avoid doing set_bit() if the thread is in |
4437 | * INTERRUPTIBLE state, cause napi_thread_wait() |
4438 | * makes sure to proceed with napi polling |
4439 | * if the thread is explicitly woken from here. |
4440 | */ |
4441 | if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) |
4442 | set_bit(nr: NAPI_STATE_SCHED_THREADED, addr: &napi->state); |
4443 | wake_up_process(tsk: thread); |
4444 | return; |
4445 | } |
4446 | } |
4447 | |
4448 | list_add_tail(new: &napi->poll_list, head: &sd->poll_list); |
4449 | WRITE_ONCE(napi->list_owner, smp_processor_id()); |
4450 | /* If not called from net_rx_action() |
4451 | * we have to raise NET_RX_SOFTIRQ. |
4452 | */ |
4453 | if (!sd->in_net_rx_action) |
4454 | __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
4455 | } |
4456 | |
4457 | #ifdef CONFIG_RPS |
4458 | |
4459 | struct static_key_false rps_needed __read_mostly; |
4460 | EXPORT_SYMBOL(rps_needed); |
4461 | struct static_key_false rfs_needed __read_mostly; |
4462 | EXPORT_SYMBOL(rfs_needed); |
4463 | |
4464 | static struct rps_dev_flow * |
4465 | set_rps_cpu(struct net_device *dev, struct sk_buff *skb, |
4466 | struct rps_dev_flow *rflow, u16 next_cpu) |
4467 | { |
4468 | if (next_cpu < nr_cpu_ids) { |
4469 | #ifdef CONFIG_RFS_ACCEL |
4470 | struct netdev_rx_queue *rxqueue; |
4471 | struct rps_dev_flow_table *flow_table; |
4472 | struct rps_dev_flow *old_rflow; |
4473 | u32 flow_id; |
4474 | u16 rxq_index; |
4475 | int rc; |
4476 | |
4477 | /* Should we steer this flow to a different hardware queue? */ |
4478 | if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || |
4479 | !(dev->features & NETIF_F_NTUPLE)) |
4480 | goto out; |
4481 | rxq_index = cpu_rmap_lookup_index(rmap: dev->rx_cpu_rmap, cpu: next_cpu); |
4482 | if (rxq_index == skb_get_rx_queue(skb)) |
4483 | goto out; |
4484 | |
4485 | rxqueue = dev->_rx + rxq_index; |
4486 | flow_table = rcu_dereference(rxqueue->rps_flow_table); |
4487 | if (!flow_table) |
4488 | goto out; |
4489 | flow_id = skb_get_hash(skb) & flow_table->mask; |
4490 | rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, |
4491 | rxq_index, flow_id); |
4492 | if (rc < 0) |
4493 | goto out; |
4494 | old_rflow = rflow; |
4495 | rflow = &flow_table->flows[flow_id]; |
4496 | rflow->filter = rc; |
4497 | if (old_rflow->filter == rflow->filter) |
4498 | old_rflow->filter = RPS_NO_FILTER; |
4499 | out: |
4500 | #endif |
4501 | rflow->last_qtail = |
4502 | per_cpu(softnet_data, next_cpu).input_queue_head; |
4503 | } |
4504 | |
4505 | rflow->cpu = next_cpu; |
4506 | return rflow; |
4507 | } |
4508 | |
4509 | /* |
4510 | * get_rps_cpu is called from netif_receive_skb and returns the target |
4511 | * CPU from the RPS map of the receiving queue for a given skb. |
4512 | * rcu_read_lock must be held on entry. |
4513 | */ |
4514 | static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, |
4515 | struct rps_dev_flow **rflowp) |
4516 | { |
4517 | const struct rps_sock_flow_table *sock_flow_table; |
4518 | struct netdev_rx_queue *rxqueue = dev->_rx; |
4519 | struct rps_dev_flow_table *flow_table; |
4520 | struct rps_map *map; |
4521 | int cpu = -1; |
4522 | u32 tcpu; |
4523 | u32 hash; |
4524 | |
4525 | if (skb_rx_queue_recorded(skb)) { |
4526 | u16 index = skb_get_rx_queue(skb); |
4527 | |
4528 | if (unlikely(index >= dev->real_num_rx_queues)) { |
4529 | WARN_ONCE(dev->real_num_rx_queues > 1, |
4530 | "%s received packet on queue %u, but number " |
4531 | "of RX queues is %u\n" , |
4532 | dev->name, index, dev->real_num_rx_queues); |
4533 | goto done; |
4534 | } |
4535 | rxqueue += index; |
4536 | } |
4537 | |
4538 | /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ |
4539 | |
4540 | flow_table = rcu_dereference(rxqueue->rps_flow_table); |
4541 | map = rcu_dereference(rxqueue->rps_map); |
4542 | if (!flow_table && !map) |
4543 | goto done; |
4544 | |
4545 | skb_reset_network_header(skb); |
4546 | hash = skb_get_hash(skb); |
4547 | if (!hash) |
4548 | goto done; |
4549 | |
4550 | sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); |
4551 | if (flow_table && sock_flow_table) { |
4552 | struct rps_dev_flow *rflow; |
4553 | u32 next_cpu; |
4554 | u32 ident; |
4555 | |
4556 | /* First check into global flow table if there is a match. |
4557 | * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). |
4558 | */ |
4559 | ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); |
4560 | if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) |
4561 | goto try_rps; |
4562 | |
4563 | next_cpu = ident & net_hotdata.rps_cpu_mask; |
4564 | |
4565 | /* OK, now we know there is a match, |
4566 | * we can look at the local (per receive queue) flow table |
4567 | */ |
4568 | rflow = &flow_table->flows[hash & flow_table->mask]; |
4569 | tcpu = rflow->cpu; |
4570 | |
4571 | /* |
4572 | * If the desired CPU (where last recvmsg was done) is |
4573 | * different from current CPU (one in the rx-queue flow |
4574 | * table entry), switch if one of the following holds: |
4575 | * - Current CPU is unset (>= nr_cpu_ids). |
4576 | * - Current CPU is offline. |
4577 | * - The current CPU's queue tail has advanced beyond the |
4578 | * last packet that was enqueued using this table entry. |
4579 | * This guarantees that all previous packets for the flow |
4580 | * have been dequeued, thus preserving in order delivery. |
4581 | */ |
4582 | if (unlikely(tcpu != next_cpu) && |
4583 | (tcpu >= nr_cpu_ids || !cpu_online(cpu: tcpu) || |
4584 | ((int)(per_cpu(softnet_data, tcpu).input_queue_head - |
4585 | rflow->last_qtail)) >= 0)) { |
4586 | tcpu = next_cpu; |
4587 | rflow = set_rps_cpu(dev, skb, rflow, next_cpu); |
4588 | } |
4589 | |
4590 | if (tcpu < nr_cpu_ids && cpu_online(cpu: tcpu)) { |
4591 | *rflowp = rflow; |
4592 | cpu = tcpu; |
4593 | goto done; |
4594 | } |
4595 | } |
4596 | |
4597 | try_rps: |
4598 | |
4599 | if (map) { |
4600 | tcpu = map->cpus[reciprocal_scale(val: hash, ep_ro: map->len)]; |
4601 | if (cpu_online(cpu: tcpu)) { |
4602 | cpu = tcpu; |
4603 | goto done; |
4604 | } |
4605 | } |
4606 | |
4607 | done: |
4608 | return cpu; |
4609 | } |
4610 | |
4611 | #ifdef CONFIG_RFS_ACCEL |
4612 | |
4613 | /** |
4614 | * rps_may_expire_flow - check whether an RFS hardware filter may be removed |
4615 | * @dev: Device on which the filter was set |
4616 | * @rxq_index: RX queue index |
4617 | * @flow_id: Flow ID passed to ndo_rx_flow_steer() |
4618 | * @filter_id: Filter ID returned by ndo_rx_flow_steer() |
4619 | * |
4620 | * Drivers that implement ndo_rx_flow_steer() should periodically call |
4621 | * this function for each installed filter and remove the filters for |
4622 | * which it returns %true. |
4623 | */ |
4624 | bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, |
4625 | u32 flow_id, u16 filter_id) |
4626 | { |
4627 | struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; |
4628 | struct rps_dev_flow_table *flow_table; |
4629 | struct rps_dev_flow *rflow; |
4630 | bool expire = true; |
4631 | unsigned int cpu; |
4632 | |
4633 | rcu_read_lock(); |
4634 | flow_table = rcu_dereference(rxqueue->rps_flow_table); |
4635 | if (flow_table && flow_id <= flow_table->mask) { |
4636 | rflow = &flow_table->flows[flow_id]; |
4637 | cpu = READ_ONCE(rflow->cpu); |
4638 | if (rflow->filter == filter_id && cpu < nr_cpu_ids && |
4639 | ((int)(per_cpu(softnet_data, cpu).input_queue_head - |
4640 | rflow->last_qtail) < |
4641 | (int)(10 * flow_table->mask))) |
4642 | expire = false; |
4643 | } |
4644 | rcu_read_unlock(); |
4645 | return expire; |
4646 | } |
4647 | EXPORT_SYMBOL(rps_may_expire_flow); |
4648 | |
4649 | #endif /* CONFIG_RFS_ACCEL */ |
4650 | |
4651 | /* Called from hardirq (IPI) context */ |
4652 | static void rps_trigger_softirq(void *data) |
4653 | { |
4654 | struct softnet_data *sd = data; |
4655 | |
4656 | ____napi_schedule(sd, napi: &sd->backlog); |
4657 | sd->received_rps++; |
4658 | } |
4659 | |
4660 | #endif /* CONFIG_RPS */ |
4661 | |
4662 | /* Called from hardirq (IPI) context */ |
4663 | static void trigger_rx_softirq(void *data) |
4664 | { |
4665 | struct softnet_data *sd = data; |
4666 | |
4667 | __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
4668 | smp_store_release(&sd->defer_ipi_scheduled, 0); |
4669 | } |
4670 | |
4671 | /* |
4672 | * After we queued a packet into sd->input_pkt_queue, |
4673 | * we need to make sure this queue is serviced soon. |
4674 | * |
4675 | * - If this is another cpu queue, link it to our rps_ipi_list, |
4676 | * and make sure we will process rps_ipi_list from net_rx_action(). |
4677 | * |
4678 | * - If this is our own queue, NAPI schedule our backlog. |
4679 | * Note that this also raises NET_RX_SOFTIRQ. |
4680 | */ |
4681 | static void napi_schedule_rps(struct softnet_data *sd) |
4682 | { |
4683 | struct softnet_data *mysd = this_cpu_ptr(&softnet_data); |
4684 | |
4685 | #ifdef CONFIG_RPS |
4686 | if (sd != mysd) { |
4687 | sd->rps_ipi_next = mysd->rps_ipi_list; |
4688 | mysd->rps_ipi_list = sd; |
4689 | |
4690 | /* If not called from net_rx_action() or napi_threaded_poll() |
4691 | * we have to raise NET_RX_SOFTIRQ. |
4692 | */ |
4693 | if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) |
4694 | __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
4695 | return; |
4696 | } |
4697 | #endif /* CONFIG_RPS */ |
4698 | __napi_schedule_irqoff(n: &mysd->backlog); |
4699 | } |
4700 | |
4701 | #ifdef CONFIG_NET_FLOW_LIMIT |
4702 | int netdev_flow_limit_table_len __read_mostly = (1 << 12); |
4703 | #endif |
4704 | |
4705 | static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) |
4706 | { |
4707 | #ifdef CONFIG_NET_FLOW_LIMIT |
4708 | struct sd_flow_limit *fl; |
4709 | struct softnet_data *sd; |
4710 | unsigned int old_flow, new_flow; |
4711 | |
4712 | if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) |
4713 | return false; |
4714 | |
4715 | sd = this_cpu_ptr(&softnet_data); |
4716 | |
4717 | rcu_read_lock(); |
4718 | fl = rcu_dereference(sd->flow_limit); |
4719 | if (fl) { |
4720 | new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); |
4721 | old_flow = fl->history[fl->history_head]; |
4722 | fl->history[fl->history_head] = new_flow; |
4723 | |
4724 | fl->history_head++; |
4725 | fl->history_head &= FLOW_LIMIT_HISTORY - 1; |
4726 | |
4727 | if (likely(fl->buckets[old_flow])) |
4728 | fl->buckets[old_flow]--; |
4729 | |
4730 | if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { |
4731 | fl->count++; |
4732 | rcu_read_unlock(); |
4733 | return true; |
4734 | } |
4735 | } |
4736 | rcu_read_unlock(); |
4737 | #endif |
4738 | return false; |
4739 | } |
4740 | |
4741 | /* |
4742 | * enqueue_to_backlog is called to queue an skb to a per CPU backlog |
4743 | * queue (may be a remote CPU queue). |
4744 | */ |
4745 | static int enqueue_to_backlog(struct sk_buff *skb, int cpu, |
4746 | unsigned int *qtail) |
4747 | { |
4748 | enum skb_drop_reason reason; |
4749 | struct softnet_data *sd; |
4750 | unsigned long flags; |
4751 | unsigned int qlen; |
4752 | |
4753 | reason = SKB_DROP_REASON_NOT_SPECIFIED; |
4754 | sd = &per_cpu(softnet_data, cpu); |
4755 | |
4756 | rps_lock_irqsave(sd, flags: &flags); |
4757 | if (!netif_running(dev: skb->dev)) |
4758 | goto drop; |
4759 | qlen = skb_queue_len(list_: &sd->input_pkt_queue); |
4760 | if (qlen <= READ_ONCE(net_hotdata.max_backlog) && |
4761 | !skb_flow_limit(skb, qlen)) { |
4762 | if (qlen) { |
4763 | enqueue: |
4764 | __skb_queue_tail(list: &sd->input_pkt_queue, newsk: skb); |
4765 | input_queue_tail_incr_save(sd, qtail); |
4766 | rps_unlock_irq_restore(sd, flags: &flags); |
4767 | return NET_RX_SUCCESS; |
4768 | } |
4769 | |
4770 | /* Schedule NAPI for backlog device |
4771 | * We can use non atomic operation since we own the queue lock |
4772 | */ |
4773 | if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) |
4774 | napi_schedule_rps(sd); |
4775 | goto enqueue; |
4776 | } |
4777 | reason = SKB_DROP_REASON_CPU_BACKLOG; |
4778 | |
4779 | drop: |
4780 | sd->dropped++; |
4781 | rps_unlock_irq_restore(sd, flags: &flags); |
4782 | |
4783 | dev_core_stats_rx_dropped_inc(dev: skb->dev); |
4784 | kfree_skb_reason(skb, reason); |
4785 | return NET_RX_DROP; |
4786 | } |
4787 | |
4788 | static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) |
4789 | { |
4790 | struct net_device *dev = skb->dev; |
4791 | struct netdev_rx_queue *rxqueue; |
4792 | |
4793 | rxqueue = dev->_rx; |
4794 | |
4795 | if (skb_rx_queue_recorded(skb)) { |
4796 | u16 index = skb_get_rx_queue(skb); |
4797 | |
4798 | if (unlikely(index >= dev->real_num_rx_queues)) { |
4799 | WARN_ONCE(dev->real_num_rx_queues > 1, |
4800 | "%s received packet on queue %u, but number " |
4801 | "of RX queues is %u\n" , |
4802 | dev->name, index, dev->real_num_rx_queues); |
4803 | |
4804 | return rxqueue; /* Return first rxqueue */ |
4805 | } |
4806 | rxqueue += index; |
4807 | } |
4808 | return rxqueue; |
4809 | } |
4810 | |
4811 | u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, |
4812 | struct bpf_prog *xdp_prog) |
4813 | { |
4814 | void *orig_data, *orig_data_end, *hard_start; |
4815 | struct netdev_rx_queue *rxqueue; |
4816 | bool orig_bcast, orig_host; |
4817 | u32 mac_len, frame_sz; |
4818 | __be16 orig_eth_type; |
4819 | struct ethhdr *eth; |
4820 | u32 metalen, act; |
4821 | int off; |
4822 | |
4823 | /* The XDP program wants to see the packet starting at the MAC |
4824 | * header. |
4825 | */ |
4826 | mac_len = skb->data - skb_mac_header(skb); |
4827 | hard_start = skb->data - skb_headroom(skb); |
4828 | |
4829 | /* SKB "head" area always have tailroom for skb_shared_info */ |
4830 | frame_sz = (void *)skb_end_pointer(skb) - hard_start; |
4831 | frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
4832 | |
4833 | rxqueue = netif_get_rxqueue(skb); |
4834 | xdp_init_buff(xdp, frame_sz, rxq: &rxqueue->xdp_rxq); |
4835 | xdp_prepare_buff(xdp, hard_start, headroom: skb_headroom(skb) - mac_len, |
4836 | data_len: skb_headlen(skb) + mac_len, meta_valid: true); |
4837 | if (skb_is_nonlinear(skb)) { |
4838 | skb_shinfo(skb)->xdp_frags_size = skb->data_len; |
4839 | xdp_buff_set_frags_flag(xdp); |
4840 | } else { |
4841 | xdp_buff_clear_frags_flag(xdp); |
4842 | } |
4843 | |
4844 | orig_data_end = xdp->data_end; |
4845 | orig_data = xdp->data; |
4846 | eth = (struct ethhdr *)xdp->data; |
4847 | orig_host = ether_addr_equal_64bits(addr1: eth->h_dest, addr2: skb->dev->dev_addr); |
4848 | orig_bcast = is_multicast_ether_addr_64bits(addr: eth->h_dest); |
4849 | orig_eth_type = eth->h_proto; |
4850 | |
4851 | act = bpf_prog_run_xdp(prog: xdp_prog, xdp); |
4852 | |
4853 | /* check if bpf_xdp_adjust_head was used */ |
4854 | off = xdp->data - orig_data; |
4855 | if (off) { |
4856 | if (off > 0) |
4857 | __skb_pull(skb, len: off); |
4858 | else if (off < 0) |
4859 | __skb_push(skb, len: -off); |
4860 | |
4861 | skb->mac_header += off; |
4862 | skb_reset_network_header(skb); |
4863 | } |
4864 | |
4865 | /* check if bpf_xdp_adjust_tail was used */ |
4866 | off = xdp->data_end - orig_data_end; |
4867 | if (off != 0) { |
4868 | skb_set_tail_pointer(skb, offset: xdp->data_end - xdp->data); |
4869 | skb->len += off; /* positive on grow, negative on shrink */ |
4870 | } |
4871 | |
4872 | /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers |
4873 | * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. |
4874 | */ |
4875 | if (xdp_buff_has_frags(xdp)) |
4876 | skb->data_len = skb_shinfo(skb)->xdp_frags_size; |
4877 | else |
4878 | skb->data_len = 0; |
4879 | |
4880 | /* check if XDP changed eth hdr such SKB needs update */ |
4881 | eth = (struct ethhdr *)xdp->data; |
4882 | if ((orig_eth_type != eth->h_proto) || |
4883 | (orig_host != ether_addr_equal_64bits(addr1: eth->h_dest, |
4884 | addr2: skb->dev->dev_addr)) || |
4885 | (orig_bcast != is_multicast_ether_addr_64bits(addr: eth->h_dest))) { |
4886 | __skb_push(skb, ETH_HLEN); |
4887 | skb->pkt_type = PACKET_HOST; |
4888 | skb->protocol = eth_type_trans(skb, dev: skb->dev); |
4889 | } |
4890 | |
4891 | /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull |
4892 | * before calling us again on redirect path. We do not call do_redirect |
4893 | * as we leave that up to the caller. |
4894 | * |
4895 | * Caller is responsible for managing lifetime of skb (i.e. calling |
4896 | * kfree_skb in response to actions it cannot handle/XDP_DROP). |
4897 | */ |
4898 | switch (act) { |
4899 | case XDP_REDIRECT: |
4900 | case XDP_TX: |
4901 | __skb_push(skb, len: mac_len); |
4902 | break; |
4903 | case XDP_PASS: |
4904 | metalen = xdp->data - xdp->data_meta; |
4905 | if (metalen) |
4906 | skb_metadata_set(skb, meta_len: metalen); |
4907 | break; |
4908 | } |
4909 | |
4910 | return act; |
4911 | } |
4912 | |
4913 | static int |
4914 | netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog) |
4915 | { |
4916 | struct sk_buff *skb = *pskb; |
4917 | int err, hroom, troom; |
4918 | |
4919 | if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) |
4920 | return 0; |
4921 | |
4922 | /* In case we have to go down the path and also linearize, |
4923 | * then lets do the pskb_expand_head() work just once here. |
4924 | */ |
4925 | hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); |
4926 | troom = skb->tail + skb->data_len - skb->end; |
4927 | err = pskb_expand_head(skb, |
4928 | nhead: hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, |
4929 | ntail: troom > 0 ? troom + 128 : 0, GFP_ATOMIC); |
4930 | if (err) |
4931 | return err; |
4932 | |
4933 | return skb_linearize(skb); |
4934 | } |
4935 | |
4936 | static u32 netif_receive_generic_xdp(struct sk_buff **pskb, |
4937 | struct xdp_buff *xdp, |
4938 | struct bpf_prog *xdp_prog) |
4939 | { |
4940 | struct sk_buff *skb = *pskb; |
4941 | u32 mac_len, act = XDP_DROP; |
4942 | |
4943 | /* Reinjected packets coming from act_mirred or similar should |
4944 | * not get XDP generic processing. |
4945 | */ |
4946 | if (skb_is_redirected(skb)) |
4947 | return XDP_PASS; |
4948 | |
4949 | /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM |
4950 | * bytes. This is the guarantee that also native XDP provides, |
4951 | * thus we need to do it here as well. |
4952 | */ |
4953 | mac_len = skb->data - skb_mac_header(skb); |
4954 | __skb_push(skb, len: mac_len); |
4955 | |
4956 | if (skb_cloned(skb) || skb_is_nonlinear(skb) || |
4957 | skb_headroom(skb) < XDP_PACKET_HEADROOM) { |
4958 | if (netif_skb_check_for_xdp(pskb, prog: xdp_prog)) |
4959 | goto do_drop; |
4960 | } |
4961 | |
4962 | __skb_pull(skb: *pskb, len: mac_len); |
4963 | |
4964 | act = bpf_prog_run_generic_xdp(skb: *pskb, xdp, xdp_prog); |
4965 | switch (act) { |
4966 | case XDP_REDIRECT: |
4967 | case XDP_TX: |
4968 | case XDP_PASS: |
4969 | break; |
4970 | default: |
4971 | bpf_warn_invalid_xdp_action(dev: (*pskb)->dev, prog: xdp_prog, act); |
4972 | fallthrough; |
4973 | case XDP_ABORTED: |
4974 | trace_xdp_exception(dev: (*pskb)->dev, xdp: xdp_prog, act); |
4975 | fallthrough; |
4976 | case XDP_DROP: |
4977 | do_drop: |
4978 | kfree_skb(skb: *pskb); |
4979 | break; |
4980 | } |
4981 | |
4982 | return act; |
4983 | } |
4984 | |
4985 | /* When doing generic XDP we have to bypass the qdisc layer and the |
4986 | * network taps in order to match in-driver-XDP behavior. This also means |
4987 | * that XDP packets are able to starve other packets going through a qdisc, |
4988 | * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX |
4989 | * queues, so they do not have this starvation issue. |
4990 | */ |
4991 | void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) |
4992 | { |
4993 | struct net_device *dev = skb->dev; |
4994 | struct netdev_queue *txq; |
4995 | bool free_skb = true; |
4996 | int cpu, rc; |
4997 | |
4998 | txq = netdev_core_pick_tx(dev, skb, NULL); |
4999 | cpu = smp_processor_id(); |
5000 | HARD_TX_LOCK(dev, txq, cpu); |
5001 | if (!netif_xmit_frozen_or_drv_stopped(dev_queue: txq)) { |
5002 | rc = netdev_start_xmit(skb, dev, txq, more: 0); |
5003 | if (dev_xmit_complete(rc)) |
5004 | free_skb = false; |
5005 | } |
5006 | HARD_TX_UNLOCK(dev, txq); |
5007 | if (free_skb) { |
5008 | trace_xdp_exception(dev, xdp: xdp_prog, act: XDP_TX); |
5009 | dev_core_stats_tx_dropped_inc(dev); |
5010 | kfree_skb(skb); |
5011 | } |
5012 | } |
5013 | |
5014 | static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); |
5015 | |
5016 | int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb) |
5017 | { |
5018 | if (xdp_prog) { |
5019 | struct xdp_buff xdp; |
5020 | u32 act; |
5021 | int err; |
5022 | |
5023 | act = netif_receive_generic_xdp(pskb, xdp: &xdp, xdp_prog); |
5024 | if (act != XDP_PASS) { |
5025 | switch (act) { |
5026 | case XDP_REDIRECT: |
5027 | err = xdp_do_generic_redirect(dev: (*pskb)->dev, skb: *pskb, |
5028 | xdp: &xdp, prog: xdp_prog); |
5029 | if (err) |
5030 | goto out_redir; |
5031 | break; |
5032 | case XDP_TX: |
5033 | generic_xdp_tx(skb: *pskb, xdp_prog); |
5034 | break; |
5035 | } |
5036 | return XDP_DROP; |
5037 | } |
5038 | } |
5039 | return XDP_PASS; |
5040 | out_redir: |
5041 | kfree_skb_reason(skb: *pskb, reason: SKB_DROP_REASON_XDP); |
5042 | return XDP_DROP; |
5043 | } |
5044 | EXPORT_SYMBOL_GPL(do_xdp_generic); |
5045 | |
5046 | static int netif_rx_internal(struct sk_buff *skb) |
5047 | { |
5048 | int ret; |
5049 | |
5050 | net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); |
5051 | |
5052 | trace_netif_rx(skb); |
5053 | |
5054 | #ifdef CONFIG_RPS |
5055 | if (static_branch_unlikely(&rps_needed)) { |
5056 | struct rps_dev_flow voidflow, *rflow = &voidflow; |
5057 | int cpu; |
5058 | |
5059 | rcu_read_lock(); |
5060 | |
5061 | cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow); |
5062 | if (cpu < 0) |
5063 | cpu = smp_processor_id(); |
5064 | |
5065 | ret = enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail); |
5066 | |
5067 | rcu_read_unlock(); |
5068 | } else |
5069 | #endif |
5070 | { |
5071 | unsigned int qtail; |
5072 | |
5073 | ret = enqueue_to_backlog(skb, smp_processor_id(), qtail: &qtail); |
5074 | } |
5075 | return ret; |
5076 | } |
5077 | |
5078 | /** |
5079 | * __netif_rx - Slightly optimized version of netif_rx |
5080 | * @skb: buffer to post |
5081 | * |
5082 | * This behaves as netif_rx except that it does not disable bottom halves. |
5083 | * As a result this function may only be invoked from the interrupt context |
5084 | * (either hard or soft interrupt). |
5085 | */ |
5086 | int __netif_rx(struct sk_buff *skb) |
5087 | { |
5088 | int ret; |
5089 | |
5090 | lockdep_assert_once(hardirq_count() | softirq_count()); |
5091 | |
5092 | trace_netif_rx_entry(skb); |
5093 | ret = netif_rx_internal(skb); |
5094 | trace_netif_rx_exit(ret); |
5095 | return ret; |
5096 | } |
5097 | EXPORT_SYMBOL(__netif_rx); |
5098 | |
5099 | /** |
5100 | * netif_rx - post buffer to the network code |
5101 | * @skb: buffer to post |
5102 | * |
5103 | * This function receives a packet from a device driver and queues it for |
5104 | * the upper (protocol) levels to process via the backlog NAPI device. It |
5105 | * always succeeds. The buffer may be dropped during processing for |
5106 | * congestion control or by the protocol layers. |
5107 | * The network buffer is passed via the backlog NAPI device. Modern NIC |
5108 | * driver should use NAPI and GRO. |
5109 | * This function can used from interrupt and from process context. The |
5110 | * caller from process context must not disable interrupts before invoking |
5111 | * this function. |
5112 | * |
5113 | * return values: |
5114 | * NET_RX_SUCCESS (no congestion) |
5115 | * NET_RX_DROP (packet was dropped) |
5116 | * |
5117 | */ |
5118 | int netif_rx(struct sk_buff *skb) |
5119 | { |
5120 | bool need_bh_off = !(hardirq_count() | softirq_count()); |
5121 | int ret; |
5122 | |
5123 | if (need_bh_off) |
5124 | local_bh_disable(); |
5125 | trace_netif_rx_entry(skb); |
5126 | ret = netif_rx_internal(skb); |
5127 | trace_netif_rx_exit(ret); |
5128 | if (need_bh_off) |
5129 | local_bh_enable(); |
5130 | return ret; |
5131 | } |
5132 | EXPORT_SYMBOL(netif_rx); |
5133 | |
5134 | static __latent_entropy void net_tx_action(struct softirq_action *h) |
5135 | { |
5136 | struct softnet_data *sd = this_cpu_ptr(&softnet_data); |
5137 | |
5138 | if (sd->completion_queue) { |
5139 | struct sk_buff *clist; |
5140 | |
5141 | local_irq_disable(); |
5142 | clist = sd->completion_queue; |
5143 | sd->completion_queue = NULL; |
5144 | local_irq_enable(); |
5145 | |
5146 | while (clist) { |
5147 | struct sk_buff *skb = clist; |
5148 | |
5149 | clist = clist->next; |
5150 | |
5151 | WARN_ON(refcount_read(&skb->users)); |
5152 | if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) |
5153 | trace_consume_skb(skb, location: net_tx_action); |
5154 | else |
5155 | trace_kfree_skb(skb, location: net_tx_action, |
5156 | reason: get_kfree_skb_cb(skb)->reason); |
5157 | |
5158 | if (skb->fclone != SKB_FCLONE_UNAVAILABLE) |
5159 | __kfree_skb(skb); |
5160 | else |
5161 | __napi_kfree_skb(skb, |
5162 | reason: get_kfree_skb_cb(skb)->reason); |
5163 | } |
5164 | } |
5165 | |
5166 | if (sd->output_queue) { |
5167 | struct Qdisc *head; |
5168 | |
5169 | local_irq_disable(); |
5170 | head = sd->output_queue; |
5171 | sd->output_queue = NULL; |
5172 | sd->output_queue_tailp = &sd->output_queue; |
5173 | local_irq_enable(); |
5174 | |
5175 | rcu_read_lock(); |
5176 | |
5177 | while (head) { |
5178 | struct Qdisc *q = head; |
5179 | spinlock_t *root_lock = NULL; |
5180 | |
5181 | head = head->next_sched; |
5182 | |
5183 | /* We need to make sure head->next_sched is read |
5184 | * before clearing __QDISC_STATE_SCHED |
5185 | */ |
5186 | smp_mb__before_atomic(); |
5187 | |
5188 | if (!(q->flags & TCQ_F_NOLOCK)) { |
5189 | root_lock = qdisc_lock(qdisc: q); |
5190 | spin_lock(lock: root_lock); |
5191 | } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, |
5192 | &q->state))) { |
5193 | /* There is a synchronize_net() between |
5194 | * STATE_DEACTIVATED flag being set and |
5195 | * qdisc_reset()/some_qdisc_is_busy() in |
5196 | * dev_deactivate(), so we can safely bail out |
5197 | * early here to avoid data race between |
5198 | * qdisc_deactivate() and some_qdisc_is_busy() |
5199 | * for lockless qdisc. |
5200 | */ |
5201 | clear_bit(nr: __QDISC_STATE_SCHED, addr: &q->state); |
5202 | continue; |
5203 | } |
5204 | |
5205 | clear_bit(nr: __QDISC_STATE_SCHED, addr: &q->state); |
5206 | qdisc_run(q); |
5207 | if (root_lock) |
5208 | spin_unlock(lock: root_lock); |
5209 | } |
5210 | |
5211 | rcu_read_unlock(); |
5212 | } |
5213 | |
5214 | xfrm_dev_backlog(sd); |
5215 | } |
5216 | |
5217 | #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) |
5218 | /* This hook is defined here for ATM LANE */ |
5219 | int (*br_fdb_test_addr_hook)(struct net_device *dev, |
5220 | unsigned char *addr) __read_mostly; |
5221 | EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); |
5222 | #endif |
5223 | |
5224 | /** |
5225 | * netdev_is_rx_handler_busy - check if receive handler is registered |
5226 | * @dev: device to check |
5227 | * |
5228 | * Check if a receive handler is already registered for a given device. |
5229 | * Return true if there one. |
5230 | * |
5231 | * The caller must hold the rtnl_mutex. |
5232 | */ |
5233 | bool netdev_is_rx_handler_busy(struct net_device *dev) |
5234 | { |
5235 | ASSERT_RTNL(); |
5236 | return dev && rtnl_dereference(dev->rx_handler); |
5237 | } |
5238 | EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); |
5239 | |
5240 | /** |
5241 | * netdev_rx_handler_register - register receive handler |
5242 | * @dev: device to register a handler for |
5243 | * @rx_handler: receive handler to register |
5244 | * @rx_handler_data: data pointer that is used by rx handler |
5245 | * |
5246 | * Register a receive handler for a device. This handler will then be |
5247 | * called from __netif_receive_skb. A negative errno code is returned |
5248 | * on a failure. |
5249 | * |
5250 | * The caller must hold the rtnl_mutex. |
5251 | * |
5252 | * For a general description of rx_handler, see enum rx_handler_result. |
5253 | */ |
5254 | int netdev_rx_handler_register(struct net_device *dev, |
5255 | rx_handler_func_t *rx_handler, |
5256 | void *rx_handler_data) |
5257 | { |
5258 | if (netdev_is_rx_handler_busy(dev)) |
5259 | return -EBUSY; |
5260 | |
5261 | if (dev->priv_flags & IFF_NO_RX_HANDLER) |
5262 | return -EINVAL; |
5263 | |
5264 | /* Note: rx_handler_data must be set before rx_handler */ |
5265 | rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); |
5266 | rcu_assign_pointer(dev->rx_handler, rx_handler); |
5267 | |
5268 | return 0; |
5269 | } |
5270 | EXPORT_SYMBOL_GPL(netdev_rx_handler_register); |
5271 | |
5272 | /** |
5273 | * netdev_rx_handler_unregister - unregister receive handler |
5274 | * @dev: device to unregister a handler from |
5275 | * |
5276 | * Unregister a receive handler from a device. |
5277 | * |
5278 | * The caller must hold the rtnl_mutex. |
5279 | */ |
5280 | void netdev_rx_handler_unregister(struct net_device *dev) |
5281 | { |
5282 | |
5283 | ASSERT_RTNL(); |
5284 | RCU_INIT_POINTER(dev->rx_handler, NULL); |
5285 | /* a reader seeing a non NULL rx_handler in a rcu_read_lock() |
5286 | * section has a guarantee to see a non NULL rx_handler_data |
5287 | * as well. |
5288 | */ |
5289 | synchronize_net(); |
5290 | RCU_INIT_POINTER(dev->rx_handler_data, NULL); |
5291 | } |
5292 | EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); |
5293 | |
5294 | /* |
5295 | * Limit the use of PFMEMALLOC reserves to those protocols that implement |
5296 | * the special handling of PFMEMALLOC skbs. |
5297 | */ |
5298 | static bool skb_pfmemalloc_protocol(struct sk_buff *skb) |
5299 | { |
5300 | switch (skb->protocol) { |
5301 | case htons(ETH_P_ARP): |
5302 | case htons(ETH_P_IP): |
5303 | case htons(ETH_P_IPV6): |
5304 | case htons(ETH_P_8021Q): |
5305 | case htons(ETH_P_8021AD): |
5306 | return true; |
5307 | default: |
5308 | return false; |
5309 | } |
5310 | } |
5311 | |
5312 | static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, |
5313 | int *ret, struct net_device *orig_dev) |
5314 | { |
5315 | if (nf_hook_ingress_active(skb)) { |
5316 | int ingress_retval; |
5317 | |
5318 | if (*pt_prev) { |
5319 | *ret = deliver_skb(skb, pt_prev: *pt_prev, orig_dev); |
5320 | *pt_prev = NULL; |
5321 | } |
5322 | |
5323 | rcu_read_lock(); |
5324 | ingress_retval = nf_hook_ingress(skb); |
5325 | rcu_read_unlock(); |
5326 | return ingress_retval; |
5327 | } |
5328 | return 0; |
5329 | } |
5330 | |
5331 | static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, |
5332 | struct packet_type **ppt_prev) |
5333 | { |
5334 | struct packet_type *ptype, *pt_prev; |
5335 | rx_handler_func_t *rx_handler; |
5336 | struct sk_buff *skb = *pskb; |
5337 | struct net_device *orig_dev; |
5338 | bool deliver_exact = false; |
5339 | int ret = NET_RX_DROP; |
5340 | __be16 type; |
5341 | |
5342 | net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); |
5343 | |
5344 | trace_netif_receive_skb(skb); |
5345 | |
5346 | orig_dev = skb->dev; |
5347 | |
5348 | skb_reset_network_header(skb); |
5349 | if (!skb_transport_header_was_set(skb)) |
5350 | skb_reset_transport_header(skb); |
5351 | skb_reset_mac_len(skb); |
5352 | |
5353 | pt_prev = NULL; |
5354 | |
5355 | another_round: |
