1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitmap.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <net/tcx.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <trace/events/qdisc.h>
136#include <trace/events/xdp.h>
137#include <linux/inetdevice.h>
138#include <linux/cpu_rmap.h>
139#include <linux/static_key.h>
140#include <linux/hashtable.h>
141#include <linux/vmalloc.h>
142#include <linux/if_macvlan.h>
143#include <linux/errqueue.h>
144#include <linux/hrtimer.h>
145#include <linux/netfilter_netdev.h>
146#include <linux/crash_dump.h>
147#include <linux/sctp.h>
148#include <net/udp_tunnel.h>
149#include <linux/net_namespace.h>
150#include <linux/indirect_call_wrapper.h>
151#include <net/devlink.h>
152#include <linux/pm_runtime.h>
153#include <linux/prandom.h>
154#include <linux/once_lite.h>
155#include <net/netdev_rx_queue.h>
156#include <net/page_pool/types.h>
157#include <net/page_pool/helpers.h>
158#include <net/rps.h>
159
160#include "dev.h"
161#include "net-sysfs.h"
162
163static DEFINE_SPINLOCK(ptype_lock);
164struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165
166static int netif_rx_internal(struct sk_buff *skb);
167static int call_netdevice_notifiers_extack(unsigned long val,
168 struct net_device *dev,
169 struct netlink_ext_ack *extack);
170
171static DEFINE_MUTEX(ifalias_mutex);
172
173/* protects napi_hash addition/deletion and napi_gen_id */
174static DEFINE_SPINLOCK(napi_hash_lock);
175
176static unsigned int napi_gen_id = NR_CPUS;
177static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
178
179static DECLARE_RWSEM(devnet_rename_sem);
180
181static inline void dev_base_seq_inc(struct net *net)
182{
183 unsigned int val = net->dev_base_seq + 1;
184
185 WRITE_ONCE(net->dev_base_seq, val ?: 1);
186}
187
188static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
189{
190 unsigned int hash = full_name_hash(salt: net, name, strnlen(p: name, IFNAMSIZ));
191
192 return &net->dev_name_head[hash_32(val: hash, NETDEV_HASHBITS)];
193}
194
195static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
196{
197 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
198}
199
200static inline void rps_lock_irqsave(struct softnet_data *sd,
201 unsigned long *flags)
202{
203 if (IS_ENABLED(CONFIG_RPS))
204 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
205 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
206 local_irq_save(*flags);
207}
208
209static inline void rps_lock_irq_disable(struct softnet_data *sd)
210{
211 if (IS_ENABLED(CONFIG_RPS))
212 spin_lock_irq(lock: &sd->input_pkt_queue.lock);
213 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
214 local_irq_disable();
215}
216
217static inline void rps_unlock_irq_restore(struct softnet_data *sd,
218 unsigned long *flags)
219{
220 if (IS_ENABLED(CONFIG_RPS))
221 spin_unlock_irqrestore(lock: &sd->input_pkt_queue.lock, flags: *flags);
222 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
223 local_irq_restore(*flags);
224}
225
226static inline void rps_unlock_irq_enable(struct softnet_data *sd)
227{
228 if (IS_ENABLED(CONFIG_RPS))
229 spin_unlock_irq(lock: &sd->input_pkt_queue.lock);
230 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
231 local_irq_enable();
232}
233
234static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
235 const char *name)
236{
237 struct netdev_name_node *name_node;
238
239 name_node = kmalloc(size: sizeof(*name_node), GFP_KERNEL);
240 if (!name_node)
241 return NULL;
242 INIT_HLIST_NODE(h: &name_node->hlist);
243 name_node->dev = dev;
244 name_node->name = name;
245 return name_node;
246}
247
248static struct netdev_name_node *
249netdev_name_node_head_alloc(struct net_device *dev)
250{
251 struct netdev_name_node *name_node;
252
253 name_node = netdev_name_node_alloc(dev, name: dev->name);
254 if (!name_node)
255 return NULL;
256 INIT_LIST_HEAD(list: &name_node->list);
257 return name_node;
258}
259
260static void netdev_name_node_free(struct netdev_name_node *name_node)
261{
262 kfree(objp: name_node);
263}
264
265static void netdev_name_node_add(struct net *net,
266 struct netdev_name_node *name_node)
267{
268 hlist_add_head_rcu(n: &name_node->hlist,
269 h: dev_name_hash(net, name: name_node->name));
270}
271
272static void netdev_name_node_del(struct netdev_name_node *name_node)
273{
274 hlist_del_rcu(n: &name_node->hlist);
275}
276
277static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
278 const char *name)
279{
280 struct hlist_head *head = dev_name_hash(net, name);
281 struct netdev_name_node *name_node;
282
283 hlist_for_each_entry(name_node, head, hlist)
284 if (!strcmp(name_node->name, name))
285 return name_node;
286 return NULL;
287}
288
289static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
290 const char *name)
291{
292 struct hlist_head *head = dev_name_hash(net, name);
293 struct netdev_name_node *name_node;
294
295 hlist_for_each_entry_rcu(name_node, head, hlist)
296 if (!strcmp(name_node->name, name))
297 return name_node;
298 return NULL;
299}
300
301bool netdev_name_in_use(struct net *net, const char *name)
302{
303 return netdev_name_node_lookup(net, name);
304}
305EXPORT_SYMBOL(netdev_name_in_use);
306
307int netdev_name_node_alt_create(struct net_device *dev, const char *name)
308{
309 struct netdev_name_node *name_node;
310 struct net *net = dev_net(dev);
311
312 name_node = netdev_name_node_lookup(net, name);
313 if (name_node)
314 return -EEXIST;
315 name_node = netdev_name_node_alloc(dev, name);
316 if (!name_node)
317 return -ENOMEM;
318 netdev_name_node_add(net, name_node);
319 /* The node that holds dev->name acts as a head of per-device list. */
320 list_add_tail_rcu(new: &name_node->list, head: &dev->name_node->list);
321
322 return 0;
323}
324
325static void netdev_name_node_alt_free(struct rcu_head *head)
326{
327 struct netdev_name_node *name_node =
328 container_of(head, struct netdev_name_node, rcu);
329
330 kfree(objp: name_node->name);
331 netdev_name_node_free(name_node);
332}
333
334static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
335{
336 netdev_name_node_del(name_node);
337 list_del(entry: &name_node->list);
338 call_rcu(head: &name_node->rcu, func: netdev_name_node_alt_free);
339}
340
341int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
342{
343 struct netdev_name_node *name_node;
344 struct net *net = dev_net(dev);
345
346 name_node = netdev_name_node_lookup(net, name);
347 if (!name_node)
348 return -ENOENT;
349 /* lookup might have found our primary name or a name belonging
350 * to another device.
351 */
352 if (name_node == dev->name_node || name_node->dev != dev)
353 return -EINVAL;
354
355 __netdev_name_node_alt_destroy(name_node);
356 return 0;
357}
358
359static void netdev_name_node_alt_flush(struct net_device *dev)
360{
361 struct netdev_name_node *name_node, *tmp;
362
363 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
364 list_del(entry: &name_node->list);
365 netdev_name_node_alt_free(head: &name_node->rcu);
366 }
367}
368
369/* Device list insertion */
370static void list_netdevice(struct net_device *dev)
371{
372 struct netdev_name_node *name_node;
373 struct net *net = dev_net(dev);
374
375 ASSERT_RTNL();
376
377 list_add_tail_rcu(new: &dev->dev_list, head: &net->dev_base_head);
378 netdev_name_node_add(net, name_node: dev->name_node);
379 hlist_add_head_rcu(n: &dev->index_hlist,
380 h: dev_index_hash(net, ifindex: dev->ifindex));
381
382 netdev_for_each_altname(dev, name_node)
383 netdev_name_node_add(net, name_node);
384
385 /* We reserved the ifindex, this can't fail */
386 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
387
388 dev_base_seq_inc(net);
389}
390
391/* Device list removal
392 * caller must respect a RCU grace period before freeing/reusing dev
393 */
394static void unlist_netdevice(struct net_device *dev)
395{
396 struct netdev_name_node *name_node;
397 struct net *net = dev_net(dev);
398
399 ASSERT_RTNL();
400
401 xa_erase(&net->dev_by_index, index: dev->ifindex);
402
403 netdev_for_each_altname(dev, name_node)
404 netdev_name_node_del(name_node);
405
406 /* Unlink dev from the device chain */
407 list_del_rcu(entry: &dev->dev_list);
408 netdev_name_node_del(name_node: dev->name_node);
409 hlist_del_rcu(n: &dev->index_hlist);
410
411 dev_base_seq_inc(net: dev_net(dev));
412}
413
414/*
415 * Our notifier list
416 */
417
418static RAW_NOTIFIER_HEAD(netdev_chain);
419
420/*
421 * Device drivers call our routines to queue packets here. We empty the
422 * queue in the local softnet handler.
423 */
424
425DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426EXPORT_PER_CPU_SYMBOL(softnet_data);
427
428/* Page_pool has a lockless array/stack to alloc/recycle pages.
429 * PP consumers must pay attention to run APIs in the appropriate context
430 * (e.g. NAPI context).
431 */
432static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
433
434#ifdef CONFIG_LOCKDEP
435/*
436 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
437 * according to dev->type
438 */
439static const unsigned short netdev_lock_type[] = {
440 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
441 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
442 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
443 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
444 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
445 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
446 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
447 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
448 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
449 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
450 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
451 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
452 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
453 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
454 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
455
456static const char *const netdev_lock_name[] = {
457 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
458 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
459 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
460 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
461 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
462 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
463 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
464 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
465 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
466 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
467 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
468 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
469 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
470 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
471 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
472
473static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
474static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
475
476static inline unsigned short netdev_lock_pos(unsigned short dev_type)
477{
478 int i;
479
480 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
481 if (netdev_lock_type[i] == dev_type)
482 return i;
483 /* the last key is used by default */
484 return ARRAY_SIZE(netdev_lock_type) - 1;
485}
486
487static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
488 unsigned short dev_type)
489{
490 int i;
491
492 i = netdev_lock_pos(dev_type);
493 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
494 netdev_lock_name[i]);
495}
496
497static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
498{
499 int i;
500
501 i = netdev_lock_pos(dev_type: dev->type);
502 lockdep_set_class_and_name(&dev->addr_list_lock,
503 &netdev_addr_lock_key[i],
504 netdev_lock_name[i]);
505}
506#else
507static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
508 unsigned short dev_type)
509{
510}
511
512static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
513{
514}
515#endif
516
517/*******************************************************************************
518 *
519 * Protocol management and registration routines
520 *
521 *******************************************************************************/
522
523
524/*
525 * Add a protocol ID to the list. Now that the input handler is
526 * smarter we can dispense with all the messy stuff that used to be
527 * here.
528 *
529 * BEWARE!!! Protocol handlers, mangling input packets,
530 * MUST BE last in hash buckets and checking protocol handlers
531 * MUST start from promiscuous ptype_all chain in net_bh.
532 * It is true now, do not change it.
533 * Explanation follows: if protocol handler, mangling packet, will
534 * be the first on list, it is not able to sense, that packet
535 * is cloned and should be copied-on-write, so that it will
536 * change it and subsequent readers will get broken packet.
537 * --ANK (980803)
538 */
539
540static inline struct list_head *ptype_head(const struct packet_type *pt)
541{
542 if (pt->type == htons(ETH_P_ALL))
543 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
544 else
545 return pt->dev ? &pt->dev->ptype_specific :
546 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
547}
548
549/**
550 * dev_add_pack - add packet handler
551 * @pt: packet type declaration
552 *
553 * Add a protocol handler to the networking stack. The passed &packet_type
554 * is linked into kernel lists and may not be freed until it has been
555 * removed from the kernel lists.
556 *
557 * This call does not sleep therefore it can not
558 * guarantee all CPU's that are in middle of receiving packets
559 * will see the new packet type (until the next received packet).
560 */
561
562void dev_add_pack(struct packet_type *pt)
563{
564 struct list_head *head = ptype_head(pt);
565
566 spin_lock(lock: &ptype_lock);
567 list_add_rcu(new: &pt->list, head);
568 spin_unlock(lock: &ptype_lock);
569}
570EXPORT_SYMBOL(dev_add_pack);
571
572/**
573 * __dev_remove_pack - remove packet handler
574 * @pt: packet type declaration
575 *
576 * Remove a protocol handler that was previously added to the kernel
577 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
578 * from the kernel lists and can be freed or reused once this function
579 * returns.
580 *
581 * The packet type might still be in use by receivers
582 * and must not be freed until after all the CPU's have gone
583 * through a quiescent state.
584 */
585void __dev_remove_pack(struct packet_type *pt)
586{
587 struct list_head *head = ptype_head(pt);
588 struct packet_type *pt1;
589
590 spin_lock(lock: &ptype_lock);
591
592 list_for_each_entry(pt1, head, list) {
593 if (pt == pt1) {
594 list_del_rcu(entry: &pt->list);
595 goto out;
596 }
597 }
598
599 pr_warn("dev_remove_pack: %p not found\n", pt);
600out:
601 spin_unlock(lock: &ptype_lock);
602}
603EXPORT_SYMBOL(__dev_remove_pack);
604
605/**
606 * dev_remove_pack - remove packet handler
607 * @pt: packet type declaration
608 *
609 * Remove a protocol handler that was previously added to the kernel
610 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
611 * from the kernel lists and can be freed or reused once this function
612 * returns.
613 *
614 * This call sleeps to guarantee that no CPU is looking at the packet
615 * type after return.
616 */
617void dev_remove_pack(struct packet_type *pt)
618{
619 __dev_remove_pack(pt);
620
621 synchronize_net();
622}
623EXPORT_SYMBOL(dev_remove_pack);
624
625
626/*******************************************************************************
627 *
628 * Device Interface Subroutines
629 *
630 *******************************************************************************/
631
632/**
633 * dev_get_iflink - get 'iflink' value of a interface
634 * @dev: targeted interface
635 *
636 * Indicates the ifindex the interface is linked to.
637 * Physical interfaces have the same 'ifindex' and 'iflink' values.
638 */
639
640int dev_get_iflink(const struct net_device *dev)
641{
642 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
643 return dev->netdev_ops->ndo_get_iflink(dev);
644
645 return READ_ONCE(dev->ifindex);
646}
647EXPORT_SYMBOL(dev_get_iflink);
648
649/**
650 * dev_fill_metadata_dst - Retrieve tunnel egress information.
651 * @dev: targeted interface
652 * @skb: The packet.
653 *
654 * For better visibility of tunnel traffic OVS needs to retrieve
655 * egress tunnel information for a packet. Following API allows
656 * user to get this info.
657 */
658int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
659{
660 struct ip_tunnel_info *info;
661
662 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
663 return -EINVAL;
664
665 info = skb_tunnel_info_unclone(skb);
666 if (!info)
667 return -ENOMEM;
668 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
669 return -EINVAL;
670
671 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
672}
673EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
674
675static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
676{
677 int k = stack->num_paths++;
678
679 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
680 return NULL;
681
682 return &stack->path[k];
683}
684
685int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
686 struct net_device_path_stack *stack)
687{
688 const struct net_device *last_dev;
689 struct net_device_path_ctx ctx = {
690 .dev = dev,
691 };
692 struct net_device_path *path;
693 int ret = 0;
694
695 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
696 stack->num_paths = 0;
697 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
698 last_dev = ctx.dev;
699 path = dev_fwd_path(stack);
700 if (!path)
701 return -1;
702
703 memset(path, 0, sizeof(struct net_device_path));
704 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
705 if (ret < 0)
706 return -1;
707
708 if (WARN_ON_ONCE(last_dev == ctx.dev))
709 return -1;
710 }
711
712 if (!ctx.dev)
713 return ret;
714
715 path = dev_fwd_path(stack);
716 if (!path)
717 return -1;
718 path->type = DEV_PATH_ETHERNET;
719 path->dev = ctx.dev;
720
721 return ret;
722}
723EXPORT_SYMBOL_GPL(dev_fill_forward_path);
724
725/**
726 * __dev_get_by_name - find a device by its name
727 * @net: the applicable net namespace
728 * @name: name to find
729 *
730 * Find an interface by name. Must be called under RTNL semaphore.
731 * If the name is found a pointer to the device is returned.
732 * If the name is not found then %NULL is returned. The
733 * reference counters are not incremented so the caller must be
734 * careful with locks.
735 */
736
737struct net_device *__dev_get_by_name(struct net *net, const char *name)
738{
739 struct netdev_name_node *node_name;
740
741 node_name = netdev_name_node_lookup(net, name);
742 return node_name ? node_name->dev : NULL;
743}
744EXPORT_SYMBOL(__dev_get_by_name);
745
746/**
747 * dev_get_by_name_rcu - find a device by its name
748 * @net: the applicable net namespace
749 * @name: name to find
750 *
751 * Find an interface by name.
752 * If the name is found a pointer to the device is returned.
753 * If the name is not found then %NULL is returned.
754 * The reference counters are not incremented so the caller must be
755 * careful with locks. The caller must hold RCU lock.
756 */
757
758struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759{
760 struct netdev_name_node *node_name;
761
762 node_name = netdev_name_node_lookup_rcu(net, name);
763 return node_name ? node_name->dev : NULL;
764}
765EXPORT_SYMBOL(dev_get_by_name_rcu);
766
767/* Deprecated for new users, call netdev_get_by_name() instead */
768struct net_device *dev_get_by_name(struct net *net, const char *name)
769{
770 struct net_device *dev;
771
772 rcu_read_lock();
773 dev = dev_get_by_name_rcu(net, name);
774 dev_hold(dev);
775 rcu_read_unlock();
776 return dev;
777}
778EXPORT_SYMBOL(dev_get_by_name);
779
780/**
781 * netdev_get_by_name() - find a device by its name
782 * @net: the applicable net namespace
783 * @name: name to find
784 * @tracker: tracking object for the acquired reference
785 * @gfp: allocation flags for the tracker
786 *
787 * Find an interface by name. This can be called from any
788 * context and does its own locking. The returned handle has
789 * the usage count incremented and the caller must use netdev_put() to
790 * release it when it is no longer needed. %NULL is returned if no
791 * matching device is found.
792 */
793struct net_device *netdev_get_by_name(struct net *net, const char *name,
794 netdevice_tracker *tracker, gfp_t gfp)
795{
796 struct net_device *dev;
797
798 dev = dev_get_by_name(net, name);
799 if (dev)
800 netdev_tracker_alloc(dev, tracker, gfp);
801 return dev;
802}
803EXPORT_SYMBOL(netdev_get_by_name);
804
805/**
806 * __dev_get_by_index - find a device by its ifindex
807 * @net: the applicable net namespace
808 * @ifindex: index of device
809 *
810 * Search for an interface by index. Returns %NULL if the device
811 * is not found or a pointer to the device. The device has not
812 * had its reference counter increased so the caller must be careful
813 * about locking. The caller must hold the RTNL semaphore.