5356 | skb->skb_iif = skb->dev->ifindex; |
5357 | |
5358 | __this_cpu_inc(softnet_data.processed); |
5359 | |
5360 | if (static_branch_unlikely(&generic_xdp_needed_key)) { |
5361 | int ret2; |
5362 | |
5363 | migrate_disable(); |
5364 | ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), |
5365 | &skb); |
5366 | migrate_enable(); |
5367 | |
5368 | if (ret2 != XDP_PASS) { |
5369 | ret = NET_RX_DROP; |
5370 | goto out; |
5371 | } |
5372 | } |
5373 | |
5374 | if (eth_type_vlan(ethertype: skb->protocol)) { |
5375 | skb = skb_vlan_untag(skb); |
5376 | if (unlikely(!skb)) |
5377 | goto out; |
5378 | } |
5379 | |
5380 | if (skb_skip_tc_classify(skb)) |
5381 | goto skip_classify; |
5382 | |
5383 | if (pfmemalloc) |
5384 | goto skip_taps; |
5385 | |
5386 | list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) { |
5387 | if (pt_prev) |
5388 | ret = deliver_skb(skb, pt_prev, orig_dev); |
5389 | pt_prev = ptype; |
5390 | } |
5391 | |
5392 | list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { |
5393 | if (pt_prev) |
5394 | ret = deliver_skb(skb, pt_prev, orig_dev); |
5395 | pt_prev = ptype; |
5396 | } |
5397 | |
5398 | skip_taps: |
5399 | #ifdef CONFIG_NET_INGRESS |
5400 | if (static_branch_unlikely(&ingress_needed_key)) { |
5401 | bool another = false; |
5402 | |
5403 | nf_skip_egress(skb, skip: true); |
5404 | skb = sch_handle_ingress(skb, pt_prev: &pt_prev, ret: &ret, orig_dev, |
5405 | another: &another); |
5406 | if (another) |
5407 | goto another_round; |
5408 | if (!skb) |
5409 | goto out; |
5410 | |
5411 | nf_skip_egress(skb, skip: false); |
5412 | if (nf_ingress(skb, pt_prev: &pt_prev, ret: &ret, orig_dev) < 0) |
5413 | goto out; |
5414 | } |
5415 | #endif |
5416 | skb_reset_redirect(skb); |
5417 | skip_classify: |
5418 | if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) |
5419 | goto drop; |
5420 | |
5421 | if (skb_vlan_tag_present(skb)) { |
5422 | if (pt_prev) { |
5423 | ret = deliver_skb(skb, pt_prev, orig_dev); |
5424 | pt_prev = NULL; |
5425 | } |
5426 | if (vlan_do_receive(skb: &skb)) |
5427 | goto another_round; |
5428 | else if (unlikely(!skb)) |
5429 | goto out; |
5430 | } |
5431 | |
5432 | rx_handler = rcu_dereference(skb->dev->rx_handler); |
5433 | if (rx_handler) { |
5434 | if (pt_prev) { |
5435 | ret = deliver_skb(skb, pt_prev, orig_dev); |
5436 | pt_prev = NULL; |
5437 | } |
5438 | switch (rx_handler(&skb)) { |
5439 | case RX_HANDLER_CONSUMED: |
5440 | ret = NET_RX_SUCCESS; |
5441 | goto out; |
5442 | case RX_HANDLER_ANOTHER: |
5443 | goto another_round; |
5444 | case RX_HANDLER_EXACT: |
5445 | deliver_exact = true; |
5446 | break; |
5447 | case RX_HANDLER_PASS: |
5448 | break; |
5449 | default: |
5450 | BUG(); |
5451 | } |
5452 | } |
5453 | |
5454 | if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(dev: skb->dev)) { |
5455 | check_vlan_id: |
5456 | if (skb_vlan_tag_get_id(skb)) { |
5457 | /* Vlan id is non 0 and vlan_do_receive() above couldn't |
5458 | * find vlan device. |
5459 | */ |
5460 | skb->pkt_type = PACKET_OTHERHOST; |
5461 | } else if (eth_type_vlan(ethertype: skb->protocol)) { |
5462 | /* Outer header is 802.1P with vlan 0, inner header is |
5463 | * 802.1Q or 802.1AD and vlan_do_receive() above could |
5464 | * not find vlan dev for vlan id 0. |
5465 | */ |
5466 | __vlan_hwaccel_clear_tag(skb); |
5467 | skb = skb_vlan_untag(skb); |
5468 | if (unlikely(!skb)) |
5469 | goto out; |
5470 | if (vlan_do_receive(skb: &skb)) |
5471 | /* After stripping off 802.1P header with vlan 0 |
5472 | * vlan dev is found for inner header. |
5473 | */ |
5474 | goto another_round; |
5475 | else if (unlikely(!skb)) |
5476 | goto out; |
5477 | else |
5478 | /* We have stripped outer 802.1P vlan 0 header. |
5479 | * But could not find vlan dev. |
5480 | * check again for vlan id to set OTHERHOST. |
5481 | */ |
5482 | goto check_vlan_id; |
5483 | } |
5484 | /* Note: we might in the future use prio bits |
5485 | * and set skb->priority like in vlan_do_receive() |
5486 | * For the time being, just ignore Priority Code Point |
5487 | */ |
5488 | __vlan_hwaccel_clear_tag(skb); |
5489 | } |
5490 | |
5491 | type = skb->protocol; |
5492 | |
5493 | /* deliver only exact match when indicated */ |
5494 | if (likely(!deliver_exact)) { |
5495 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
5496 | ptype_list: &ptype_base[ntohs(type) & |
5497 | PTYPE_HASH_MASK]); |
5498 | } |
5499 | |
5500 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
5501 | ptype_list: &orig_dev->ptype_specific); |
5502 | |
5503 | if (unlikely(skb->dev != orig_dev)) { |
5504 | deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type, |
5505 | ptype_list: &skb->dev->ptype_specific); |
5506 | } |
5507 | |
5508 | if (pt_prev) { |
5509 | if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) |
5510 | goto drop; |
5511 | *ppt_prev = pt_prev; |
5512 | } else { |
5513 | drop: |
5514 | if (!deliver_exact) |
5515 | dev_core_stats_rx_dropped_inc(dev: skb->dev); |
5516 | else |
5517 | dev_core_stats_rx_nohandler_inc(dev: skb->dev); |
5518 | kfree_skb_reason(skb, reason: SKB_DROP_REASON_UNHANDLED_PROTO); |
5519 | /* Jamal, now you will not able to escape explaining |
5520 | * me how you were going to use this. :-) |
5521 | */ |
5522 | ret = NET_RX_DROP; |
5523 | } |
5524 | |
5525 | out: |
5526 | /* The invariant here is that if *ppt_prev is not NULL |
5527 | * then skb should also be non-NULL. |
5528 | * |
5529 | * Apparently *ppt_prev assignment above holds this invariant due to |
5530 | * skb dereferencing near it. |
5531 | */ |
5532 | *pskb = skb; |
5533 | return ret; |
5534 | } |
5535 | |
5536 | static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) |
5537 | { |
5538 | struct net_device *orig_dev = skb->dev; |
5539 | struct packet_type *pt_prev = NULL; |
5540 | int ret; |
5541 | |
5542 | ret = __netif_receive_skb_core(pskb: &skb, pfmemalloc, ppt_prev: &pt_prev); |
5543 | if (pt_prev) |
5544 | ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, |
5545 | skb->dev, pt_prev, orig_dev); |
5546 | return ret; |
5547 | } |
5548 | |
5549 | /** |
5550 | * netif_receive_skb_core - special purpose version of netif_receive_skb |
5551 | * @skb: buffer to process |
5552 | * |
5553 | * More direct receive version of netif_receive_skb(). It should |
5554 | * only be used by callers that have a need to skip RPS and Generic XDP. |
5555 | * Caller must also take care of handling if ``(page_is_)pfmemalloc``. |
5556 | * |
5557 | * This function may only be called from softirq context and interrupts |
5558 | * should be enabled. |
5559 | * |
5560 | * Return values (usually ignored): |
5561 | * NET_RX_SUCCESS: no congestion |
5562 | * NET_RX_DROP: packet was dropped |
5563 | */ |
5564 | int netif_receive_skb_core(struct sk_buff *skb) |
5565 | { |
5566 | int ret; |
5567 | |
5568 | rcu_read_lock(); |
5569 | ret = __netif_receive_skb_one_core(skb, pfmemalloc: false); |
5570 | rcu_read_unlock(); |
5571 | |
5572 | return ret; |
5573 | } |
5574 | EXPORT_SYMBOL(netif_receive_skb_core); |
5575 | |
5576 | static inline void __netif_receive_skb_list_ptype(struct list_head *head, |
5577 | struct packet_type *pt_prev, |
5578 | struct net_device *orig_dev) |
5579 | { |
5580 | struct sk_buff *skb, *next; |
5581 | |
5582 | if (!pt_prev) |
5583 | return; |
5584 | if (list_empty(head)) |
5585 | return; |
5586 | if (pt_prev->list_func != NULL) |
5587 | INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, |
5588 | ip_list_rcv, head, pt_prev, orig_dev); |
5589 | else |
5590 | list_for_each_entry_safe(skb, next, head, list) { |
5591 | skb_list_del_init(skb); |
5592 | pt_prev->func(skb, skb->dev, pt_prev, orig_dev); |
5593 | } |
5594 | } |
5595 | |
5596 | static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) |
5597 | { |
5598 | /* Fast-path assumptions: |
5599 | * - There is no RX handler. |
5600 | * - Only one packet_type matches. |
5601 | * If either of these fails, we will end up doing some per-packet |
5602 | * processing in-line, then handling the 'last ptype' for the whole |
5603 | * sublist. This can't cause out-of-order delivery to any single ptype, |
5604 | * because the 'last ptype' must be constant across the sublist, and all |
5605 | * other ptypes are handled per-packet. |
5606 | */ |
5607 | /* Current (common) ptype of sublist */ |
5608 | struct packet_type *pt_curr = NULL; |
5609 | /* Current (common) orig_dev of sublist */ |
5610 | struct net_device *od_curr = NULL; |
5611 | struct list_head sublist; |
5612 | struct sk_buff *skb, *next; |
5613 | |
5614 | INIT_LIST_HEAD(list: &sublist); |
5615 | list_for_each_entry_safe(skb, next, head, list) { |
5616 | struct net_device *orig_dev = skb->dev; |
5617 | struct packet_type *pt_prev = NULL; |
5618 | |
5619 | skb_list_del_init(skb); |
5620 | __netif_receive_skb_core(pskb: &skb, pfmemalloc, ppt_prev: &pt_prev); |
5621 | if (!pt_prev) |
5622 | continue; |
5623 | if (pt_curr != pt_prev || od_curr != orig_dev) { |
5624 | /* dispatch old sublist */ |
5625 | __netif_receive_skb_list_ptype(head: &sublist, pt_prev: pt_curr, orig_dev: od_curr); |
5626 | /* start new sublist */ |
5627 | INIT_LIST_HEAD(list: &sublist); |
5628 | pt_curr = pt_prev; |
5629 | od_curr = orig_dev; |
5630 | } |
5631 | list_add_tail(new: &skb->list, head: &sublist); |
5632 | } |
5633 | |
5634 | /* dispatch final sublist */ |
5635 | __netif_receive_skb_list_ptype(head: &sublist, pt_prev: pt_curr, orig_dev: od_curr); |
5636 | } |
5637 | |
5638 | static int __netif_receive_skb(struct sk_buff *skb) |
5639 | { |
5640 | int ret; |
5641 | |
5642 | if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { |
5643 | unsigned int noreclaim_flag; |
5644 | |
5645 | /* |
5646 | * PFMEMALLOC skbs are special, they should |
5647 | * - be delivered to SOCK_MEMALLOC sockets only |
5648 | * - stay away from userspace |
5649 | * - have bounded memory usage |
5650 | * |
5651 | * Use PF_MEMALLOC as this saves us from propagating the allocation |
5652 | * context down to all allocation sites. |
5653 | */ |
5654 | noreclaim_flag = memalloc_noreclaim_save(); |
5655 | ret = __netif_receive_skb_one_core(skb, pfmemalloc: true); |
5656 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
5657 | } else |
5658 | ret = __netif_receive_skb_one_core(skb, pfmemalloc: false); |
5659 | |
5660 | return ret; |
5661 | } |
5662 | |
5663 | static void __netif_receive_skb_list(struct list_head *head) |
5664 | { |
5665 | unsigned long noreclaim_flag = 0; |
5666 | struct sk_buff *skb, *next; |
5667 | bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ |
5668 | |
5669 | list_for_each_entry_safe(skb, next, head, list) { |
5670 | if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { |
5671 | struct list_head sublist; |
5672 | |
5673 | /* Handle the previous sublist */ |
5674 | list_cut_before(list: &sublist, head, entry: &skb->list); |
5675 | if (!list_empty(head: &sublist)) |
5676 | __netif_receive_skb_list_core(head: &sublist, pfmemalloc); |
5677 | pfmemalloc = !pfmemalloc; |
5678 | /* See comments in __netif_receive_skb */ |
5679 | if (pfmemalloc) |
5680 | noreclaim_flag = memalloc_noreclaim_save(); |
5681 | else |
5682 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
5683 | } |
5684 | } |
5685 | /* Handle the remaining sublist */ |
5686 | if (!list_empty(head)) |
5687 | __netif_receive_skb_list_core(head, pfmemalloc); |
5688 | /* Restore pflags */ |
5689 | if (pfmemalloc) |
5690 | memalloc_noreclaim_restore(flags: noreclaim_flag); |
5691 | } |
5692 | |
5693 | static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) |
5694 | { |
5695 | struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); |
5696 | struct bpf_prog *new = xdp->prog; |
5697 | int ret = 0; |
5698 | |
5699 | switch (xdp->command) { |
5700 | case XDP_SETUP_PROG: |
5701 | rcu_assign_pointer(dev->xdp_prog, new); |
5702 | if (old) |
5703 | bpf_prog_put(prog: old); |
5704 | |
5705 | if (old && !new) { |
5706 | static_branch_dec(&generic_xdp_needed_key); |
5707 | } else if (new && !old) { |
5708 | static_branch_inc(&generic_xdp_needed_key); |
5709 | dev_disable_lro(dev); |
5710 | dev_disable_gro_hw(dev); |
5711 | } |
5712 | break; |
5713 | |
5714 | default: |
5715 | ret = -EINVAL; |
5716 | break; |
5717 | } |
5718 | |
5719 | return ret; |
5720 | } |
5721 | |
5722 | static int netif_receive_skb_internal(struct sk_buff *skb) |
5723 | { |
5724 | int ret; |
5725 | |
5726 | net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); |
5727 | |
5728 | if (skb_defer_rx_timestamp(skb)) |
5729 | return NET_RX_SUCCESS; |
5730 | |
5731 | rcu_read_lock(); |
5732 | #ifdef CONFIG_RPS |
5733 | if (static_branch_unlikely(&rps_needed)) { |
5734 | struct rps_dev_flow voidflow, *rflow = &voidflow; |
5735 | int cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow); |
5736 | |
5737 | if (cpu >= 0) { |
5738 | ret = enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail); |
5739 | rcu_read_unlock(); |
5740 | return ret; |
5741 | } |
5742 | } |
5743 | #endif |
5744 | ret = __netif_receive_skb(skb); |
5745 | rcu_read_unlock(); |
5746 | return ret; |
5747 | } |
5748 | |
5749 | void netif_receive_skb_list_internal(struct list_head *head) |
5750 | { |
5751 | struct sk_buff *skb, *next; |
5752 | struct list_head sublist; |
5753 | |
5754 | INIT_LIST_HEAD(list: &sublist); |
5755 | list_for_each_entry_safe(skb, next, head, list) { |
5756 | net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), |
5757 | skb); |
5758 | skb_list_del_init(skb); |
5759 | if (!skb_defer_rx_timestamp(skb)) |
5760 | list_add_tail(new: &skb->list, head: &sublist); |
5761 | } |
5762 | list_splice_init(list: &sublist, head); |
5763 | |
5764 | rcu_read_lock(); |
5765 | #ifdef CONFIG_RPS |
5766 | if (static_branch_unlikely(&rps_needed)) { |
5767 | list_for_each_entry_safe(skb, next, head, list) { |
5768 | struct rps_dev_flow voidflow, *rflow = &voidflow; |
5769 | int cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow); |
5770 | |
5771 | if (cpu >= 0) { |
5772 | /* Will be handled, remove from list */ |
5773 | skb_list_del_init(skb); |
5774 | enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail); |
5775 | } |
5776 | } |
5777 | } |
5778 | #endif |
5779 | __netif_receive_skb_list(head); |
5780 | rcu_read_unlock(); |
5781 | } |
5782 | |
5783 | /** |
5784 | * netif_receive_skb - process receive buffer from network |
5785 | * @skb: buffer to process |
5786 | * |
5787 | * netif_receive_skb() is the main receive data processing function. |
5788 | * It always succeeds. The buffer may be dropped during processing |
5789 | * for congestion control or by the protocol layers. |
5790 | * |
5791 | * This function may only be called from softirq context and interrupts |
5792 | * should be enabled. |
5793 | * |
5794 | * Return values (usually ignored): |
5795 | * NET_RX_SUCCESS: no congestion |
5796 | * NET_RX_DROP: packet was dropped |
5797 | */ |
5798 | int netif_receive_skb(struct sk_buff *skb) |
5799 | { |
5800 | int ret; |
5801 | |
5802 | trace_netif_receive_skb_entry(skb); |
5803 | |
5804 | ret = netif_receive_skb_internal(skb); |
5805 | trace_netif_receive_skb_exit(ret); |
5806 | |
5807 | return ret; |
5808 | } |
5809 | EXPORT_SYMBOL(netif_receive_skb); |
5810 | |
5811 | /** |
5812 | * netif_receive_skb_list - process many receive buffers from network |
5813 | * @head: list of skbs to process. |
5814 | * |
5815 | * Since return value of netif_receive_skb() is normally ignored, and |
5816 | * wouldn't be meaningful for a list, this function returns void. |
5817 | * |
5818 | * This function may only be called from softirq context and interrupts |
5819 | * should be enabled. |
5820 | */ |
5821 | void netif_receive_skb_list(struct list_head *head) |
5822 | { |
5823 | struct sk_buff *skb; |
5824 | |
5825 | if (list_empty(head)) |
5826 | return; |
5827 | if (trace_netif_receive_skb_list_entry_enabled()) { |
5828 | list_for_each_entry(skb, head, list) |
5829 | trace_netif_receive_skb_list_entry(skb); |
5830 | } |
5831 | netif_receive_skb_list_internal(head); |
5832 | trace_netif_receive_skb_list_exit(ret: 0); |
5833 | } |
5834 | EXPORT_SYMBOL(netif_receive_skb_list); |
5835 | |
5836 | static DEFINE_PER_CPU(struct work_struct, flush_works); |
5837 | |
5838 | /* Network device is going away, flush any packets still pending */ |
5839 | static void flush_backlog(struct work_struct *work) |
5840 | { |
5841 | struct sk_buff *skb, *tmp; |
5842 | struct softnet_data *sd; |
5843 | |
5844 | local_bh_disable(); |
5845 | sd = this_cpu_ptr(&softnet_data); |
5846 | |
5847 | rps_lock_irq_disable(sd); |
5848 | skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { |
5849 | if (skb->dev->reg_state == NETREG_UNREGISTERING) { |
5850 | __skb_unlink(skb, list: &sd->input_pkt_queue); |
5851 | dev_kfree_skb_irq(skb); |
5852 | input_queue_head_incr(sd); |
5853 | } |
5854 | } |
5855 | rps_unlock_irq_enable(sd); |
5856 | |
5857 | skb_queue_walk_safe(&sd->process_queue, skb, tmp) { |
5858 | if (skb->dev->reg_state == NETREG_UNREGISTERING) { |
5859 | __skb_unlink(skb, list: &sd->process_queue); |
5860 | kfree_skb(skb); |
5861 | input_queue_head_incr(sd); |
5862 | } |
5863 | } |
5864 | local_bh_enable(); |
5865 | } |
5866 | |
5867 | static bool flush_required(int cpu) |
5868 | { |
5869 | #if IS_ENABLED(CONFIG_RPS) |
5870 | struct softnet_data *sd = &per_cpu(softnet_data, cpu); |
5871 | bool do_flush; |
5872 | |
5873 | rps_lock_irq_disable(sd); |
5874 | |
5875 | /* as insertion into process_queue happens with the rps lock held, |
5876 | * process_queue access may race only with dequeue |
5877 | */ |
5878 | do_flush = !skb_queue_empty(list: &sd->input_pkt_queue) || |
5879 | !skb_queue_empty_lockless(list: &sd->process_queue); |
5880 | rps_unlock_irq_enable(sd); |
5881 | |
5882 | return do_flush; |
5883 | #endif |
5884 | /* without RPS we can't safely check input_pkt_queue: during a |
5885 | * concurrent remote skb_queue_splice() we can detect as empty both |
5886 | * input_pkt_queue and process_queue even if the latter could end-up |
5887 | * containing a lot of packets. |
5888 | */ |
5889 | return true; |
5890 | } |
5891 | |
5892 | static void flush_all_backlogs(void) |
5893 | { |
5894 | static cpumask_t flush_cpus; |
5895 | unsigned int cpu; |
5896 | |
5897 | /* since we are under rtnl lock protection we can use static data |
5898 | * for the cpumask and avoid allocating on stack the possibly |
5899 | * large mask |
5900 | */ |
5901 | ASSERT_RTNL(); |
5902 | |
5903 | cpus_read_lock(); |
5904 | |
5905 | cpumask_clear(dstp: &flush_cpus); |
5906 | for_each_online_cpu(cpu) { |
5907 | if (flush_required(cpu)) { |
5908 | queue_work_on(cpu, wq: system_highpri_wq, |
5909 | per_cpu_ptr(&flush_works, cpu)); |
5910 | cpumask_set_cpu(cpu, dstp: &flush_cpus); |
5911 | } |
5912 | } |
5913 | |
5914 | /* we can have in flight packet[s] on the cpus we are not flushing, |
5915 | * synchronize_net() in unregister_netdevice_many() will take care of |
5916 | * them |
5917 | */ |
5918 | for_each_cpu(cpu, &flush_cpus) |
5919 | flush_work(per_cpu_ptr(&flush_works, cpu)); |
5920 | |
5921 | cpus_read_unlock(); |
5922 | } |
5923 | |
5924 | static void net_rps_send_ipi(struct softnet_data *remsd) |
5925 | { |
5926 | #ifdef CONFIG_RPS |
5927 | while (remsd) { |
5928 | struct softnet_data *next = remsd->rps_ipi_next; |
5929 | |
5930 | if (cpu_online(cpu: remsd->cpu)) |
5931 | smp_call_function_single_async(cpu: remsd->cpu, csd: &remsd->csd); |
5932 | remsd = next; |
5933 | } |
5934 | #endif |
5935 | } |
5936 | |
5937 | /* |
5938 | * net_rps_action_and_irq_enable sends any pending IPI's for rps. |
5939 | * Note: called with local irq disabled, but exits with local irq enabled. |
5940 | */ |
5941 | static void net_rps_action_and_irq_enable(struct softnet_data *sd) |
5942 | { |
5943 | #ifdef CONFIG_RPS |
5944 | struct softnet_data *remsd = sd->rps_ipi_list; |
5945 | |
5946 | if (remsd) { |
5947 | sd->rps_ipi_list = NULL; |
5948 | |
5949 | local_irq_enable(); |
5950 | |
5951 | /* Send pending IPI's to kick RPS processing on remote cpus. */ |
5952 | net_rps_send_ipi(remsd); |
5953 | } else |
5954 | #endif |
5955 | local_irq_enable(); |
5956 | } |
5957 | |
5958 | static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) |
5959 | { |
5960 | #ifdef CONFIG_RPS |
5961 | return sd->rps_ipi_list != NULL; |
5962 | #else |
5963 | return false; |
5964 | #endif |
5965 | } |
5966 | |
5967 | static int process_backlog(struct napi_struct *napi, int quota) |
5968 | { |
5969 | struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); |
5970 | bool again = true; |
5971 | int work = 0; |
5972 | |
5973 | /* Check if we have pending ipi, its better to send them now, |
5974 | * not waiting net_rx_action() end. |
5975 | */ |
5976 | if (sd_has_rps_ipi_waiting(sd)) { |
5977 | local_irq_disable(); |
5978 | net_rps_action_and_irq_enable(sd); |
5979 | } |
5980 | |
5981 | napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); |
5982 | while (again) { |
5983 | struct sk_buff *skb; |
5984 | |
5985 | while ((skb = __skb_dequeue(list: &sd->process_queue))) { |
5986 | rcu_read_lock(); |
5987 | __netif_receive_skb(skb); |
5988 | rcu_read_unlock(); |
5989 | input_queue_head_incr(sd); |
5990 | if (++work >= quota) |
5991 | return work; |
5992 | |
5993 | } |
5994 | |
5995 | rps_lock_irq_disable(sd); |
5996 | if (skb_queue_empty(list: &sd->input_pkt_queue)) { |
5997 | /* |
5998 | * Inline a custom version of __napi_complete(). |
5999 | * only current cpu owns and manipulates this napi, |
6000 | * and NAPI_STATE_SCHED is the only possible flag set |
6001 | * on backlog. |
6002 | * We can use a plain write instead of clear_bit(), |
6003 | * and we dont need an smp_mb() memory barrier. |
6004 | */ |
6005 | napi->state = 0; |
6006 | again = false; |
6007 | } else { |
6008 | skb_queue_splice_tail_init(list: &sd->input_pkt_queue, |
6009 | head: &sd->process_queue); |
6010 | } |
6011 | rps_unlock_irq_enable(sd); |
6012 | } |
6013 | |
6014 | return work; |
6015 | } |
6016 | |
6017 | /** |
6018 | * __napi_schedule - schedule for receive |
6019 | * @n: entry to schedule |
6020 | * |
6021 | * The entry's receive function will be scheduled to run. |
6022 | * Consider using __napi_schedule_irqoff() if hard irqs are masked. |
6023 | */ |
6024 | void __napi_schedule(struct napi_struct *n) |
6025 | { |
6026 | unsigned long flags; |
6027 | |
6028 | local_irq_save(flags); |
6029 | ____napi_schedule(this_cpu_ptr(&softnet_data), napi: n); |
6030 | local_irq_restore(flags); |
6031 | } |
6032 | EXPORT_SYMBOL(__napi_schedule); |
6033 | |
6034 | /** |
6035 | * napi_schedule_prep - check if napi can be scheduled |
6036 | * @n: napi context |
6037 | * |
6038 | * Test if NAPI routine is already running, and if not mark |
6039 | * it as running. This is used as a condition variable to |
6040 | * insure only one NAPI poll instance runs. We also make |
6041 | * sure there is no pending NAPI disable. |
6042 | */ |
6043 | bool napi_schedule_prep(struct napi_struct *n) |
6044 | { |
6045 | unsigned long new, val = READ_ONCE(n->state); |
6046 | |
6047 | do { |
6048 | if (unlikely(val & NAPIF_STATE_DISABLE)) |
6049 | return false; |
6050 | new = val | NAPIF_STATE_SCHED; |
6051 | |
6052 | /* Sets STATE_MISSED bit if STATE_SCHED was already set |
6053 | * This was suggested by Alexander Duyck, as compiler |
6054 | * emits better code than : |
6055 | * if (val & NAPIF_STATE_SCHED) |
6056 | * new |= NAPIF_STATE_MISSED; |
6057 | */ |
6058 | new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * |
6059 | NAPIF_STATE_MISSED; |
6060 | } while (!try_cmpxchg(&n->state, &val, new)); |
6061 | |
6062 | return !(val & NAPIF_STATE_SCHED); |
6063 | } |
6064 | EXPORT_SYMBOL(napi_schedule_prep); |
6065 | |
6066 | /** |
6067 | * __napi_schedule_irqoff - schedule for receive |
6068 | * @n: entry to schedule |
6069 | * |
6070 | * Variant of __napi_schedule() assuming hard irqs are masked. |
6071 | * |
6072 | * On PREEMPT_RT enabled kernels this maps to __napi_schedule() |
6073 | * because the interrupt disabled assumption might not be true |
6074 | * due to force-threaded interrupts and spinlock substitution. |
6075 | */ |
6076 | void __napi_schedule_irqoff(struct napi_struct *n) |
6077 | { |
6078 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
6079 | ____napi_schedule(this_cpu_ptr(&softnet_data), napi: n); |
6080 | else |
6081 | __napi_schedule(n); |
6082 | } |
6083 | EXPORT_SYMBOL(__napi_schedule_irqoff); |
6084 | |
6085 | bool napi_complete_done(struct napi_struct *n, int work_done) |
6086 | { |
6087 | unsigned long flags, val, new, timeout = 0; |
6088 | bool ret = true; |
6089 | |
6090 | /* |
6091 | * 1) Don't let napi dequeue from the cpu poll list |
6092 | * just in case its running on a different cpu. |
6093 | * 2) If we are busy polling, do nothing here, we have |
6094 | * the guarantee we will be called later. |
6095 | */ |
6096 | if (unlikely(n->state & (NAPIF_STATE_NPSVC | |
6097 | NAPIF_STATE_IN_BUSY_POLL))) |
6098 | return false; |
6099 | |
6100 | if (work_done) { |
6101 | if (n->gro_bitmask) |
6102 | timeout = READ_ONCE(n->dev->gro_flush_timeout); |
6103 | n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); |
6104 | } |
6105 | if (n->defer_hard_irqs_count > 0) { |
6106 | n->defer_hard_irqs_count--; |
6107 | timeout = READ_ONCE(n->dev->gro_flush_timeout); |
6108 | if (timeout) |
6109 | ret = false; |
6110 | } |
6111 | if (n->gro_bitmask) { |
6112 | /* When the NAPI instance uses a timeout and keeps postponing |
6113 | * it, we need to bound somehow the time packets are kept in |
6114 | * the GRO layer |
6115 | */ |
6116 | napi_gro_flush(napi: n, flush_old: !!timeout); |
6117 | } |
6118 | |
6119 | gro_normal_list(napi: n); |
6120 | |
6121 | if (unlikely(!list_empty(&n->poll_list))) { |
6122 | /* If n->poll_list is not empty, we need to mask irqs */ |
6123 | local_irq_save(flags); |
6124 | list_del_init(entry: &n->poll_list); |
6125 | local_irq_restore(flags); |
6126 | } |
6127 | WRITE_ONCE(n->list_owner, -1); |
6128 | |
6129 | val = READ_ONCE(n->state); |
6130 | do { |
6131 | WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); |
6132 | |
6133 | new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | |
6134 | NAPIF_STATE_SCHED_THREADED | |
6135 | NAPIF_STATE_PREFER_BUSY_POLL); |
6136 | |
6137 | /* If STATE_MISSED was set, leave STATE_SCHED set, |
6138 | * because we will call napi->poll() one more time. |
6139 | * This C code was suggested by Alexander Duyck to help gcc. |
6140 | */ |
6141 | new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * |
6142 | NAPIF_STATE_SCHED; |
6143 | } while (!try_cmpxchg(&n->state, &val, new)); |
6144 | |
6145 | if (unlikely(val & NAPIF_STATE_MISSED)) { |
6146 | __napi_schedule(n); |
6147 | return false; |
6148 | } |
6149 | |
6150 | if (timeout) |
6151 | hrtimer_start(timer: &n->timer, tim: ns_to_ktime(ns: timeout), |
6152 | mode: HRTIMER_MODE_REL_PINNED); |
6153 | return ret; |
6154 | } |
6155 | EXPORT_SYMBOL(napi_complete_done); |
6156 | |
6157 | /* must be called under rcu_read_lock(), as we dont take a reference */ |
6158 | struct napi_struct *napi_by_id(unsigned int napi_id) |
6159 | { |
6160 | unsigned int hash = napi_id % HASH_SIZE(napi_hash); |
6161 | struct napi_struct *napi; |
6162 | |
6163 | hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) |
6164 | if (napi->napi_id == napi_id) |
6165 | return napi; |
6166 | |
6167 | return NULL; |
6168 | } |
6169 | |
6170 | static void skb_defer_free_flush(struct softnet_data *sd) |
6171 | { |
6172 | struct sk_buff *skb, *next; |
6173 | |
6174 | /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ |
6175 | if (!READ_ONCE(sd->defer_list)) |
6176 | return; |
6177 | |
6178 | spin_lock(lock: &sd->defer_lock); |
6179 | skb = sd->defer_list; |
6180 | sd->defer_list = NULL; |
6181 | sd->defer_count = 0; |
6182 | spin_unlock(lock: &sd->defer_lock); |
6183 | |
6184 | while (skb != NULL) { |
6185 | next = skb->next; |
6186 | napi_consume_skb(skb, budget: 1); |
6187 | skb = next; |
6188 | } |
6189 | } |
6190 | |
6191 | #if defined(CONFIG_NET_RX_BUSY_POLL) |
6192 | |
6193 | static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) |
6194 | { |
6195 | if (!skip_schedule) { |
6196 | gro_normal_list(napi); |
6197 | __napi_schedule(napi); |
6198 | return; |
6199 | } |
6200 | |
6201 | if (napi->gro_bitmask) { |
6202 | /* flush too old packets |
6203 | * If HZ < 1000, flush all packets. |
6204 | */ |
6205 | napi_gro_flush(napi, HZ >= 1000); |
6206 | } |
6207 | |
6208 | gro_normal_list(napi); |
6209 | clear_bit(nr: NAPI_STATE_SCHED, addr: &napi->state); |
6210 | } |
6211 | |
6212 | enum { |
6213 | NAPI_F_PREFER_BUSY_POLL = 1, |
6214 | NAPI_F_END_ON_RESCHED = 2, |
6215 | }; |
6216 | |
6217 | static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, |
6218 | unsigned flags, u16 budget) |
6219 | { |
6220 | bool skip_schedule = false; |
6221 | unsigned long timeout; |
6222 | int rc; |
6223 | |
6224 | /* Busy polling means there is a high chance device driver hard irq |
6225 | * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was |
6226 | * set in napi_schedule_prep(). |
6227 | * Since we are about to call napi->poll() once more, we can safely |
6228 | * clear NAPI_STATE_MISSED. |
6229 | * |
6230 | * Note: x86 could use a single "lock and ..." instruction |
6231 | * to perform these two clear_bit() |
6232 | */ |
6233 | clear_bit(nr: NAPI_STATE_MISSED, addr: &napi->state); |
6234 | clear_bit(nr: NAPI_STATE_IN_BUSY_POLL, addr: &napi->state); |
6235 | |
6236 | local_bh_disable(); |
6237 | |
6238 | if (flags & NAPI_F_PREFER_BUSY_POLL) { |
6239 | napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); |
6240 | timeout = READ_ONCE(napi->dev->gro_flush_timeout); |
6241 | if (napi->defer_hard_irqs_count && timeout) { |
6242 | hrtimer_start(timer: &napi->timer, tim: ns_to_ktime(ns: timeout), mode: HRTIMER_MODE_REL_PINNED); |
6243 | skip_schedule = true; |
6244 | } |
6245 | } |
6246 | |
6247 | /* All we really want here is to re-enable device interrupts. |
6248 | * Ideally, a new ndo_busy_poll_stop() could avoid another round. |
6249 | */ |
6250 | rc = napi->poll(napi, budget); |
6251 | /* We can't gro_normal_list() here, because napi->poll() might have |
6252 | * rearmed the napi (napi_complete_done()) in which case it could |
6253 | * already be running on another CPU. |
6254 | */ |
6255 | trace_napi_poll(napi, work: rc, budget); |
6256 | netpoll_poll_unlock(have: have_poll_lock); |
6257 | if (rc == budget) |
6258 | __busy_poll_stop(napi, skip_schedule); |
6259 | local_bh_enable(); |
6260 | } |
6261 | |
6262 | static void __napi_busy_loop(unsigned int napi_id, |
6263 | bool (*loop_end)(void *, unsigned long), |
6264 | void *loop_end_arg, unsigned flags, u16 budget) |
6265 | { |
6266 | unsigned long start_time = loop_end ? busy_loop_current_time() : 0; |
6267 | int (*napi_poll)(struct napi_struct *napi, int budget); |
6268 | void *have_poll_lock = NULL; |
6269 | struct napi_struct *napi; |
6270 | |
6271 | WARN_ON_ONCE(!rcu_read_lock_held()); |
6272 | |
6273 | restart: |
6274 | napi_poll = NULL; |
6275 | |
6276 | napi = napi_by_id(napi_id); |
6277 | if (!napi) |
6278 | return; |
6279 | |
6280 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
6281 | preempt_disable(); |
6282 | for (;;) { |
6283 | int work = 0; |
6284 | |
6285 | local_bh_disable(); |
6286 | if (!napi_poll) { |