814 */
815
816struct net_device *__dev_get_by_index(struct net *net, int ifindex)
817{
818 struct net_device *dev;
819 struct hlist_head *head = dev_index_hash(net, ifindex);
820
821 hlist_for_each_entry(dev, head, index_hlist)
822 if (dev->ifindex == ifindex)
823 return dev;
824
825 return NULL;
826}
827EXPORT_SYMBOL(__dev_get_by_index);
828
829/**
830 * dev_get_by_index_rcu - find a device by its ifindex
831 * @net: the applicable net namespace
832 * @ifindex: index of device
833 *
834 * Search for an interface by index. Returns %NULL if the device
835 * is not found or a pointer to the device. The device has not
836 * had its reference counter increased so the caller must be careful
837 * about locking. The caller must hold RCU lock.
838 */
839
840struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
841{
842 struct net_device *dev;
843 struct hlist_head *head = dev_index_hash(net, ifindex);
844
845 hlist_for_each_entry_rcu(dev, head, index_hlist)
846 if (dev->ifindex == ifindex)
847 return dev;
848
849 return NULL;
850}
851EXPORT_SYMBOL(dev_get_by_index_rcu);
852
853/* Deprecated for new users, call netdev_get_by_index() instead */
854struct net_device *dev_get_by_index(struct net *net, int ifindex)
855{
856 struct net_device *dev;
857
858 rcu_read_lock();
859 dev = dev_get_by_index_rcu(net, ifindex);
860 dev_hold(dev);
861 rcu_read_unlock();
862 return dev;
863}
864EXPORT_SYMBOL(dev_get_by_index);
865
866/**
867 * netdev_get_by_index() - find a device by its ifindex
868 * @net: the applicable net namespace
869 * @ifindex: index of device
870 * @tracker: tracking object for the acquired reference
871 * @gfp: allocation flags for the tracker
872 *
873 * Search for an interface by index. Returns NULL if the device
874 * is not found or a pointer to the device. The device returned has
875 * had a reference added and the pointer is safe until the user calls
876 * netdev_put() to indicate they have finished with it.
877 */
878struct net_device *netdev_get_by_index(struct net *net, int ifindex,
879 netdevice_tracker *tracker, gfp_t gfp)
880{
881 struct net_device *dev;
882
883 dev = dev_get_by_index(net, ifindex);
884 if (dev)
885 netdev_tracker_alloc(dev, tracker, gfp);
886 return dev;
887}
888EXPORT_SYMBOL(netdev_get_by_index);
889
890/**
891 * dev_get_by_napi_id - find a device by napi_id
892 * @napi_id: ID of the NAPI struct
893 *
894 * Search for an interface by NAPI ID. Returns %NULL if the device
895 * is not found or a pointer to the device. The device has not had
896 * its reference counter increased so the caller must be careful
897 * about locking. The caller must hold RCU lock.
898 */
899
900struct net_device *dev_get_by_napi_id(unsigned int napi_id)
901{
902 struct napi_struct *napi;
903
904 WARN_ON_ONCE(!rcu_read_lock_held());
905
906 if (napi_id < MIN_NAPI_ID)
907 return NULL;
908
909 napi = napi_by_id(napi_id);
910
911 return napi ? napi->dev : NULL;
912}
913EXPORT_SYMBOL(dev_get_by_napi_id);
914
915/**
916 * netdev_get_name - get a netdevice name, knowing its ifindex.
917 * @net: network namespace
918 * @name: a pointer to the buffer where the name will be stored.
919 * @ifindex: the ifindex of the interface to get the name from.
920 */
921int netdev_get_name(struct net *net, char *name, int ifindex)
922{
923 struct net_device *dev;
924 int ret;
925
926 down_read(sem: &devnet_rename_sem);
927 rcu_read_lock();
928
929 dev = dev_get_by_index_rcu(net, ifindex);
930 if (!dev) {
931 ret = -ENODEV;
932 goto out;
933 }
934
935 strcpy(p: name, q: dev->name);
936
937 ret = 0;
938out:
939 rcu_read_unlock();
940 up_read(sem: &devnet_rename_sem);
941 return ret;
942}
943
944/**
945 * dev_getbyhwaddr_rcu - find a device by its hardware address
946 * @net: the applicable net namespace
947 * @type: media type of device
948 * @ha: hardware address
949 *
950 * Search for an interface by MAC address. Returns NULL if the device
951 * is not found or a pointer to the device.
952 * The caller must hold RCU or RTNL.
953 * The returned device has not had its ref count increased
954 * and the caller must therefore be careful about locking
955 *
956 */
957
958struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
959 const char *ha)
960{
961 struct net_device *dev;
962
963 for_each_netdev_rcu(net, dev)
964 if (dev->type == type &&
965 !memcmp(p: dev->dev_addr, q: ha, size: dev->addr_len))
966 return dev;
967
968 return NULL;
969}
970EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
971
972struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973{
974 struct net_device *dev, *ret = NULL;
975
976 rcu_read_lock();
977 for_each_netdev_rcu(net, dev)
978 if (dev->type == type) {
979 dev_hold(dev);
980 ret = dev;
981 break;
982 }
983 rcu_read_unlock();
984 return ret;
985}
986EXPORT_SYMBOL(dev_getfirstbyhwtype);
987
988/**
989 * __dev_get_by_flags - find any device with given flags
990 * @net: the applicable net namespace
991 * @if_flags: IFF_* values
992 * @mask: bitmask of bits in if_flags to check
993 *
994 * Search for any interface with the given flags. Returns NULL if a device
995 * is not found or a pointer to the device. Must be called inside
996 * rtnl_lock(), and result refcount is unchanged.
997 */
998
999struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000 unsigned short mask)
1001{
1002 struct net_device *dev, *ret;
1003
1004 ASSERT_RTNL();
1005
1006 ret = NULL;
1007 for_each_netdev(net, dev) {
1008 if (((dev->flags ^ if_flags) & mask) == 0) {
1009 ret = dev;
1010 break;
1011 }
1012 }
1013 return ret;
1014}
1015EXPORT_SYMBOL(__dev_get_by_flags);
1016
1017/**
1018 * dev_valid_name - check if name is okay for network device
1019 * @name: name string
1020 *
1021 * Network device names need to be valid file names to
1022 * allow sysfs to work. We also disallow any kind of
1023 * whitespace.
1024 */
1025bool dev_valid_name(const char *name)
1026{
1027 if (*name == '\0')
1028 return false;
1029 if (strnlen(p: name, IFNAMSIZ) == IFNAMSIZ)
1030 return false;
1031 if (!strcmp(name, ".") || !strcmp(name, ".."))
1032 return false;
1033
1034 while (*name) {
1035 if (*name == '/' || *name == ':' || isspace(*name))
1036 return false;
1037 name++;
1038 }
1039 return true;
1040}
1041EXPORT_SYMBOL(dev_valid_name);
1042
1043/**
1044 * __dev_alloc_name - allocate a name for a device
1045 * @net: network namespace to allocate the device name in
1046 * @name: name format string
1047 * @res: result name string
1048 *
1049 * Passed a format string - eg "lt%d" it will try and find a suitable
1050 * id. It scans list of devices to build up a free map, then chooses
1051 * the first empty slot. The caller must hold the dev_base or rtnl lock
1052 * while allocating the name and adding the device in order to avoid
1053 * duplicates.
1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055 * Returns the number of the unit assigned or a negative errno code.
1056 */
1057
1058static int __dev_alloc_name(struct net *net, const char *name, char *res)
1059{
1060 int i = 0;
1061 const char *p;
1062 const int max_netdevices = 8*PAGE_SIZE;
1063 unsigned long *inuse;
1064 struct net_device *d;
1065 char buf[IFNAMSIZ];
1066
1067 /* Verify the string as this thing may have come from the user.
1068 * There must be one "%d" and no other "%" characters.
1069 */
1070 p = strchr(name, '%');
1071 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1072 return -EINVAL;
1073
1074 /* Use one page as a bit array of possible slots */
1075 inuse = bitmap_zalloc(nbits: max_netdevices, GFP_ATOMIC);
1076 if (!inuse)
1077 return -ENOMEM;
1078
1079 for_each_netdev(net, d) {
1080 struct netdev_name_node *name_node;
1081
1082 netdev_for_each_altname(d, name_node) {
1083 if (!sscanf(name_node->name, name, &i))
1084 continue;
1085 if (i < 0 || i >= max_netdevices)
1086 continue;
1087
1088 /* avoid cases where sscanf is not exact inverse of printf */
1089 snprintf(buf, IFNAMSIZ, fmt: name, i);
1090 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1091 __set_bit(i, inuse);
1092 }
1093 if (!sscanf(d->name, name, &i))
1094 continue;
1095 if (i < 0 || i >= max_netdevices)
1096 continue;
1097
1098 /* avoid cases where sscanf is not exact inverse of printf */
1099 snprintf(buf, IFNAMSIZ, fmt: name, i);
1100 if (!strncmp(buf, d->name, IFNAMSIZ))
1101 __set_bit(i, inuse);
1102 }
1103
1104 i = find_first_zero_bit(addr: inuse, size: max_netdevices);
1105 bitmap_free(bitmap: inuse);
1106 if (i == max_netdevices)
1107 return -ENFILE;
1108
1109 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1110 strscpy(buf, name, IFNAMSIZ);
1111 snprintf(buf: res, IFNAMSIZ, fmt: buf, i);
1112 return i;
1113}
1114
1115/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1116static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1117 const char *want_name, char *out_name,
1118 int dup_errno)
1119{
1120 if (!dev_valid_name(want_name))
1121 return -EINVAL;
1122
1123 if (strchr(want_name, '%'))
1124 return __dev_alloc_name(net, name: want_name, res: out_name);
1125
1126 if (netdev_name_in_use(net, want_name))
1127 return -dup_errno;
1128 if (out_name != want_name)
1129 strscpy(out_name, want_name, IFNAMSIZ);
1130 return 0;
1131}
1132
1133/**
1134 * dev_alloc_name - allocate a name for a device
1135 * @dev: device
1136 * @name: name format string
1137 *
1138 * Passed a format string - eg "lt%d" it will try and find a suitable
1139 * id. It scans list of devices to build up a free map, then chooses
1140 * the first empty slot. The caller must hold the dev_base or rtnl lock
1141 * while allocating the name and adding the device in order to avoid
1142 * duplicates.
1143 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1144 * Returns the number of the unit assigned or a negative errno code.
1145 */
1146
1147int dev_alloc_name(struct net_device *dev, const char *name)
1148{
1149 return dev_prep_valid_name(net: dev_net(dev), dev, want_name: name, out_name: dev->name, ENFILE);
1150}
1151EXPORT_SYMBOL(dev_alloc_name);
1152
1153static int dev_get_valid_name(struct net *net, struct net_device *dev,
1154 const char *name)
1155{
1156 int ret;
1157
1158 ret = dev_prep_valid_name(net, dev, want_name: name, out_name: dev->name, EEXIST);
1159 return ret < 0 ? ret : 0;
1160}
1161
1162/**
1163 * dev_change_name - change name of a device
1164 * @dev: device
1165 * @newname: name (or format string) must be at least IFNAMSIZ
1166 *
1167 * Change name of a device, can pass format strings "eth%d".
1168 * for wildcarding.
1169 */
1170int dev_change_name(struct net_device *dev, const char *newname)
1171{
1172 unsigned char old_assign_type;
1173 char oldname[IFNAMSIZ];
1174 int err = 0;
1175 int ret;
1176 struct net *net;
1177
1178 ASSERT_RTNL();
1179 BUG_ON(!dev_net(dev));
1180
1181 net = dev_net(dev);
1182
1183 down_write(sem: &devnet_rename_sem);
1184
1185 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1186 up_write(sem: &devnet_rename_sem);
1187 return 0;
1188 }
1189
1190 memcpy(oldname, dev->name, IFNAMSIZ);
1191
1192 err = dev_get_valid_name(net, dev, name: newname);
1193 if (err < 0) {
1194 up_write(sem: &devnet_rename_sem);
1195 return err;
1196 }
1197
1198 if (oldname[0] && !strchr(oldname, '%'))
1199 netdev_info(dev, format: "renamed from %s%s\n", oldname,
1200 dev->flags & IFF_UP ? " (while UP)" : "");
1201
1202 old_assign_type = dev->name_assign_type;
1203 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1204
1205rollback:
1206 ret = device_rename(dev: &dev->dev, new_name: dev->name);
1207 if (ret) {
1208 memcpy(dev->name, oldname, IFNAMSIZ);
1209 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1210 up_write(sem: &devnet_rename_sem);
1211 return ret;
1212 }
1213
1214 up_write(sem: &devnet_rename_sem);
1215
1216 netdev_adjacent_rename_links(dev, oldname);
1217
1218 netdev_name_node_del(name_node: dev->name_node);
1219
1220 synchronize_net();
1221
1222 netdev_name_node_add(net, name_node: dev->name_node);
1223
1224 ret = call_netdevice_notifiers(val: NETDEV_CHANGENAME, dev);
1225 ret = notifier_to_errno(ret);
1226
1227 if (ret) {
1228 /* err >= 0 after dev_alloc_name() or stores the first errno */
1229 if (err >= 0) {
1230 err = ret;
1231 down_write(sem: &devnet_rename_sem);
1232 memcpy(dev->name, oldname, IFNAMSIZ);
1233 memcpy(oldname, newname, IFNAMSIZ);
1234 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1235 old_assign_type = NET_NAME_RENAMED;
1236 goto rollback;
1237 } else {
1238 netdev_err(dev, format: "name change rollback failed: %d\n",
1239 ret);
1240 }
1241 }
1242
1243 return err;
1244}
1245
1246/**
1247 * dev_set_alias - change ifalias of a device
1248 * @dev: device
1249 * @alias: name up to IFALIASZ
1250 * @len: limit of bytes to copy from info
1251 *
1252 * Set ifalias for a device,
1253 */
1254int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255{
1256 struct dev_ifalias *new_alias = NULL;
1257
1258 if (len >= IFALIASZ)
1259 return -EINVAL;
1260
1261 if (len) {
1262 new_alias = kmalloc(size: sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263 if (!new_alias)
1264 return -ENOMEM;
1265
1266 memcpy(new_alias->ifalias, alias, len);
1267 new_alias->ifalias[len] = 0;
1268 }
1269
1270 mutex_lock(&ifalias_mutex);
1271 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272 mutex_is_locked(&ifalias_mutex));
1273 mutex_unlock(lock: &ifalias_mutex);
1274
1275 if (new_alias)
1276 kfree_rcu(new_alias, rcuhead);
1277
1278 return len;
1279}
1280EXPORT_SYMBOL(dev_set_alias);
1281
1282/**
1283 * dev_get_alias - get ifalias of a device
1284 * @dev: device
1285 * @name: buffer to store name of ifalias
1286 * @len: size of buffer
1287 *
1288 * get ifalias for a device. Caller must make sure dev cannot go
1289 * away, e.g. rcu read lock or own a reference count to device.
1290 */
1291int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292{
1293 const struct dev_ifalias *alias;
1294 int ret = 0;
1295
1296 rcu_read_lock();
1297 alias = rcu_dereference(dev->ifalias);
1298 if (alias)
1299 ret = snprintf(buf: name, size: len, fmt: "%s", alias->ifalias);
1300 rcu_read_unlock();
1301
1302 return ret;
1303}
1304
1305/**
1306 * netdev_features_change - device changes features
1307 * @dev: device to cause notification
1308 *
1309 * Called to indicate a device has changed features.
1310 */
1311void netdev_features_change(struct net_device *dev)
1312{
1313 call_netdevice_notifiers(val: NETDEV_FEAT_CHANGE, dev);
1314}
1315EXPORT_SYMBOL(netdev_features_change);
1316
1317/**
1318 * netdev_state_change - device changes state
1319 * @dev: device to cause notification
1320 *
1321 * Called to indicate a device has changed state. This function calls
1322 * the notifier chains for netdev_chain and sends a NEWLINK message
1323 * to the routing socket.
1324 */
1325void netdev_state_change(struct net_device *dev)
1326{
1327 if (dev->flags & IFF_UP) {
1328 struct netdev_notifier_change_info change_info = {
1329 .info.dev = dev,
1330 };
1331
1332 call_netdevice_notifiers_info(val: NETDEV_CHANGE,
1333 info: &change_info.info);
1334 rtmsg_ifinfo(RTM_NEWLINK, dev, change: 0, GFP_KERNEL, portid: 0, NULL);
1335 }
1336}
1337EXPORT_SYMBOL(netdev_state_change);
1338
1339/**
1340 * __netdev_notify_peers - notify network peers about existence of @dev,
1341 * to be called when rtnl lock is already held.
1342 * @dev: network device
1343 *
1344 * Generate traffic such that interested network peers are aware of
1345 * @dev, such as by generating a gratuitous ARP. This may be used when
1346 * a device wants to inform the rest of the network about some sort of
1347 * reconfiguration such as a failover event or virtual machine
1348 * migration.
1349 */
1350void __netdev_notify_peers(struct net_device *dev)
1351{
1352 ASSERT_RTNL();
1353 call_netdevice_notifiers(val: NETDEV_NOTIFY_PEERS, dev);
1354 call_netdevice_notifiers(val: NETDEV_RESEND_IGMP, dev);
1355}
1356EXPORT_SYMBOL(__netdev_notify_peers);
1357
1358/**
1359 * netdev_notify_peers - notify network peers about existence of @dev
1360 * @dev: network device
1361 *
1362 * Generate traffic such that interested network peers are aware of
1363 * @dev, such as by generating a gratuitous ARP. This may be used when
1364 * a device wants to inform the rest of the network about some sort of
1365 * reconfiguration such as a failover event or virtual machine
1366 * migration.
1367 */
1368void netdev_notify_peers(struct net_device *dev)
1369{
1370 rtnl_lock();
1371 __netdev_notify_peers(dev);
1372 rtnl_unlock();
1373}
1374EXPORT_SYMBOL(netdev_notify_peers);
1375
1376static int napi_threaded_poll(void *data);
1377
1378static int napi_kthread_create(struct napi_struct *n)
1379{
1380 int err = 0;
1381
1382 /* Create and wake up the kthread once to put it in
1383 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384 * warning and work with loadavg.
1385 */
1386 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387 n->dev->name, n->napi_id);
1388 if (IS_ERR(ptr: n->thread)) {
1389 err = PTR_ERR(ptr: n->thread);
1390 pr_err("kthread_run failed with err %d\n", err);
1391 n->thread = NULL;
1392 }
1393
1394 return err;
1395}
1396
1397static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1398{
1399 const struct net_device_ops *ops = dev->netdev_ops;
1400 int ret;
1401
1402 ASSERT_RTNL();
1403 dev_addr_check(dev);
1404
1405 if (!netif_device_present(dev)) {
1406 /* may be detached because parent is runtime-suspended */
1407 if (dev->dev.parent)
1408 pm_runtime_resume(dev: dev->dev.parent);
1409 if (!netif_device_present(dev))
1410 return -ENODEV;
1411 }
1412
1413 /* Block netpoll from trying to do any rx path servicing.