6287 | unsigned long val = READ_ONCE(napi->state); |
6288 | |
6289 | /* If multiple threads are competing for this napi, |
6290 | * we avoid dirtying napi->state as much as we can. |
6291 | */ |
6292 | if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | |
6293 | NAPIF_STATE_IN_BUSY_POLL)) { |
6294 | if (flags & NAPI_F_PREFER_BUSY_POLL) |
6295 | set_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state); |
6296 | goto count; |
6297 | } |
6298 | if (cmpxchg(&napi->state, val, |
6299 | val | NAPIF_STATE_IN_BUSY_POLL | |
6300 | NAPIF_STATE_SCHED) != val) { |
6301 | if (flags & NAPI_F_PREFER_BUSY_POLL) |
6302 | set_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state); |
6303 | goto count; |
6304 | } |
6305 | have_poll_lock = netpoll_poll_lock(napi); |
6306 | napi_poll = napi->poll; |
6307 | } |
6308 | work = napi_poll(napi, budget); |
6309 | trace_napi_poll(napi, work, budget); |
6310 | gro_normal_list(napi); |
6311 | count: |
6312 | if (work > 0) |
6313 | __NET_ADD_STATS(dev_net(napi->dev), |
6314 | LINUX_MIB_BUSYPOLLRXPACKETS, work); |
6315 | skb_defer_free_flush(this_cpu_ptr(&softnet_data)); |
6316 | local_bh_enable(); |
6317 | |
6318 | if (!loop_end || loop_end(loop_end_arg, start_time)) |
6319 | break; |
6320 | |
6321 | if (unlikely(need_resched())) { |
6322 | if (flags & NAPI_F_END_ON_RESCHED) |
6323 | break; |
6324 | if (napi_poll) |
6325 | busy_poll_stop(napi, have_poll_lock, flags, budget); |
6326 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
6327 | preempt_enable(); |
6328 | rcu_read_unlock(); |
6329 | cond_resched(); |
6330 | rcu_read_lock(); |
6331 | if (loop_end(loop_end_arg, start_time)) |
6332 | return; |
6333 | goto restart; |
6334 | } |
6335 | cpu_relax(); |
6336 | } |
6337 | if (napi_poll) |
6338 | busy_poll_stop(napi, have_poll_lock, flags, budget); |
6339 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
6340 | preempt_enable(); |
6341 | } |
6342 | |
6343 | void napi_busy_loop_rcu(unsigned int napi_id, |
6344 | bool (*loop_end)(void *, unsigned long), |
6345 | void *loop_end_arg, bool prefer_busy_poll, u16 budget) |
6346 | { |
6347 | unsigned flags = NAPI_F_END_ON_RESCHED; |
6348 | |
6349 | if (prefer_busy_poll) |
6350 | flags |= NAPI_F_PREFER_BUSY_POLL; |
6351 | |
6352 | __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); |
6353 | } |
6354 | |
6355 | void napi_busy_loop(unsigned int napi_id, |
6356 | bool (*loop_end)(void *, unsigned long), |
6357 | void *loop_end_arg, bool prefer_busy_poll, u16 budget) |
6358 | { |
6359 | unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; |
6360 | |
6361 | rcu_read_lock(); |
6362 | __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); |
6363 | rcu_read_unlock(); |
6364 | } |
6365 | EXPORT_SYMBOL(napi_busy_loop); |
6366 | |
6367 | #endif /* CONFIG_NET_RX_BUSY_POLL */ |
6368 | |
6369 | static void napi_hash_add(struct napi_struct *napi) |
6370 | { |
6371 | if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) |
6372 | return; |
6373 | |
6374 | spin_lock(lock: &napi_hash_lock); |
6375 | |
6376 | /* 0..NR_CPUS range is reserved for sender_cpu use */ |
6377 | do { |
6378 | if (unlikely(++napi_gen_id < MIN_NAPI_ID)) |
6379 | napi_gen_id = MIN_NAPI_ID; |
6380 | } while (napi_by_id(napi_id: napi_gen_id)); |
6381 | napi->napi_id = napi_gen_id; |
6382 | |
6383 | hlist_add_head_rcu(n: &napi->napi_hash_node, |
6384 | h: &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); |
6385 | |
6386 | spin_unlock(lock: &napi_hash_lock); |
6387 | } |
6388 | |
6389 | /* Warning : caller is responsible to make sure rcu grace period |
6390 | * is respected before freeing memory containing @napi |
6391 | */ |
6392 | static void napi_hash_del(struct napi_struct *napi) |
6393 | { |
6394 | spin_lock(lock: &napi_hash_lock); |
6395 | |
6396 | hlist_del_init_rcu(n: &napi->napi_hash_node); |
6397 | |
6398 | spin_unlock(lock: &napi_hash_lock); |
6399 | } |
6400 | |
6401 | static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) |
6402 | { |
6403 | struct napi_struct *napi; |
6404 | |
6405 | napi = container_of(timer, struct napi_struct, timer); |
6406 | |
6407 | /* Note : we use a relaxed variant of napi_schedule_prep() not setting |
6408 | * NAPI_STATE_MISSED, since we do not react to a device IRQ. |
6409 | */ |
6410 | if (!napi_disable_pending(n: napi) && |
6411 | !test_and_set_bit(nr: NAPI_STATE_SCHED, addr: &napi->state)) { |
6412 | clear_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state); |
6413 | __napi_schedule_irqoff(napi); |
6414 | } |
6415 | |
6416 | return HRTIMER_NORESTART; |
6417 | } |
6418 | |
6419 | static void init_gro_hash(struct napi_struct *napi) |
6420 | { |
6421 | int i; |
6422 | |
6423 | for (i = 0; i < GRO_HASH_BUCKETS; i++) { |
6424 | INIT_LIST_HEAD(list: &napi->gro_hash[i].list); |
6425 | napi->gro_hash[i].count = 0; |
6426 | } |
6427 | napi->gro_bitmask = 0; |
6428 | } |
6429 | |
6430 | int dev_set_threaded(struct net_device *dev, bool threaded) |
6431 | { |
6432 | struct napi_struct *napi; |
6433 | int err = 0; |
6434 | |
6435 | if (dev->threaded == threaded) |
6436 | return 0; |
6437 | |
6438 | if (threaded) { |
6439 | list_for_each_entry(napi, &dev->napi_list, dev_list) { |
6440 | if (!napi->thread) { |
6441 | err = napi_kthread_create(n: napi); |
6442 | if (err) { |
6443 | threaded = false; |
6444 | break; |
6445 | } |
6446 | } |
6447 | } |
6448 | } |
6449 | |
6450 | dev->threaded = threaded; |
6451 | |
6452 | /* Make sure kthread is created before THREADED bit |
6453 | * is set. |
6454 | */ |
6455 | smp_mb__before_atomic(); |
6456 | |
6457 | /* Setting/unsetting threaded mode on a napi might not immediately |
6458 | * take effect, if the current napi instance is actively being |
6459 | * polled. In this case, the switch between threaded mode and |
6460 | * softirq mode will happen in the next round of napi_schedule(). |
6461 | * This should not cause hiccups/stalls to the live traffic. |
6462 | */ |
6463 | list_for_each_entry(napi, &dev->napi_list, dev_list) |
6464 | assign_bit(nr: NAPI_STATE_THREADED, addr: &napi->state, value: threaded); |
6465 | |
6466 | return err; |
6467 | } |
6468 | EXPORT_SYMBOL(dev_set_threaded); |
6469 | |
6470 | /** |
6471 | * netif_queue_set_napi - Associate queue with the napi |
6472 | * @dev: device to which NAPI and queue belong |
6473 | * @queue_index: Index of queue |
6474 | * @type: queue type as RX or TX |
6475 | * @napi: NAPI context, pass NULL to clear previously set NAPI |
6476 | * |
6477 | * Set queue with its corresponding napi context. This should be done after |
6478 | * registering the NAPI handler for the queue-vector and the queues have been |
6479 | * mapped to the corresponding interrupt vector. |
6480 | */ |
6481 | void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, |
6482 | enum netdev_queue_type type, struct napi_struct *napi) |
6483 | { |
6484 | struct netdev_rx_queue *rxq; |
6485 | struct netdev_queue *txq; |
6486 | |
6487 | if (WARN_ON_ONCE(napi && !napi->dev)) |
6488 | return; |
6489 | if (dev->reg_state >= NETREG_REGISTERED) |
6490 | ASSERT_RTNL(); |
6491 | |
6492 | switch (type) { |
6493 | case NETDEV_QUEUE_TYPE_RX: |
6494 | rxq = __netif_get_rx_queue(dev, rxq: queue_index); |
6495 | rxq->napi = napi; |
6496 | return; |
6497 | case NETDEV_QUEUE_TYPE_TX: |
6498 | txq = netdev_get_tx_queue(dev, index: queue_index); |
6499 | txq->napi = napi; |
6500 | return; |
6501 | default: |
6502 | return; |
6503 | } |
6504 | } |
6505 | EXPORT_SYMBOL(netif_queue_set_napi); |
6506 | |
6507 | void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, |
6508 | int (*poll)(struct napi_struct *, int), int weight) |
6509 | { |
6510 | if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) |
6511 | return; |
6512 | |
6513 | INIT_LIST_HEAD(list: &napi->poll_list); |
6514 | INIT_HLIST_NODE(h: &napi->napi_hash_node); |
6515 | hrtimer_init(timer: &napi->timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_PINNED); |
6516 | napi->timer.function = napi_watchdog; |
6517 | init_gro_hash(napi); |
6518 | napi->skb = NULL; |
6519 | INIT_LIST_HEAD(list: &napi->rx_list); |
6520 | napi->rx_count = 0; |
6521 | napi->poll = poll; |
6522 | if (weight > NAPI_POLL_WEIGHT) |
6523 | netdev_err_once(dev, "%s() called with weight %d\n" , __func__, |
6524 | weight); |
6525 | napi->weight = weight; |
6526 | napi->dev = dev; |
6527 | #ifdef CONFIG_NETPOLL |
6528 | napi->poll_owner = -1; |
6529 | #endif |
6530 | napi->list_owner = -1; |
6531 | set_bit(nr: NAPI_STATE_SCHED, addr: &napi->state); |
6532 | set_bit(nr: NAPI_STATE_NPSVC, addr: &napi->state); |
6533 | list_add_rcu(new: &napi->dev_list, head: &dev->napi_list); |
6534 | napi_hash_add(napi); |
6535 | napi_get_frags_check(napi); |
6536 | /* Create kthread for this napi if dev->threaded is set. |
6537 | * Clear dev->threaded if kthread creation failed so that |
6538 | * threaded mode will not be enabled in napi_enable(). |
6539 | */ |
6540 | if (dev->threaded && napi_kthread_create(n: napi)) |
6541 | dev->threaded = 0; |
6542 | netif_napi_set_irq(napi, irq: -1); |
6543 | } |
6544 | EXPORT_SYMBOL(netif_napi_add_weight); |
6545 | |
6546 | void napi_disable(struct napi_struct *n) |
6547 | { |
6548 | unsigned long val, new; |
6549 | |
6550 | might_sleep(); |
6551 | set_bit(nr: NAPI_STATE_DISABLE, addr: &n->state); |
6552 | |
6553 | val = READ_ONCE(n->state); |
6554 | do { |
6555 | while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { |
6556 | usleep_range(min: 20, max: 200); |
6557 | val = READ_ONCE(n->state); |
6558 | } |
6559 | |
6560 | new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; |
6561 | new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); |
6562 | } while (!try_cmpxchg(&n->state, &val, new)); |
6563 | |
6564 | hrtimer_cancel(timer: &n->timer); |
6565 | |
6566 | clear_bit(nr: NAPI_STATE_DISABLE, addr: &n->state); |
6567 | } |
6568 | EXPORT_SYMBOL(napi_disable); |
6569 | |
6570 | /** |
6571 | * napi_enable - enable NAPI scheduling |
6572 | * @n: NAPI context |
6573 | * |
6574 | * Resume NAPI from being scheduled on this context. |
6575 | * Must be paired with napi_disable. |
6576 | */ |
6577 | void napi_enable(struct napi_struct *n) |
6578 | { |
6579 | unsigned long new, val = READ_ONCE(n->state); |
6580 | |
6581 | do { |
6582 | BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); |
6583 | |
6584 | new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); |
6585 | if (n->dev->threaded && n->thread) |
6586 | new |= NAPIF_STATE_THREADED; |
6587 | } while (!try_cmpxchg(&n->state, &val, new)); |
6588 | } |
6589 | EXPORT_SYMBOL(napi_enable); |
6590 | |
6591 | static void flush_gro_hash(struct napi_struct *napi) |
6592 | { |
6593 | int i; |
6594 | |
6595 | for (i = 0; i < GRO_HASH_BUCKETS; i++) { |
6596 | struct sk_buff *skb, *n; |
6597 | |
6598 | list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) |
6599 | kfree_skb(skb); |
6600 | napi->gro_hash[i].count = 0; |
6601 | } |
6602 | } |
6603 | |
6604 | /* Must be called in process context */ |
6605 | void __netif_napi_del(struct napi_struct *napi) |
6606 | { |
6607 | if (!test_and_clear_bit(nr: NAPI_STATE_LISTED, addr: &napi->state)) |
6608 | return; |
6609 | |
6610 | napi_hash_del(napi); |
6611 | list_del_rcu(entry: &napi->dev_list); |
6612 | napi_free_frags(napi); |
6613 | |
6614 | flush_gro_hash(napi); |
6615 | napi->gro_bitmask = 0; |
6616 | |
6617 | if (napi->thread) { |
6618 | kthread_stop(k: napi->thread); |
6619 | napi->thread = NULL; |
6620 | } |
6621 | } |
6622 | EXPORT_SYMBOL(__netif_napi_del); |
6623 | |
6624 | static int __napi_poll(struct napi_struct *n, bool *repoll) |
6625 | { |
6626 | int work, weight; |
6627 | |
6628 | weight = n->weight; |
6629 | |
6630 | /* This NAPI_STATE_SCHED test is for avoiding a race |
6631 | * with netpoll's poll_napi(). Only the entity which |
6632 | * obtains the lock and sees NAPI_STATE_SCHED set will |
6633 | * actually make the ->poll() call. Therefore we avoid |
6634 | * accidentally calling ->poll() when NAPI is not scheduled. |
6635 | */ |
6636 | work = 0; |
6637 | if (napi_is_scheduled(n)) { |
6638 | work = n->poll(n, weight); |
6639 | trace_napi_poll(napi: n, work, budget: weight); |
6640 | |
6641 | xdp_do_check_flushed(napi: n); |
6642 | } |
6643 | |
6644 | if (unlikely(work > weight)) |
6645 | netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n" , |
6646 | n->poll, work, weight); |
6647 | |
6648 | if (likely(work < weight)) |
6649 | return work; |
6650 | |
6651 | /* Drivers must not modify the NAPI state if they |
6652 | * consume the entire weight. In such cases this code |
6653 | * still "owns" the NAPI instance and therefore can |
6654 | * move the instance around on the list at-will. |
6655 | */ |
6656 | if (unlikely(napi_disable_pending(n))) { |
6657 | napi_complete(n); |
6658 | return work; |
6659 | } |
6660 | |
6661 | /* The NAPI context has more processing work, but busy-polling |
6662 | * is preferred. Exit early. |
6663 | */ |
6664 | if (napi_prefer_busy_poll(n)) { |
6665 | if (napi_complete_done(n, work)) { |
6666 | /* If timeout is not set, we need to make sure |
6667 | * that the NAPI is re-scheduled. |
6668 | */ |
6669 | napi_schedule(n); |
6670 | } |
6671 | return work; |
6672 | } |
6673 | |
6674 | if (n->gro_bitmask) { |
6675 | /* flush too old packets |
6676 | * If HZ < 1000, flush all packets. |
6677 | */ |
6678 | napi_gro_flush(napi: n, HZ >= 1000); |
6679 | } |
6680 | |
6681 | gro_normal_list(napi: n); |
6682 | |
6683 | /* Some drivers may have called napi_schedule |
6684 | * prior to exhausting their budget. |
6685 | */ |
6686 | if (unlikely(!list_empty(&n->poll_list))) { |
6687 | pr_warn_once("%s: Budget exhausted after napi rescheduled\n" , |
6688 | n->dev ? n->dev->name : "backlog" ); |
6689 | return work; |
6690 | } |
6691 | |
6692 | *repoll = true; |
6693 | |
6694 | return work; |
6695 | } |
6696 | |
6697 | static int napi_poll(struct napi_struct *n, struct list_head *repoll) |
6698 | { |
6699 | bool do_repoll = false; |
6700 | void *have; |
6701 | int work; |
6702 | |
6703 | list_del_init(entry: &n->poll_list); |
6704 | |
6705 | have = netpoll_poll_lock(napi: n); |
6706 | |
6707 | work = __napi_poll(n, repoll: &do_repoll); |
6708 | |
6709 | if (do_repoll) |
6710 | list_add_tail(new: &n->poll_list, head: repoll); |
6711 | |
6712 | netpoll_poll_unlock(have); |
6713 | |
6714 | return work; |
6715 | } |
6716 | |
6717 | static int napi_thread_wait(struct napi_struct *napi) |
6718 | { |
6719 | bool woken = false; |
6720 | |
6721 | set_current_state(TASK_INTERRUPTIBLE); |
6722 | |
6723 | while (!kthread_should_stop()) { |
6724 | /* Testing SCHED_THREADED bit here to make sure the current |
6725 | * kthread owns this napi and could poll on this napi. |
6726 | * Testing SCHED bit is not enough because SCHED bit might be |
6727 | * set by some other busy poll thread or by napi_disable(). |
6728 | */ |
6729 | if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { |
6730 | WARN_ON(!list_empty(&napi->poll_list)); |
6731 | __set_current_state(TASK_RUNNING); |
6732 | return 0; |
6733 | } |
6734 | |
6735 | schedule(); |
6736 | /* woken being true indicates this thread owns this napi. */ |
6737 | woken = true; |
6738 | set_current_state(TASK_INTERRUPTIBLE); |
6739 | } |
6740 | __set_current_state(TASK_RUNNING); |
6741 | |
6742 | return -1; |
6743 | } |
6744 | |
6745 | static int napi_threaded_poll(void *data) |
6746 | { |
6747 | struct napi_struct *napi = data; |
6748 | struct softnet_data *sd; |
6749 | void *have; |
6750 | |
6751 | while (!napi_thread_wait(napi)) { |
6752 | unsigned long last_qs = jiffies; |
6753 | |
6754 | for (;;) { |
6755 | bool repoll = false; |
6756 | |
6757 | local_bh_disable(); |
6758 | sd = this_cpu_ptr(&softnet_data); |
6759 | sd->in_napi_threaded_poll = true; |
6760 | |
6761 | have = netpoll_poll_lock(napi); |
6762 | __napi_poll(n: napi, repoll: &repoll); |
6763 | netpoll_poll_unlock(have); |
6764 | |
6765 | sd->in_napi_threaded_poll = false; |
6766 | barrier(); |
6767 | |
6768 | if (sd_has_rps_ipi_waiting(sd)) { |
6769 | local_irq_disable(); |
6770 | net_rps_action_and_irq_enable(sd); |
6771 | } |
6772 | skb_defer_free_flush(sd); |
6773 | local_bh_enable(); |
6774 | |
6775 | if (!repoll) |
6776 | break; |
6777 | |
6778 | rcu_softirq_qs_periodic(last_qs); |
6779 | cond_resched(); |
6780 | } |
6781 | } |
6782 | return 0; |
6783 | } |
6784 | |
6785 | static __latent_entropy void net_rx_action(struct softirq_action *h) |
6786 | { |
6787 | struct softnet_data *sd = this_cpu_ptr(&softnet_data); |
6788 | unsigned long time_limit = jiffies + |
6789 | usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); |
6790 | int budget = READ_ONCE(net_hotdata.netdev_budget); |
6791 | LIST_HEAD(list); |
6792 | LIST_HEAD(repoll); |
6793 | |
6794 | start: |
6795 | sd->in_net_rx_action = true; |
6796 | local_irq_disable(); |
6797 | list_splice_init(list: &sd->poll_list, head: &list); |
6798 | local_irq_enable(); |
6799 | |
6800 | for (;;) { |
6801 | struct napi_struct *n; |
6802 | |
6803 | skb_defer_free_flush(sd); |
6804 | |
6805 | if (list_empty(head: &list)) { |
6806 | if (list_empty(head: &repoll)) { |
6807 | sd->in_net_rx_action = false; |
6808 | barrier(); |
6809 | /* We need to check if ____napi_schedule() |
6810 | * had refilled poll_list while |
6811 | * sd->in_net_rx_action was true. |
6812 | */ |
6813 | if (!list_empty(head: &sd->poll_list)) |
6814 | goto start; |
6815 | if (!sd_has_rps_ipi_waiting(sd)) |
6816 | goto end; |
6817 | } |
6818 | break; |
6819 | } |
6820 | |
6821 | n = list_first_entry(&list, struct napi_struct, poll_list); |
6822 | budget -= napi_poll(n, repoll: &repoll); |
6823 | |
6824 | /* If softirq window is exhausted then punt. |
6825 | * Allow this to run for 2 jiffies since which will allow |
6826 | * an average latency of 1.5/HZ. |
6827 | */ |
6828 | if (unlikely(budget <= 0 || |
6829 | time_after_eq(jiffies, time_limit))) { |
6830 | sd->time_squeeze++; |
6831 | break; |
6832 | } |
6833 | } |
6834 | |
6835 | local_irq_disable(); |
6836 | |
6837 | list_splice_tail_init(list: &sd->poll_list, head: &list); |
6838 | list_splice_tail(list: &repoll, head: &list); |
6839 | list_splice(list: &list, head: &sd->poll_list); |
6840 | if (!list_empty(head: &sd->poll_list)) |
6841 | __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ); |
6842 | else |
6843 | sd->in_net_rx_action = false; |
6844 | |
6845 | net_rps_action_and_irq_enable(sd); |
6846 | end:; |
6847 | } |
6848 | |
6849 | struct netdev_adjacent { |
6850 | struct net_device *dev; |
6851 | netdevice_tracker dev_tracker; |
6852 | |
6853 | /* upper master flag, there can only be one master device per list */ |
6854 | bool master; |
6855 | |
6856 | /* lookup ignore flag */ |
6857 | bool ignore; |
6858 | |
6859 | /* counter for the number of times this device was added to us */ |
6860 | u16 ref_nr; |
6861 | |
6862 | /* private field for the users */ |
6863 | void *private; |
6864 | |
6865 | struct list_head list; |
6866 | struct rcu_head rcu; |
6867 | }; |
6868 | |
6869 | static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, |
6870 | struct list_head *adj_list) |
6871 | { |
6872 | struct netdev_adjacent *adj; |
6873 | |
6874 | list_for_each_entry(adj, adj_list, list) { |
6875 | if (adj->dev == adj_dev) |
6876 | return adj; |
6877 | } |
6878 | return NULL; |
6879 | } |
6880 | |
6881 | static int ____netdev_has_upper_dev(struct net_device *upper_dev, |
6882 | struct netdev_nested_priv *priv) |
6883 | { |
6884 | struct net_device *dev = (struct net_device *)priv->data; |
6885 | |
6886 | return upper_dev == dev; |
6887 | } |
6888 | |
6889 | /** |
6890 | * netdev_has_upper_dev - Check if device is linked to an upper device |
6891 | * @dev: device |
6892 | * @upper_dev: upper device to check |
6893 | * |
6894 | * Find out if a device is linked to specified upper device and return true |
6895 | * in case it is. Note that this checks only immediate upper device, |
6896 | * not through a complete stack of devices. The caller must hold the RTNL lock. |
6897 | */ |
6898 | bool netdev_has_upper_dev(struct net_device *dev, |
6899 | struct net_device *upper_dev) |
6900 | { |
6901 | struct netdev_nested_priv priv = { |
6902 | .data = (void *)upper_dev, |
6903 | }; |
6904 | |
6905 | ASSERT_RTNL(); |
6906 | |
6907 | return netdev_walk_all_upper_dev_rcu(dev, fn: ____netdev_has_upper_dev, |
6908 | priv: &priv); |
6909 | } |
6910 | EXPORT_SYMBOL(netdev_has_upper_dev); |
6911 | |
6912 | /** |
6913 | * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device |
6914 | * @dev: device |
6915 | * @upper_dev: upper device to check |
6916 | * |
6917 | * Find out if a device is linked to specified upper device and return true |
6918 | * in case it is. Note that this checks the entire upper device chain. |
6919 | * The caller must hold rcu lock. |
6920 | */ |
6921 | |
6922 | bool netdev_has_upper_dev_all_rcu(struct net_device *dev, |
6923 | struct net_device *upper_dev) |
6924 | { |
6925 | struct netdev_nested_priv priv = { |
6926 | .data = (void *)upper_dev, |
6927 | }; |
6928 | |
6929 | return !!netdev_walk_all_upper_dev_rcu(dev, fn: ____netdev_has_upper_dev, |
6930 | priv: &priv); |
6931 | } |
6932 | EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); |
6933 | |
6934 | /** |
6935 | * netdev_has_any_upper_dev - Check if device is linked to some device |
6936 | * @dev: device |
6937 | * |
6938 | * Find out if a device is linked to an upper device and return true in case |
6939 | * it is. The caller must hold the RTNL lock. |
6940 | */ |
6941 | bool netdev_has_any_upper_dev(struct net_device *dev) |
6942 | { |
6943 | ASSERT_RTNL(); |
6944 | |
6945 | return !list_empty(head: &dev->adj_list.upper); |
6946 | } |
6947 | EXPORT_SYMBOL(netdev_has_any_upper_dev); |
6948 | |
6949 | /** |
6950 | * netdev_master_upper_dev_get - Get master upper device |
6951 | * @dev: device |
6952 | * |
6953 | * Find a master upper device and return pointer to it or NULL in case |
6954 | * it's not there. The caller must hold the RTNL lock. |
6955 | */ |
6956 | struct net_device *netdev_master_upper_dev_get(struct net_device *dev) |
6957 | { |
6958 | struct netdev_adjacent *upper; |
6959 | |
6960 | ASSERT_RTNL(); |
6961 | |
6962 | if (list_empty(head: &dev->adj_list.upper)) |
6963 | return NULL; |
6964 | |
6965 | upper = list_first_entry(&dev->adj_list.upper, |
6966 | struct netdev_adjacent, list); |
6967 | if (likely(upper->master)) |
6968 | return upper->dev; |
6969 | return NULL; |
6970 | } |
6971 | EXPORT_SYMBOL(netdev_master_upper_dev_get); |
6972 | |
6973 | static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) |
6974 | { |
6975 | struct netdev_adjacent *upper; |
6976 | |
6977 | ASSERT_RTNL(); |
6978 | |
6979 | if (list_empty(head: &dev->adj_list.upper)) |
6980 | return NULL; |
6981 | |
6982 | upper = list_first_entry(&dev->adj_list.upper, |
6983 | struct netdev_adjacent, list); |
6984 | if (likely(upper->master) && !upper->ignore) |
6985 | return upper->dev; |
6986 | return NULL; |
6987 | } |
6988 | |
6989 | /** |
6990 | * netdev_has_any_lower_dev - Check if device is linked to some device |
6991 | * @dev: device |
6992 | * |
6993 | * Find out if a device is linked to a lower device and return true in case |
6994 | * it is. The caller must hold the RTNL lock. |
6995 | */ |
6996 | static bool netdev_has_any_lower_dev(struct net_device *dev) |
6997 | { |
6998 | ASSERT_RTNL(); |
6999 | |
7000 | return !list_empty(head: &dev->adj_list.lower); |
7001 | } |
7002 | |
7003 | void *netdev_adjacent_get_private(struct list_head *adj_list) |
7004 | { |
7005 | struct netdev_adjacent *adj; |
7006 | |
7007 | adj = list_entry(adj_list, struct netdev_adjacent, list); |
7008 | |
7009 | return adj->private; |
7010 | } |
7011 | EXPORT_SYMBOL(netdev_adjacent_get_private); |
7012 | |
7013 | /** |
7014 | * netdev_upper_get_next_dev_rcu - Get the next dev from upper list |
7015 | * @dev: device |
7016 | * @iter: list_head ** of the current position |
7017 | * |
7018 | * Gets the next device from the dev's upper list, starting from iter |
7019 | * position. The caller must hold RCU read lock. |
7020 | */ |
7021 | struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, |
7022 | struct list_head **iter) |
7023 | { |
7024 | struct netdev_adjacent *upper; |
7025 | |
7026 | WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); |
7027 | |
7028 | upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
7029 | |
7030 | if (&upper->list == &dev->adj_list.upper) |
7031 | return NULL; |
7032 | |
7033 | *iter = &upper->list; |
7034 | |
7035 | return upper->dev; |
7036 | } |
7037 | EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); |
7038 | |
7039 | static struct net_device *__netdev_next_upper_dev(struct net_device *dev, |
7040 | struct list_head **iter, |
7041 | bool *ignore) |
7042 | { |
7043 | struct netdev_adjacent *upper; |
7044 | |
7045 | upper = list_entry((*iter)->next, struct netdev_adjacent, list); |
7046 | |
7047 | if (&upper->list == &dev->adj_list.upper) |
7048 | return NULL; |
7049 | |
7050 | *iter = &upper->list; |
7051 | *ignore = upper->ignore; |
7052 | |
7053 | return upper->dev; |
7054 | } |
7055 | |
7056 | static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, |
7057 | struct list_head **iter) |
7058 | { |
7059 | struct netdev_adjacent *upper; |
7060 | |
7061 | WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); |
7062 | |
7063 | upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
7064 | |
7065 | if (&upper->list == &dev->adj_list.upper) |
7066 | return NULL; |
7067 | |
7068 | *iter = &upper->list; |
7069 | |
7070 | return upper->dev; |
7071 | } |
7072 | |
7073 | static int __netdev_walk_all_upper_dev(struct net_device *dev, |
7074 | int (*fn)(struct net_device *dev, |
7075 | struct netdev_nested_priv *priv), |
7076 | struct netdev_nested_priv *priv) |
7077 | { |
7078 | struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
7079 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
7080 | int ret, cur = 0; |
7081 | bool ignore; |
7082 | |
7083 | now = dev; |
7084 | iter = &dev->adj_list.upper; |
7085 | |
7086 | while (1) { |
7087 | if (now != dev) { |
7088 | ret = fn(now, priv); |
7089 | if (ret) |
7090 | return ret; |
7091 | } |
7092 | |
7093 | next = NULL; |
7094 | while (1) { |
7095 | udev = __netdev_next_upper_dev(dev: now, iter: &iter, ignore: &ignore); |
7096 | if (!udev) |
7097 | break; |
7098 | if (ignore) |
7099 | continue; |
7100 | |
7101 | next = udev; |
7102 | niter = &udev->adj_list.upper; |
7103 | dev_stack[cur] = now; |
7104 | iter_stack[cur++] = iter; |
7105 | break; |
7106 | } |
7107 | |
7108 | if (!next) { |
7109 | if (!cur) |
7110 | return 0; |
7111 | next = dev_stack[--cur]; |
7112 | niter = iter_stack[cur]; |
7113 | } |
7114 | |
7115 | now = next; |
7116 | iter = niter; |
7117 | } |
7118 | |
7119 | return 0; |
7120 | } |
7121 | |
7122 | int netdev_walk_all_upper_dev_rcu(struct net_device *dev, |
7123 | int (*fn)(struct net_device *dev, |
7124 | struct netdev_nested_priv *priv), |
7125 | struct netdev_nested_priv *priv) |
7126 | { |
7127 | struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
7128 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
7129 | int ret, cur = 0; |
7130 | |
7131 | now = dev; |
7132 | iter = &dev->adj_list.upper; |
7133 | |
7134 | while (1) { |
7135 | if (now != dev) { |
7136 | ret = fn(now, priv); |
7137 | if (ret) |
7138 | return ret; |
7139 | } |
7140 | |
7141 | next = NULL; |
7142 | while (1) { |
7143 | udev = netdev_next_upper_dev_rcu(dev: now, iter: &iter); |
7144 | if (!udev) |
7145 | break; |
7146 | |
7147 | next = udev; |
7148 | niter = &udev->adj_list.upper; |
7149 | dev_stack[cur] = now; |
7150 | iter_stack[cur++] = iter; |
7151 | break; |
7152 | } |
7153 | |
7154 | if (!next) { |
7155 | if (!cur) |
7156 | return 0; |
7157 | next = dev_stack[--cur]; |
7158 | niter = iter_stack[cur]; |
7159 | } |
7160 | |
7161 | now = next; |
7162 | iter = niter; |
7163 | } |
7164 | |
7165 | return 0; |
7166 | } |
7167 | EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); |
7168 | |
7169 | static bool __netdev_has_upper_dev(struct net_device *dev, |
7170 | struct net_device *upper_dev) |
7171 | { |
7172 | struct netdev_nested_priv priv = { |
7173 | .flags = 0, |
7174 | .data = (void *)upper_dev, |
7175 | }; |
7176 | |
7177 | ASSERT_RTNL(); |
7178 | |
7179 | return __netdev_walk_all_upper_dev(dev, fn: ____netdev_has_upper_dev, |
7180 | priv: &priv); |
7181 | } |
7182 | |
7183 | /** |
7184 | * netdev_lower_get_next_private - Get the next ->private from the |
7185 | * lower neighbour list |
7186 | * @dev: device |
7187 | * @iter: list_head ** of the current position |
7188 | * |
7189 | * Gets the next netdev_adjacent->private from the dev's lower neighbour |
7190 | * list, starting from iter position. The caller must hold either hold the |
7191 | * RTNL lock or its own locking that guarantees that the neighbour lower |
7192 | * list will remain unchanged. |
7193 | */ |
7194 | void *netdev_lower_get_next_private(struct net_device *dev, |
7195 | struct list_head **iter) |
7196 | { |
7197 | struct netdev_adjacent *lower; |
7198 | |
7199 | lower = list_entry(*iter, struct netdev_adjacent, list); |
7200 | |
7201 | if (&lower->list == &dev->adj_list.lower) |
7202 | return NULL; |
7203 | |
7204 | *iter = lower->list.next; |
7205 | |
7206 | return lower->private; |
7207 | } |
7208 | EXPORT_SYMBOL(netdev_lower_get_next_private); |
7209 | |
7210 | /** |
7211 | * netdev_lower_get_next_private_rcu - Get the next ->private from the |
7212 | * lower neighbour list, RCU |
7213 | * variant |
7214 | * @dev: device |
7215 | * @iter: list_head ** of the current position |
7216 | * |
7217 | * Gets the next netdev_adjacent->private from the dev's lower neighbour |
7218 | * list, starting from iter position. The caller must hold RCU read lock. |
7219 | */ |
7220 | void *netdev_lower_get_next_private_rcu(struct net_device *dev, |
7221 | struct list_head **iter) |
7222 | { |
7223 | struct netdev_adjacent *lower; |
7224 | |
7225 | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
7226 | |
7227 | lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
7228 | |
7229 | if (&lower->list == &dev->adj_list.lower) |
7230 | return NULL; |
7231 | |
7232 | *iter = &lower->list; |
7233 | |
7234 | return lower->private; |
7235 | } |
7236 | EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); |
7237 | |
7238 | /** |
7239 | * netdev_lower_get_next - Get the next device from the lower neighbour |
7240 | * list |
7241 | * @dev: device |
7242 | * @iter: list_head ** of the current position |
7243 | * |
7244 | * Gets the next netdev_adjacent from the dev's lower neighbour |
7245 | * list, starting from iter position. The caller must hold RTNL lock or |
7246 | * its own locking that guarantees that the neighbour lower |
7247 | * list will remain unchanged. |
7248 | */ |
7249 | void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) |
7250 | { |
7251 | struct netdev_adjacent *lower; |
7252 | |
7253 | lower = list_entry(*iter, struct netdev_adjacent, list); |
7254 | |
7255 | if (&lower->list == &dev->adj_list.lower) |
7256 | return NULL; |
7257 | |
7258 | *iter = lower->list.next; |
7259 | |
7260 | return lower->dev; |
7261 | } |
7262 | EXPORT_SYMBOL(netdev_lower_get_next); |
7263 | |
7264 | static struct net_device *netdev_next_lower_dev(struct net_device *dev, |
7265 | struct list_head **iter) |
7266 | { |
7267 | struct netdev_adjacent *lower; |
7268 | |
7269 | lower = list_entry((*iter)->next, struct netdev_adjacent, list); |
7270 | |
7271 | if (&lower->list == &dev->adj_list.lower) |
7272 | return NULL; |
7273 | |
7274 | *iter = &lower->list; |
7275 | |
7276 | return lower->dev; |
7277 | } |
7278 | |
7279 | static struct net_device *__netdev_next_lower_dev(struct net_device *dev, |
7280 | struct list_head **iter, |
7281 | bool *ignore) |
7282 | { |
7283 | struct netdev_adjacent *lower; |
7284 | |
7285 | lower = list_entry((*iter)->next, struct netdev_adjacent, list); |
7286 | |
7287 | if (&lower->list == &dev->adj_list.lower) |
7288 | return NULL; |
7289 | |
7290 | *iter = &lower->list; |
7291 | *ignore = lower->ignore; |
7292 | |
7293 | return lower->dev; |
7294 | } |
7295 | |
7296 | int netdev_walk_all_lower_dev(struct net_device *dev, |
7297 | int (*fn)(struct net_device *dev, |
7298 | struct netdev_nested_priv *priv), |
7299 | struct netdev_nested_priv *priv) |
7300 | { |
7301 | struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
7302 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
7303 | int ret, cur = 0; |
7304 | |
7305 | now = dev; |
7306 | iter = &dev->adj_list.lower; |
7307 | |
7308 | while (1) { |
7309 | if (now != dev) { |
7310 | ret = fn(now, priv); |
7311 | if (ret) |
7312 | return ret; |
7313 | } |
7314 | |
7315 | next = NULL; |
7316 | while (1) { |
7317 | ldev = netdev_next_lower_dev(dev: now, iter: &iter); |
7318 | if (!ldev) |
7319 | break; |
7320 | |
7321 | next = ldev; |
7322 | niter = &ldev->adj_list.lower; |
7323 | dev_stack[cur] = now; |
7324 | iter_stack[cur++] = iter; |
7325 | break; |
7326 | } |
7327 | |
7328 | if (!next) { |
7329 | if (!cur) |
7330 | return 0; |
7331 | next = dev_stack[--cur]; |
7332 | niter = iter_stack[cur]; |
7333 | } |
7334 | |
7335 | now = next; |
7336 | iter = niter; |
7337 | } |
7338 | |
7339 | return 0; |
7340 | } |
7341 | EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); |
7342 | |
7343 | static int __netdev_walk_all_lower_dev(struct net_device *dev, |
7344 | int (*fn)(struct net_device *dev, |
7345 | struct netdev_nested_priv *priv), |
7346 | struct netdev_nested_priv *priv) |
7347 | { |
7348 | struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
7349 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
7350 | int ret, cur = 0; |
7351 | bool ignore; |
7352 | |
7353 | now = dev; |
7354 | iter = &dev->adj_list.lower; |
7355 | |
7356 | while (1) { |
7357 | if (now != dev) { |
7358 | ret = fn(now, priv); |
7359 | if (ret) |
7360 | return ret; |
7361 | } |
7362 | |
7363 | next = NULL; |
7364 | while (1) { |
7365 | ldev = __netdev_next_lower_dev(dev: now, iter: &iter, ignore: &ignore); |
7366 | if (!ldev) |
7367 | break; |
7368 | if (ignore) |
7369 | continue; |
7370 | |
7371 | next = ldev; |
7372 | niter = &ldev->adj_list.lower; |
7373 | dev_stack[cur] = now; |
7374 | iter_stack[cur++] = iter; |
7375 | break; |
7376 | } |
7377 | |
7378 | if (!next) { |
7379 | if (!cur) |
7380 | return 0; |
7381 | next = dev_stack[--cur]; |
7382 | niter = iter_stack[cur]; |
7383 | } |
7384 | |
7385 | now = next; |
7386 | iter = niter; |
7387 | } |
7388 | |
7389 | return 0; |
7390 | } |
7391 | |
7392 | struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, |
7393 | struct list_head **iter) |
7394 | { |
7395 | struct netdev_adjacent *lower; |
7396 | |
7397 | lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
7398 | if (&lower->list == &dev->adj_list.lower) |
7399 | return NULL; |
7400 | |
7401 | *iter = &lower->list; |
7402 | |
7403 | return lower->dev; |
7404 | } |
7405 | EXPORT_SYMBOL(netdev_next_lower_dev_rcu); |
7406 | |
7407 | static u8 __netdev_upper_depth(struct net_device *dev) |
7408 | { |
7409 | struct net_device *udev; |
7410 | struct list_head *iter; |
7411 | u8 max_depth = 0; |
7412 | bool ignore; |
7413 | |
7414 | for (iter = &dev->adj_list.upper, |
7415 | udev = __netdev_next_upper_dev(dev, iter: &iter, ignore: &ignore); |
7416 | udev; |
7417 | udev = __netdev_next_upper_dev(dev, iter: &iter, ignore: &ignore)) { |
7418 | if (ignore) |
7419 | continue; |
7420 | if (max_depth < udev->upper_level) |
7421 | max_depth = udev->upper_level; |
7422 | } |
7423 | |
7424 | return max_depth; |
7425 | } |
7426 | |
7427 | static u8 __netdev_lower_depth(struct net_device *dev) |
7428 | { |
7429 | struct net_device *ldev; |
7430 | struct list_head *iter; |
7431 | u8 max_depth = 0; |
7432 | bool ignore; |
7433 | |
7434 | for (iter = &dev->adj_list.lower, |
7435 | ldev = __netdev_next_lower_dev(dev, iter: &iter, ignore: &ignore); |
7436 | ldev; |
7437 | ldev = __netdev_next_lower_dev(dev, iter: &iter, ignore: &ignore)) { |
7438 | if (ignore) |
7439 | continue; |
7440 | if (max_depth < ldev->lower_level) |
7441 | max_depth = ldev->lower_level; |
7442 | } |
7443 | |
7444 | return max_depth; |
7445 | } |
7446 | |
7447 | static int __netdev_update_upper_level(struct net_device *dev, |
7448 | struct netdev_nested_priv *__unused) |
7449 | { |
7450 | dev->upper_level = __netdev_upper_depth(dev) + 1; |
7451 | return 0; |
7452 | } |
7453 | |
7454 | #ifdef CONFIG_LOCKDEP |
7455 | static LIST_HEAD(net_unlink_list); |
7456 | |
7457 | static void net_unlink_todo(struct net_device *dev) |
7458 | { |
7459 | if (list_empty(head: &dev->unlink_list)) |
7460 | list_add_tail(new: &dev->unlink_list, head: &net_unlink_list); |
7461 | } |
7462 | #endif |
7463 | |
7464 | static int __netdev_update_lower_level(struct net_device *dev, |
7465 | struct netdev_nested_priv *priv) |
7466 | { |
7467 | dev->lower_level = __netdev_lower_depth(dev) + 1; |
7468 | |
7469 | #ifdef CONFIG_LOCKDEP |
7470 | if (!priv) |
7471 | return 0; |
7472 | |
7473 | if (priv->flags & NESTED_SYNC_IMM) |
7474 | dev->nested_level = dev->lower_level - 1; |
7475 | if (priv->flags & NESTED_SYNC_TODO) |
7476 | net_unlink_todo(dev); |
7477 | #endif |
7478 | return 0; |
7479 | } |
7480 | |
7481 | int netdev_walk_all_lower_dev_rcu(struct net_device *dev, |
7482 | int (*fn)(struct net_device *dev, |
7483 | struct netdev_nested_priv *priv), |
7484 | struct netdev_nested_priv *priv) |
7485 | { |
7486 | struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; |
7487 | struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; |
7488 | int ret, cur = 0; |
7489 | |
7490 | now = dev; |
7491 | iter = &dev->adj_list.lower; |
7492 | |
7493 | while (1) { |
7494 | if (now != dev) { |
7495 | ret = fn(now, priv); |
7496 | if (ret) |
7497 | return ret; |
7498 | } |
7499 | |
7500 | next = NULL; |
7501 | while (1) { |
7502 | ldev = netdev_next_lower_dev_rcu(now, &iter); |
7503 | if (!ldev) |
7504 | break; |
7505 | |
7506 | next = ldev; |
7507 | niter = &ldev->adj_list.lower; |
7508 | dev_stack[cur] = now; |
7509 | iter_stack[cur++] = iter; |
7510 | break; |
7511 | } |
7512 | |
7513 | if (!next) { |
7514 | if (!cur) |
7515 | return 0; |
7516 | next = dev_stack[--cur]; |
7517 | niter = iter_stack[cur]; |
7518 | } |
7519 | |
7520 | now = next; |
7521 | iter = niter; |
7522 | } |
7523 | |
7524 | return 0; |
7525 | } |
7526 | EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); |
7527 | |
7528 | /** |
7529 | * netdev_lower_get_first_private_rcu - Get the first ->private from the |
7530 | * lower neighbour list, RCU |
7531 | * variant |
7532 | * @dev: device |
7533 | * |
7534 | * Gets the first netdev_adjacent->private from the dev's lower neighbour |
7535 | * list. The caller must hold RCU read lock. |
7536 | */ |
7537 | void *netdev_lower_get_first_private_rcu(struct net_device *dev) |
7538 | { |
7539 | struct netdev_adjacent *lower; |
7540 | |
7541 | lower = list_first_or_null_rcu(&dev->adj_list.lower, |
7542 | struct netdev_adjacent, list); |
7543 | if (lower) |
7544 | return lower->private; |
7545 | return NULL; |
7546 | } |
7547 | EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); |
7548 | |
7549 | /** |
7550 | * netdev_master_upper_dev_get_rcu - Get master upper device |
7551 | * @dev: device |
7552 | * |
7553 | * Find a master upper device and return pointer to it or NULL in case |
7554 | * it's not there. The caller must hold the RCU read lock. |
7555 | */ |
7556 | struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) |
7557 | { |
7558 | struct netdev_adjacent *upper; |
7559 | |
7560 | upper = list_first_or_null_rcu(&dev->adj_list.upper, |
7561 | struct netdev_adjacent, list); |
7562 | if (upper && likely(upper->master)) |
7563 | return upper->dev; |
7564 | return NULL; |
7565 | } |
7566 | EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); |
7567 | |
7568 | static int netdev_adjacent_sysfs_add(struct net_device *dev, |
7569 | struct net_device *adj_dev, |
7570 | struct list_head *dev_list) |
7571 | { |
7572 | char linkname[IFNAMSIZ+7]; |
7573 | |
7574 | sprintf(buf: linkname, fmt: dev_list == &dev->adj_list.upper ? |
7575 | "upper_%s" : "lower_%s" , adj_dev->name); |
7576 | return sysfs_create_link(kobj: &(dev->dev.kobj), target: &(adj_dev->dev.kobj), |
7577 | name: linkname); |
7578 | } |
7579 | static void netdev_adjacent_sysfs_del(struct net_device *dev, |
7580 | char *name, |
7581 | struct list_head *dev_list) |
7582 | { |
7583 | char linkname[IFNAMSIZ+7]; |
7584 | |
7585 | sprintf(buf: linkname, fmt: dev_list == &dev->adj_list.upper ? |
7586 | "upper_%s" : "lower_%s" , name); |
7587 | sysfs_remove_link(kobj: &(dev->dev.kobj), name: linkname); |
7588 | } |
7589 | |
7590 | static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, |
7591 | struct net_device *adj_dev, |
7592 | struct list_head *dev_list) |
7593 | { |
7594 | return (dev_list == &dev->adj_list.upper || |
7595 | dev_list == &dev->adj_list.lower) && |
7596 | net_eq(net1: dev_net(dev), net2: dev_net(dev: adj_dev)); |
7597 | } |
7598 | |
7599 | static int __netdev_adjacent_dev_insert(struct net_device *dev, |
7600 | struct net_device *adj_dev, |
7601 | struct list_head *dev_list, |
7602 | void *private, bool master) |
7603 | { |
7604 | struct netdev_adjacent *adj; |
7605 | int ret; |
7606 | |
7607 | adj = __netdev_find_adj(adj_dev, adj_list: dev_list); |
7608 | |
7609 | if (adj) { |
7610 | adj->ref_nr += 1; |
7611 | pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n" , |
7612 | dev->name, adj_dev->name, adj->ref_nr); |
7613 | |
7614 | return 0; |
7615 | } |
7616 | |
7617 | adj = kmalloc(size: sizeof(*adj), GFP_KERNEL); |
7618 | if (!adj) |
7619 | return -ENOMEM; |
7620 | |
7621 | adj->dev = adj_dev; |
7622 | adj->master = master; |
7623 | adj->ref_nr = 1; |
7624 | adj->private = private; |
7625 | adj->ignore = false; |
7626 | netdev_hold(dev: adj_dev, tracker: &adj->dev_tracker, GFP_KERNEL); |
7627 | |
7628 | pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n" , |
7629 | dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); |
7630 | |
7631 | if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { |
7632 | ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); |
7633 | if (ret) |
7634 | goto free_adj; |
7635 | } |
7636 | |
7637 | /* Ensure that master link is always the first item in list. */ |
7638 | if (master) { |
7639 | ret = sysfs_create_link(kobj: &(dev->dev.kobj), |
7640 | target: &(adj_dev->dev.kobj), name: "master" ); |
7641 | if (ret) |
7642 | goto remove_symlinks; |
7643 | |
7644 | list_add_rcu(new: &adj->list, head: dev_list); |
7645 | } else { |
7646 | list_add_tail_rcu(new: &adj->list, head: dev_list); |
7647 | } |
7648 | |
7649 | return 0; |
7650 | |
7651 | remove_symlinks: |
7652 | if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) |
7653 | netdev_adjacent_sysfs_del(dev, name: adj_dev->name, dev_list); |
7654 | free_adj: |
7655 | netdev_put(dev: adj_dev, tracker: &adj->dev_tracker); |
7656 | kfree(objp: adj); |
7657 | |
7658 | return ret; |
7659 | } |
7660 | |
7661 | static void __netdev_adjacent_dev_remove(struct net_device *dev, |
7662 | struct net_device *adj_dev, |
7663 | u16 ref_nr, |
7664 | struct list_head *dev_list) |
7665 | { |
7666 | struct netdev_adjacent *adj; |
7667 | |
7668 | pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n" , |
7669 | dev->name, adj_dev->name, ref_nr); |
7670 | |
7671 | adj = __netdev_find_adj(adj_dev, adj_list: dev_list); |
7672 | |
7673 | if (!adj) { |
7674 | pr_err("Adjacency does not exist for device %s from %s\n" , |
7675 | dev->name, adj_dev->name); |
7676 | WARN_ON(1); |
7677 | return; |
7678 | } |
7679 | |
7680 | if (adj->ref_nr > ref_nr) { |
7681 | pr_debug("adjacency: %s to %s ref_nr - %d = %d\n" , |
7682 | dev->name, adj_dev->name, ref_nr, |
7683 | adj->ref_nr - ref_nr); |
7684 | adj->ref_nr -= ref_nr; |
7685 | return; |
7686 | } |
7687 | |
7688 | if (adj->master) |
7689 | sysfs_remove_link(kobj: &(dev->dev.kobj), name: "master" ); |
7690 | |
7691 | if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) |
7692 | netdev_adjacent_sysfs_del(dev, name: adj_dev->name, dev_list); |
7693 | |
7694 | list_del_rcu(entry: &adj->list); |
7695 | pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n" , |
7696 | adj_dev->name, dev->name, adj_dev->name); |
7697 | netdev_put(dev: adj_dev, tracker: &adj->dev_tracker); |
7698 | kfree_rcu(adj, rcu); |
7699 | } |
7700 | |
7701 | static int __netdev_adjacent_dev_link_lists(struct net_device *dev, |
7702 | struct net_device *upper_dev, |
7703 | struct list_head *up_list, |
7704 | struct list_head *down_list, |
7705 | void *private, bool master) |
7706 | { |
7707 | int ret; |
7708 | |
7709 | ret = __netdev_adjacent_dev_insert(dev, adj_dev: upper_dev, dev_list: up_list, |
7710 | private, master); |
7711 | if (ret) |
7712 | return ret; |
7713 | |
7714 | ret = __netdev_adjacent_dev_insert(dev: upper_dev, adj_dev: dev, dev_list: down_list, |
7715 | private, master: false); |
7716 | if (ret) { |
7717 | __netdev_adjacent_dev_remove(dev, adj_dev: upper_dev, ref_nr: 1, dev_list: up_list); |
7718 | return ret; |
7719 | } |
7720 | |
7721 | return 0; |
7722 | } |
7723 | |
7724 | static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, |
7725 | struct net_device *upper_dev, |
7726 | u16 ref_nr, |
7727 | struct list_head *up_list, |
7728 | struct list_head *down_list) |
7729 | { |
7730 | __netdev_adjacent_dev_remove(dev, adj_dev: upper_dev, ref_nr, dev_list: up_list); |
7731 | __netdev_adjacent_dev_remove(dev: upper_dev, adj_dev: dev, ref_nr, dev_list: down_list); |
7732 | } |
7733 | |
7734 | static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, |
7735 | struct net_device *upper_dev, |
7736 | void *private, bool master) |
7737 | { |
7738 | return __netdev_adjacent_dev_link_lists(dev, upper_dev, |
7739 | up_list: &dev->adj_list.upper, |
7740 | down_list: &upper_dev->adj_list.lower, |
7741 | private, master); |
7742 | } |
7743 | |
7744 | static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, |
7745 | struct net_device *upper_dev) |
7746 | { |
7747 | __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr: 1, |
7748 | up_list: &dev->adj_list.upper, |
7749 | down_list: &upper_dev->adj_list.lower); |
7750 | } |
7751 | |
7752 | static int __netdev_upper_dev_link(struct net_device *dev, |
7753 | struct net_device *upper_dev, bool master, |
7754 | void *upper_priv, void *upper_info, |
7755 | struct netdev_nested_priv *priv, |
7756 | struct netlink_ext_ack *extack) |
7757 | { |
7758 | struct netdev_notifier_changeupper_info changeupper_info = { |
7759 | .info = { |
7760 | .dev = dev, |
7761 | .extack = extack, |
7762 | }, |
7763 | .upper_dev = upper_dev, |
7764 | .master = master, |
7765 | .linking = true, |
7766 | .upper_info = upper_info, |
7767 | }; |
7768 | struct net_device *master_dev; |
7769 | int ret = 0; |
7770 | |
7771 | ASSERT_RTNL(); |
7772 | |
7773 | if (dev == upper_dev) |
7774 | return -EBUSY; |
7775 | |
7776 | /* To prevent loops, check if dev is not upper device to upper_dev. */ |
7777 | if (__netdev_has_upper_dev(dev: upper_dev, upper_dev: dev)) |
7778 | return -EBUSY; |
7779 | |
7780 | if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) |
7781 | return -EMLINK; |
7782 | |
7783 | if (!master) { |
7784 | if (__netdev_has_upper_dev(dev, upper_dev)) |
7785 | return -EEXIST; |
7786 | } else { |
7787 | master_dev = __netdev_master_upper_dev_get(dev); |
7788 | if (master_dev) |
7789 | return master_dev == upper_dev ? -EEXIST : -EBUSY; |
7790 | } |
7791 | |
7792 | ret = call_netdevice_notifiers_info(val: NETDEV_PRECHANGEUPPER, |
7793 | info: &changeupper_info.info); |
7794 | ret = notifier_to_errno(ret); |
7795 | if (ret) |
7796 | return ret; |
7797 | |
7798 | ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private: upper_priv, |
7799 | master); |
7800 | if (ret) |
7801 | return ret; |
7802 | |
7803 | ret = call_netdevice_notifiers_info(val: NETDEV_CHANGEUPPER, |
7804 | info: &changeupper_info.info); |
7805 | ret = notifier_to_errno(ret); |
7806 | if (ret) |
7807 | goto rollback; |
7808 | |
7809 | __netdev_update_upper_level(dev, NULL); |
7810 | __netdev_walk_all_lower_dev(dev, fn: __netdev_update_upper_level, NULL); |
7811 | |
7812 | __netdev_update_lower_level(dev: upper_dev, priv); |
7813 | __netdev_walk_all_upper_dev(dev: upper_dev, fn: __netdev_update_lower_level, |
7814 | priv); |
7815 | |
7816 | return 0; |
7817 | |
7818 | rollback: |
7819 | __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); |
7820 | |
7821 | return ret; |
7822 | } |
7823 | |
7824 | /** |
7825 | * netdev_upper_dev_link - Add a link to the upper device |
7826 | * @dev: device |
7827 | * @upper_dev: new upper device |
7828 | * @extack: netlink extended ack |
7829 | * |
7830 | * Adds a link to device which is upper to this one. The caller must hold |
7831 | * the RTNL lock. On a failure a negative errno code is returned. |
7832 | * On success the reference counts are adjusted and the function |
7833 | * returns zero. |
7834 | */ |
7835 | int netdev_upper_dev_link(struct net_device *dev, |
7836 | struct net_device *upper_dev, |
7837 | struct netlink_ext_ack *extack) |
7838 | { |
7839 | struct netdev_nested_priv priv = { |
7840 | .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, |
7841 | .data = NULL, |
7842 | }; |
7843 | |
7844 | return __netdev_upper_dev_link(dev, upper_dev, master: false, |
7845 | NULL, NULL, priv: &priv, extack); |
7846 | } |
7847 | EXPORT_SYMBOL(netdev_upper_dev_link); |
7848 | |
7849 | /** |
7850 | * netdev_master_upper_dev_link - Add a master link to the upper device |
7851 | * @dev: device |
7852 | * @upper_dev: new upper device |
7853 | * @upper_priv: upper device private |
7854 | * @upper_info: upper info to be passed down via notifier |
7855 | * @extack: netlink extended ack |
7856 | * |
7857 | * Adds a link to device which is upper to this one. In this case, only |
7858 | * one master upper device can be linked, although other non-master devices |
7859 | * might be linked as well. The caller must hold the RTNL lock. |
7860 | * On a failure a negative errno code is returned. On success the reference |
7861 | * counts are adjusted and the function returns zero. |
7862 | */ |
7863 | int netdev_master_upper_dev_link(struct net_device *dev, |
7864 | struct net_device *upper_dev, |
7865 | void *upper_priv, void *upper_info, |
7866 | struct netlink_ext_ack *extack) |
7867 | { |
7868 | struct netdev_nested_priv priv = { |
7869 | .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, |
7870 | .data = NULL, |
7871 | }; |
7872 | |
7873 | return __netdev_upper_dev_link(dev, upper_dev, master: true, |
7874 | upper_priv, upper_info, priv: &priv, extack); |
7875 | } |
7876 | EXPORT_SYMBOL(netdev_master_upper_dev_link); |
7877 | |
7878 | static void __netdev_upper_dev_unlink(struct net_device *dev, |
7879 | struct net_device *upper_dev, |
7880 | struct netdev_nested_priv *priv) |
7881 | { |
7882 | struct netdev_notifier_changeupper_info changeupper_info = { |
7883 | .info = { |
7884 | .dev = dev, |
7885 | }, |
7886 | .upper_dev = upper_dev, |
7887 | .linking = false, |
7888 | }; |
7889 | |
7890 | ASSERT_RTNL(); |
7891 | |
7892 | changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; |
7893 | |
7894 | call_netdevice_notifiers_info(val: NETDEV_PRECHANGEUPPER, |
7895 | info: &changeupper_info.info); |
7896 | |
7897 | __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); |
7898 | |
7899 | call_netdevice_notifiers_info(val: NETDEV_CHANGEUPPER, |
7900 | info: &changeupper_info.info); |
7901 | |
7902 | __netdev_update_upper_level(dev, NULL); |
7903 | __netdev_walk_all_lower_dev(dev, fn: __netdev_update_upper_level, NULL); |
7904 | |
7905 | __netdev_update_lower_level(dev: upper_dev, priv); |
7906 | __netdev_walk_all_upper_dev(dev: upper_dev, fn: __netdev_update_lower_level, |
7907 | priv); |
7908 | } |
7909 | |
7910 | /** |
7911 | * netdev_upper_dev_unlink - Removes a link to upper device |
7912 | * @dev: device |
7913 | * @upper_dev: new upper device |
7914 | * |
7915 | * Removes a link to device which is upper to this one. The caller must hold |
7916 | * the RTNL lock. |
7917 | */ |
7918 | void netdev_upper_dev_unlink(struct net_device *dev, |
7919 | struct net_device *upper_dev) |
7920 | { |
7921 | struct netdev_nested_priv priv = { |
7922 | .flags = NESTED_SYNC_TODO, |
7923 | .data = NULL, |
7924 | }; |
7925 | |
7926 | __netdev_upper_dev_unlink(dev, upper_dev, priv: &priv); |
7927 | } |
7928 | EXPORT_SYMBOL(netdev_upper_dev_unlink); |
7929 | |
7930 | static void __netdev_adjacent_dev_set(struct net_device *upper_dev, |
7931 | struct net_device *lower_dev, |
7932 | bool val) |
7933 | { |
7934 | struct netdev_adjacent *adj; |
7935 | |
7936 | adj = __netdev_find_adj(adj_dev: lower_dev, adj_list: &upper_dev->adj_list.lower); |
7937 | if (adj) |
7938 | adj->ignore = val; |
7939 | |
7940 | adj = __netdev_find_adj(adj_dev: upper_dev, adj_list: &lower_dev->adj_list.upper); |
7941 | if (adj) |
7942 | adj->ignore = val; |
7943 | } |
7944 | |
7945 | static void netdev_adjacent_dev_disable(struct net_device *upper_dev, |
7946 | struct net_device *lower_dev) |
7947 | { |
7948 | __netdev_adjacent_dev_set(upper_dev, lower_dev, val: true); |
7949 | } |
7950 | |
7951 | static void netdev_adjacent_dev_enable(struct net_device *upper_dev, |
7952 | struct net_device *lower_dev) |
7953 | { |
7954 | __netdev_adjacent_dev_set(upper_dev, lower_dev, val: false); |
7955 | } |
7956 | |
7957 | int netdev_adjacent_change_prepare(struct net_device *old_dev, |
7958 | struct net_device *new_dev, |
7959 | struct net_device *dev, |
7960 | struct netlink_ext_ack *extack) |
7961 | { |
7962 | struct netdev_nested_priv priv = { |
7963 | .flags = 0, |
7964 | .data = NULL, |
7965 | }; |
7966 | int err; |
7967 | |
7968 | if (!new_dev) |
7969 | return 0; |
7970 | |
7971 | if (old_dev && new_dev != old_dev) |
7972 | netdev_adjacent_dev_disable(upper_dev: dev, lower_dev: old_dev); |
7973 | err = __netdev_upper_dev_link(dev: new_dev, upper_dev: dev, master: false, NULL, NULL, priv: &priv, |
7974 | extack); |
7975 | if (err) { |
7976 | if (old_dev && new_dev != old_dev) |
7977 | netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev); |
7978 | return err; |
7979 | } |
7980 | |
7981 | return 0; |
7982 | } |
7983 | EXPORT_SYMBOL(netdev_adjacent_change_prepare); |
7984 | |
7985 | void netdev_adjacent_change_commit(struct net_device *old_dev, |
7986 | struct net_device *new_dev, |
7987 | struct net_device *dev) |
7988 | { |
7989 | struct netdev_nested_priv priv = { |
7990 | .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, |
7991 | .data = NULL, |
7992 | }; |
7993 | |
7994 | if (!new_dev || !old_dev) |
7995 | return; |
7996 | |
7997 | if (new_dev == old_dev) |
7998 | return; |
7999 | |
8000 | netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev); |
8001 | __netdev_upper_dev_unlink(dev: old_dev, upper_dev: dev, priv: &priv); |
8002 | } |
8003 | EXPORT_SYMBOL(netdev_adjacent_change_commit); |
8004 | |
8005 | void netdev_adjacent_change_abort(struct net_device *old_dev, |
8006 | struct net_device *new_dev, |
8007 | struct net_device *dev) |
8008 | { |
8009 | struct netdev_nested_priv priv = { |
8010 | .flags = 0, |
8011 | .data = NULL, |
8012 | }; |
8013 | |
8014 | if (!new_dev) |
8015 | return; |
8016 | |
8017 | if (old_dev && new_dev != old_dev) |
8018 | netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev); |
8019 | |
8020 | __netdev_upper_dev_unlink(dev: new_dev, upper_dev: dev, priv: &priv); |
8021 | } |
8022 | EXPORT_SYMBOL(netdev_adjacent_change_abort); |
8023 | |
8024 | /** |
8025 | * netdev_bonding_info_change - Dispatch event about slave change |
8026 | * @dev: device |
8027 | * @bonding_info: info to dispatch |
8028 | * |
8029 | * Send NETDEV_BONDING_INFO to netdev notifiers with info. |
8030 | * The caller must hold the RTNL lock. |
8031 | */ |
8032 | void netdev_bonding_info_change(struct net_device *dev, |
8033 | struct netdev_bonding_info *bonding_info) |
8034 | { |
8035 | struct netdev_notifier_bonding_info info = { |
8036 | .info.dev = dev, |
8037 | }; |
8038 | |
8039 | memcpy(&info.bonding_info, bonding_info, |
8040 | sizeof(struct netdev_bonding_info)); |
8041 | call_netdevice_notifiers_info(val: NETDEV_BONDING_INFO, |
8042 | info: &info.info); |
8043 | } |
8044 | EXPORT_SYMBOL(netdev_bonding_info_change); |
8045 | |
8046 | static int netdev_offload_xstats_enable_l3(struct net_device *dev, |
8047 | struct netlink_ext_ack *extack) |
8048 | { |
8049 | struct netdev_notifier_offload_xstats_info info = { |
8050 | .info.dev = dev, |
8051 | .info.extack = extack, |
8052 | .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, |
8053 | }; |
8054 | int err; |
8055 | int rc; |
8056 | |
8057 | dev->offload_xstats_l3 = kzalloc(size: sizeof(*dev->offload_xstats_l3), |
8058 | GFP_KERNEL); |
8059 | if (!dev->offload_xstats_l3) |
8060 | return -ENOMEM; |
8061 | |
8062 | rc = call_netdevice_notifiers_info_robust(val_up: NETDEV_OFFLOAD_XSTATS_ENABLE, |
8063 | val_down: NETDEV_OFFLOAD_XSTATS_DISABLE, |
8064 | info: &info.info); |
8065 | err = notifier_to_errno(ret: rc); |
8066 | if (err) |
8067 | goto free_stats; |
8068 | |
8069 | return 0; |
8070 | |
8071 | free_stats: |
8072 | kfree(objp: dev->offload_xstats_l3); |
8073 | dev->offload_xstats_l3 = NULL; |
8074 | return err; |
8075 | } |
8076 | |
8077 | int netdev_offload_xstats_enable(struct net_device *dev, |
8078 | enum netdev_offload_xstats_type type, |
8079 | struct netlink_ext_ack *extack) |
8080 | { |
8081 | ASSERT_RTNL(); |
8082 | |
8083 | if (netdev_offload_xstats_enabled(dev, type)) |
8084 | return -EALREADY; |
8085 | |
8086 | switch (type) { |
8087 | case NETDEV_OFFLOAD_XSTATS_TYPE_L3: |
8088 | return netdev_offload_xstats_enable_l3(dev, extack); |
8089 | } |
8090 | |
8091 | WARN_ON(1); |
8092 | return -EINVAL; |
8093 | } |
8094 | EXPORT_SYMBOL(netdev_offload_xstats_enable); |
8095 | |
8096 | static void netdev_offload_xstats_disable_l3(struct net_device *dev) |
8097 | { |
8098 | struct netdev_notifier_offload_xstats_info info = { |
8099 | .info.dev = dev, |
8100 | .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, |
8101 | }; |
8102 | |
8103 | call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_DISABLE, |
8104 | info: &info.info); |
8105 | kfree(objp: dev->offload_xstats_l3); |
8106 | dev->offload_xstats_l3 = NULL; |
8107 | } |
8108 | |
8109 | int netdev_offload_xstats_disable(struct net_device *dev, |
8110 | enum netdev_offload_xstats_type type) |
8111 | { |
8112 | ASSERT_RTNL(); |
8113 | |
8114 | if (!netdev_offload_xstats_enabled(dev, type)) |
8115 | return -EALREADY; |
8116 | |
8117 | switch (type) { |
8118 | case NETDEV_OFFLOAD_XSTATS_TYPE_L3: |
8119 | netdev_offload_xstats_disable_l3(dev); |
8120 | return 0; |
8121 | } |
8122 | |
8123 | WARN_ON(1); |
8124 | return -EINVAL; |
8125 | } |
8126 | EXPORT_SYMBOL(netdev_offload_xstats_disable); |
8127 | |
8128 | static void netdev_offload_xstats_disable_all(struct net_device *dev) |
8129 | { |
8130 | netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); |
8131 | } |
8132 | |
8133 | static struct rtnl_hw_stats64 * |
8134 | netdev_offload_xstats_get_ptr(const struct net_device *dev, |
8135 | enum netdev_offload_xstats_type type) |
8136 | { |
8137 | switch (type) { |
8138 | case NETDEV_OFFLOAD_XSTATS_TYPE_L3: |
8139 | return dev->offload_xstats_l3; |
8140 | } |
8141 | |
8142 | WARN_ON(1); |
8143 | return NULL; |
8144 | } |
8145 | |
8146 | bool netdev_offload_xstats_enabled(const struct net_device *dev, |
8147 | enum netdev_offload_xstats_type type) |
8148 | { |
8149 | ASSERT_RTNL(); |
8150 | |
8151 | return netdev_offload_xstats_get_ptr(dev, type); |
8152 | } |
8153 | EXPORT_SYMBOL(netdev_offload_xstats_enabled); |
8154 | |
8155 | struct netdev_notifier_offload_xstats_ru { |
8156 | bool used; |
8157 | }; |
8158 | |
8159 | struct netdev_notifier_offload_xstats_rd { |
8160 | struct rtnl_hw_stats64 stats; |
8161 | bool used; |
8162 | }; |
8163 | |
8164 | static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, |
8165 | const struct rtnl_hw_stats64 *src) |
8166 | { |
8167 | dest->rx_packets += src->rx_packets; |
8168 | dest->tx_packets += src->tx_packets; |
8169 | dest->rx_bytes += src->rx_bytes; |
8170 | dest->tx_bytes += src->tx_bytes; |
8171 | dest->rx_errors += src->rx_errors; |
8172 | dest->tx_errors += src->tx_errors; |
8173 | dest->rx_dropped += src->rx_dropped; |
8174 | dest->tx_dropped += src->tx_dropped; |
8175 | dest->multicast += src->multicast; |
8176 | } |
8177 | |
8178 | static int netdev_offload_xstats_get_used(struct net_device *dev, |
8179 | enum netdev_offload_xstats_type type, |
8180 | bool *p_used, |
8181 | struct netlink_ext_ack *extack) |
8182 | { |
8183 | struct netdev_notifier_offload_xstats_ru report_used = {}; |
8184 | struct netdev_notifier_offload_xstats_info info = { |
8185 | .info.dev = dev, |
8186 | .info.extack = extack, |
8187 | .type = type, |
8188 | .report_used = &report_used, |
8189 | }; |
8190 | int rc; |
8191 | |
8192 | WARN_ON(!netdev_offload_xstats_enabled(dev, type)); |
8193 | rc = call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_REPORT_USED, |
8194 | info: &info.info); |
8195 | *p_used = report_used.used; |
8196 | return notifier_to_errno(ret: rc); |
8197 | } |
8198 | |
8199 | static int netdev_offload_xstats_get_stats(struct net_device *dev, |
8200 | enum netdev_offload_xstats_type type, |
8201 | struct rtnl_hw_stats64 *p_stats, |
8202 | bool *p_used, |
8203 | struct netlink_ext_ack *extack) |
8204 | { |
8205 | struct netdev_notifier_offload_xstats_rd report_delta = {}; |
8206 | struct netdev_notifier_offload_xstats_info info = { |
8207 | .info.dev = dev, |
8208 | .info.extack = extack, |
8209 | .type = type, |
8210 | .report_delta = &report_delta, |
8211 | }; |
8212 | struct rtnl_hw_stats64 *stats; |
8213 | int rc; |
8214 | |
8215 | stats = netdev_offload_xstats_get_ptr(dev, type); |
8216 | if (WARN_ON(!stats)) |
8217 | return -EINVAL; |
8218 | |
8219 | rc = call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, |
8220 | info: &info.info); |
8221 | |
8222 | /* Cache whatever we got, even if there was an error, otherwise the |
8223 | * successful stats retrievals would get lost. |
8224 | */ |
8225 | netdev_hw_stats64_add(dest: stats, src: &report_delta.stats); |
8226 | |
8227 | if (p_stats) |
8228 | *p_stats = *stats; |
8229 | *p_used = report_delta.used; |
8230 | |
8231 | return notifier_to_errno(ret: rc); |
8232 | } |
8233 | |