1414 * If we don't do this there is a chance ndo_poll_controller
1415 * or ndo_poll may be running while we open the device
1416 */
1417 netpoll_poll_disable(dev);
1418
1419 ret = call_netdevice_notifiers_extack(val: NETDEV_PRE_UP, dev, extack);
1420 ret = notifier_to_errno(ret);
1421 if (ret)
1422 return ret;
1423
1424 set_bit(nr: __LINK_STATE_START, addr: &dev->state);
1425
1426 if (ops->ndo_validate_addr)
1427 ret = ops->ndo_validate_addr(dev);
1428
1429 if (!ret && ops->ndo_open)
1430 ret = ops->ndo_open(dev);
1431
1432 netpoll_poll_enable(dev);
1433
1434 if (ret)
1435 clear_bit(nr: __LINK_STATE_START, addr: &dev->state);
1436 else {
1437 dev->flags |= IFF_UP;
1438 dev_set_rx_mode(dev);
1439 dev_activate(dev);
1440 add_device_randomness(buf: dev->dev_addr, len: dev->addr_len);
1441 }
1442
1443 return ret;
1444}
1445
1446/**
1447 * dev_open - prepare an interface for use.
1448 * @dev: device to open
1449 * @extack: netlink extended ack
1450 *
1451 * Takes a device from down to up state. The device's private open
1452 * function is invoked and then the multicast lists are loaded. Finally
1453 * the device is moved into the up state and a %NETDEV_UP message is
1454 * sent to the netdev notifier chain.
1455 *
1456 * Calling this function on an active interface is a nop. On a failure
1457 * a negative errno code is returned.
1458 */
1459int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1460{
1461 int ret;
1462
1463 if (dev->flags & IFF_UP)
1464 return 0;
1465
1466 ret = __dev_open(dev, extack);
1467 if (ret < 0)
1468 return ret;
1469
1470 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, portid: 0, NULL);
1471 call_netdevice_notifiers(val: NETDEV_UP, dev);
1472
1473 return ret;
1474}
1475EXPORT_SYMBOL(dev_open);
1476
1477static void __dev_close_many(struct list_head *head)
1478{
1479 struct net_device *dev;
1480
1481 ASSERT_RTNL();
1482 might_sleep();
1483
1484 list_for_each_entry(dev, head, close_list) {
1485 /* Temporarily disable netpoll until the interface is down */
1486 netpoll_poll_disable(dev);
1487
1488 call_netdevice_notifiers(val: NETDEV_GOING_DOWN, dev);
1489
1490 clear_bit(nr: __LINK_STATE_START, addr: &dev->state);
1491
1492 /* Synchronize to scheduled poll. We cannot touch poll list, it
1493 * can be even on different cpu. So just clear netif_running().
1494 *
1495 * dev->stop() will invoke napi_disable() on all of it's
1496 * napi_struct instances on this device.
1497 */
1498 smp_mb__after_atomic(); /* Commit netif_running(). */
1499 }
1500
1501 dev_deactivate_many(head);
1502
1503 list_for_each_entry(dev, head, close_list) {
1504 const struct net_device_ops *ops = dev->netdev_ops;
1505
1506 /*
1507 * Call the device specific close. This cannot fail.
1508 * Only if device is UP
1509 *
1510 * We allow it to be called even after a DETACH hot-plug
1511 * event.
1512 */
1513 if (ops->ndo_stop)
1514 ops->ndo_stop(dev);
1515
1516 dev->flags &= ~IFF_UP;
1517 netpoll_poll_enable(dev);
1518 }
1519}
1520
1521static void __dev_close(struct net_device *dev)
1522{
1523 LIST_HEAD(single);
1524
1525 list_add(new: &dev->close_list, head: &single);
1526 __dev_close_many(head: &single);
1527 list_del(entry: &single);
1528}
1529
1530void dev_close_many(struct list_head *head, bool unlink)
1531{
1532 struct net_device *dev, *tmp;
1533
1534 /* Remove the devices that don't need to be closed */
1535 list_for_each_entry_safe(dev, tmp, head, close_list)
1536 if (!(dev->flags & IFF_UP))
1537 list_del_init(entry: &dev->close_list);
1538
1539 __dev_close_many(head);
1540
1541 list_for_each_entry_safe(dev, tmp, head, close_list) {
1542 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, portid: 0, NULL);
1543 call_netdevice_notifiers(val: NETDEV_DOWN, dev);
1544 if (unlink)
1545 list_del_init(entry: &dev->close_list);
1546 }
1547}
1548EXPORT_SYMBOL(dev_close_many);
1549
1550/**
1551 * dev_close - shutdown an interface.
1552 * @dev: device to shutdown
1553 *
1554 * This function moves an active device into down state. A
1555 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557 * chain.
1558 */
1559void dev_close(struct net_device *dev)
1560{
1561 if (dev->flags & IFF_UP) {
1562 LIST_HEAD(single);
1563
1564 list_add(new: &dev->close_list, head: &single);
1565 dev_close_many(&single, true);
1566 list_del(entry: &single);
1567 }
1568}
1569EXPORT_SYMBOL(dev_close);
1570
1571
1572/**
1573 * dev_disable_lro - disable Large Receive Offload on a device
1574 * @dev: device
1575 *
1576 * Disable Large Receive Offload (LRO) on a net device. Must be
1577 * called under RTNL. This is needed if received packets may be
1578 * forwarded to another interface.
1579 */
1580void dev_disable_lro(struct net_device *dev)
1581{
1582 struct net_device *lower_dev;
1583 struct list_head *iter;
1584
1585 dev->wanted_features &= ~NETIF_F_LRO;
1586 netdev_update_features(dev);
1587
1588 if (unlikely(dev->features & NETIF_F_LRO))
1589 netdev_WARN(dev, "failed to disable LRO!\n");
1590
1591 netdev_for_each_lower_dev(dev, lower_dev, iter)
1592 dev_disable_lro(dev: lower_dev);
1593}
1594EXPORT_SYMBOL(dev_disable_lro);
1595
1596/**
1597 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598 * @dev: device
1599 *
1600 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1601 * called under RTNL. This is needed if Generic XDP is installed on
1602 * the device.
1603 */
1604static void dev_disable_gro_hw(struct net_device *dev)
1605{
1606 dev->wanted_features &= ~NETIF_F_GRO_HW;
1607 netdev_update_features(dev);
1608
1609 if (unlikely(dev->features & NETIF_F_GRO_HW))
1610 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611}
1612
1613const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614{
1615#define N(val) \
1616 case NETDEV_##val: \
1617 return "NETDEV_" __stringify(val);
1618 switch (cmd) {
1619 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1623 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1624 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1625 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1630 N(XDP_FEAT_CHANGE)
1631 }
1632#undef N
1633 return "UNKNOWN_NETDEV_EVENT";
1634}
1635EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1636
1637static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1638 struct net_device *dev)
1639{
1640 struct netdev_notifier_info info = {
1641 .dev = dev,
1642 };
1643
1644 return nb->notifier_call(nb, val, &info);
1645}
1646
1647static int call_netdevice_register_notifiers(struct notifier_block *nb,
1648 struct net_device *dev)
1649{
1650 int err;
1651
1652 err = call_netdevice_notifier(nb, val: NETDEV_REGISTER, dev);
1653 err = notifier_to_errno(ret: err);
1654 if (err)
1655 return err;
1656
1657 if (!(dev->flags & IFF_UP))
1658 return 0;
1659
1660 call_netdevice_notifier(nb, val: NETDEV_UP, dev);
1661 return 0;
1662}
1663
1664static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1665 struct net_device *dev)
1666{
1667 if (dev->flags & IFF_UP) {
1668 call_netdevice_notifier(nb, val: NETDEV_GOING_DOWN,
1669 dev);
1670 call_netdevice_notifier(nb, val: NETDEV_DOWN, dev);
1671 }
1672 call_netdevice_notifier(nb, val: NETDEV_UNREGISTER, dev);
1673}
1674
1675static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1676 struct net *net)
1677{
1678 struct net_device *dev;
1679 int err;
1680
1681 for_each_netdev(net, dev) {
1682 err = call_netdevice_register_notifiers(nb, dev);
1683 if (err)
1684 goto rollback;
1685 }
1686 return 0;
1687
1688rollback:
1689 for_each_netdev_continue_reverse(net, dev)
1690 call_netdevice_unregister_notifiers(nb, dev);
1691 return err;
1692}
1693
1694static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1695 struct net *net)
1696{
1697 struct net_device *dev;
1698
1699 for_each_netdev(net, dev)
1700 call_netdevice_unregister_notifiers(nb, dev);
1701}
1702
1703static int dev_boot_phase = 1;
1704
1705/**
1706 * register_netdevice_notifier - register a network notifier block
1707 * @nb: notifier
1708 *
1709 * Register a notifier to be called when network device events occur.
1710 * The notifier passed is linked into the kernel structures and must
1711 * not be reused until it has been unregistered. A negative errno code
1712 * is returned on a failure.
1713 *
1714 * When registered all registration and up events are replayed
1715 * to the new notifier to allow device to have a race free
1716 * view of the network device list.