8234 | int netdev_offload_xstats_get(struct net_device *dev, |
8235 | enum netdev_offload_xstats_type type, |
8236 | struct rtnl_hw_stats64 *p_stats, bool *p_used, |
8237 | struct netlink_ext_ack *extack) |
8238 | { |
8239 | ASSERT_RTNL(); |
8240 | |
8241 | if (p_stats) |
8242 | return netdev_offload_xstats_get_stats(dev, type, p_stats, |
8243 | p_used, extack); |
8244 | else |
8245 | return netdev_offload_xstats_get_used(dev, type, p_used, |
8246 | extack); |
8247 | } |
8248 | EXPORT_SYMBOL(netdev_offload_xstats_get); |
8249 | |
8250 | void |
8251 | netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, |
8252 | const struct rtnl_hw_stats64 *stats) |
8253 | { |
8254 | report_delta->used = true; |
8255 | netdev_hw_stats64_add(dest: &report_delta->stats, src: stats); |
8256 | } |
8257 | EXPORT_SYMBOL(netdev_offload_xstats_report_delta); |
8258 | |
8259 | void |
8260 | netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) |
8261 | { |
8262 | report_used->used = true; |
8263 | } |
8264 | EXPORT_SYMBOL(netdev_offload_xstats_report_used); |
8265 | |
8266 | void netdev_offload_xstats_push_delta(struct net_device *dev, |
8267 | enum netdev_offload_xstats_type type, |
8268 | const struct rtnl_hw_stats64 *p_stats) |
8269 | { |
8270 | struct rtnl_hw_stats64 *stats; |
8271 | |
8272 | ASSERT_RTNL(); |
8273 | |
8274 | stats = netdev_offload_xstats_get_ptr(dev, type); |
8275 | if (WARN_ON(!stats)) |
8276 | return; |
8277 | |
8278 | netdev_hw_stats64_add(dest: stats, src: p_stats); |
8279 | } |
8280 | EXPORT_SYMBOL(netdev_offload_xstats_push_delta); |
8281 | |
8282 | /** |
8283 | * netdev_get_xmit_slave - Get the xmit slave of master device |
8284 | * @dev: device |
8285 | * @skb: The packet |
8286 | * @all_slaves: assume all the slaves are active |
8287 | * |
8288 | * The reference counters are not incremented so the caller must be |
8289 | * careful with locks. The caller must hold RCU lock. |
8290 | * %NULL is returned if no slave is found. |
8291 | */ |
8292 | |
8293 | struct net_device *netdev_get_xmit_slave(struct net_device *dev, |
8294 | struct sk_buff *skb, |
8295 | bool all_slaves) |
8296 | { |
8297 | const struct net_device_ops *ops = dev->netdev_ops; |
8298 | |
8299 | if (!ops->ndo_get_xmit_slave) |
8300 | return NULL; |
8301 | return ops->ndo_get_xmit_slave(dev, skb, all_slaves); |
8302 | } |
8303 | EXPORT_SYMBOL(netdev_get_xmit_slave); |
8304 | |
8305 | static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, |
8306 | struct sock *sk) |
8307 | { |
8308 | const struct net_device_ops *ops = dev->netdev_ops; |
8309 | |
8310 | if (!ops->ndo_sk_get_lower_dev) |
8311 | return NULL; |
8312 | return ops->ndo_sk_get_lower_dev(dev, sk); |
8313 | } |
8314 | |
8315 | /** |
8316 | * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket |
8317 | * @dev: device |
8318 | * @sk: the socket |
8319 | * |
8320 | * %NULL is returned if no lower device is found. |
8321 | */ |
8322 | |
8323 | struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, |
8324 | struct sock *sk) |
8325 | { |
8326 | struct net_device *lower; |
8327 | |
8328 | lower = netdev_sk_get_lower_dev(dev, sk); |
8329 | while (lower) { |
8330 | dev = lower; |
8331 | lower = netdev_sk_get_lower_dev(dev, sk); |
8332 | } |
8333 | |
8334 | return dev; |
8335 | } |
8336 | EXPORT_SYMBOL(netdev_sk_get_lowest_dev); |
8337 | |
8338 | static void netdev_adjacent_add_links(struct net_device *dev) |
8339 | { |
8340 | struct netdev_adjacent *iter; |
8341 | |
8342 | struct net *net = dev_net(dev); |
8343 | |
8344 | list_for_each_entry(iter, &dev->adj_list.upper, list) { |
8345 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
8346 | continue; |
8347 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
8348 | dev_list: &iter->dev->adj_list.lower); |
8349 | netdev_adjacent_sysfs_add(dev, adj_dev: iter->dev, |
8350 | dev_list: &dev->adj_list.upper); |
8351 | } |
8352 | |
8353 | list_for_each_entry(iter, &dev->adj_list.lower, list) { |
8354 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
8355 | continue; |
8356 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
8357 | dev_list: &iter->dev->adj_list.upper); |
8358 | netdev_adjacent_sysfs_add(dev, adj_dev: iter->dev, |
8359 | dev_list: &dev->adj_list.lower); |
8360 | } |
8361 | } |
8362 | |
8363 | static void netdev_adjacent_del_links(struct net_device *dev) |
8364 | { |
8365 | struct netdev_adjacent *iter; |
8366 | |
8367 | struct net *net = dev_net(dev); |
8368 | |
8369 | list_for_each_entry(iter, &dev->adj_list.upper, list) { |
8370 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
8371 | continue; |
8372 | netdev_adjacent_sysfs_del(dev: iter->dev, name: dev->name, |
8373 | dev_list: &iter->dev->adj_list.lower); |
8374 | netdev_adjacent_sysfs_del(dev, name: iter->dev->name, |
8375 | dev_list: &dev->adj_list.upper); |
8376 | } |
8377 | |
8378 | list_for_each_entry(iter, &dev->adj_list.lower, list) { |
8379 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
8380 | continue; |
8381 | netdev_adjacent_sysfs_del(dev: iter->dev, name: dev->name, |
8382 | dev_list: &iter->dev->adj_list.upper); |
8383 | netdev_adjacent_sysfs_del(dev, name: iter->dev->name, |
8384 | dev_list: &dev->adj_list.lower); |
8385 | } |
8386 | } |
8387 | |
8388 | void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) |
8389 | { |
8390 | struct netdev_adjacent *iter; |
8391 | |
8392 | struct net *net = dev_net(dev); |
8393 | |
8394 | list_for_each_entry(iter, &dev->adj_list.upper, list) { |
8395 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
8396 | continue; |
8397 | netdev_adjacent_sysfs_del(dev: iter->dev, name: oldname, |
8398 | dev_list: &iter->dev->adj_list.lower); |
8399 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
8400 | dev_list: &iter->dev->adj_list.lower); |
8401 | } |
8402 | |
8403 | list_for_each_entry(iter, &dev->adj_list.lower, list) { |
8404 | if (!net_eq(net1: net, net2: dev_net(dev: iter->dev))) |
8405 | continue; |
8406 | netdev_adjacent_sysfs_del(dev: iter->dev, name: oldname, |
8407 | dev_list: &iter->dev->adj_list.upper); |
8408 | netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev, |
8409 | dev_list: &iter->dev->adj_list.upper); |
8410 | } |
8411 | } |
8412 | |
8413 | void *netdev_lower_dev_get_private(struct net_device *dev, |
8414 | struct net_device *lower_dev) |
8415 | { |
8416 | struct netdev_adjacent *lower; |
8417 | |
8418 | if (!lower_dev) |
8419 | return NULL; |
8420 | lower = __netdev_find_adj(adj_dev: lower_dev, adj_list: &dev->adj_list.lower); |
8421 | if (!lower) |
8422 | return NULL; |
8423 | |
8424 | return lower->private; |
8425 | } |
8426 | EXPORT_SYMBOL(netdev_lower_dev_get_private); |
8427 | |
8428 | |
8429 | /** |
8430 | * netdev_lower_state_changed - Dispatch event about lower device state change |
8431 | * @lower_dev: device |
8432 | * @lower_state_info: state to dispatch |
8433 | * |
8434 | * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. |
8435 | * The caller must hold the RTNL lock. |
8436 | */ |
8437 | void netdev_lower_state_changed(struct net_device *lower_dev, |
8438 | void *lower_state_info) |
8439 | { |
8440 | struct netdev_notifier_changelowerstate_info changelowerstate_info = { |
8441 | .info.dev = lower_dev, |
8442 | }; |
8443 | |
8444 | ASSERT_RTNL(); |
8445 | changelowerstate_info.lower_state_info = lower_state_info; |
8446 | call_netdevice_notifiers_info(val: NETDEV_CHANGELOWERSTATE, |
8447 | info: &changelowerstate_info.info); |
8448 | } |
8449 | EXPORT_SYMBOL(netdev_lower_state_changed); |
8450 | |
8451 | static void dev_change_rx_flags(struct net_device *dev, int flags) |
8452 | { |
8453 | const struct net_device_ops *ops = dev->netdev_ops; |
8454 | |
8455 | if (ops->ndo_change_rx_flags) |
8456 | ops->ndo_change_rx_flags(dev, flags); |
8457 | } |
8458 | |
8459 | static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) |
8460 | { |
8461 | unsigned int old_flags = dev->flags; |
8462 | kuid_t uid; |
8463 | kgid_t gid; |
8464 | |
8465 | ASSERT_RTNL(); |
8466 | |
8467 | dev->flags |= IFF_PROMISC; |
8468 | dev->promiscuity += inc; |
8469 | if (dev->promiscuity == 0) { |
8470 | /* |
8471 | * Avoid overflow. |
8472 | * If inc causes overflow, untouch promisc and return error. |
8473 | */ |
8474 | if (inc < 0) |
8475 | dev->flags &= ~IFF_PROMISC; |
8476 | else { |
8477 | dev->promiscuity -= inc; |
8478 | netdev_warn(dev, format: "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n" ); |
8479 | return -EOVERFLOW; |
8480 | } |
8481 | } |
8482 | if (dev->flags != old_flags) { |
8483 | netdev_info(dev, format: "%s promiscuous mode\n" , |
8484 | dev->flags & IFF_PROMISC ? "entered" : "left" ); |
8485 | if (audit_enabled) { |
8486 | current_uid_gid(&uid, &gid); |
8487 | audit_log(ctx: audit_context(), GFP_ATOMIC, |
8488 | AUDIT_ANOM_PROMISCUOUS, |
8489 | fmt: "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u" , |
8490 | dev->name, (dev->flags & IFF_PROMISC), |
8491 | (old_flags & IFF_PROMISC), |
8492 | from_kuid(to: &init_user_ns, uid: audit_get_loginuid(current)), |
8493 | from_kuid(to: &init_user_ns, uid), |
8494 | from_kgid(to: &init_user_ns, gid), |
8495 | audit_get_sessionid(current)); |
8496 | } |
8497 | |
8498 | dev_change_rx_flags(dev, IFF_PROMISC); |
8499 | } |
8500 | if (notify) |
8501 | __dev_notify_flags(dev, old_flags, IFF_PROMISC, portid: 0, NULL); |
8502 | return 0; |
8503 | } |
8504 | |
8505 | /** |
8506 | * dev_set_promiscuity - update promiscuity count on a device |
8507 | * @dev: device |
8508 | * @inc: modifier |
8509 | * |
8510 | * Add or remove promiscuity from a device. While the count in the device |
8511 | * remains above zero the interface remains promiscuous. Once it hits zero |
8512 | * the device reverts back to normal filtering operation. A negative inc |
8513 | * value is used to drop promiscuity on the device. |
8514 | * Return 0 if successful or a negative errno code on error. |
8515 | */ |
8516 | int dev_set_promiscuity(struct net_device *dev, int inc) |
8517 | { |
8518 | unsigned int old_flags = dev->flags; |
8519 | int err; |
8520 | |
8521 | err = __dev_set_promiscuity(dev, inc, notify: true); |
8522 | if (err < 0) |
8523 | return err; |
8524 | if (dev->flags != old_flags) |
8525 | dev_set_rx_mode(dev); |
8526 | return err; |
8527 | } |
8528 | EXPORT_SYMBOL(dev_set_promiscuity); |
8529 | |
8530 | static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) |
8531 | { |
8532 | unsigned int old_flags = dev->flags, old_gflags = dev->gflags; |
8533 | |
8534 | ASSERT_RTNL(); |
8535 | |
8536 | dev->flags |= IFF_ALLMULTI; |
8537 | dev->allmulti += inc; |
8538 | if (dev->allmulti == 0) { |
8539 | /* |
8540 | * Avoid overflow. |
8541 | * If inc causes overflow, untouch allmulti and return error. |
8542 | */ |
8543 | if (inc < 0) |
8544 | dev->flags &= ~IFF_ALLMULTI; |
8545 | else { |
8546 | dev->allmulti -= inc; |
8547 | netdev_warn(dev, format: "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n" ); |
8548 | return -EOVERFLOW; |
8549 | } |
8550 | } |
8551 | if (dev->flags ^ old_flags) { |
8552 | netdev_info(dev, format: "%s allmulticast mode\n" , |
8553 | dev->flags & IFF_ALLMULTI ? "entered" : "left" ); |
8554 | dev_change_rx_flags(dev, IFF_ALLMULTI); |
8555 | dev_set_rx_mode(dev); |
8556 | if (notify) |
8557 | __dev_notify_flags(dev, old_flags, |
8558 | gchanges: dev->gflags ^ old_gflags, portid: 0, NULL); |
8559 | } |
8560 | return 0; |
8561 | } |
8562 | |
8563 | /** |
8564 | * dev_set_allmulti - update allmulti count on a device |
8565 | * @dev: device |
8566 | * @inc: modifier |
8567 | * |
8568 | * Add or remove reception of all multicast frames to a device. While the |
8569 | * count in the device remains above zero the interface remains listening |
8570 | * to all interfaces. Once it hits zero the device reverts back to normal |
8571 | * filtering operation. A negative @inc value is used to drop the counter |
8572 | * when releasing a resource needing all multicasts. |
8573 | * Return 0 if successful or a negative errno code on error. |
8574 | */ |
8575 | |
8576 | int dev_set_allmulti(struct net_device *dev, int inc) |
8577 | { |
8578 | return __dev_set_allmulti(dev, inc, notify: true); |
8579 | } |
8580 | EXPORT_SYMBOL(dev_set_allmulti); |
8581 | |
8582 | /* |
8583 | * Upload unicast and multicast address lists to device and |
8584 | * configure RX filtering. When the device doesn't support unicast |
8585 | * filtering it is put in promiscuous mode while unicast addresses |
8586 | * are present. |
8587 | */ |
8588 | void __dev_set_rx_mode(struct net_device *dev) |
8589 | { |
8590 | const struct net_device_ops *ops = dev->netdev_ops; |
8591 | |
8592 | /* dev_open will call this function so the list will stay sane. */ |
8593 | if (!(dev->flags&IFF_UP)) |
8594 | return; |
8595 | |
8596 | if (!netif_device_present(dev)) |
8597 | return; |
8598 | |
8599 | if (!(dev->priv_flags & IFF_UNICAST_FLT)) { |
8600 | /* Unicast addresses changes may only happen under the rtnl, |
8601 | * therefore calling __dev_set_promiscuity here is safe. |
8602 | */ |
8603 | if (!netdev_uc_empty(dev) && !dev->uc_promisc) { |
8604 | __dev_set_promiscuity(dev, inc: 1, notify: false); |
8605 | dev->uc_promisc = true; |
8606 | } else if (netdev_uc_empty(dev) && dev->uc_promisc) { |
8607 | __dev_set_promiscuity(dev, inc: -1, notify: false); |
8608 | dev->uc_promisc = false; |
8609 | } |
8610 | } |
8611 | |
8612 | if (ops->ndo_set_rx_mode) |
8613 | ops->ndo_set_rx_mode(dev); |
8614 | } |
8615 | |
8616 | void dev_set_rx_mode(struct net_device *dev) |
8617 | { |
8618 | netif_addr_lock_bh(dev); |
8619 | __dev_set_rx_mode(dev); |
8620 | netif_addr_unlock_bh(dev); |
8621 | } |
8622 | |
8623 | /** |
8624 | * dev_get_flags - get flags reported to userspace |
8625 | * @dev: device |
8626 | * |
8627 | * Get the combination of flag bits exported through APIs to userspace. |
8628 | */ |
8629 | unsigned int dev_get_flags(const struct net_device *dev) |
8630 | { |
8631 | unsigned int flags; |
8632 | |
8633 | flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | |
8634 | IFF_ALLMULTI | |
8635 | IFF_RUNNING | |
8636 | IFF_LOWER_UP | |
8637 | IFF_DORMANT)) | |
8638 | (READ_ONCE(dev->gflags) & (IFF_PROMISC | |
8639 | IFF_ALLMULTI)); |
8640 | |
8641 | if (netif_running(dev)) { |
8642 | if (netif_oper_up(dev)) |
8643 | flags |= IFF_RUNNING; |
8644 | if (netif_carrier_ok(dev)) |
8645 | flags |= IFF_LOWER_UP; |
8646 | if (netif_dormant(dev)) |
8647 | flags |= IFF_DORMANT; |
8648 | } |
8649 | |
8650 | return flags; |
8651 | } |
8652 | EXPORT_SYMBOL(dev_get_flags); |
8653 | |
8654 | int __dev_change_flags(struct net_device *dev, unsigned int flags, |
8655 | struct netlink_ext_ack *extack) |
8656 | { |
8657 | unsigned int old_flags = dev->flags; |
8658 | int ret; |
8659 | |
8660 | ASSERT_RTNL(); |
8661 | |
8662 | /* |
8663 | * Set the flags on our device. |
8664 | */ |
8665 | |
8666 | dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | |
8667 | IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | |
8668 | IFF_AUTOMEDIA)) | |
8669 | (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | |
8670 | IFF_ALLMULTI)); |
8671 | |
8672 | /* |
8673 | * Load in the correct multicast list now the flags have changed. |
8674 | */ |
8675 | |
8676 | if ((old_flags ^ flags) & IFF_MULTICAST) |
8677 | dev_change_rx_flags(dev, IFF_MULTICAST); |
8678 | |
8679 | dev_set_rx_mode(dev); |
8680 | |
8681 | /* |
8682 | * Have we downed the interface. We handle IFF_UP ourselves |
8683 | * according to user attempts to set it, rather than blindly |
8684 | * setting it. |
8685 | */ |
8686 | |
8687 | ret = 0; |
8688 | if ((old_flags ^ flags) & IFF_UP) { |
8689 | if (old_flags & IFF_UP) |
8690 | __dev_close(dev); |
8691 | else |
8692 | ret = __dev_open(dev, extack); |
8693 | } |
8694 | |
8695 | if ((flags ^ dev->gflags) & IFF_PROMISC) { |
8696 | int inc = (flags & IFF_PROMISC) ? 1 : -1; |
8697 | unsigned int old_flags = dev->flags; |
8698 | |
8699 | dev->gflags ^= IFF_PROMISC; |
8700 | |
8701 | if (__dev_set_promiscuity(dev, inc, notify: false) >= 0) |
8702 | if (dev->flags != old_flags) |
8703 | dev_set_rx_mode(dev); |
8704 | } |
8705 | |
8706 | /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI |
8707 | * is important. Some (broken) drivers set IFF_PROMISC, when |
8708 | * IFF_ALLMULTI is requested not asking us and not reporting. |
8709 | */ |
8710 | if ((flags ^ dev->gflags) & IFF_ALLMULTI) { |
8711 | int inc = (flags & IFF_ALLMULTI) ? 1 : -1; |
8712 | |
8713 | dev->gflags ^= IFF_ALLMULTI; |
8714 | __dev_set_allmulti(dev, inc, notify: false); |
8715 | } |
8716 | |
8717 | return ret; |
8718 | } |
8719 | |
8720 | void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, |
8721 | unsigned int gchanges, u32 portid, |
8722 | const struct nlmsghdr *nlh) |
8723 | { |
8724 | unsigned int changes = dev->flags ^ old_flags; |
8725 | |
8726 | if (gchanges) |
8727 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: gchanges, GFP_ATOMIC, portid, nlh); |
8728 | |
8729 | if (changes & IFF_UP) { |
8730 | if (dev->flags & IFF_UP) |
8731 | call_netdevice_notifiers(NETDEV_UP, dev); |
8732 | else |
8733 | call_netdevice_notifiers(NETDEV_DOWN, dev); |
8734 | } |
8735 | |
8736 | if (dev->flags & IFF_UP && |
8737 | (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { |
8738 | struct netdev_notifier_change_info change_info = { |
8739 | .info = { |
8740 | .dev = dev, |
8741 | }, |
8742 | .flags_changed = changes, |
8743 | }; |
8744 | |
8745 | call_netdevice_notifiers_info(val: NETDEV_CHANGE, info: &change_info.info); |
8746 | } |
8747 | } |
8748 | |
8749 | /** |
8750 | * dev_change_flags - change device settings |
8751 | * @dev: device |
8752 | * @flags: device state flags |
8753 | * @extack: netlink extended ack |
8754 | * |
8755 | * Change settings on device based state flags. The flags are |
8756 | * in the userspace exported format. |
8757 | */ |
8758 | int dev_change_flags(struct net_device *dev, unsigned int flags, |
8759 | struct netlink_ext_ack *extack) |
8760 | { |
8761 | int ret; |
8762 | unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; |
8763 | |
8764 | ret = __dev_change_flags(dev, flags, extack); |
8765 | if (ret < 0) |
8766 | return ret; |
8767 | |
8768 | changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); |
8769 | __dev_notify_flags(dev, old_flags, gchanges: changes, portid: 0, NULL); |
8770 | return ret; |
8771 | } |
8772 | EXPORT_SYMBOL(dev_change_flags); |
8773 | |
8774 | int __dev_set_mtu(struct net_device *dev, int new_mtu) |
8775 | { |
8776 | const struct net_device_ops *ops = dev->netdev_ops; |
8777 | |
8778 | if (ops->ndo_change_mtu) |
8779 | return ops->ndo_change_mtu(dev, new_mtu); |
8780 | |
8781 | /* Pairs with all the lockless reads of dev->mtu in the stack */ |
8782 | WRITE_ONCE(dev->mtu, new_mtu); |
8783 | return 0; |
8784 | } |
8785 | EXPORT_SYMBOL(__dev_set_mtu); |
8786 | |
8787 | int dev_validate_mtu(struct net_device *dev, int new_mtu, |
8788 | struct netlink_ext_ack *extack) |
8789 | { |
8790 | /* MTU must be positive, and in range */ |
8791 | if (new_mtu < 0 || new_mtu < dev->min_mtu) { |
8792 | NL_SET_ERR_MSG(extack, "mtu less than device minimum" ); |
8793 | return -EINVAL; |
8794 | } |
8795 | |
8796 | if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { |
8797 | NL_SET_ERR_MSG(extack, "mtu greater than device maximum" ); |
8798 | return -EINVAL; |
8799 | } |
8800 | return 0; |
8801 | } |
8802 | |
8803 | /** |
8804 | * dev_set_mtu_ext - Change maximum transfer unit |
8805 | * @dev: device |
8806 | * @new_mtu: new transfer unit |
8807 | * @extack: netlink extended ack |
8808 | * |
8809 | * Change the maximum transfer size of the network device. |
8810 | */ |
8811 | int dev_set_mtu_ext(struct net_device *dev, int new_mtu, |
8812 | struct netlink_ext_ack *extack) |
8813 | { |
8814 | int err, orig_mtu; |
8815 | |
8816 | if (new_mtu == dev->mtu) |
8817 | return 0; |
8818 | |
8819 | err = dev_validate_mtu(dev, new_mtu, extack); |
8820 | if (err) |
8821 | return err; |
8822 | |
8823 | if (!netif_device_present(dev)) |
8824 | return -ENODEV; |
8825 | |
8826 | err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); |
8827 | err = notifier_to_errno(ret: err); |
8828 | if (err) |
8829 | return err; |
8830 | |
8831 | orig_mtu = dev->mtu; |
8832 | err = __dev_set_mtu(dev, new_mtu); |
8833 | |
8834 | if (!err) { |
8835 | err = call_netdevice_notifiers_mtu(val: NETDEV_CHANGEMTU, dev, |
8836 | arg: orig_mtu); |
8837 | err = notifier_to_errno(ret: err); |
8838 | if (err) { |
8839 | /* setting mtu back and notifying everyone again, |
8840 | * so that they have a chance to revert changes. |
8841 | */ |
8842 | __dev_set_mtu(dev, orig_mtu); |
8843 | call_netdevice_notifiers_mtu(val: NETDEV_CHANGEMTU, dev, |
8844 | arg: new_mtu); |
8845 | } |
8846 | } |
8847 | return err; |
8848 | } |
8849 | |
8850 | int dev_set_mtu(struct net_device *dev, int new_mtu) |
8851 | { |
8852 | struct netlink_ext_ack extack; |
8853 | int err; |
8854 | |
8855 | memset(&extack, 0, sizeof(extack)); |
8856 | err = dev_set_mtu_ext(dev, new_mtu, extack: &extack); |
8857 | if (err && extack._msg) |
8858 | net_err_ratelimited("%s: %s\n" , dev->name, extack._msg); |
8859 | return err; |
8860 | } |
8861 | EXPORT_SYMBOL(dev_set_mtu); |
8862 | |
8863 | /** |
8864 | * dev_change_tx_queue_len - Change TX queue length of a netdevice |
8865 | * @dev: device |
8866 | * @new_len: new tx queue length |
8867 | */ |
8868 | int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) |
8869 | { |
8870 | unsigned int orig_len = dev->tx_queue_len; |
8871 | int res; |
8872 | |
8873 | if (new_len != (unsigned int)new_len) |
8874 | return -ERANGE; |
8875 | |
8876 | if (new_len != orig_len) { |
8877 | dev->tx_queue_len = new_len; |
8878 | res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); |
8879 | res = notifier_to_errno(ret: res); |
8880 | if (res) |
8881 | goto err_rollback; |
8882 | res = dev_qdisc_change_tx_queue_len(dev); |
8883 | if (res) |
8884 | goto err_rollback; |
8885 | } |
8886 | |
8887 | return 0; |
8888 | |
8889 | err_rollback: |
8890 | netdev_err(dev, format: "refused to change device tx_queue_len\n" ); |
8891 | dev->tx_queue_len = orig_len; |
8892 | return res; |
8893 | } |
8894 | |
8895 | /** |
8896 | * dev_set_group - Change group this device belongs to |
8897 | * @dev: device |
8898 | * @new_group: group this device should belong to |
8899 | */ |
8900 | void dev_set_group(struct net_device *dev, int new_group) |
8901 | { |
8902 | dev->group = new_group; |
8903 | } |
8904 | |
8905 | /** |
8906 | * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. |
8907 | * @dev: device |
8908 | * @addr: new address |
8909 | * @extack: netlink extended ack |
8910 | */ |
8911 | int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, |
8912 | struct netlink_ext_ack *extack) |
8913 | { |
8914 | struct netdev_notifier_pre_changeaddr_info info = { |
8915 | .info.dev = dev, |
8916 | .info.extack = extack, |
8917 | .dev_addr = addr, |
8918 | }; |
8919 | int rc; |
8920 | |
8921 | rc = call_netdevice_notifiers_info(val: NETDEV_PRE_CHANGEADDR, info: &info.info); |
8922 | return notifier_to_errno(ret: rc); |
8923 | } |
8924 | EXPORT_SYMBOL(dev_pre_changeaddr_notify); |
8925 | |
8926 | /** |
8927 | * dev_set_mac_address - Change Media Access Control Address |
8928 | * @dev: device |
8929 | * @sa: new address |
8930 | * @extack: netlink extended ack |
8931 | * |
8932 | * Change the hardware (MAC) address of the device |
8933 | */ |
8934 | int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, |
8935 | struct netlink_ext_ack *extack) |
8936 | { |
8937 | const struct net_device_ops *ops = dev->netdev_ops; |
8938 | int err; |
8939 | |
8940 | if (!ops->ndo_set_mac_address) |
8941 | return -EOPNOTSUPP; |
8942 | if (sa->sa_family != dev->type) |
8943 | return -EINVAL; |
8944 | if (!netif_device_present(dev)) |
8945 | return -ENODEV; |
8946 | err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); |
8947 | if (err) |
8948 | return err; |
8949 | if (memcmp(p: dev->dev_addr, q: sa->sa_data, size: dev->addr_len)) { |
8950 | err = ops->ndo_set_mac_address(dev, sa); |
8951 | if (err) |
8952 | return err; |
8953 | } |
8954 | dev->addr_assign_type = NET_ADDR_SET; |
8955 | call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); |
8956 | add_device_randomness(buf: dev->dev_addr, len: dev->addr_len); |
8957 | return 0; |
8958 | } |
8959 | EXPORT_SYMBOL(dev_set_mac_address); |
8960 | |
8961 | DECLARE_RWSEM(dev_addr_sem); |
8962 | |
8963 | int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, |
8964 | struct netlink_ext_ack *extack) |
8965 | { |
8966 | int ret; |
8967 | |
8968 | down_write(sem: &dev_addr_sem); |
8969 | ret = dev_set_mac_address(dev, sa, extack); |
8970 | up_write(sem: &dev_addr_sem); |
8971 | return ret; |
8972 | } |
8973 | EXPORT_SYMBOL(dev_set_mac_address_user); |
8974 | |
8975 | int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) |
8976 | { |
8977 | size_t size = sizeof(sa->sa_data_min); |
8978 | struct net_device *dev; |
8979 | int ret = 0; |
8980 | |
8981 | down_read(sem: &dev_addr_sem); |
8982 | rcu_read_lock(); |
8983 | |
8984 | dev = dev_get_by_name_rcu(net, dev_name); |
8985 | if (!dev) { |
8986 | ret = -ENODEV; |
8987 | goto unlock; |
8988 | } |
8989 | if (!dev->addr_len) |
8990 | memset(sa->sa_data, 0, size); |
8991 | else |
8992 | memcpy(sa->sa_data, dev->dev_addr, |
8993 | min_t(size_t, size, dev->addr_len)); |
8994 | sa->sa_family = dev->type; |
8995 | |
8996 | unlock: |
8997 | rcu_read_unlock(); |
8998 | up_read(sem: &dev_addr_sem); |
8999 | return ret; |
9000 | } |
9001 | EXPORT_SYMBOL(dev_get_mac_address); |
9002 | |
9003 | /** |
9004 | * dev_change_carrier - Change device carrier |
9005 | * @dev: device |
9006 | * @new_carrier: new value |
9007 | * |
9008 | * Change device carrier |
9009 | */ |
9010 | int dev_change_carrier(struct net_device *dev, bool new_carrier) |
9011 | { |
9012 | const struct net_device_ops *ops = dev->netdev_ops; |
9013 | |
9014 | if (!ops->ndo_change_carrier) |
9015 | return -EOPNOTSUPP; |
9016 | if (!netif_device_present(dev)) |
9017 | return -ENODEV; |
9018 | return ops->ndo_change_carrier(dev, new_carrier); |
9019 | } |
9020 | |
9021 | /** |
9022 | * dev_get_phys_port_id - Get device physical port ID |
9023 | * @dev: device |
9024 | * @ppid: port ID |
9025 | * |
9026 | * Get device physical port ID |
9027 | */ |
9028 | int dev_get_phys_port_id(struct net_device *dev, |
9029 | struct netdev_phys_item_id *ppid) |
9030 | { |
9031 | const struct net_device_ops *ops = dev->netdev_ops; |
9032 | |
9033 | if (!ops->ndo_get_phys_port_id) |
9034 | return -EOPNOTSUPP; |
9035 | return ops->ndo_get_phys_port_id(dev, ppid); |
9036 | } |
9037 | |
9038 | /** |
9039 | * dev_get_phys_port_name - Get device physical port name |
9040 | * @dev: device |
9041 | * @name: port name |
9042 | * @len: limit of bytes to copy to name |
9043 | * |
9044 | * Get device physical port name |
9045 | */ |
9046 | int dev_get_phys_port_name(struct net_device *dev, |
9047 | char *name, size_t len) |
9048 | { |
9049 | const struct net_device_ops *ops = dev->netdev_ops; |
9050 | int err; |
9051 | |
9052 | if (ops->ndo_get_phys_port_name) { |
9053 | err = ops->ndo_get_phys_port_name(dev, name, len); |
9054 | if (err != -EOPNOTSUPP) |
9055 | return err; |
9056 | } |
9057 | return devlink_compat_phys_port_name_get(dev, name, len); |
9058 | } |
9059 | |
9060 | /** |
9061 | * dev_get_port_parent_id - Get the device's port parent identifier |
9062 | * @dev: network device |
9063 | * @ppid: pointer to a storage for the port's parent identifier |
9064 | * @recurse: allow/disallow recursion to lower devices |
9065 | * |
9066 | * Get the devices's port parent identifier |
9067 | */ |
9068 | int dev_get_port_parent_id(struct net_device *dev, |
9069 | struct netdev_phys_item_id *ppid, |
9070 | bool recurse) |
9071 | { |
9072 | const struct net_device_ops *ops = dev->netdev_ops; |
9073 | struct netdev_phys_item_id first = { }; |
9074 | struct net_device *lower_dev; |
9075 | struct list_head *iter; |
9076 | int err; |
9077 | |
9078 | if (ops->ndo_get_port_parent_id) { |
9079 | err = ops->ndo_get_port_parent_id(dev, ppid); |
9080 | if (err != -EOPNOTSUPP) |
9081 | return err; |
9082 | } |
9083 | |
9084 | err = devlink_compat_switch_id_get(dev, ppid); |
9085 | if (!recurse || err != -EOPNOTSUPP) |
9086 | return err; |
9087 | |
9088 | netdev_for_each_lower_dev(dev, lower_dev, iter) { |
9089 | err = dev_get_port_parent_id(dev: lower_dev, ppid, recurse: true); |
9090 | if (err) |
9091 | break; |
9092 | if (!first.id_len) |
9093 | first = *ppid; |
9094 | else if (memcmp(p: &first, q: ppid, size: sizeof(*ppid))) |
9095 | return -EOPNOTSUPP; |
9096 | } |
9097 | |
9098 | return err; |
9099 | } |
9100 | EXPORT_SYMBOL(dev_get_port_parent_id); |
9101 | |
9102 | /** |
9103 | * netdev_port_same_parent_id - Indicate if two network devices have |
9104 | * the same port parent identifier |
9105 | * @a: first network device |
9106 | * @b: second network device |
9107 | */ |
9108 | bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) |
9109 | { |
9110 | struct netdev_phys_item_id a_id = { }; |
9111 | struct netdev_phys_item_id b_id = { }; |
9112 | |
9113 | if (dev_get_port_parent_id(a, &a_id, true) || |
9114 | dev_get_port_parent_id(b, &b_id, true)) |
9115 | return false; |
9116 | |
9117 | return netdev_phys_item_id_same(a: &a_id, b: &b_id); |
9118 | } |
9119 | EXPORT_SYMBOL(netdev_port_same_parent_id); |
9120 | |
9121 | /** |
9122 | * dev_change_proto_down - set carrier according to proto_down. |
9123 | * |
9124 | * @dev: device |
9125 | * @proto_down: new value |
9126 | */ |
9127 | int dev_change_proto_down(struct net_device *dev, bool proto_down) |
9128 | { |
9129 | if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) |
9130 | return -EOPNOTSUPP; |
9131 | if (!netif_device_present(dev)) |
9132 | return -ENODEV; |
9133 | if (proto_down) |
9134 | netif_carrier_off(dev); |
9135 | else |
9136 | netif_carrier_on(dev); |
9137 | dev->proto_down = proto_down; |
9138 | return 0; |
9139 | } |
9140 | |
9141 | /** |
9142 | * dev_change_proto_down_reason - proto down reason |
9143 | * |
9144 | * @dev: device |
9145 | * @mask: proto down mask |
9146 | * @value: proto down value |
9147 | */ |
9148 | void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, |
9149 | u32 value) |
9150 | { |
9151 | int b; |
9152 | |
9153 | if (!mask) { |
9154 | dev->proto_down_reason = value; |
9155 | } else { |
9156 | for_each_set_bit(b, &mask, 32) { |
9157 | if (value & (1 << b)) |
9158 | dev->proto_down_reason |= BIT(b); |
9159 | else |
9160 | dev->proto_down_reason &= ~BIT(b); |
9161 | } |
9162 | } |
9163 | } |
9164 | |
9165 | struct bpf_xdp_link { |
9166 | struct bpf_link link; |
9167 | struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ |
9168 | int flags; |
9169 | }; |
9170 | |
9171 | static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) |
9172 | { |
9173 | if (flags & XDP_FLAGS_HW_MODE) |
9174 | return XDP_MODE_HW; |
9175 | if (flags & XDP_FLAGS_DRV_MODE) |
9176 | return XDP_MODE_DRV; |
9177 | if (flags & XDP_FLAGS_SKB_MODE) |
9178 | return XDP_MODE_SKB; |
9179 | return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; |
9180 | } |
9181 | |
9182 | static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) |
9183 | { |
9184 | switch (mode) { |