1717 */
1718
1719int register_netdevice_notifier(struct notifier_block *nb)
1720{
1721 struct net *net;
1722 int err;
1723
1724 /* Close race with setup_net() and cleanup_net() */
1725 down_write(sem: &pernet_ops_rwsem);
1726 rtnl_lock();
1727 err = raw_notifier_chain_register(nh: &netdev_chain, nb);
1728 if (err)
1729 goto unlock;
1730 if (dev_boot_phase)
1731 goto unlock;
1732 for_each_net(net) {
1733 err = call_netdevice_register_net_notifiers(nb, net);
1734 if (err)
1735 goto rollback;
1736 }
1737
1738unlock:
1739 rtnl_unlock();
1740 up_write(sem: &pernet_ops_rwsem);
1741 return err;
1742
1743rollback:
1744 for_each_net_continue_reverse(net)
1745 call_netdevice_unregister_net_notifiers(nb, net);
1746
1747 raw_notifier_chain_unregister(nh: &netdev_chain, nb);
1748 goto unlock;
1749}
1750EXPORT_SYMBOL(register_netdevice_notifier);
1751
1752/**
1753 * unregister_netdevice_notifier - unregister a network notifier block
1754 * @nb: notifier
1755 *
1756 * Unregister a notifier previously registered by
1757 * register_netdevice_notifier(). The notifier is unlinked into the
1758 * kernel structures and may then be reused. A negative errno code
1759 * is returned on a failure.
1760 *
1761 * After unregistering unregister and down device events are synthesized
1762 * for all devices on the device list to the removed notifier to remove
1763 * the need for special case cleanup code.
1764 */
1765
1766int unregister_netdevice_notifier(struct notifier_block *nb)
1767{
1768 struct net *net;
1769 int err;
1770
1771 /* Close race with setup_net() and cleanup_net() */
1772 down_write(sem: &pernet_ops_rwsem);
1773 rtnl_lock();
1774 err = raw_notifier_chain_unregister(nh: &netdev_chain, nb);
1775 if (err)
1776 goto unlock;
1777
1778 for_each_net(net)
1779 call_netdevice_unregister_net_notifiers(nb, net);
1780
1781unlock:
1782 rtnl_unlock();
1783 up_write(sem: &pernet_ops_rwsem);
1784 return err;
1785}
1786EXPORT_SYMBOL(unregister_netdevice_notifier);
1787
1788static int __register_netdevice_notifier_net(struct net *net,
1789 struct notifier_block *nb,
1790 bool ignore_call_fail)
1791{
1792 int err;
1793
1794 err = raw_notifier_chain_register(nh: &net->netdev_chain, nb);
1795 if (err)
1796 return err;
1797 if (dev_boot_phase)
1798 return 0;
1799
1800 err = call_netdevice_register_net_notifiers(nb, net);
1801 if (err && !ignore_call_fail)
1802 goto chain_unregister;
1803
1804 return 0;
1805
1806chain_unregister:
1807 raw_notifier_chain_unregister(nh: &net->netdev_chain, nb);
1808 return err;
1809}
1810
1811static int __unregister_netdevice_notifier_net(struct net *net,
1812 struct notifier_block *nb)
1813{
1814 int err;
1815
1816 err = raw_notifier_chain_unregister(nh: &net->netdev_chain, nb);
1817 if (err)
1818 return err;
1819
1820 call_netdevice_unregister_net_notifiers(nb, net);
1821 return 0;
1822}
1823
1824/**
1825 * register_netdevice_notifier_net - register a per-netns network notifier block
1826 * @net: network namespace
1827 * @nb: notifier
1828 *
1829 * Register a notifier to be called when network device events occur.
1830 * The notifier passed is linked into the kernel structures and must
1831 * not be reused until it has been unregistered. A negative errno code
1832 * is returned on a failure.
1833 *
1834 * When registered all registration and up events are replayed
1835 * to the new notifier to allow device to have a race free
1836 * view of the network device list.
1837 */
1838
1839int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1840{
1841 int err;
1842
1843 rtnl_lock();
1844 err = __register_netdevice_notifier_net(net, nb, ignore_call_fail: false);
1845 rtnl_unlock();
1846 return err;
1847}
1848EXPORT_SYMBOL(register_netdevice_notifier_net);
1849
1850/**
1851 * unregister_netdevice_notifier_net - unregister a per-netns
1852 * network notifier block
1853 * @net: network namespace
1854 * @nb: notifier
1855 *
1856 * Unregister a notifier previously registered by
1857 * register_netdevice_notifier_net(). The notifier is unlinked from the
1858 * kernel structures and may then be reused. A negative errno code
1859 * is returned on a failure.
1860 *
1861 * After unregistering unregister and down device events are synthesized
1862 * for all devices on the device list to the removed notifier to remove
1863 * the need for special case cleanup code.
1864 */
1865
1866int unregister_netdevice_notifier_net(struct net *net,
1867 struct notifier_block *nb)
1868{
1869 int err;
1870
1871 rtnl_lock();
1872 err = __unregister_netdevice_notifier_net(net, nb);
1873 rtnl_unlock();
1874 return err;
1875}
1876EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1877
1878static void __move_netdevice_notifier_net(struct net *src_net,
1879 struct net *dst_net,
1880 struct notifier_block *nb)
1881{
1882 __unregister_netdevice_notifier_net(net: src_net, nb);
1883 __register_netdevice_notifier_net(net: dst_net, nb, ignore_call_fail: true);
1884}
1885
1886int register_netdevice_notifier_dev_net(struct net_device *dev,
1887 struct notifier_block *nb,
1888 struct netdev_net_notifier *nn)
1889{
1890 int err;
1891
1892 rtnl_lock();
1893 err = __register_netdevice_notifier_net(net: dev_net(dev), nb, ignore_call_fail: false);
1894 if (!err) {
1895 nn->nb = nb;
1896 list_add(new: &nn->list, head: &dev->net_notifier_list);
1897 }
1898 rtnl_unlock();
1899 return err;
1900}
1901EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1902
1903int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1904 struct notifier_block *nb,
1905 struct netdev_net_notifier *nn)
1906{
1907 int err;
1908
1909 rtnl_lock();
1910 list_del(entry: &nn->list);
1911 err = __unregister_netdevice_notifier_net(net: dev_net(dev), nb);
1912 rtnl_unlock();
1913 return err;
1914}
1915EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1916
1917static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1918 struct net *net)
1919{
1920 struct netdev_net_notifier *nn;
1921
1922 list_for_each_entry(nn, &dev->net_notifier_list, list)
1923 __move_netdevice_notifier_net(src_net: dev_net(dev), dst_net: net, nb: nn->nb);
1924}
1925
1926/**
1927 * call_netdevice_notifiers_info - call all network notifier blocks
1928 * @val: value passed unmodified to notifier function
1929 * @info: notifier information data
1930 *
1931 * Call all network notifier blocks. Parameters and return value
1932 * are as for raw_notifier_call_chain().
1933 */
1934
1935int call_netdevice_notifiers_info(unsigned long val,
1936 struct netdev_notifier_info *info)
1937{
1938 struct net *net = dev_net(dev: info->dev);
1939 int ret;
1940
1941 ASSERT_RTNL();
1942
1943 /* Run per-netns notifier block chain first, then run the global one.
1944 * Hopefully, one day, the global one is going to be removed after
1945 * all notifier block registrators get converted to be per-netns.
1946 */
1947 ret = raw_notifier_call_chain(nh: &net->netdev_chain, val, v: info);
1948 if (ret & NOTIFY_STOP_MASK)
1949 return ret;
1950 return raw_notifier_call_chain(nh: &netdev_chain, val, v: info);
1951}
1952
1953/**
1954 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1955 * for and rollback on error
1956 * @val_up: value passed unmodified to notifier function
1957 * @val_down: value passed unmodified to the notifier function when
1958 * recovering from an error on @val_up
1959 * @info: notifier information data
1960 *
1961 * Call all per-netns network notifier blocks, but not notifier blocks on
1962 * the global notifier chain. Parameters and return value are as for
1963 * raw_notifier_call_chain_robust().
1964 */
1965
1966static int
1967call_netdevice_notifiers_info_robust(unsigned long val_up,
1968 unsigned long val_down,
1969 struct netdev_notifier_info *info)
1970{
1971 struct net *net = dev_net(dev: info->dev);
1972
1973 ASSERT_RTNL();
1974
1975 return raw_notifier_call_chain_robust(nh: &net->netdev_chain,
1976 val_up, val_down, v: info);
1977}
1978
1979static int call_netdevice_notifiers_extack(unsigned long val,
1980 struct net_device *dev,
1981 struct netlink_ext_ack *extack)
1982{
1983 struct netdev_notifier_info info = {
1984 .dev = dev,
1985 .extack = extack,
1986 };
1987
1988 return call_netdevice_notifiers_info(val, info: &info);
1989}
1990
1991/**
1992 * call_netdevice_notifiers - call all network notifier blocks
1993 * @val: value passed unmodified to notifier function
1994 * @dev: net_device pointer passed unmodified to notifier function
1995 *
1996 * Call all network notifier blocks. Parameters and return value
1997 * are as for raw_notifier_call_chain().
1998 */
1999
2000int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2001{
2002 return call_netdevice_notifiers_extack(val, dev, NULL);
2003}
2004EXPORT_SYMBOL(call_netdevice_notifiers);
2005
2006/**
2007 * call_netdevice_notifiers_mtu - call all network notifier blocks
2008 * @val: value passed unmodified to notifier function
2009 * @dev: net_device pointer passed unmodified to notifier function
2010 * @arg: additional u32 argument passed to the notifier function
2011 *
2012 * Call all network notifier blocks. Parameters and return value
2013 * are as for raw_notifier_call_chain().
2014 */
2015static int call_netdevice_notifiers_mtu(unsigned long val,
2016 struct net_device *dev, u32 arg)
2017{
2018 struct netdev_notifier_info_ext info = {
2019 .info.dev = dev,
2020 .ext.mtu = arg,
2021 };
2022
2023 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2024
2025 return call_netdevice_notifiers_info(val, info: &info.info);
2026}
2027
2028#ifdef CONFIG_NET_INGRESS
2029static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2030
2031void net_inc_ingress_queue(void)
2032{
2033 static_branch_inc(&ingress_needed_key);
2034}
2035EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2036
2037void net_dec_ingress_queue(void)
2038{
2039 static_branch_dec(&ingress_needed_key);
2040}
2041EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2042#endif
2043
2044#ifdef CONFIG_NET_EGRESS
2045static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2046
2047void net_inc_egress_queue(void)
2048{
2049 static_branch_inc(&egress_needed_key);
2050}
2051EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2052
2053void net_dec_egress_queue(void)
2054{
2055 static_branch_dec(&egress_needed_key);
2056}
2057EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2058#endif
2059
2060DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2061EXPORT_SYMBOL(netstamp_needed_key);
2062#ifdef CONFIG_JUMP_LABEL
2063static atomic_t netstamp_needed_deferred;
2064static atomic_t netstamp_wanted;
2065static void netstamp_clear(struct work_struct *work)
2066{
2067 int deferred = atomic_xchg(v: &netstamp_needed_deferred, new: 0);
2068 int wanted;
2069
2070 wanted = atomic_add_return(i: deferred, v: &netstamp_wanted);
2071 if (wanted > 0)
2072 static_branch_enable(&netstamp_needed_key);
2073 else
2074 static_branch_disable(&netstamp_needed_key);
2075}
2076static DECLARE_WORK(netstamp_work, netstamp_clear);
2077#endif
2078
2079void net_enable_timestamp(void)
2080{
2081#ifdef CONFIG_JUMP_LABEL
2082 int wanted = atomic_read(v: &netstamp_wanted);
2083
2084 while (wanted > 0) {
2085 if (atomic_try_cmpxchg(v: &netstamp_wanted, old: &wanted, new: wanted + 1))
2086 return;
2087 }
2088 atomic_inc(v: &netstamp_needed_deferred);
2089 schedule_work(work: &netstamp_work);
2090#else
2091 static_branch_inc(&netstamp_needed_key);
2092#endif
2093}
2094EXPORT_SYMBOL(net_enable_timestamp);
2095
2096void net_disable_timestamp(void)
2097{
2098#ifdef CONFIG_JUMP_LABEL
2099 int wanted = atomic_read(v: &netstamp_wanted);
2100
2101 while (wanted > 1) {
2102 if (atomic_try_cmpxchg(v: &netstamp_wanted, old: &wanted, new: wanted - 1))
2103 return;
2104 }
2105 atomic_dec(v: &netstamp_needed_deferred);
2106 schedule_work(work: &netstamp_work);
2107#else
2108 static_branch_dec(&netstamp_needed_key);
2109#endif
2110}
2111EXPORT_SYMBOL(net_disable_timestamp);
2112
2113static inline void net_timestamp_set(struct sk_buff *skb)
2114{
2115 skb->tstamp = 0;
2116 skb->mono_delivery_time = 0;
2117 if (static_branch_unlikely(&netstamp_needed_key))
2118 skb->tstamp = ktime_get_real();
2119}
2120
2121#define net_timestamp_check(COND, SKB) \
2122 if (static_branch_unlikely(&netstamp_needed_key)) { \
2123 if ((COND) && !(SKB)->tstamp) \
2124 (SKB)->tstamp = ktime_get_real(); \
2125 } \
2126
2127bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2128{
2129 return __is_skb_forwardable(dev, skb, check_mtu: true);
2130}
2131EXPORT_SYMBOL_GPL(is_skb_forwardable);
2132
2133static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2134 bool check_mtu)
2135{
2136 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2137
2138 if (likely(!ret)) {
2139 skb->protocol = eth_type_trans(skb, dev);
2140 skb_postpull_rcsum(skb, start: eth_hdr(skb), ETH_HLEN);
2141 }
2142
2143 return ret;
2144}
2145
2146int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2147{
2148 return __dev_forward_skb2(dev, skb, check_mtu: true);
2149}
2150EXPORT_SYMBOL_GPL(__dev_forward_skb);
2151
2152/**
2153 * dev_forward_skb - loopback an skb to another netif
2154 *
2155 * @dev: destination network device
2156 * @skb: buffer to forward
2157 *
2158 * return values:
2159 * NET_RX_SUCCESS (no congestion)
2160 * NET_RX_DROP (packet was dropped, but freed)
2161 *
2162 * dev_forward_skb can be used for injecting an skb from the
2163 * start_xmit function of one device into the receive queue
2164 * of another device.
2165 *
2166 * The receiving device may be in another namespace, so
2167 * we have to clear all information in the skb that could
2168 * impact namespace isolation.
2169 */
2170int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171{
2172 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2173}
2174EXPORT_SYMBOL_GPL(dev_forward_skb);
2175
2176int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2177{
2178 return __dev_forward_skb2(dev, skb, check_mtu: false) ?: netif_rx_internal(skb);
2179}
2180
2181static inline int deliver_skb(struct sk_buff *skb,
2182 struct packet_type *pt_prev,
2183 struct net_device *orig_dev)
2184{
2185 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2186 return -ENOMEM;
2187 refcount_inc(r: &skb->users);
2188 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2189}
2190
2191static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2192 struct packet_type **pt,
2193 struct net_device *orig_dev,
2194 __be16 type,
2195 struct list_head *ptype_list)
2196{
2197 struct packet_type *ptype, *pt_prev = *pt;
2198
2199 list_for_each_entry_rcu(ptype, ptype_list, list) {
2200 if (ptype->type != type)
2201 continue;
2202 if (pt_prev)
2203 deliver_skb(skb, pt_prev, orig_dev);
2204 pt_prev = ptype;
2205 }
2206 *pt = pt_prev;
2207}
2208
2209static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2210{
2211 if (!ptype->af_packet_priv || !skb->sk)
2212 return false;
2213
2214 if (ptype->id_match)
2215 return ptype->id_match(ptype, skb->sk);
2216 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2217 return true;
2218
2219 return false;
2220}
2221
2222/**
2223 * dev_nit_active - return true if any network interface taps are in use
2224 *
2225 * @dev: network device to check for the presence of taps
2226 */
2227bool dev_nit_active(struct net_device *dev)
2228{
2229 return !list_empty(head: &net_hotdata.ptype_all) ||
2230 !list_empty(head: &dev->ptype_all);
2231}
2232EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234/*
2235 * Support routine. Sends outgoing frames to any network
2236 * taps currently in use.
2237 */
2238
2239void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240{
2241 struct list_head *ptype_list = &net_hotdata.ptype_all;
2242 struct packet_type *ptype, *pt_prev = NULL;
2243 struct sk_buff *skb2 = NULL;
2244
2245 rcu_read_lock();
2246again:
2247 list_for_each_entry_rcu(ptype, ptype_list, list) {
2248 if (READ_ONCE(ptype->ignore_outgoing))
2249 continue;
2250
2251 /* Never send packets back to the socket
2252 * they originated from - MvS (miquels@drinkel.ow.org)
2253 */
2254 if (skb_loop_sk(ptype, skb))
2255 continue;
2256
2257 if (pt_prev) {
2258 deliver_skb(skb: skb2, pt_prev, orig_dev: skb->dev);
2259 pt_prev = ptype;
2260 continue;
2261 }
2262
2263 /* need to clone skb, done only once */
2264 skb2 = skb_clone(skb, GFP_ATOMIC);
2265 if (!skb2)
2266 goto out_unlock;
2267
2268 net_timestamp_set(skb: skb2);
2269
2270 /* skb->nh should be correctly
2271 * set by sender, so that the second statement is
2272 * just protection against buggy protocols.
2273 */
2274 skb_reset_mac_header(skb: skb2);
2275
2276 if (skb_network_header(skb: skb2) < skb2->data ||
2277 skb_network_header(skb: skb2) > skb_tail_pointer(skb: skb2)) {
2278 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2279 ntohs(skb2->protocol),
2280 dev->name);
2281 skb_reset_network_header(skb: skb2);
2282 }
2283
2284 skb2->transport_header = skb2->network_header;
2285 skb2->pkt_type = PACKET_OUTGOING;
2286 pt_prev = ptype;
2287 }
2288
2289 if (ptype_list == &net_hotdata.ptype_all) {
2290 ptype_list = &dev->ptype_all;
2291 goto again;
2292 }
2293out_unlock:
2294 if (pt_prev) {
2295 if (!skb_orphan_frags_rx(skb: skb2, GFP_ATOMIC))
2296 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2297 else
2298 kfree_skb(skb: skb2);
2299 }
2300 rcu_read_unlock();
2301}
2302EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2303
2304/**
2305 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2306 * @dev: Network device
2307 * @txq: number of queues available
2308 *
2309 * If real_num_tx_queues is changed the tc mappings may no longer be
2310 * valid. To resolve this verify the tc mapping remains valid and if
2311 * not NULL the mapping. With no priorities mapping to this
2312 * offset/count pair it will no longer be used. In the worst case TC0
2313 * is invalid nothing can be done so disable priority mappings. If is
2314 * expected that drivers will fix this mapping if they can before
2315 * calling netif_set_real_num_tx_queues.