9185 | case XDP_MODE_SKB: |
9186 | return generic_xdp_install; |
9187 | case XDP_MODE_DRV: |
9188 | case XDP_MODE_HW: |
9189 | return dev->netdev_ops->ndo_bpf; |
9190 | default: |
9191 | return NULL; |
9192 | } |
9193 | } |
9194 | |
9195 | static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, |
9196 | enum bpf_xdp_mode mode) |
9197 | { |
9198 | return dev->xdp_state[mode].link; |
9199 | } |
9200 | |
9201 | static struct bpf_prog *dev_xdp_prog(struct net_device *dev, |
9202 | enum bpf_xdp_mode mode) |
9203 | { |
9204 | struct bpf_xdp_link *link = dev_xdp_link(dev, mode); |
9205 | |
9206 | if (link) |
9207 | return link->link.prog; |
9208 | return dev->xdp_state[mode].prog; |
9209 | } |
9210 | |
9211 | u8 dev_xdp_prog_count(struct net_device *dev) |
9212 | { |
9213 | u8 count = 0; |
9214 | int i; |
9215 | |
9216 | for (i = 0; i < __MAX_XDP_MODE; i++) |
9217 | if (dev->xdp_state[i].prog || dev->xdp_state[i].link) |
9218 | count++; |
9219 | return count; |
9220 | } |
9221 | EXPORT_SYMBOL_GPL(dev_xdp_prog_count); |
9222 | |
9223 | u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) |
9224 | { |
9225 | struct bpf_prog *prog = dev_xdp_prog(dev, mode); |
9226 | |
9227 | return prog ? prog->aux->id : 0; |
9228 | } |
9229 | |
9230 | static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, |
9231 | struct bpf_xdp_link *link) |
9232 | { |
9233 | dev->xdp_state[mode].link = link; |
9234 | dev->xdp_state[mode].prog = NULL; |
9235 | } |
9236 | |
9237 | static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, |
9238 | struct bpf_prog *prog) |
9239 | { |
9240 | dev->xdp_state[mode].link = NULL; |
9241 | dev->xdp_state[mode].prog = prog; |
9242 | } |
9243 | |
9244 | static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, |
9245 | bpf_op_t bpf_op, struct netlink_ext_ack *extack, |
9246 | u32 flags, struct bpf_prog *prog) |
9247 | { |
9248 | struct netdev_bpf xdp; |
9249 | int err; |
9250 | |
9251 | memset(&xdp, 0, sizeof(xdp)); |
9252 | xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; |
9253 | xdp.extack = extack; |
9254 | xdp.flags = flags; |
9255 | xdp.prog = prog; |
9256 | |
9257 | /* Drivers assume refcnt is already incremented (i.e, prog pointer is |
9258 | * "moved" into driver), so they don't increment it on their own, but |
9259 | * they do decrement refcnt when program is detached or replaced. |
9260 | * Given net_device also owns link/prog, we need to bump refcnt here |
9261 | * to prevent drivers from underflowing it. |
9262 | */ |
9263 | if (prog) |
9264 | bpf_prog_inc(prog); |
9265 | err = bpf_op(dev, &xdp); |
9266 | if (err) { |
9267 | if (prog) |
9268 | bpf_prog_put(prog); |
9269 | return err; |
9270 | } |
9271 | |
9272 | if (mode != XDP_MODE_HW) |
9273 | bpf_prog_change_xdp(prev_prog: dev_xdp_prog(dev, mode), prog); |
9274 | |
9275 | return 0; |
9276 | } |
9277 | |
9278 | static void dev_xdp_uninstall(struct net_device *dev) |
9279 | { |
9280 | struct bpf_xdp_link *link; |
9281 | struct bpf_prog *prog; |
9282 | enum bpf_xdp_mode mode; |
9283 | bpf_op_t bpf_op; |
9284 | |
9285 | ASSERT_RTNL(); |
9286 | |
9287 | for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { |
9288 | prog = dev_xdp_prog(dev, mode); |
9289 | if (!prog) |
9290 | continue; |
9291 | |
9292 | bpf_op = dev_xdp_bpf_op(dev, mode); |
9293 | if (!bpf_op) |
9294 | continue; |
9295 | |
9296 | WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); |
9297 | |
9298 | /* auto-detach link from net device */ |
9299 | link = dev_xdp_link(dev, mode); |
9300 | if (link) |
9301 | link->dev = NULL; |
9302 | else |
9303 | bpf_prog_put(prog); |
9304 | |
9305 | dev_xdp_set_link(dev, mode, NULL); |
9306 | } |
9307 | } |
9308 | |
9309 | static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, |
9310 | struct bpf_xdp_link *link, struct bpf_prog *new_prog, |
9311 | struct bpf_prog *old_prog, u32 flags) |
9312 | { |
9313 | unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); |
9314 | struct bpf_prog *cur_prog; |
9315 | struct net_device *upper; |
9316 | struct list_head *iter; |
9317 | enum bpf_xdp_mode mode; |
9318 | bpf_op_t bpf_op; |
9319 | int err; |
9320 | |
9321 | ASSERT_RTNL(); |
9322 | |
9323 | /* either link or prog attachment, never both */ |
9324 | if (link && (new_prog || old_prog)) |
9325 | return -EINVAL; |
9326 | /* link supports only XDP mode flags */ |
9327 | if (link && (flags & ~XDP_FLAGS_MODES)) { |
9328 | NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment" ); |
9329 | return -EINVAL; |
9330 | } |
9331 | /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ |
9332 | if (num_modes > 1) { |
9333 | NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set" ); |
9334 | return -EINVAL; |
9335 | } |
9336 | /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ |
9337 | if (!num_modes && dev_xdp_prog_count(dev) > 1) { |
9338 | NL_SET_ERR_MSG(extack, |
9339 | "More than one program loaded, unset mode is ambiguous" ); |
9340 | return -EINVAL; |
9341 | } |
9342 | /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ |
9343 | if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { |
9344 | NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified" ); |
9345 | return -EINVAL; |
9346 | } |
9347 | |
9348 | mode = dev_xdp_mode(dev, flags); |
9349 | /* can't replace attached link */ |
9350 | if (dev_xdp_link(dev, mode)) { |
9351 | NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link" ); |
9352 | return -EBUSY; |
9353 | } |
9354 | |
9355 | /* don't allow if an upper device already has a program */ |
9356 | netdev_for_each_upper_dev_rcu(dev, upper, iter) { |
9357 | if (dev_xdp_prog_count(upper) > 0) { |
9358 | NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program" ); |
9359 | return -EEXIST; |
9360 | } |
9361 | } |
9362 | |
9363 | cur_prog = dev_xdp_prog(dev, mode); |
9364 | /* can't replace attached prog with link */ |
9365 | if (link && cur_prog) { |
9366 | NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link" ); |
9367 | return -EBUSY; |
9368 | } |
9369 | if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { |
9370 | NL_SET_ERR_MSG(extack, "Active program does not match expected" ); |
9371 | return -EEXIST; |
9372 | } |
9373 | |
9374 | /* put effective new program into new_prog */ |
9375 | if (link) |
9376 | new_prog = link->link.prog; |
9377 | |
9378 | if (new_prog) { |
9379 | bool offload = mode == XDP_MODE_HW; |
9380 | enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB |
9381 | ? XDP_MODE_DRV : XDP_MODE_SKB; |
9382 | |
9383 | if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { |
9384 | NL_SET_ERR_MSG(extack, "XDP program already attached" ); |
9385 | return -EBUSY; |
9386 | } |
9387 | if (!offload && dev_xdp_prog(dev, mode: other_mode)) { |
9388 | NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time" ); |
9389 | return -EEXIST; |
9390 | } |
9391 | if (!offload && bpf_prog_is_offloaded(aux: new_prog->aux)) { |
9392 | NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported" ); |
9393 | return -EINVAL; |
9394 | } |
9395 | if (bpf_prog_is_dev_bound(aux: new_prog->aux) && !bpf_offload_dev_match(prog: new_prog, netdev: dev)) { |
9396 | NL_SET_ERR_MSG(extack, "Program bound to different device" ); |
9397 | return -EINVAL; |
9398 | } |
9399 | if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { |
9400 | NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device" ); |
9401 | return -EINVAL; |
9402 | } |
9403 | if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { |
9404 | NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device" ); |
9405 | return -EINVAL; |
9406 | } |
9407 | } |
9408 | |
9409 | /* don't call drivers if the effective program didn't change */ |
9410 | if (new_prog != cur_prog) { |
9411 | bpf_op = dev_xdp_bpf_op(dev, mode); |
9412 | if (!bpf_op) { |
9413 | NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode" ); |
9414 | return -EOPNOTSUPP; |
9415 | } |
9416 | |
9417 | err = dev_xdp_install(dev, mode, bpf_op, extack, flags, prog: new_prog); |
9418 | if (err) |
9419 | return err; |
9420 | } |
9421 | |
9422 | if (link) |
9423 | dev_xdp_set_link(dev, mode, link); |
9424 | else |
9425 | dev_xdp_set_prog(dev, mode, prog: new_prog); |
9426 | if (cur_prog) |
9427 | bpf_prog_put(prog: cur_prog); |
9428 | |
9429 | return 0; |
9430 | } |
9431 | |
9432 | static int dev_xdp_attach_link(struct net_device *dev, |
9433 | struct netlink_ext_ack *extack, |
9434 | struct bpf_xdp_link *link) |
9435 | { |
9436 | return dev_xdp_attach(dev, extack, link, NULL, NULL, flags: link->flags); |
9437 | } |
9438 | |
9439 | static int dev_xdp_detach_link(struct net_device *dev, |
9440 | struct netlink_ext_ack *extack, |
9441 | struct bpf_xdp_link *link) |
9442 | { |
9443 | enum bpf_xdp_mode mode; |
9444 | bpf_op_t bpf_op; |
9445 | |
9446 | ASSERT_RTNL(); |
9447 | |
9448 | mode = dev_xdp_mode(dev, flags: link->flags); |
9449 | if (dev_xdp_link(dev, mode) != link) |
9450 | return -EINVAL; |
9451 | |
9452 | bpf_op = dev_xdp_bpf_op(dev, mode); |
9453 | WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); |
9454 | dev_xdp_set_link(dev, mode, NULL); |
9455 | return 0; |
9456 | } |
9457 | |
9458 | static void bpf_xdp_link_release(struct bpf_link *link) |
9459 | { |
9460 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
9461 | |
9462 | rtnl_lock(); |
9463 | |
9464 | /* if racing with net_device's tear down, xdp_link->dev might be |
9465 | * already NULL, in which case link was already auto-detached |
9466 | */ |
9467 | if (xdp_link->dev) { |
9468 | WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); |
9469 | xdp_link->dev = NULL; |
9470 | } |
9471 | |
9472 | rtnl_unlock(); |
9473 | } |
9474 | |
9475 | static int bpf_xdp_link_detach(struct bpf_link *link) |
9476 | { |
9477 | bpf_xdp_link_release(link); |
9478 | return 0; |
9479 | } |
9480 | |
9481 | static void bpf_xdp_link_dealloc(struct bpf_link *link) |
9482 | { |
9483 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
9484 | |
9485 | kfree(objp: xdp_link); |
9486 | } |
9487 | |
9488 | static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, |
9489 | struct seq_file *seq) |
9490 | { |
9491 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
9492 | u32 ifindex = 0; |
9493 | |
9494 | rtnl_lock(); |
9495 | if (xdp_link->dev) |
9496 | ifindex = xdp_link->dev->ifindex; |
9497 | rtnl_unlock(); |
9498 | |
9499 | seq_printf(m: seq, fmt: "ifindex:\t%u\n" , ifindex); |
9500 | } |
9501 | |
9502 | static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, |
9503 | struct bpf_link_info *info) |
9504 | { |
9505 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
9506 | u32 ifindex = 0; |
9507 | |
9508 | rtnl_lock(); |
9509 | if (xdp_link->dev) |
9510 | ifindex = xdp_link->dev->ifindex; |
9511 | rtnl_unlock(); |
9512 | |
9513 | info->xdp.ifindex = ifindex; |
9514 | return 0; |
9515 | } |
9516 | |
9517 | static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, |
9518 | struct bpf_prog *old_prog) |
9519 | { |
9520 | struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); |
9521 | enum bpf_xdp_mode mode; |
9522 | bpf_op_t bpf_op; |
9523 | int err = 0; |
9524 | |
9525 | rtnl_lock(); |
9526 | |
9527 | /* link might have been auto-released already, so fail */ |
9528 | if (!xdp_link->dev) { |
9529 | err = -ENOLINK; |
9530 | goto out_unlock; |
9531 | } |
9532 | |
9533 | if (old_prog && link->prog != old_prog) { |
9534 | err = -EPERM; |
9535 | goto out_unlock; |
9536 | } |
9537 | old_prog = link->prog; |
9538 | if (old_prog->type != new_prog->type || |
9539 | old_prog->expected_attach_type != new_prog->expected_attach_type) { |
9540 | err = -EINVAL; |
9541 | goto out_unlock; |
9542 | } |
9543 | |
9544 | if (old_prog == new_prog) { |
9545 | /* no-op, don't disturb drivers */ |
9546 | bpf_prog_put(prog: new_prog); |
9547 | goto out_unlock; |
9548 | } |
9549 | |
9550 | mode = dev_xdp_mode(dev: xdp_link->dev, flags: xdp_link->flags); |
9551 | bpf_op = dev_xdp_bpf_op(dev: xdp_link->dev, mode); |
9552 | err = dev_xdp_install(dev: xdp_link->dev, mode, bpf_op, NULL, |
9553 | flags: xdp_link->flags, prog: new_prog); |
9554 | if (err) |
9555 | goto out_unlock; |
9556 | |
9557 | old_prog = xchg(&link->prog, new_prog); |
9558 | bpf_prog_put(prog: old_prog); |
9559 | |
9560 | out_unlock: |
9561 | rtnl_unlock(); |
9562 | return err; |
9563 | } |
9564 | |
9565 | static const struct bpf_link_ops bpf_xdp_link_lops = { |
9566 | .release = bpf_xdp_link_release, |
9567 | .dealloc = bpf_xdp_link_dealloc, |
9568 | .detach = bpf_xdp_link_detach, |
9569 | .show_fdinfo = bpf_xdp_link_show_fdinfo, |
9570 | .fill_link_info = bpf_xdp_link_fill_link_info, |
9571 | .update_prog = bpf_xdp_link_update, |
9572 | }; |
9573 | |
9574 | int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) |
9575 | { |
9576 | struct net *net = current->nsproxy->net_ns; |
9577 | struct bpf_link_primer link_primer; |
9578 | struct netlink_ext_ack extack = {}; |
9579 | struct bpf_xdp_link *link; |
9580 | struct net_device *dev; |
9581 | int err, fd; |
9582 | |
9583 | rtnl_lock(); |
9584 | dev = dev_get_by_index(net, attr->link_create.target_ifindex); |
9585 | if (!dev) { |
9586 | rtnl_unlock(); |
9587 | return -EINVAL; |
9588 | } |
9589 | |
9590 | link = kzalloc(size: sizeof(*link), GFP_USER); |
9591 | if (!link) { |
9592 | err = -ENOMEM; |
9593 | goto unlock; |
9594 | } |
9595 | |
9596 | bpf_link_init(link: &link->link, type: BPF_LINK_TYPE_XDP, ops: &bpf_xdp_link_lops, prog); |
9597 | link->dev = dev; |
9598 | link->flags = attr->link_create.flags; |
9599 | |
9600 | err = bpf_link_prime(link: &link->link, primer: &link_primer); |
9601 | if (err) { |
9602 | kfree(objp: link); |
9603 | goto unlock; |
9604 | } |
9605 | |
9606 | err = dev_xdp_attach_link(dev, extack: &extack, link); |
9607 | rtnl_unlock(); |
9608 | |
9609 | if (err) { |
9610 | link->dev = NULL; |
9611 | bpf_link_cleanup(primer: &link_primer); |
9612 | trace_bpf_xdp_link_attach_failed(msg: extack._msg); |
9613 | goto out_put_dev; |
9614 | } |
9615 | |
9616 | fd = bpf_link_settle(primer: &link_primer); |
9617 | /* link itself doesn't hold dev's refcnt to not complicate shutdown */ |
9618 | dev_put(dev); |
9619 | return fd; |
9620 | |
9621 | unlock: |
9622 | rtnl_unlock(); |
9623 | |
9624 | out_put_dev: |
9625 | dev_put(dev); |
9626 | return err; |
9627 | } |
9628 | |
9629 | /** |
9630 | * dev_change_xdp_fd - set or clear a bpf program for a device rx path |
9631 | * @dev: device |
9632 | * @extack: netlink extended ack |
9633 | * @fd: new program fd or negative value to clear |
9634 | * @expected_fd: old program fd that userspace expects to replace or clear |
9635 | * @flags: xdp-related flags |
9636 | * |
9637 | * Set or clear a bpf program for a device |
9638 | */ |
9639 | int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, |
9640 | int fd, int expected_fd, u32 flags) |
9641 | { |
9642 | enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); |
9643 | struct bpf_prog *new_prog = NULL, *old_prog = NULL; |
9644 | int err; |
9645 | |
9646 | ASSERT_RTNL(); |
9647 | |
9648 | if (fd >= 0) { |
9649 | new_prog = bpf_prog_get_type_dev(ufd: fd, type: BPF_PROG_TYPE_XDP, |
9650 | attach_drv: mode != XDP_MODE_SKB); |
9651 | if (IS_ERR(ptr: new_prog)) |
9652 | return PTR_ERR(ptr: new_prog); |
9653 | } |
9654 | |
9655 | if (expected_fd >= 0) { |
9656 | old_prog = bpf_prog_get_type_dev(ufd: expected_fd, type: BPF_PROG_TYPE_XDP, |
9657 | attach_drv: mode != XDP_MODE_SKB); |
9658 | if (IS_ERR(ptr: old_prog)) { |
9659 | err = PTR_ERR(ptr: old_prog); |
9660 | old_prog = NULL; |
9661 | goto err_out; |
9662 | } |
9663 | } |
9664 | |
9665 | err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); |
9666 | |
9667 | err_out: |
9668 | if (err && new_prog) |
9669 | bpf_prog_put(prog: new_prog); |
9670 | if (old_prog) |
9671 | bpf_prog_put(prog: old_prog); |
9672 | return err; |
9673 | } |
9674 | |
9675 | /** |
9676 | * dev_index_reserve() - allocate an ifindex in a namespace |
9677 | * @net: the applicable net namespace |
9678 | * @ifindex: requested ifindex, pass %0 to get one allocated |
9679 | * |
9680 | * Allocate a ifindex for a new device. Caller must either use the ifindex |
9681 | * to store the device (via list_netdevice()) or call dev_index_release() |
9682 | * to give the index up. |
9683 | * |
9684 | * Return: a suitable unique value for a new device interface number or -errno. |
9685 | */ |
9686 | static int dev_index_reserve(struct net *net, u32 ifindex) |
9687 | { |
9688 | int err; |
9689 | |
9690 | if (ifindex > INT_MAX) { |
9691 | DEBUG_NET_WARN_ON_ONCE(1); |
9692 | return -EINVAL; |
9693 | } |
9694 | |
9695 | if (!ifindex) |
9696 | err = xa_alloc_cyclic(xa: &net->dev_by_index, id: &ifindex, NULL, |
9697 | xa_limit_31b, next: &net->ifindex, GFP_KERNEL); |
9698 | else |
9699 | err = xa_insert(xa: &net->dev_by_index, index: ifindex, NULL, GFP_KERNEL); |
9700 | if (err < 0) |
9701 | return err; |
9702 | |
9703 | return ifindex; |
9704 | } |
9705 | |
9706 | static void dev_index_release(struct net *net, int ifindex) |
9707 | { |
9708 | /* Expect only unused indexes, unlist_netdevice() removes the used */ |
9709 | WARN_ON(xa_erase(&net->dev_by_index, ifindex)); |
9710 | } |
9711 | |
9712 | /* Delayed registration/unregisteration */ |
9713 | LIST_HEAD(net_todo_list); |
9714 | DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); |
9715 | atomic_t dev_unreg_count = ATOMIC_INIT(0); |
9716 | |
9717 | static void net_set_todo(struct net_device *dev) |
9718 | { |
9719 | list_add_tail(new: &dev->todo_list, head: &net_todo_list); |
9720 | } |
9721 | |
9722 | static netdev_features_t netdev_sync_upper_features(struct net_device *lower, |
9723 | struct net_device *upper, netdev_features_t features) |
9724 | { |
9725 | netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; |
9726 | netdev_features_t feature; |
9727 | int feature_bit; |
9728 | |
9729 | for_each_netdev_feature(upper_disables, feature_bit) { |
9730 | feature = __NETIF_F_BIT(feature_bit); |
9731 | if (!(upper->wanted_features & feature) |
9732 | && (features & feature)) { |
9733 | netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n" , |
9734 | &feature, upper->name); |
9735 | features &= ~feature; |
9736 | } |
9737 | } |
9738 | |
9739 | return features; |
9740 | } |
9741 | |
9742 | static void netdev_sync_lower_features(struct net_device *upper, |
9743 | struct net_device *lower, netdev_features_t features) |
9744 | { |
9745 | netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; |
9746 | netdev_features_t feature; |
9747 | int feature_bit; |
9748 | |
9749 | for_each_netdev_feature(upper_disables, feature_bit) { |
9750 | feature = __NETIF_F_BIT(feature_bit); |
9751 | if (!(features & feature) && (lower->features & feature)) { |
9752 | netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n" , |
9753 | &feature, lower->name); |
9754 | lower->wanted_features &= ~feature; |
9755 | __netdev_update_features(dev: lower); |
9756 | |
9757 | if (unlikely(lower->features & feature)) |
9758 | netdev_WARN(upper, "failed to disable %pNF on %s!\n" , |
9759 | &feature, lower->name); |
9760 | else |
9761 | netdev_features_change(lower); |
9762 | } |
9763 | } |
9764 | } |
9765 | |
9766 | static netdev_features_t netdev_fix_features(struct net_device *dev, |
9767 | netdev_features_t features) |
9768 | { |
9769 | /* Fix illegal checksum combinations */ |
9770 | if ((features & NETIF_F_HW_CSUM) && |
9771 | (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { |
9772 | netdev_warn(dev, format: "mixed HW and IP checksum settings.\n" ); |
9773 | features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); |
9774 | } |
9775 | |
9776 | /* TSO requires that SG is present as well. */ |
9777 | if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { |
9778 | netdev_dbg(dev, "Dropping TSO features since no SG feature.\n" ); |
9779 | features &= ~NETIF_F_ALL_TSO; |
9780 | } |
9781 | |
9782 | if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && |
9783 | !(features & NETIF_F_IP_CSUM)) { |
9784 | netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n" ); |
9785 | features &= ~NETIF_F_TSO; |
9786 | features &= ~NETIF_F_TSO_ECN; |
9787 | } |
9788 | |
9789 | if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && |
9790 | !(features & NETIF_F_IPV6_CSUM)) { |
9791 | netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n" ); |
9792 | features &= ~NETIF_F_TSO6; |
9793 | } |
9794 | |
9795 | /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ |
9796 | if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) |
9797 | features &= ~NETIF_F_TSO_MANGLEID; |
9798 | |
9799 | /* TSO ECN requires that TSO is present as well. */ |
9800 | if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) |
9801 | features &= ~NETIF_F_TSO_ECN; |
9802 | |
9803 | /* Software GSO depends on SG. */ |
9804 | if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { |
9805 | netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n" ); |
9806 | features &= ~NETIF_F_GSO; |
9807 | } |
9808 | |
9809 | /* GSO partial features require GSO partial be set */ |
9810 | if ((features & dev->gso_partial_features) && |
9811 | !(features & NETIF_F_GSO_PARTIAL)) { |
9812 | netdev_dbg(dev, |
9813 | "Dropping partially supported GSO features since no GSO partial.\n" ); |
9814 | features &= ~dev->gso_partial_features; |
9815 | } |
9816 | |
9817 | if (!(features & NETIF_F_RXCSUM)) { |
9818 | /* NETIF_F_GRO_HW implies doing RXCSUM since every packet |
9819 | * successfully merged by hardware must also have the |
9820 | * checksum verified by hardware. If the user does not |
9821 | * want to enable RXCSUM, logically, we should disable GRO_HW. |
9822 | */ |
9823 | if (features & NETIF_F_GRO_HW) { |
9824 | netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n" ); |
9825 | features &= ~NETIF_F_GRO_HW; |
9826 | } |
9827 | } |
9828 | |
9829 | /* LRO/HW-GRO features cannot be combined with RX-FCS */ |
9830 | if (features & NETIF_F_RXFCS) { |
9831 | if (features & NETIF_F_LRO) { |
9832 | netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n" ); |
9833 | features &= ~NETIF_F_LRO; |
9834 | } |
9835 | |
9836 | if (features & NETIF_F_GRO_HW) { |
9837 | netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n" ); |
9838 | features &= ~NETIF_F_GRO_HW; |
9839 | } |
9840 | } |
9841 | |
9842 | if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { |
9843 | netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n" ); |
9844 | features &= ~NETIF_F_LRO; |
9845 | } |
9846 | |
9847 | if (features & NETIF_F_HW_TLS_TX) { |
9848 | bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == |
9849 | (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); |
9850 | bool hw_csum = features & NETIF_F_HW_CSUM; |
9851 | |
9852 | if (!ip_csum && !hw_csum) { |
9853 | netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n" ); |
9854 | features &= ~NETIF_F_HW_TLS_TX; |
9855 | } |
9856 | } |
9857 | |
9858 | if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { |
9859 | netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n" ); |
9860 | features &= ~NETIF_F_HW_TLS_RX; |
9861 | } |
9862 | |
9863 | return features; |
9864 | } |
9865 | |
9866 | int __netdev_update_features(struct net_device *dev) |
9867 | { |
9868 | struct net_device *upper, *lower; |
9869 | netdev_features_t features; |
9870 | struct list_head *iter; |
9871 | int err = -1; |
9872 | |
9873 | ASSERT_RTNL(); |
9874 | |
9875 | features = netdev_get_wanted_features(dev); |
9876 | |
9877 | if (dev->netdev_ops->ndo_fix_features) |
9878 | features = dev->netdev_ops->ndo_fix_features(dev, features); |
9879 | |
9880 | /* driver might be less strict about feature dependencies */ |
9881 | features = netdev_fix_features(dev, features); |
9882 | |
9883 | /* some features can't be enabled if they're off on an upper device */ |
9884 | netdev_for_each_upper_dev_rcu(dev, upper, iter) |
9885 | features = netdev_sync_upper_features(lower: dev, upper, features); |
9886 | |
9887 | if (dev->features == features) |
9888 | goto sync_lower; |
9889 | |
9890 | netdev_dbg(dev, "Features changed: %pNF -> %pNF\n" , |
9891 | &dev->features, &features); |
9892 | |
9893 | if (dev->netdev_ops->ndo_set_features) |
9894 | err = dev->netdev_ops->ndo_set_features(dev, features); |
9895 | else |
9896 | err = 0; |
9897 | |
9898 | if (unlikely(err < 0)) { |
9899 | netdev_err(dev, |
9900 | format: "set_features() failed (%d); wanted %pNF, left %pNF\n" , |
9901 | err, &features, &dev->features); |
9902 | /* return non-0 since some features might have changed and |
9903 | * it's better to fire a spurious notification than miss it |
9904 | */ |
9905 | return -1; |
9906 | } |
9907 | |
9908 | sync_lower: |
9909 | /* some features must be disabled on lower devices when disabled |
9910 | * on an upper device (think: bonding master or bridge) |
9911 | */ |
9912 | netdev_for_each_lower_dev(dev, lower, iter) |
9913 | netdev_sync_lower_features(upper: dev, lower, features); |
9914 | |
9915 | if (!err) { |
9916 | netdev_features_t diff = features ^ dev->features; |
9917 | |
9918 | if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { |
9919 | /* udp_tunnel_{get,drop}_rx_info both need |
9920 | * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the |
9921 | * device, or they won't do anything. |
9922 | * Thus we need to update dev->features |
9923 | * *before* calling udp_tunnel_get_rx_info, |
9924 | * but *after* calling udp_tunnel_drop_rx_info. |
9925 | */ |
9926 | if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { |
9927 | dev->features = features; |
9928 | udp_tunnel_get_rx_info(dev); |
9929 | } else { |
9930 | udp_tunnel_drop_rx_info(dev); |
9931 | } |
9932 | } |
9933 | |
9934 | if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { |
9935 | if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { |
9936 | dev->features = features; |
9937 | err |= vlan_get_rx_ctag_filter_info(dev); |
9938 | } else { |
9939 | vlan_drop_rx_ctag_filter_info(dev); |
9940 | } |
9941 | } |
9942 | |
9943 | if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { |
9944 | if (features & NETIF_F_HW_VLAN_STAG_FILTER) { |
9945 | dev->features = features; |
9946 | err |= vlan_get_rx_stag_filter_info(dev); |
9947 | } else { |
9948 | vlan_drop_rx_stag_filter_info(dev); |
9949 | } |
9950 | } |
9951 | |
9952 | dev->features = features; |
9953 | } |
9954 | |
9955 | return err < 0 ? 0 : 1; |
9956 | } |
9957 | |
9958 | /** |
9959 | * netdev_update_features - recalculate device features |
9960 | * @dev: the device to check |
9961 | * |
9962 | * Recalculate dev->features set and send notifications if it |
9963 | * has changed. Should be called after driver or hardware dependent |
9964 | * conditions might have changed that influence the features. |
9965 | */ |
9966 | void netdev_update_features(struct net_device *dev) |
9967 | { |
9968 | if (__netdev_update_features(dev)) |
9969 | netdev_features_change(dev); |
9970 | } |
9971 | EXPORT_SYMBOL(netdev_update_features); |
9972 | |
9973 | /** |
9974 | * netdev_change_features - recalculate device features |
9975 | * @dev: the device to check |
9976 | * |
9977 | * Recalculate dev->features set and send notifications even |
9978 | * if they have not changed. Should be called instead of |
9979 | * netdev_update_features() if also dev->vlan_features might |
9980 | * have changed to allow the changes to be propagated to stacked |
9981 | * VLAN devices. |
9982 | */ |
9983 | void netdev_change_features(struct net_device *dev) |
9984 | { |
9985 | __netdev_update_features(dev); |
9986 | netdev_features_change(dev); |
9987 | } |
9988 | EXPORT_SYMBOL(netdev_change_features); |
9989 | |
9990 | /** |
9991 | * netif_stacked_transfer_operstate - transfer operstate |
9992 | * @rootdev: the root or lower level device to transfer state from |
9993 | * @dev: the device to transfer operstate to |
9994 | * |
9995 | * Transfer operational state from root to device. This is normally |
9996 | * called when a stacking relationship exists between the root |
9997 | * device and the device(a leaf device). |
9998 | */ |
9999 | void netif_stacked_transfer_operstate(const struct net_device *rootdev, |
10000 | struct net_device *dev) |
10001 | { |
10002 | if (rootdev->operstate == IF_OPER_DORMANT) |
10003 | netif_dormant_on(dev); |
10004 | else |
10005 | netif_dormant_off(dev); |
10006 | |
10007 | if (rootdev->operstate == IF_OPER_TESTING) |
10008 | netif_testing_on(dev); |
10009 | else |
10010 | netif_testing_off(dev); |
10011 | |
10012 | if (netif_carrier_ok(dev: rootdev)) |
10013 | netif_carrier_on(dev); |
10014 | else |
10015 | netif_carrier_off(dev); |
10016 | } |
10017 | EXPORT_SYMBOL(netif_stacked_transfer_operstate); |
10018 | |
10019 | static int netif_alloc_rx_queues(struct net_device *dev) |
10020 | { |
10021 | unsigned int i, count = dev->num_rx_queues; |
10022 | struct netdev_rx_queue *rx; |
10023 | size_t sz = count * sizeof(*rx); |
10024 | int err = 0; |
10025 | |
10026 | BUG_ON(count < 1); |
10027 | |
10028 | rx = kvzalloc(size: sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); |
10029 | if (!rx) |
10030 | return -ENOMEM; |
10031 | |
10032 | dev->_rx = rx; |
10033 | |
10034 | for (i = 0; i < count; i++) { |
10035 | rx[i].dev = dev; |
10036 | |
10037 | /* XDP RX-queue setup */ |
10038 | err = xdp_rxq_info_reg(xdp_rxq: &rx[i].xdp_rxq, dev, queue_index: i, napi_id: 0); |
10039 | if (err < 0) |
10040 | goto err_rxq_info; |
10041 | } |
10042 | return 0; |
10043 | |
10044 | err_rxq_info: |
10045 | /* Rollback successful reg's and free other resources */ |
10046 | while (i--) |
10047 | xdp_rxq_info_unreg(xdp_rxq: &rx[i].xdp_rxq); |
10048 | kvfree(addr: dev->_rx); |
10049 | dev->_rx = NULL; |
10050 | return err; |
10051 | } |
10052 | |
10053 | static void netif_free_rx_queues(struct net_device *dev) |
10054 | { |
10055 | unsigned int i, count = dev->num_rx_queues; |
10056 | |
10057 | /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ |
10058 | if (!dev->_rx) |
10059 | return; |
10060 | |
10061 | for (i = 0; i < count; i++) |
10062 | xdp_rxq_info_unreg(xdp_rxq: &dev->_rx[i].xdp_rxq); |
10063 | |
10064 | kvfree(addr: dev->_rx); |
10065 | } |
10066 | |
10067 | static void netdev_init_one_queue(struct net_device *dev, |
10068 | struct netdev_queue *queue, void *_unused) |
10069 | { |
10070 | /* Initialize queue lock */ |
10071 | spin_lock_init(&queue->_xmit_lock); |
10072 | netdev_set_xmit_lockdep_class(lock: &queue->_xmit_lock, dev_type: dev->type); |
10073 | queue->xmit_lock_owner = -1; |
10074 | netdev_queue_numa_node_write(q: queue, NUMA_NO_NODE); |
10075 | queue->dev = dev; |
10076 | #ifdef CONFIG_BQL |
10077 | dql_init(dql: &queue->dql, HZ); |
10078 | #endif |
10079 | } |
10080 | |
10081 | static void netif_free_tx_queues(struct net_device *dev) |
10082 | { |
10083 | kvfree(addr: dev->_tx); |
10084 | } |
10085 | |
10086 | static int netif_alloc_netdev_queues(struct net_device *dev) |
10087 | { |
10088 | unsigned int count = dev->num_tx_queues; |
10089 | struct netdev_queue *tx; |
10090 | size_t sz = count * sizeof(*tx); |
10091 | |
10092 | if (count < 1 || count > 0xffff) |
10093 | return -EINVAL; |
10094 | |
10095 | tx = kvzalloc(size: sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); |
10096 | if (!tx) |
10097 | return -ENOMEM; |
10098 | |
10099 | dev->_tx = tx; |
10100 | |
10101 | netdev_for_each_tx_queue(dev, f: netdev_init_one_queue, NULL); |
10102 | spin_lock_init(&dev->tx_global_lock); |
10103 | |
10104 | return 0; |
10105 | } |
10106 | |
10107 | void netif_tx_stop_all_queues(struct net_device *dev) |
10108 | { |
10109 | unsigned int i; |
10110 | |
10111 | for (i = 0; i < dev->num_tx_queues; i++) { |
10112 | struct netdev_queue *txq = netdev_get_tx_queue(dev, index: i); |
10113 | |
10114 | netif_tx_stop_queue(dev_queue: txq); |
10115 | } |
10116 | } |
10117 | EXPORT_SYMBOL(netif_tx_stop_all_queues); |
10118 | |
10119 | static int netdev_do_alloc_pcpu_stats(struct net_device *dev) |
10120 | { |
10121 | void __percpu *v; |
10122 | |
10123 | /* Drivers implementing ndo_get_peer_dev must support tstat |
10124 | * accounting, so that skb_do_redirect() can bump the dev's |
10125 | * RX stats upon network namespace switch. |
10126 | */ |
10127 | if (dev->netdev_ops->ndo_get_peer_dev && |
10128 | dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) |
10129 | return -EOPNOTSUPP; |
10130 | |
10131 | switch (dev->pcpu_stat_type) { |
10132 | case NETDEV_PCPU_STAT_NONE: |
10133 | return 0; |
10134 | case NETDEV_PCPU_STAT_LSTATS: |
10135 | v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); |
10136 | break; |
10137 | case NETDEV_PCPU_STAT_TSTATS: |
10138 | v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); |
10139 | break; |
10140 | case NETDEV_PCPU_STAT_DSTATS: |
10141 | v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); |
10142 | break; |
10143 | default: |
10144 | return -EINVAL; |
10145 | } |
10146 | |
10147 | return v ? 0 : -ENOMEM; |
10148 | } |
10149 | |
10150 | static void netdev_do_free_pcpu_stats(struct net_device *dev) |
10151 | { |
10152 | switch (dev->pcpu_stat_type) { |
10153 | case NETDEV_PCPU_STAT_NONE: |
10154 | return; |
10155 | case NETDEV_PCPU_STAT_LSTATS: |
10156 | free_percpu(pdata: dev->lstats); |
10157 | break; |
10158 | case NETDEV_PCPU_STAT_TSTATS: |
10159 | free_percpu(pdata: dev->tstats); |
10160 | break; |
10161 | case NETDEV_PCPU_STAT_DSTATS: |
10162 | free_percpu(pdata: dev->dstats); |
10163 | break; |
10164 | } |
10165 | } |
10166 | |
10167 | /** |
10168 | * register_netdevice() - register a network device |
10169 | * @dev: device to register |
10170 | * |
10171 | * Take a prepared network device structure and make it externally accessible. |
10172 | * A %NETDEV_REGISTER message is sent to the netdev notifier chain. |
10173 | * Callers must hold the rtnl lock - you may want register_netdev() |
10174 | * instead of this. |
10175 | */ |
10176 | int register_netdevice(struct net_device *dev) |
10177 | { |
10178 | int ret; |
10179 | struct net *net = dev_net(dev); |
10180 | |
10181 | BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < |
10182 | NETDEV_FEATURE_COUNT); |
10183 | BUG_ON(dev_boot_phase); |
10184 | ASSERT_RTNL(); |
10185 | |
10186 | might_sleep(); |
10187 | |
10188 | /* When net_device's are persistent, this will be fatal. */ |
10189 | BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); |
10190 | BUG_ON(!net); |
10191 | |
10192 | ret = ethtool_check_ops(ops: dev->ethtool_ops); |
10193 | if (ret) |
10194 | return ret; |
10195 | |
10196 | spin_lock_init(&dev->addr_list_lock); |
10197 | netdev_set_addr_lockdep_class(dev); |
10198 | |
10199 | ret = dev_get_valid_name(net, dev, name: dev->name); |
10200 | if (ret < 0) |
10201 | goto out; |
10202 | |
10203 | ret = -ENOMEM; |
10204 | dev->name_node = netdev_name_node_head_alloc(dev); |
10205 | if (!dev->name_node) |
10206 | goto out; |
10207 | |
10208 | /* Init, if this function is available */ |
10209 | if (dev->netdev_ops->ndo_init) { |
10210 | ret = dev->netdev_ops->ndo_init(dev); |
10211 | if (ret) { |
10212 | if (ret > 0) |
10213 | ret = -EIO; |
10214 | goto err_free_name; |
10215 | } |
10216 | } |
10217 | |
10218 | if (((dev->hw_features | dev->features) & |
10219 | NETIF_F_HW_VLAN_CTAG_FILTER) && |
10220 | (!dev->netdev_ops->ndo_vlan_rx_add_vid || |
10221 | !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { |
10222 | netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n" ); |
10223 | ret = -EINVAL; |
10224 | goto err_uninit; |
10225 | } |
10226 | |
10227 | ret = netdev_do_alloc_pcpu_stats(dev); |
10228 | if (ret) |
10229 | goto err_uninit; |
10230 | |
10231 | ret = dev_index_reserve(net, ifindex: dev->ifindex); |
10232 | if (ret < 0) |
10233 | goto err_free_pcpu; |
10234 | dev->ifindex = ret; |
10235 | |
10236 | /* Transfer changeable features to wanted_features and enable |
10237 | * software offloads (GSO and GRO). |
10238 | */ |
10239 | dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); |
10240 | dev->features |= NETIF_F_SOFT_FEATURES; |
10241 | |
10242 | if (dev->udp_tunnel_nic_info) { |
10243 | dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; |
10244 | dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; |
10245 | } |
10246 | |
10247 | dev->wanted_features = dev->features & dev->hw_features; |
10248 | |
10249 | if (!(dev->flags & IFF_LOOPBACK)) |
10250 | dev->hw_features |= NETIF_F_NOCACHE_COPY; |
10251 | |
10252 | /* If IPv4 TCP segmentation offload is supported we should also |
10253 | * allow the device to enable segmenting the frame with the option |
10254 | * of ignoring a static IP ID value. This doesn't enable the |
10255 | * feature itself but allows the user to enable it later. |
10256 | */ |
10257 | if (dev->hw_features & NETIF_F_TSO) |
10258 | dev->hw_features |= NETIF_F_TSO_MANGLEID; |
10259 | if (dev->vlan_features & NETIF_F_TSO) |
10260 | dev->vlan_features |= NETIF_F_TSO_MANGLEID; |
10261 | if (dev->mpls_features & NETIF_F_TSO) |
10262 | dev->mpls_features |= NETIF_F_TSO_MANGLEID; |
10263 | if (dev->hw_enc_features & NETIF_F_TSO) |
10264 | dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; |
10265 | |
10266 | /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. |
10267 | */ |
10268 | dev->vlan_features |= NETIF_F_HIGHDMA; |
10269 | |
10270 | /* Make NETIF_F_SG inheritable to tunnel devices. |
10271 | */ |
10272 | dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; |
10273 | |
10274 | /* Make NETIF_F_SG inheritable to MPLS. |
10275 | */ |
10276 | dev->mpls_features |= NETIF_F_SG; |
10277 | |
10278 | ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); |
10279 | ret = notifier_to_errno(ret); |
10280 | if (ret) |
10281 | goto err_ifindex_release; |
10282 | |
10283 | ret = netdev_register_kobject(dev); |
10284 | |
10285 | WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); |
10286 | |
10287 | if (ret) |
10288 | goto err_uninit_notify; |
10289 | |
10290 | __netdev_update_features(dev); |
10291 | |
10292 | /* |
10293 | * Default initial state at registry is that the |
10294 | * device is present. |
10295 | */ |
10296 | |
10297 | set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state); |
10298 | |
10299 | linkwatch_init_dev(dev); |
10300 | |
10301 | dev_init_scheduler(dev); |
10302 | |
10303 | netdev_hold(dev, tracker: &dev->dev_registered_tracker, GFP_KERNEL); |
10304 | list_netdevice(dev); |
10305 | |
10306 | add_device_randomness(buf: dev->dev_addr, len: dev->addr_len); |
10307 | |
10308 | /* If the device has permanent device address, driver should |
10309 | * set dev_addr and also addr_assign_type should be set to |
10310 | * NET_ADDR_PERM (default value). |
10311 | */ |
10312 | if (dev->addr_assign_type == NET_ADDR_PERM) |
10313 | memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); |
10314 | |
10315 | /* Notify protocols, that a new device appeared. */ |
10316 | ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); |
10317 | ret = notifier_to_errno(ret); |
10318 | if (ret) { |
10319 | /* Expect explicit free_netdev() on failure */ |
10320 | dev->needs_free_netdev = false; |
10321 | unregister_netdevice_queue(dev, NULL); |
10322 | goto out; |
10323 | } |
10324 | /* |
10325 | * Prevent userspace races by waiting until the network |
10326 | * device is fully setup before sending notifications. |
10327 | */ |
10328 | if (!dev->rtnl_link_ops || |
10329 | dev->rtnl_link_state == RTNL_LINK_INITIALIZED) |
10330 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: ~0U, GFP_KERNEL, portid: 0, NULL); |
10331 | |
10332 | out: |
10333 | return ret; |
10334 | |
10335 | err_uninit_notify: |
10336 | call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); |
10337 | err_ifindex_release: |
10338 | dev_index_release(net, ifindex: dev->ifindex); |
10339 | err_free_pcpu: |
10340 | netdev_do_free_pcpu_stats(dev); |
10341 | err_uninit: |
10342 | if (dev->netdev_ops->ndo_uninit) |
10343 | dev->netdev_ops->ndo_uninit(dev); |
10344 | if (dev->priv_destructor) |
10345 | dev->priv_destructor(dev); |
10346 | err_free_name: |
10347 | netdev_name_node_free(name_node: dev->name_node); |
10348 | goto out; |
10349 | } |
10350 | EXPORT_SYMBOL(register_netdevice); |
10351 | |
10352 | /** |
10353 | * init_dummy_netdev - init a dummy network device for NAPI |
10354 | * @dev: device to init |
10355 | * |
10356 | * This takes a network device structure and initialize the minimum |
10357 | * amount of fields so it can be used to schedule NAPI polls without |
10358 | * registering a full blown interface. This is to be used by drivers |
10359 | * that need to tie several hardware interfaces to a single NAPI |
10360 | * poll scheduler due to HW limitations. |
10361 | */ |
10362 | void init_dummy_netdev(struct net_device *dev) |
10363 | { |
10364 | /* Clear everything. Note we don't initialize spinlocks |
10365 | * are they aren't supposed to be taken by any of the |
10366 | * NAPI code and this dummy netdev is supposed to be |
10367 | * only ever used for NAPI polls |
10368 | */ |
10369 | memset(dev, 0, sizeof(struct net_device)); |
10370 | |
10371 | /* make sure we BUG if trying to hit standard |
10372 | * register/unregister code path |
10373 | */ |
10374 | dev->reg_state = NETREG_DUMMY; |
10375 | |
10376 | /* NAPI wants this */ |
10377 | INIT_LIST_HEAD(list: &dev->napi_list); |
10378 | |
10379 | /* a dummy interface is started by default */ |
10380 | set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state); |
10381 | set_bit(nr: __LINK_STATE_START, addr: &dev->state); |
10382 | |
10383 | /* napi_busy_loop stats accounting wants this */ |
10384 | dev_net_set(dev, net: &init_net); |
10385 | |
10386 | /* Note : We dont allocate pcpu_refcnt for dummy devices, |
10387 | * because users of this 'device' dont need to change |
10388 | * its refcount. |
10389 | */ |
10390 | } |
10391 | EXPORT_SYMBOL_GPL(init_dummy_netdev); |
10392 | |
10393 | |
10394 | /** |
10395 | * register_netdev - register a network device |
10396 | * @dev: device to register |
10397 | * |
10398 | * Take a completed network device structure and add it to the kernel |
10399 | * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier |
10400 | * chain. 0 is returned on success. A negative errno code is returned |
10401 | * on a failure to set up the device, or if the name is a duplicate. |
10402 | * |
10403 | * This is a wrapper around register_netdevice that takes the rtnl semaphore |
10404 | * and expands the device name if you passed a format string to |
10405 | * alloc_netdev. |
10406 | */ |
10407 | int register_netdev(struct net_device *dev) |
10408 | { |
10409 | int err; |
10410 | |
10411 | if (rtnl_lock_killable()) |
10412 | return -EINTR; |
10413 | err = register_netdevice(dev); |
10414 | rtnl_unlock(); |
10415 | return err; |
10416 | } |
10417 | EXPORT_SYMBOL(register_netdev); |
10418 | |
10419 | int netdev_refcnt_read(const struct net_device *dev) |
10420 | { |
10421 | #ifdef CONFIG_PCPU_DEV_REFCNT |
10422 | int i, refcnt = 0; |
10423 | |
10424 | for_each_possible_cpu(i) |
10425 | refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); |
10426 | return refcnt; |
10427 | #else |
10428 | return refcount_read(&dev->dev_refcnt); |
10429 | #endif |
10430 | } |
10431 | EXPORT_SYMBOL(netdev_refcnt_read); |
10432 | |
10433 | int netdev_unregister_timeout_secs __read_mostly = 10; |
10434 | |
10435 | #define WAIT_REFS_MIN_MSECS 1 |
10436 | #define WAIT_REFS_MAX_MSECS 250 |
10437 | /** |
10438 | * netdev_wait_allrefs_any - wait until all references are gone. |
10439 | * @list: list of net_devices to wait on |
10440 | * |
10441 | * This is called when unregistering network devices. |
10442 | * |
10443 | * Any protocol or device that holds a reference should register |
10444 | * for netdevice notification, and cleanup and put back the |
10445 | * reference if they receive an UNREGISTER event. |
10446 | * We can get stuck here if buggy protocols don't correctly |
10447 | * call dev_put. |
10448 | */ |
10449 | static struct net_device *netdev_wait_allrefs_any(struct list_head *list) |
10450 | { |
10451 | unsigned long rebroadcast_time, warning_time; |
10452 | struct net_device *dev; |
10453 | int wait = 0; |
10454 | |
10455 | rebroadcast_time = warning_time = jiffies; |
10456 | |
10457 | list_for_each_entry(dev, list, todo_list) |
10458 | if (netdev_refcnt_read(dev) == 1) |
10459 | return dev; |
10460 | |
10461 | while (true) { |
10462 | if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { |
10463 | rtnl_lock(); |
10464 | |
10465 | /* Rebroadcast unregister notification */ |
10466 | list_for_each_entry(dev, list, todo_list) |
10467 | call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
10468 | |
10469 | __rtnl_unlock(); |
10470 | rcu_barrier(); |
10471 | rtnl_lock(); |
10472 | |
10473 | list_for_each_entry(dev, list, todo_list) |
10474 | if (test_bit(__LINK_STATE_LINKWATCH_PENDING, |
10475 | &dev->state)) { |
10476 | /* We must not have linkwatch events |
10477 | * pending on unregister. If this |
10478 | * happens, we simply run the queue |
10479 | * unscheduled, resulting in a noop |
10480 | * for this device. |
10481 | */ |
10482 | linkwatch_run_queue(); |
10483 | break; |
10484 | } |
10485 | |
10486 | __rtnl_unlock(); |
10487 | |
10488 | rebroadcast_time = jiffies; |
10489 | } |
10490 | |
10491 | if (!wait) { |
10492 | rcu_barrier(); |
10493 | wait = WAIT_REFS_MIN_MSECS; |
10494 | } else { |
10495 | msleep(msecs: wait); |
10496 | wait = min(wait << 1, WAIT_REFS_MAX_MSECS); |
10497 | } |
10498 | |
10499 | list_for_each_entry(dev, list, todo_list) |
10500 | if (netdev_refcnt_read(dev) == 1) |
10501 | return dev; |
10502 | |
10503 | if (time_after(jiffies, warning_time + |
10504 | READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { |
10505 | list_for_each_entry(dev, list, todo_list) { |
10506 | pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n" , |
10507 | dev->name, netdev_refcnt_read(dev)); |
10508 | ref_tracker_dir_print(dir: &dev->refcnt_tracker, display_limit: 10); |
10509 | } |
10510 | |
10511 | warning_time = jiffies; |
10512 | } |
10513 | } |
10514 | } |
10515 | |
10516 | /* The sequence is: |
10517 | * |
10518 | * rtnl_lock(); |
10519 | * ... |
10520 | * register_netdevice(x1); |
10521 | * register_netdevice(x2); |
10522 | * ... |
10523 | * unregister_netdevice(y1); |
10524 | * unregister_netdevice(y2); |
10525 | * ... |
10526 | * rtnl_unlock(); |
10527 | * free_netdev(y1); |
10528 | * free_netdev(y2); |
10529 | * |
10530 | * We are invoked by rtnl_unlock(). |
10531 | * This allows us to deal with problems: |
10532 | * 1) We can delete sysfs objects which invoke hotplug |
10533 | * without deadlocking with linkwatch via keventd. |
10534 | * 2) Since we run with the RTNL semaphore not held, we can sleep |
10535 | * safely in order to wait for the netdev refcnt to drop to zero. |
10536 | * |
10537 | * We must not return until all unregister events added during |
10538 | * the interval the lock was held have been completed. |
10539 | */ |
10540 | void netdev_run_todo(void) |
10541 | { |
10542 | struct net_device *dev, *tmp; |
10543 | struct list_head list; |
10544 | int cnt; |
10545 | #ifdef CONFIG_LOCKDEP |
10546 | struct list_head unlink_list; |
10547 | |
10548 | list_replace_init(old: &net_unlink_list, new: &unlink_list); |
10549 | |
10550 | while (!list_empty(head: &unlink_list)) { |
10551 | struct net_device *dev = list_first_entry(&unlink_list, |
10552 | struct net_device, |
10553 | unlink_list); |
10554 | list_del_init(entry: &dev->unlink_list); |
10555 | dev->nested_level = dev->lower_level - 1; |
10556 | } |
10557 | #endif |
10558 | |
10559 | /* Snapshot list, allow later requests */ |
10560 | list_replace_init(old: &net_todo_list, new: &list); |
10561 | |
10562 | __rtnl_unlock(); |
10563 | |
10564 | /* Wait for rcu callbacks to finish before next phase */ |
10565 | if (!list_empty(head: &list)) |
10566 | rcu_barrier(); |
10567 | |
10568 | list_for_each_entry_safe(dev, tmp, &list, todo_list) { |
10569 | if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { |
10570 | netdev_WARN(dev, "run_todo but not unregistering\n" ); |
10571 | list_del(entry: &dev->todo_list); |
10572 | continue; |
10573 | } |
10574 | |
10575 | WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); |
10576 | linkwatch_sync_dev(dev); |
10577 | } |
10578 | |
10579 | cnt = 0; |
10580 | while (!list_empty(head: &list)) { |
10581 | dev = netdev_wait_allrefs_any(list: &list); |
10582 | list_del(entry: &dev->todo_list); |
10583 | |
10584 | /* paranoia */ |
10585 | BUG_ON(netdev_refcnt_read(dev) != 1); |
10586 | BUG_ON(!list_empty(&dev->ptype_all)); |
10587 | BUG_ON(!list_empty(&dev->ptype_specific)); |
10588 | WARN_ON(rcu_access_pointer(dev->ip_ptr)); |
10589 | WARN_ON(rcu_access_pointer(dev->ip6_ptr)); |
10590 | |
10591 | netdev_do_free_pcpu_stats(dev); |
10592 | if (dev->priv_destructor) |
10593 | dev->priv_destructor(dev); |
10594 | if (dev->needs_free_netdev) |
10595 | free_netdev(dev); |
10596 | |
10597 | cnt++; |
10598 | |
10599 | /* Free network device */ |
10600 | kobject_put(kobj: &dev->dev.kobj); |
10601 | } |
10602 | if (cnt && atomic_sub_and_test(i: cnt, v: &dev_unreg_count)) |
10603 | wake_up(&netdev_unregistering_wq); |
10604 | } |
10605 | |
10606 | /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has |
10607 | * all the same fields in the same order as net_device_stats, with only |
10608 | * the type differing, but rtnl_link_stats64 may have additional fields |
10609 | * at the end for newer counters. |
10610 | */ |
10611 | void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, |
10612 | const struct net_device_stats *netdev_stats) |
10613 | { |
10614 | size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); |
10615 | const atomic_long_t *src = (atomic_long_t *)netdev_stats; |
10616 | u64 *dst = (u64 *)stats64; |
10617 | |
10618 | BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); |
10619 | for (i = 0; i < n; i++) |
10620 | dst[i] = (unsigned long)atomic_long_read(v: &src[i]); |
10621 | /* zero out counters that only exist in rtnl_link_stats64 */ |
10622 | memset((char *)stats64 + n * sizeof(u64), 0, |
10623 | sizeof(*stats64) - n * sizeof(u64)); |
10624 | } |
10625 | EXPORT_SYMBOL(netdev_stats_to_stats64); |
10626 | |
10627 | static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( |
10628 | struct net_device *dev) |
10629 | { |
10630 | struct net_device_core_stats __percpu *p; |
10631 | |
10632 | p = alloc_percpu_gfp(struct net_device_core_stats, |
10633 | GFP_ATOMIC | __GFP_NOWARN); |
10634 | |
10635 | if (p && cmpxchg(&dev->core_stats, NULL, p)) |
10636 | free_percpu(pdata: p); |
10637 | |
10638 | /* This READ_ONCE() pairs with the cmpxchg() above */ |
10639 | return READ_ONCE(dev->core_stats); |
10640 | } |
10641 | |
10642 | noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) |
10643 | { |
10644 | /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ |
10645 | struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); |
10646 | unsigned long __percpu *field; |
10647 | |
10648 | if (unlikely(!p)) { |
10649 | p = netdev_core_stats_alloc(dev); |
10650 | if (!p) |
10651 | return; |
10652 | } |
10653 | |
10654 | field = (__force unsigned long __percpu *)((__force void *)p + offset); |
10655 | this_cpu_inc(*field); |
10656 | } |
10657 | EXPORT_SYMBOL_GPL(netdev_core_stats_inc); |
10658 | |
10659 | /** |
10660 | * dev_get_stats - get network device statistics |
10661 | * @dev: device to get statistics from |
10662 | * @storage: place to store stats |
10663 | * |
10664 | * Get network statistics from device. Return @storage. |
10665 | * The device driver may provide its own method by setting |
10666 | * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; |
10667 | * otherwise the internal statistics structure is used. |
10668 | */ |
10669 | struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, |
10670 | struct rtnl_link_stats64 *storage) |
10671 | { |
10672 | const struct net_device_ops *ops = dev->netdev_ops; |
10673 | const struct net_device_core_stats __percpu *p; |
10674 | |
10675 | if (ops->ndo_get_stats64) { |
10676 | memset(storage, 0, sizeof(*storage)); |
10677 | ops->ndo_get_stats64(dev, storage); |
10678 | } else if (ops->ndo_get_stats) { |
10679 | netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); |
10680 | } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { |
10681 | dev_get_tstats64(dev, s: storage); |
10682 | } else { |
10683 | netdev_stats_to_stats64(storage, &dev->stats); |
10684 | } |
10685 | |
10686 | /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ |
10687 | p = READ_ONCE(dev->core_stats); |
10688 | if (p) { |
10689 | const struct net_device_core_stats *core_stats; |
10690 | int i; |
10691 | |
10692 | for_each_possible_cpu(i) { |
10693 | core_stats = per_cpu_ptr(p, i); |
10694 | storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); |
10695 | storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); |
10696 | storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); |
10697 | storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); |
10698 | } |
10699 | } |
10700 | return storage; |
10701 | } |
10702 | EXPORT_SYMBOL(dev_get_stats); |
10703 | |
10704 | /** |
10705 | * dev_fetch_sw_netstats - get per-cpu network device statistics |
10706 | * @s: place to store stats |
10707 | * @netstats: per-cpu network stats to read from |
10708 | * |
10709 | * Read per-cpu network statistics and populate the related fields in @s. |
10710 | */ |
10711 | void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, |
10712 | const struct pcpu_sw_netstats __percpu *netstats) |
10713 | { |
10714 | int cpu; |
10715 | |
10716 | for_each_possible_cpu(cpu) { |
10717 | u64 rx_packets, rx_bytes, tx_packets, tx_bytes; |
10718 | const struct pcpu_sw_netstats *stats; |
10719 | unsigned int start; |
10720 | |
10721 | stats = per_cpu_ptr(netstats, cpu); |
10722 | do { |
10723 | start = u64_stats_fetch_begin(syncp: &stats->syncp); |
10724 | rx_packets = u64_stats_read(p: &stats->rx_packets); |
10725 | rx_bytes = u64_stats_read(p: &stats->rx_bytes); |
10726 | tx_packets = u64_stats_read(p: &stats->tx_packets); |
10727 | tx_bytes = u64_stats_read(p: &stats->tx_bytes); |
10728 | } while (u64_stats_fetch_retry(syncp: &stats->syncp, start)); |
10729 | |
10730 | s->rx_packets += rx_packets; |
10731 | s->rx_bytes += rx_bytes; |
10732 | s->tx_packets += tx_packets; |
10733 | s->tx_bytes += tx_bytes; |
10734 | } |
10735 | } |
10736 | EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); |
10737 | |
10738 | /** |
10739 | * dev_get_tstats64 - ndo_get_stats64 implementation |
10740 | * @dev: device to get statistics from |
10741 | * @s: place to store stats |
10742 | * |
10743 | * Populate @s from dev->stats and dev->tstats. Can be used as |
10744 | * ndo_get_stats64() callback. |
10745 | */ |
10746 | void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) |
10747 | { |
10748 | netdev_stats_to_stats64(s, &dev->stats); |
10749 | dev_fetch_sw_netstats(s, dev->tstats); |
10750 | } |
10751 | EXPORT_SYMBOL_GPL(dev_get_tstats64); |
10752 | |
10753 | struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) |
10754 | { |
10755 | struct netdev_queue *queue = dev_ingress_queue(dev); |
10756 | |
10757 | #ifdef CONFIG_NET_CLS_ACT |
10758 | if (queue) |
10759 | return queue; |
10760 | queue = kzalloc(size: sizeof(*queue), GFP_KERNEL); |
10761 | if (!queue) |
10762 | return NULL; |
10763 | netdev_init_one_queue(dev, queue, NULL); |
10764 | RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); |
10765 | RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); |
10766 | rcu_assign_pointer(dev->ingress_queue, queue); |
10767 | #endif |
10768 | return queue; |
10769 | } |
10770 | |
10771 | static const struct ethtool_ops default_ethtool_ops; |
10772 | |
10773 | void netdev_set_default_ethtool_ops(struct net_device *dev, |
10774 | const struct ethtool_ops *ops) |
10775 | { |
10776 | if (dev->ethtool_ops == &default_ethtool_ops) |
10777 | dev->ethtool_ops = ops; |
10778 | } |
10779 | EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); |
10780 | |
10781 | /** |
10782 | * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default |
10783 | * @dev: netdev to enable the IRQ coalescing on |
10784 | * |
10785 | * Sets a conservative default for SW IRQ coalescing. Users can use |
10786 | * sysfs attributes to override the default values. |
10787 | */ |
10788 | void netdev_sw_irq_coalesce_default_on(struct net_device *dev) |
10789 | { |
10790 | WARN_ON(dev->reg_state == NETREG_REGISTERED); |
10791 | |
10792 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { |
10793 | dev->gro_flush_timeout = 20000; |
10794 | dev->napi_defer_hard_irqs = 1; |
10795 | } |
10796 | } |
10797 | EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); |
10798 | |
10799 | void netdev_freemem(struct net_device *dev) |
10800 | { |
10801 | char *addr = (char *)dev - dev->padded; |
10802 | |
10803 | kvfree(addr); |
10804 | } |
10805 | |
10806 | /** |
10807 | * alloc_netdev_mqs - allocate network device |
10808 | * @sizeof_priv: size of private data to allocate space for |
10809 | * @name: device name format string |
10810 | * @name_assign_type: origin of device name |
10811 | * @setup: callback to initialize device |
10812 | * @txqs: the number of TX subqueues to allocate |
10813 | * @rxqs: the number of RX subqueues to allocate |
10814 | * |
10815 | * Allocates a struct net_device with private data area for driver use |
10816 | * and performs basic initialization. Also allocates subqueue structs |
10817 | * for each queue on the device. |
10818 | */ |
10819 | struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, |
10820 | unsigned char name_assign_type, |
10821 | void (*setup)(struct net_device *), |
10822 | unsigned int txqs, unsigned int rxqs) |
10823 | { |
10824 | struct net_device *dev; |
10825 | unsigned int alloc_size; |
10826 | struct net_device *p; |
10827 | |
10828 | BUG_ON(strlen(name) >= sizeof(dev->name)); |
10829 | |
10830 | if (txqs < 1) { |
10831 | pr_err("alloc_netdev: Unable to allocate device with zero queues\n" ); |
10832 | return NULL; |
10833 | } |
10834 | |
10835 | if (rxqs < 1) { |
10836 | pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n" ); |
10837 | return NULL; |
10838 | } |
10839 | |
10840 | alloc_size = sizeof(struct net_device); |
10841 | if (sizeof_priv) { |
10842 | /* ensure 32-byte alignment of private area */ |
10843 | alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); |
10844 | alloc_size += sizeof_priv; |
10845 | } |
10846 | /* ensure 32-byte alignment of whole construct */ |
10847 | alloc_size += NETDEV_ALIGN - 1; |
10848 | |
10849 | p = kvzalloc(size: alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); |
10850 | if (!p) |
10851 | return NULL; |
10852 | |
10853 | dev = PTR_ALIGN(p, NETDEV_ALIGN); |
10854 | dev->padded = (char *)dev - (char *)p; |
10855 | |
10856 | ref_tracker_dir_init(dir: &dev->refcnt_tracker, quarantine_count: 128, name); |
10857 | #ifdef CONFIG_PCPU_DEV_REFCNT |
10858 | dev->pcpu_refcnt = alloc_percpu(int); |
10859 | if (!dev->pcpu_refcnt) |
10860 | goto free_dev; |
10861 | __dev_hold(dev); |
10862 | #else |
10863 | refcount_set(&dev->dev_refcnt, 1); |
10864 | #endif |
10865 | |
10866 | if (dev_addr_init(dev)) |
10867 | goto free_pcpu; |
10868 | |
10869 | dev_mc_init(dev); |
10870 | dev_uc_init(dev); |
10871 | |
10872 | dev_net_set(dev, net: &init_net); |
10873 | |
10874 | dev->gso_max_size = GSO_LEGACY_MAX_SIZE; |
10875 | dev->xdp_zc_max_segs = 1; |
10876 | dev->gso_max_segs = GSO_MAX_SEGS; |
10877 | dev->gro_max_size = GRO_LEGACY_MAX_SIZE; |
10878 | dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; |
10879 | dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; |
10880 | dev->tso_max_size = TSO_LEGACY_MAX_SIZE; |
10881 | dev->tso_max_segs = TSO_MAX_SEGS; |
10882 | dev->upper_level = 1; |
10883 | dev->lower_level = 1; |
10884 | #ifdef CONFIG_LOCKDEP |
10885 | dev->nested_level = 0; |
10886 | INIT_LIST_HEAD(list: &dev->unlink_list); |
10887 | #endif |
10888 | |
10889 | INIT_LIST_HEAD(list: &dev->napi_list); |
10890 | INIT_LIST_HEAD(list: &dev->unreg_list); |
10891 | INIT_LIST_HEAD(list: &dev->close_list); |
10892 | INIT_LIST_HEAD(list: &dev->link_watch_list); |
10893 | INIT_LIST_HEAD(list: &dev->adj_list.upper); |
10894 | INIT_LIST_HEAD(list: &dev->adj_list.lower); |
10895 | INIT_LIST_HEAD(list: &dev->ptype_all); |
10896 | INIT_LIST_HEAD(list: &dev->ptype_specific); |
10897 | INIT_LIST_HEAD(list: &dev->net_notifier_list); |
10898 | #ifdef CONFIG_NET_SCHED |
10899 | hash_init(dev->qdisc_hash); |
10900 | #endif |
10901 | dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; |
10902 | setup(dev); |
10903 | |
10904 | if (!dev->tx_queue_len) { |
10905 | dev->priv_flags |= IFF_NO_QUEUE; |
10906 | dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; |
10907 | } |
10908 | |
10909 | dev->num_tx_queues = txqs; |
10910 | dev->real_num_tx_queues = txqs; |
10911 | if (netif_alloc_netdev_queues(dev)) |
10912 | goto free_all; |
10913 | |
10914 | dev->num_rx_queues = rxqs; |
10915 | dev->real_num_rx_queues = rxqs; |
10916 | if (netif_alloc_rx_queues(dev)) |
10917 | goto free_all; |
10918 | |
10919 | strcpy(p: dev->name, q: name); |
10920 | dev->name_assign_type = name_assign_type; |
10921 | dev->group = INIT_NETDEV_GROUP; |
10922 | if (!dev->ethtool_ops) |
10923 | dev->ethtool_ops = &default_ethtool_ops; |
10924 | |
10925 | nf_hook_netdev_init(dev); |
10926 | |
10927 | return dev; |
10928 | |
10929 | free_all: |
10930 | free_netdev(dev); |
10931 | return NULL; |
10932 | |
10933 | free_pcpu: |
10934 | #ifdef CONFIG_PCPU_DEV_REFCNT |
10935 | free_percpu(pdata: dev->pcpu_refcnt); |
10936 | free_dev: |
10937 | #endif |
10938 | netdev_freemem(dev); |
10939 | return NULL; |
10940 | } |
10941 | EXPORT_SYMBOL(alloc_netdev_mqs); |
10942 | |
10943 | /** |
10944 | * free_netdev - free network device |
10945 | * @dev: device |
10946 | * |
10947 | * This function does the last stage of destroying an allocated device |
10948 | * interface. The reference to the device object is released. If this |
10949 | * is the last reference then it will be freed.Must be called in process |
10950 | * context. |
10951 | */ |
10952 | void free_netdev(struct net_device *dev) |
10953 | { |
10954 | struct napi_struct *p, *n; |
10955 | |
10956 | might_sleep(); |
10957 | |
10958 | /* When called immediately after register_netdevice() failed the unwind |
10959 | * handling may still be dismantling the device. Handle that case by |
10960 | * deferring the free. |
10961 | */ |
10962 | if (dev->reg_state == NETREG_UNREGISTERING) { |
10963 | ASSERT_RTNL(); |
10964 | dev->needs_free_netdev = true; |
10965 | return; |
10966 | } |
10967 | |
10968 | netif_free_tx_queues(dev); |
10969 | netif_free_rx_queues(dev); |
10970 | |
10971 | kfree(rcu_dereference_protected(dev->ingress_queue, 1)); |
10972 | |
10973 | /* Flush device addresses */ |
10974 | dev_addr_flush(dev); |
10975 | |
10976 | list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) |
10977 | netif_napi_del(napi: p); |
10978 | |
10979 | ref_tracker_dir_exit(dir: &dev->refcnt_tracker); |
10980 | #ifdef CONFIG_PCPU_DEV_REFCNT |
10981 | free_percpu(pdata: dev->pcpu_refcnt); |
10982 | dev->pcpu_refcnt = NULL; |
10983 | #endif |
10984 | free_percpu(pdata: dev->core_stats); |
10985 | dev->core_stats = NULL; |
10986 | free_percpu(pdata: dev->xdp_bulkq); |
10987 | dev->xdp_bulkq = NULL; |
10988 | |
10989 | /* Compatibility with error handling in drivers */ |
10990 | if (dev->reg_state == NETREG_UNINITIALIZED) { |
10991 | netdev_freemem(dev); |
10992 | return; |
10993 | } |
10994 | |
10995 | BUG_ON(dev->reg_state != NETREG_UNREGISTERED); |
10996 | WRITE_ONCE(dev->reg_state, NETREG_RELEASED); |
10997 | |
10998 | /* will free via device release */ |
10999 | put_device(dev: &dev->dev); |
11000 | } |
11001 | EXPORT_SYMBOL(free_netdev); |
11002 | |
11003 | /** |
11004 | * synchronize_net - Synchronize with packet receive processing |
11005 | * |
11006 | * Wait for packets currently being received to be done. |
11007 | * Does not block later packets from starting. |
11008 | */ |
11009 | void synchronize_net(void) |
11010 | { |
11011 | might_sleep(); |
11012 | if (rtnl_is_locked()) |
11013 | synchronize_rcu_expedited(); |
11014 | else |
11015 | synchronize_rcu(); |
11016 | } |
11017 | EXPORT_SYMBOL(synchronize_net); |
11018 | |
11019 | /** |
11020 | * unregister_netdevice_queue - remove device from the kernel |
11021 | * @dev: device |
11022 | * @head: list |
11023 | * |
11024 | * This function shuts down a device interface and removes it |
11025 | * from the kernel tables. |
11026 | * If head not NULL, device is queued to be unregistered later. |
11027 | * |
11028 | * Callers must hold the rtnl semaphore. You may want |
11029 | * unregister_netdev() instead of this. |
11030 | */ |
11031 | |
11032 | void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) |
11033 | { |
11034 | ASSERT_RTNL(); |
11035 | |
11036 | if (head) { |
11037 | list_move_tail(list: &dev->unreg_list, head); |
11038 | } else { |
11039 | LIST_HEAD(single); |
11040 | |
11041 | list_add(new: &dev->unreg_list, head: &single); |
11042 | unregister_netdevice_many(head: &single); |
11043 | } |
11044 | } |
11045 | EXPORT_SYMBOL(unregister_netdevice_queue); |
11046 | |
11047 | void unregister_netdevice_many_notify(struct list_head *head, |
11048 | u32 portid, const struct nlmsghdr *nlh) |
11049 | { |
11050 | struct net_device *dev, *tmp; |
11051 | LIST_HEAD(close_head); |
11052 | int cnt = 0; |
11053 | |
11054 | BUG_ON(dev_boot_phase); |
11055 | ASSERT_RTNL(); |
11056 | |
11057 | if (list_empty(head)) |
11058 | return; |
11059 | |
11060 | list_for_each_entry_safe(dev, tmp, head, unreg_list) { |
11061 | /* Some devices call without registering |
11062 | * for initialization unwind. Remove those |
11063 | * devices and proceed with the remaining. |
11064 | */ |
11065 | if (dev->reg_state == NETREG_UNINITIALIZED) { |
11066 | pr_debug("unregister_netdevice: device %s/%p never was registered\n" , |
11067 | dev->name, dev); |
11068 | |
11069 | WARN_ON(1); |
11070 | list_del(entry: &dev->unreg_list); |
11071 | continue; |
11072 | } |
11073 | dev->dismantle = true; |
11074 | BUG_ON(dev->reg_state != NETREG_REGISTERED); |
11075 | } |
11076 | |
11077 | /* If device is running, close it first. */ |
11078 | list_for_each_entry(dev, head, unreg_list) |
11079 | list_add_tail(new: &dev->close_list, head: &close_head); |
11080 | dev_close_many(&close_head, true); |
11081 | |
11082 | list_for_each_entry(dev, head, unreg_list) { |
11083 | /* And unlink it from device chain. */ |
11084 | unlist_netdevice(dev); |
11085 | WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); |
11086 | } |
11087 | flush_all_backlogs(); |
11088 | |
11089 | synchronize_net(); |
11090 | |
11091 | list_for_each_entry(dev, head, unreg_list) { |
11092 | struct sk_buff *skb = NULL; |
11093 | |
11094 | /* Shutdown queueing discipline. */ |
11095 | dev_shutdown(dev); |
11096 | dev_tcx_uninstall(dev); |
11097 | dev_xdp_uninstall(dev); |
11098 | bpf_dev_bound_netdev_unregister(dev); |
11099 | |
11100 | netdev_offload_xstats_disable_all(dev); |
11101 | |
11102 | /* Notify protocols, that we are about to destroy |
11103 | * this device. They should clean all the things. |
11104 | */ |
11105 | call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
11106 | |
11107 | if (!dev->rtnl_link_ops || |
11108 | dev->rtnl_link_state == RTNL_LINK_INITIALIZED) |
11109 | skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, change: ~0U, event: 0, |
11110 | GFP_KERNEL, NULL, new_ifindex: 0, |
11111 | portid, nlh); |
11112 | |
11113 | /* |
11114 | * Flush the unicast and multicast chains |
11115 | */ |
11116 | dev_uc_flush(dev); |
11117 | dev_mc_flush(dev); |
11118 | |
11119 | netdev_name_node_alt_flush(dev); |
11120 | netdev_name_node_free(name_node: dev->name_node); |
11121 | |
11122 | call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); |
11123 | |
11124 | if (dev->netdev_ops->ndo_uninit) |
11125 | dev->netdev_ops->ndo_uninit(dev); |
11126 | |
11127 | if (skb) |
11128 | rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); |
11129 | |
11130 | /* Notifier chain MUST detach us all upper devices. */ |
11131 | WARN_ON(netdev_has_any_upper_dev(dev)); |
11132 | WARN_ON(netdev_has_any_lower_dev(dev)); |
11133 | |
11134 | /* Remove entries from kobject tree */ |
11135 | netdev_unregister_kobject(dev); |
11136 | #ifdef CONFIG_XPS |
11137 | /* Remove XPS queueing entries */ |
11138 | netif_reset_xps_queues_gt(dev, index: 0); |
11139 | #endif |
11140 | } |
11141 | |
11142 | synchronize_net(); |
11143 | |
11144 | list_for_each_entry(dev, head, unreg_list) { |
11145 | netdev_put(dev, tracker: &dev->dev_registered_tracker); |
11146 | net_set_todo(dev); |
11147 | cnt++; |
11148 | } |
11149 | atomic_add(i: cnt, v: &dev_unreg_count); |
11150 | |
11151 | list_del(entry: head); |
11152 | } |
11153 | |
11154 | /** |
11155 | * unregister_netdevice_many - unregister many devices |
11156 | * @head: list of devices |
11157 | * |
11158 | * Note: As most callers use a stack allocated list_head, |
11159 | * we force a list_del() to make sure stack wont be corrupted later. |
11160 | */ |
11161 | void unregister_netdevice_many(struct list_head *head) |
11162 | { |
11163 | unregister_netdevice_many_notify(head, portid: 0, NULL); |
11164 | } |
11165 | EXPORT_SYMBOL(unregister_netdevice_many); |
11166 | |
11167 | /** |
11168 | * unregister_netdev - remove device from the kernel |
11169 | * @dev: device |
11170 | * |
11171 | * This function shuts down a device interface and removes it |
11172 | * from the kernel tables. |
11173 | * |
11174 | * This is just a wrapper for unregister_netdevice that takes |
11175 | * the rtnl semaphore. In general you want to use this and not |
11176 | * unregister_netdevice. |
11177 | */ |
11178 | void unregister_netdev(struct net_device *dev) |
11179 | { |
11180 | rtnl_lock(); |
11181 | unregister_netdevice(dev); |
11182 | rtnl_unlock(); |
11183 | } |
11184 | EXPORT_SYMBOL(unregister_netdev); |
11185 | |
11186 | /** |
11187 | * __dev_change_net_namespace - move device to different nethost namespace |
11188 | * @dev: device |
11189 | * @net: network namespace |
11190 | * @pat: If not NULL name pattern to try if the current device name |
11191 | * is already taken in the destination network namespace. |
11192 | * @new_ifindex: If not zero, specifies device index in the target |
11193 | * namespace. |
11194 | * |
11195 | * This function shuts down a device interface and moves it |
11196 | * to a new network namespace. On success 0 is returned, on |
11197 | * a failure a netagive errno code is returned. |
11198 | * |
11199 | * Callers must hold the rtnl semaphore. |
11200 | */ |
11201 | |
11202 | int __dev_change_net_namespace(struct net_device *dev, struct net *net, |
11203 | const char *pat, int new_ifindex) |
11204 | { |
11205 | struct netdev_name_node *name_node; |
11206 | struct net *net_old = dev_net(dev); |
11207 | char new_name[IFNAMSIZ] = {}; |
11208 | int err, new_nsid; |
11209 | |
11210 | ASSERT_RTNL(); |
11211 | |
11212 | /* Don't allow namespace local devices to be moved. */ |
11213 | err = -EINVAL; |
11214 | if (dev->features & NETIF_F_NETNS_LOCAL) |
11215 | goto out; |
11216 | |
11217 | /* Ensure the device has been registrered */ |
11218 | if (dev->reg_state != NETREG_REGISTERED) |
11219 | goto out; |
11220 | |
11221 | /* Get out if there is nothing todo */ |
11222 | err = 0; |
11223 | if (net_eq(net1: net_old, net2: net)) |
11224 | goto out; |
11225 | |
11226 | /* Pick the destination device name, and ensure |
11227 | * we can use it in the destination network namespace. |
11228 | */ |
11229 | err = -EEXIST; |
11230 | if (netdev_name_in_use(net, dev->name)) { |
11231 | /* We get here if we can't use the current device name */ |
11232 | if (!pat) |
11233 | goto out; |
11234 | err = dev_prep_valid_name(net, dev, want_name: pat, out_name: new_name, EEXIST); |
11235 | if (err < 0) |
11236 | goto out; |
11237 | } |
11238 | /* Check that none of the altnames conflicts. */ |
11239 | err = -EEXIST; |
11240 | netdev_for_each_altname(dev, name_node) |
11241 | if (netdev_name_in_use(net, name_node->name)) |
11242 | goto out; |
11243 | |
11244 | /* Check that new_ifindex isn't used yet. */ |
11245 | if (new_ifindex) { |
11246 | err = dev_index_reserve(net, ifindex: new_ifindex); |
11247 | if (err < 0) |
11248 | goto out; |
11249 | } else { |
11250 | /* If there is an ifindex conflict assign a new one */ |
11251 | err = dev_index_reserve(net, ifindex: dev->ifindex); |
11252 | if (err == -EBUSY) |
11253 | err = dev_index_reserve(net, ifindex: 0); |
11254 | if (err < 0) |
11255 | goto out; |
11256 | new_ifindex = err; |
11257 | } |
11258 | |
11259 | /* |
11260 | * And now a mini version of register_netdevice unregister_netdevice. |
11261 | */ |
11262 | |
11263 | /* If device is running close it first. */ |
11264 | dev_close(dev); |
11265 | |
11266 | /* And unlink it from device chain */ |
11267 | unlist_netdevice(dev); |
11268 | |
11269 | synchronize_net(); |
11270 | |
11271 | /* Shutdown queueing discipline. */ |
11272 | dev_shutdown(dev); |
11273 | |
11274 | /* Notify protocols, that we are about to destroy |
11275 | * this device. They should clean all the things. |
11276 | * |
11277 | * Note that dev->reg_state stays at NETREG_REGISTERED. |
11278 | * This is wanted because this way 8021q and macvlan know |
11279 | * the device is just moving and can keep their slaves up. |
11280 | */ |
11281 | call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
11282 | rcu_barrier(); |
11283 | |
11284 | new_nsid = peernet2id_alloc(net: dev_net(dev), peer: net, GFP_KERNEL); |
11285 | |
11286 | rtmsg_ifinfo_newnet(RTM_DELLINK, dev, change: ~0U, GFP_KERNEL, new_nsid: &new_nsid, |
11287 | new_ifindex); |
11288 | |
11289 | /* |
11290 | * Flush the unicast and multicast chains |
11291 | */ |
11292 | dev_uc_flush(dev); |
11293 | dev_mc_flush(dev); |
11294 | |
11295 | /* Send a netdev-removed uevent to the old namespace */ |
11296 | kobject_uevent(kobj: &dev->dev.kobj, action: KOBJ_REMOVE); |
11297 | netdev_adjacent_del_links(dev); |
11298 | |
11299 | /* Move per-net netdevice notifiers that are following the netdevice */ |
11300 | move_netdevice_notifiers_dev_net(dev, net); |
11301 | |
11302 | /* Actually switch the network namespace */ |
11303 | dev_net_set(dev, net); |
11304 | dev->ifindex = new_ifindex; |
11305 | |
11306 | if (new_name[0]) /* Rename the netdev to prepared name */ |
11307 | strscpy(dev->name, new_name, IFNAMSIZ); |
11308 | |
11309 | /* Fixup kobjects */ |
11310 | dev_set_uevent_suppress(dev: &dev->dev, val: 1); |
11311 | err = device_rename(dev: &dev->dev, new_name: dev->name); |
11312 | dev_set_uevent_suppress(dev: &dev->dev, val: 0); |
11313 | WARN_ON(err); |
11314 | |
11315 | /* Send a netdev-add uevent to the new namespace */ |
11316 | kobject_uevent(kobj: &dev->dev.kobj, action: KOBJ_ADD); |
11317 | netdev_adjacent_add_links(dev); |
11318 | |
11319 | /* Adapt owner in case owning user namespace of target network |
11320 | * namespace is different from the original one. |
11321 | */ |
11322 | err = netdev_change_owner(dev, net_old, net_new: net); |
11323 | WARN_ON(err); |
11324 | |
11325 | /* Add the device back in the hashes */ |
11326 | list_netdevice(dev); |
11327 | |
11328 | /* Notify protocols, that a new device appeared. */ |
11329 | call_netdevice_notifiers(NETDEV_REGISTER, dev); |
11330 | |
11331 | /* |
11332 | * Prevent userspace races by waiting until the network |
11333 | * device is fully setup before sending notifications. |
11334 | */ |
11335 | rtmsg_ifinfo(RTM_NEWLINK, dev, change: ~0U, GFP_KERNEL, portid: 0, NULL); |
11336 | |
11337 | synchronize_net(); |
11338 | err = 0; |
11339 | out: |
11340 | return err; |
11341 | } |
11342 | EXPORT_SYMBOL_GPL(__dev_change_net_namespace); |
11343 | |
11344 | static int dev_cpu_dead(unsigned int oldcpu) |
11345 | { |
11346 | struct sk_buff **list_skb; |
11347 | struct sk_buff *skb; |
11348 | unsigned int cpu; |
11349 | struct softnet_data *sd, *oldsd, *remsd = NULL; |
11350 | |
11351 | local_irq_disable(); |
11352 | cpu = smp_processor_id(); |
11353 | sd = &per_cpu(softnet_data, cpu); |
11354 | oldsd = &per_cpu(softnet_data, oldcpu); |
11355 | |
11356 | /* Find end of our completion_queue. */ |
11357 | list_skb = &sd->completion_queue; |
11358 | while (*list_skb) |
11359 | list_skb = &(*list_skb)->next; |
11360 | /* Append completion queue from offline CPU. */ |
11361 | *list_skb = oldsd->completion_queue; |
11362 | oldsd->completion_queue = NULL; |
11363 | |
11364 | /* Append output queue from offline CPU. */ |
11365 | if (oldsd->output_queue) { |
11366 | *sd->output_queue_tailp = oldsd->output_queue; |
11367 | sd->output_queue_tailp = oldsd->output_queue_tailp; |
11368 | oldsd->output_queue = NULL; |
11369 | oldsd->output_queue_tailp = &oldsd->output_queue; |
11370 | } |
11371 | /* Append NAPI poll list from offline CPU, with one exception : |
11372 | * process_backlog() must be called by cpu owning percpu backlog. |
11373 | * We properly handle process_queue & input_pkt_queue later. |
11374 | */ |
11375 | while (!list_empty(head: &oldsd->poll_list)) { |
11376 | struct napi_struct *napi = list_first_entry(&oldsd->poll_list, |
11377 | struct napi_struct, |
11378 | poll_list); |
11379 | |
11380 | list_del_init(entry: &napi->poll_list); |
11381 | if (napi->poll == process_backlog) |
11382 | napi->state = 0; |
11383 | else |
11384 | ____napi_schedule(sd, napi); |
11385 | } |
11386 | |
11387 | raise_softirq_irqoff(nr: NET_TX_SOFTIRQ); |
11388 | local_irq_enable(); |
11389 | |
11390 | #ifdef CONFIG_RPS |
11391 | remsd = oldsd->rps_ipi_list; |
11392 | oldsd->rps_ipi_list = NULL; |
11393 | #endif |
11394 | /* send out pending IPI's on offline CPU */ |
11395 | net_rps_send_ipi(remsd); |
11396 | |
11397 | /* Process offline CPU's input_pkt_queue */ |
11398 | while ((skb = __skb_dequeue(list: &oldsd->process_queue))) { |
11399 | netif_rx(skb); |
11400 | input_queue_head_incr(sd: oldsd); |
11401 | } |
11402 | while ((skb = skb_dequeue(list: &oldsd->input_pkt_queue))) { |
11403 | netif_rx(skb); |
11404 | input_queue_head_incr(sd: oldsd); |
11405 | } |
11406 | |
11407 | return 0; |
11408 | } |
11409 | |
11410 | /** |
11411 | * netdev_increment_features - increment feature set by one |
11412 | * @all: current feature set |
11413 | * @one: new feature set |
11414 | * @mask: mask feature set |
11415 | * |
11416 | * Computes a new feature set after adding a device with feature set |
11417 | * @one to the master device with current feature set @all. Will not |
11418 | * enable anything that is off in @mask. Returns the new feature set. |
11419 | */ |
11420 | netdev_features_t netdev_increment_features(netdev_features_t all, |
11421 | netdev_features_t one, netdev_features_t mask) |
11422 | { |
11423 | if (mask & NETIF_F_HW_CSUM) |
11424 | mask |= NETIF_F_CSUM_MASK; |
11425 | mask |= NETIF_F_VLAN_CHALLENGED; |
11426 | |
11427 | all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; |
11428 | all &= one | ~NETIF_F_ALL_FOR_ALL; |
11429 | |
11430 | /* If one device supports hw checksumming, set for all. */ |
11431 | if (all & NETIF_F_HW_CSUM) |
11432 | all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); |
11433 | |
11434 | return all; |
11435 | } |
11436 | EXPORT_SYMBOL(netdev_increment_features); |
11437 | |
11438 | static struct hlist_head * __net_init netdev_create_hash(void) |
11439 | { |
11440 | int i; |
11441 | struct hlist_head *hash; |
11442 | |
11443 | hash = kmalloc_array(NETDEV_HASHENTRIES, size: sizeof(*hash), GFP_KERNEL); |
11444 | if (hash != NULL) |
11445 | for (i = 0; i < NETDEV_HASHENTRIES; i++) |
11446 | INIT_HLIST_HEAD(&hash[i]); |
11447 | |
11448 | return hash; |
11449 | } |
11450 | |
11451 | /* Initialize per network namespace state */ |
11452 | static int __net_init netdev_init(struct net *net) |
11453 | { |
11454 | BUILD_BUG_ON(GRO_HASH_BUCKETS > |
11455 | 8 * sizeof_field(struct napi_struct, gro_bitmask)); |
11456 | |
11457 | INIT_LIST_HEAD(list: &net->dev_base_head); |
11458 | |
11459 | net->dev_name_head = netdev_create_hash(); |
11460 | if (net->dev_name_head == NULL) |
11461 | goto err_name; |
11462 | |
11463 | net->dev_index_head = netdev_create_hash(); |
11464 | if (net->dev_index_head == NULL) |
11465 | goto err_idx; |
11466 | |
11467 | xa_init_flags(xa: &net->dev_by_index, XA_FLAGS_ALLOC1); |
11468 | |
11469 | RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); |
11470 | |
11471 | return 0; |
11472 | |
11473 | err_idx: |
11474 | kfree(objp: net->dev_name_head); |
11475 | err_name: |
11476 | return -ENOMEM; |
11477 | } |
11478 | |
11479 | /** |
11480 | * netdev_drivername - network driver for the device |
11481 | * @dev: network device |
11482 | * |
11483 | * Determine network driver for device. |
11484 | */ |
11485 | const char *netdev_drivername(const struct net_device *dev) |
11486 | { |
11487 | const struct device_driver *driver; |
11488 | const struct device *parent; |
11489 | const char *empty = "" ; |
11490 | |
11491 | parent = dev->dev.parent; |
11492 | if (!parent) |
11493 | return empty; |
11494 | |
11495 | driver = parent->driver; |
11496 | if (driver && driver->name) |
11497 | return driver->name; |
11498 | return empty; |
11499 | } |
11500 | |
11501 | static void __netdev_printk(const char *level, const struct net_device *dev, |
11502 | struct va_format *vaf) |
11503 | { |
11504 | if (dev && dev->dev.parent) { |
11505 | dev_printk_emit(level: level[1] - '0', |
11506 | dev: dev->dev.parent, |
11507 | fmt: "%s %s %s%s: %pV" , |
11508 | dev_driver_string(dev: dev->dev.parent), |
11509 | dev_name(dev: dev->dev.parent), |
11510 | netdev_name(dev), netdev_reg_state(dev), |
11511 | vaf); |
11512 | } else if (dev) { |
11513 | printk("%s%s%s: %pV" , |
11514 | level, netdev_name(dev), netdev_reg_state(dev), vaf); |
11515 | } else { |
11516 | printk("%s(NULL net_device): %pV" , level, vaf); |
11517 | } |
11518 | } |
11519 | |
11520 | void netdev_printk(const char *level, const struct net_device *dev, |
11521 | const char *format, ...) |
11522 | { |
11523 | struct va_format vaf; |
11524 | va_list args; |
11525 | |
11526 | va_start(args, format); |
11527 | |
11528 | vaf.fmt = format; |
11529 | vaf.va = &args; |
11530 | |
11531 | __netdev_printk(level, dev, vaf: &vaf); |
11532 | |
11533 | va_end(args); |
11534 | } |
11535 | EXPORT_SYMBOL(netdev_printk); |
11536 | |
11537 | #define define_netdev_printk_level(func, level) \ |
11538 | void func(const struct net_device *dev, const char *fmt, ...) \ |
11539 | { \ |
11540 | struct va_format vaf; \ |
11541 | va_list args; \ |
11542 | \ |
11543 | va_start(args, fmt); \ |
11544 | \ |
11545 | vaf.fmt = fmt; \ |
11546 | vaf.va = &args; \ |
11547 | \ |
11548 | __netdev_printk(level, dev, &vaf); \ |
11549 | \ |
11550 | va_end(args); \ |
11551 | } \ |
11552 | EXPORT_SYMBOL(func); |
11553 | |
11554 | define_netdev_printk_level(netdev_emerg, KERN_EMERG); |
11555 | define_netdev_printk_level(netdev_alert, KERN_ALERT); |
11556 | define_netdev_printk_level(netdev_crit, KERN_CRIT); |
11557 | define_netdev_printk_level(netdev_err, KERN_ERR); |
11558 | define_netdev_printk_level(netdev_warn, KERN_WARNING); |
11559 | define_netdev_printk_level(netdev_notice, KERN_NOTICE); |
11560 | define_netdev_printk_level(netdev_info, KERN_INFO); |
11561 | |
11562 | static void __net_exit netdev_exit(struct net *net) |
11563 | { |
11564 | kfree(objp: net->dev_name_head); |
11565 | kfree(objp: net->dev_index_head); |
11566 | xa_destroy(&net->dev_by_index); |
11567 | if (net != &init_net) |
11568 | WARN_ON_ONCE(!list_empty(&net->dev_base_head)); |
11569 | } |
11570 | |
11571 | static struct pernet_operations __net_initdata netdev_net_ops = { |
11572 | .init = netdev_init, |
11573 | .exit = netdev_exit, |
11574 | }; |
11575 | |
11576 | static void __net_exit default_device_exit_net(struct net *net) |
11577 | { |
11578 | struct netdev_name_node *name_node, *tmp; |
11579 | struct net_device *dev, *aux; |
11580 | /* |
11581 | * Push all migratable network devices back to the |
11582 | * initial network namespace |
11583 | */ |
11584 | ASSERT_RTNL(); |
11585 | for_each_netdev_safe(net, dev, aux) { |
11586 | int err; |
11587 | char fb_name[IFNAMSIZ]; |
11588 | |
11589 | /* Ignore unmoveable devices (i.e. loopback) */ |
11590 | if (dev->features & NETIF_F_NETNS_LOCAL) |
11591 | continue; |
11592 | |
11593 | /* Leave virtual devices for the generic cleanup */ |
11594 | if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) |
11595 | continue; |
11596 | |
11597 | /* Push remaining network devices to init_net */ |
11598 | snprintf(buf: fb_name, IFNAMSIZ, fmt: "dev%d" , dev->ifindex); |
11599 | if (netdev_name_in_use(&init_net, fb_name)) |
11600 | snprintf(buf: fb_name, IFNAMSIZ, fmt: "dev%%d" ); |
11601 | |
11602 | netdev_for_each_altname_safe(dev, name_node, tmp) |
11603 | if (netdev_name_in_use(&init_net, name_node->name)) |
11604 | __netdev_name_node_alt_destroy(name_node); |
11605 | |
11606 | err = dev_change_net_namespace(dev, net: &init_net, pat: fb_name); |
11607 | if (err) { |
11608 | pr_emerg("%s: failed to move %s to init_net: %d\n" , |
11609 | __func__, dev->name, err); |
11610 | BUG(); |
11611 | } |
11612 | } |
11613 | } |
11614 | |
11615 | static void __net_exit default_device_exit_batch(struct list_head *net_list) |
11616 | { |
11617 | /* At exit all network devices most be removed from a network |
11618 | * namespace. Do this in the reverse order of registration. |
11619 | * Do this across as many network namespaces as possible to |
11620 | * improve batching efficiency. |
11621 | */ |
11622 | struct net_device *dev; |
11623 | struct net *net; |
11624 | LIST_HEAD(dev_kill_list); |
11625 | |
11626 | rtnl_lock(); |
11627 | list_for_each_entry(net, net_list, exit_list) { |
11628 | default_device_exit_net(net); |
11629 | cond_resched(); |
11630 | } |
11631 | |
11632 | list_for_each_entry(net, net_list, exit_list) { |
11633 | for_each_netdev_reverse(net, dev) { |
11634 | if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) |
11635 | dev->rtnl_link_ops->dellink(dev, &dev_kill_list); |
11636 | else |
11637 | unregister_netdevice_queue(dev, &dev_kill_list); |
11638 | } |
11639 | } |
11640 | unregister_netdevice_many(&dev_kill_list); |
11641 | rtnl_unlock(); |
11642 | } |
11643 | |
11644 | static struct pernet_operations __net_initdata default_device_ops = { |
11645 | .exit_batch = default_device_exit_batch, |
11646 | }; |
11647 | |
11648 | static void __init net_dev_struct_check(void) |
11649 | { |
11650 | /* TX read-mostly hotpath */ |
11651 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags); |
11652 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); |
11653 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); |
11654 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); |
11655 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); |
11656 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); |
11657 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); |
11658 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); |
11659 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); |
11660 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); |
11661 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); |
11662 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); |
11663 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); |
11664 | #ifdef CONFIG_XPS |
11665 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); |
11666 | #endif |
11667 | #ifdef CONFIG_NETFILTER_EGRESS |
11668 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); |
11669 | #endif |
11670 | #ifdef CONFIG_NET_XGRESS |
11671 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); |
11672 | #endif |
11673 | CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); |
11674 | |
11675 | /* TXRX read-mostly hotpath */ |
11676 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); |
11677 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); |
11678 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); |
11679 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); |
11680 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); |
11681 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); |
11682 | CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); |
11683 | |
11684 | /* RX read-mostly hotpath */ |
11685 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); |
11686 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); |
11687 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); |
11688 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); |
11689 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout); |
11690 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs); |
11691 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); |
11692 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); |
11693 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); |
11694 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); |
11695 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); |
11696 | #ifdef CONFIG_NETPOLL |
11697 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); |
11698 | #endif |
11699 | #ifdef CONFIG_NET_XGRESS |
11700 | CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); |
11701 | #endif |
11702 | CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104); |
11703 | } |
11704 | |
11705 | /* |
11706 | * Initialize the DEV module. At boot time this walks the device list and |
11707 | * unhooks any devices that fail to initialise (normally hardware not |
11708 | * present) and leaves us with a valid list of present and active devices. |
11709 | * |
11710 | */ |
11711 | |
11712 | /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ |
11713 | #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) |
11714 | |
11715 | static int net_page_pool_create(int cpuid) |
11716 | { |
11717 | #if IS_ENABLED(CONFIG_PAGE_POOL) |
11718 | struct page_pool_params page_pool_params = { |
11719 | .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, |
11720 | .flags = PP_FLAG_SYSTEM_POOL, |
11721 | .nid = NUMA_NO_NODE, |
11722 | }; |
11723 | struct page_pool *pp_ptr; |
11724 | |
11725 | pp_ptr = page_pool_create_percpu(params: &page_pool_params, cpuid); |
11726 | if (IS_ERR(ptr: pp_ptr)) |
11727 | return -ENOMEM; |
11728 | |
11729 | per_cpu(system_page_pool, cpuid) = pp_ptr; |
11730 | #endif |
11731 | return 0; |
11732 | } |
11733 | |
11734 | /* |
11735 | * This is called single threaded during boot, so no need |
11736 | * to take the rtnl semaphore. |
11737 | */ |
11738 | static int __init net_dev_init(void) |
11739 | { |
11740 | int i, rc = -ENOMEM; |
11741 | |
11742 | BUG_ON(!dev_boot_phase); |
11743 | |
11744 | net_dev_struct_check(); |
11745 | |
11746 | if (dev_proc_init()) |
11747 | goto out; |
11748 | |
11749 | if (netdev_kobject_init()) |
11750 | goto out; |
11751 | |
11752 | for (i = 0; i < PTYPE_HASH_SIZE; i++) |
11753 | INIT_LIST_HEAD(list: &ptype_base[i]); |
11754 | |
11755 | if (register_pernet_subsys(&netdev_net_ops)) |
11756 | goto out; |
11757 | |
11758 | /* |
11759 | * Initialise the packet receive queues. |
11760 | */ |
11761 | |
11762 | for_each_possible_cpu(i) { |
11763 | struct work_struct *flush = per_cpu_ptr(&flush_works, i); |
11764 | struct softnet_data *sd = &per_cpu(softnet_data, i); |
11765 | |
11766 | INIT_WORK(flush, flush_backlog); |
11767 | |
11768 | skb_queue_head_init(list: &sd->input_pkt_queue); |
11769 | skb_queue_head_init(list: &sd->process_queue); |
11770 | #ifdef CONFIG_XFRM_OFFLOAD |
11771 | skb_queue_head_init(list: &sd->xfrm_backlog); |
11772 | #endif |
11773 | INIT_LIST_HEAD(list: &sd->poll_list); |
11774 | sd->output_queue_tailp = &sd->output_queue; |
11775 | #ifdef CONFIG_RPS |
11776 | INIT_CSD(&sd->csd, rps_trigger_softirq, sd); |
11777 | sd->cpu = i; |
11778 | #endif |
11779 | INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); |
11780 | spin_lock_init(&sd->defer_lock); |
11781 | |
11782 | init_gro_hash(napi: &sd->backlog); |
11783 | sd->backlog.poll = process_backlog; |
11784 | sd->backlog.weight = weight_p; |
11785 | |
11786 | if (net_page_pool_create(cpuid: i)) |
11787 | goto out; |
11788 | } |
11789 | |
11790 | dev_boot_phase = 0; |
11791 | |
11792 | /* The loopback device is special if any other network devices |
11793 | * is present in a network namespace the loopback device must |
11794 | * be present. Since we now dynamically allocate and free the |
11795 | * loopback device ensure this invariant is maintained by |
11796 | * keeping the loopback device as the first device on the |
11797 | * list of network devices. Ensuring the loopback devices |
11798 | * is the first device that appears and the last network device |
11799 | * that disappears. |
11800 | */ |
11801 | if (register_pernet_device(&loopback_net_ops)) |
11802 | goto out; |
11803 | |
11804 | if (register_pernet_device(&default_device_ops)) |
11805 | goto out; |
11806 | |
11807 | open_softirq(nr: NET_TX_SOFTIRQ, action: net_tx_action); |
11808 | open_softirq(nr: NET_RX_SOFTIRQ, action: net_rx_action); |
11809 | |
11810 | rc = cpuhp_setup_state_nocalls(state: CPUHP_NET_DEV_DEAD, name: "net/dev:dead" , |
11811 | NULL, teardown: dev_cpu_dead); |
11812 | WARN_ON(rc < 0); |
11813 | rc = 0; |
11814 | out: |
11815 | if (rc < 0) { |
11816 | for_each_possible_cpu(i) { |
11817 | struct page_pool *pp_ptr; |
11818 | |
11819 | pp_ptr = per_cpu(system_page_pool, i); |
11820 | if (!pp_ptr) |
11821 | continue; |
11822 | |
11823 | page_pool_destroy(pool: pp_ptr); |
11824 | per_cpu(system_page_pool, i) = NULL; |
11825 | } |
11826 | } |
11827 | |
11828 | return rc; |
11829 | } |
11830 | |
11831 | subsys_initcall(net_dev_init); |
11832 | |