2316 */
2317static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2318{
2319 int i;
2320 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2321
2322 /* If TC0 is invalidated disable TC mapping */
2323 if (tc->offset + tc->count > txq) {
2324 netdev_warn(dev, format: "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2325 dev->num_tc = 0;
2326 return;
2327 }
2328
2329 /* Invalidated prio to tc mappings set to TC0 */
2330 for (i = 1; i < TC_BITMASK + 1; i++) {
2331 int q = netdev_get_prio_tc_map(dev, prio: i);
2332
2333 tc = &dev->tc_to_txq[q];
2334 if (tc->offset + tc->count > txq) {
2335 netdev_warn(dev, format: "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2336 i, q);
2337 netdev_set_prio_tc_map(dev, prio: i, tc: 0);
2338 }
2339 }
2340}
2341
2342int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2343{
2344 if (dev->num_tc) {
2345 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2346 int i;
2347
2348 /* walk through the TCs and see if it falls into any of them */
2349 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2350 if ((txq - tc->offset) < tc->count)
2351 return i;
2352 }
2353
2354 /* didn't find it, just return -1 to indicate no match */
2355 return -1;
2356 }
2357
2358 return 0;
2359}
2360EXPORT_SYMBOL(netdev_txq_to_tc);
2361
2362#ifdef CONFIG_XPS
2363static struct static_key xps_needed __read_mostly;
2364static struct static_key xps_rxqs_needed __read_mostly;
2365static DEFINE_MUTEX(xps_map_mutex);
2366#define xmap_dereference(P) \
2367 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2368
2369static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2370 struct xps_dev_maps *old_maps, int tci, u16 index)
2371{
2372 struct xps_map *map = NULL;
2373 int pos;
2374
2375 map = xmap_dereference(dev_maps->attr_map[tci]);
2376 if (!map)
2377 return false;
2378
2379 for (pos = map->len; pos--;) {
2380 if (map->queues[pos] != index)
2381 continue;
2382
2383 if (map->len > 1) {
2384 map->queues[pos] = map->queues[--map->len];
2385 break;
2386 }
2387
2388 if (old_maps)
2389 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391 kfree_rcu(map, rcu);
2392 return false;
2393 }
2394
2395 return true;
2396}
2397
2398static bool remove_xps_queue_cpu(struct net_device *dev,
2399 struct xps_dev_maps *dev_maps,
2400 int cpu, u16 offset, u16 count)
2401{
2402 int num_tc = dev_maps->num_tc;
2403 bool active = false;
2404 int tci;
2405
2406 for (tci = cpu * num_tc; num_tc--; tci++) {
2407 int i, j;
2408
2409 for (i = count, j = offset; i--; j++) {
2410 if (!remove_xps_queue(dev_maps, NULL, tci, index: j))
2411 break;
2412 }
2413
2414 active |= i < 0;
2415 }
2416
2417 return active;
2418}
2419
2420static void reset_xps_maps(struct net_device *dev,
2421 struct xps_dev_maps *dev_maps,
2422 enum xps_map_type type)
2423{
2424 static_key_slow_dec_cpuslocked(key: &xps_needed);
2425 if (type == XPS_RXQS)
2426 static_key_slow_dec_cpuslocked(key: &xps_rxqs_needed);
2427
2428 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429
2430 kfree_rcu(dev_maps, rcu);
2431}
2432
2433static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434 u16 offset, u16 count)
2435{
2436 struct xps_dev_maps *dev_maps;
2437 bool active = false;
2438 int i, j;
2439
2440 dev_maps = xmap_dereference(dev->xps_maps[type]);
2441 if (!dev_maps)
2442 return;
2443
2444 for (j = 0; j < dev_maps->nr_ids; j++)
2445 active |= remove_xps_queue_cpu(dev, dev_maps, cpu: j, offset, count);
2446 if (!active)
2447 reset_xps_maps(dev, dev_maps, type);
2448
2449 if (type == XPS_CPUS) {
2450 for (i = offset + (count - 1); count--; i--)
2451 netdev_queue_numa_node_write(
2452 q: netdev_get_tx_queue(dev, index: i), NUMA_NO_NODE);
2453 }
2454}
2455
2456static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457 u16 count)
2458{
2459 if (!static_key_false(key: &xps_needed))
2460 return;
2461
2462 cpus_read_lock();
2463 mutex_lock(&xps_map_mutex);
2464
2465 if (static_key_false(key: &xps_rxqs_needed))
2466 clean_xps_maps(dev, type: XPS_RXQS, offset, count);
2467
2468 clean_xps_maps(dev, type: XPS_CPUS, offset, count);
2469
2470 mutex_unlock(lock: &xps_map_mutex);
2471 cpus_read_unlock();
2472}
2473
2474static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475{
2476 netif_reset_xps_queues(dev, offset: index, count: dev->num_tx_queues - index);
2477}
2478
2479static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480 u16 index, bool is_rxqs_map)
2481{
2482 struct xps_map *new_map;
2483 int alloc_len = XPS_MIN_MAP_ALLOC;
2484 int i, pos;
2485
2486 for (pos = 0; map && pos < map->len; pos++) {
2487 if (map->queues[pos] != index)
2488 continue;
2489 return map;
2490 }
2491
2492 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2493 if (map) {
2494 if (pos < map->alloc_len)
2495 return map;
2496
2497 alloc_len = map->alloc_len * 2;
2498 }
2499
2500 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501 * map
2502 */
2503 if (is_rxqs_map)
2504 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505 else
2506 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507 cpu_to_node(cpu: attr_index));
2508 if (!new_map)
2509 return NULL;
2510
2511 for (i = 0; i < pos; i++)
2512 new_map->queues[i] = map->queues[i];
2513 new_map->alloc_len = alloc_len;
2514 new_map->len = pos;
2515
2516 return new_map;
2517}
2518
2519/* Copy xps maps at a given index */
2520static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521 struct xps_dev_maps *new_dev_maps, int index,
2522 int tc, bool skip_tc)
2523{
2524 int i, tci = index * dev_maps->num_tc;
2525 struct xps_map *map;
2526
2527 /* copy maps belonging to foreign traffic classes */
2528 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529 if (i == tc && skip_tc)
2530 continue;
2531
2532 /* fill in the new device map from the old device map */
2533 map = xmap_dereference(dev_maps->attr_map[tci]);
2534 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535 }
2536}
2537
2538/* Must be called under cpus_read_lock */
2539int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540 u16 index, enum xps_map_type type)
2541{
2542 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543 const unsigned long *online_mask = NULL;
2544 bool active = false, copy = false;
2545 int i, j, tci, numa_node_id = -2;
2546 int maps_sz, num_tc = 1, tc = 0;
2547 struct xps_map *map, *new_map;
2548 unsigned int nr_ids;
2549
2550 WARN_ON_ONCE(index >= dev->num_tx_queues);
2551
2552 if (dev->num_tc) {
2553 /* Do not allow XPS on subordinate device directly */
2554 num_tc = dev->num_tc;
2555 if (num_tc < 0)
2556 return -EINVAL;
2557
2558 /* If queue belongs to subordinate dev use its map */
2559 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560
2561 tc = netdev_txq_to_tc(dev, index);
2562 if (tc < 0)
2563 return -EINVAL;
2564 }
2565
2566 mutex_lock(&xps_map_mutex);
2567
2568 dev_maps = xmap_dereference(dev->xps_maps[type]);
2569 if (type == XPS_RXQS) {
2570 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571 nr_ids = dev->num_rx_queues;
2572 } else {
2573 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574 if (num_possible_cpus() > 1)
2575 online_mask = cpumask_bits(cpu_online_mask);
2576 nr_ids = nr_cpu_ids;
2577 }
2578
2579 if (maps_sz < L1_CACHE_BYTES)
2580 maps_sz = L1_CACHE_BYTES;
2581
2582 /* The old dev_maps could be larger or smaller than the one we're
2583 * setting up now, as dev->num_tc or nr_ids could have been updated in
2584 * between. We could try to be smart, but let's be safe instead and only
2585 * copy foreign traffic classes if the two map sizes match.
2586 */
2587 if (dev_maps &&
2588 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589 copy = true;
2590
2591 /* allocate memory for queue storage */
2592 for (j = -1; j = netif_attrmask_next_and(n: j, src1p: online_mask, src2p: mask, nr_bits: nr_ids),
2593 j < nr_ids;) {
2594 if (!new_dev_maps) {
2595 new_dev_maps = kzalloc(size: maps_sz, GFP_KERNEL);
2596 if (!new_dev_maps) {
2597 mutex_unlock(lock: &xps_map_mutex);
2598 return -ENOMEM;
2599 }
2600
2601 new_dev_maps->nr_ids = nr_ids;
2602 new_dev_maps->num_tc = num_tc;
2603 }
2604
2605 tci = j * num_tc + tc;
2606 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607
2608 map = expand_xps_map(map, attr_index: j, index, is_rxqs_map: type == XPS_RXQS);
2609 if (!map)
2610 goto error;
2611
2612 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613 }
2614
2615 if (!new_dev_maps)
2616 goto out_no_new_maps;
2617
2618 if (!dev_maps) {
2619 /* Increment static keys at most once per type */
2620 static_key_slow_inc_cpuslocked(key: &xps_needed);
2621 if (type == XPS_RXQS)
2622 static_key_slow_inc_cpuslocked(key: &xps_rxqs_needed);
2623 }
2624
2625 for (j = 0; j < nr_ids; j++) {
2626 bool skip_tc = false;
2627
2628 tci = j * num_tc + tc;
2629 if (netif_attr_test_mask(j, mask, nr_bits: nr_ids) &&
2630 netif_attr_test_online(j, online_mask, nr_bits: nr_ids)) {
2631 /* add tx-queue to CPU/rx-queue maps */
2632 int pos = 0;
2633
2634 skip_tc = true;
2635
2636 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637 while ((pos < map->len) && (map->queues[pos] != index))
2638 pos++;
2639
2640 if (pos == map->len)
2641 map->queues[map->len++] = index;
2642#ifdef CONFIG_NUMA
2643 if (type == XPS_CPUS) {
2644 if (numa_node_id == -2)
2645 numa_node_id = cpu_to_node(cpu: j);
2646 else if (numa_node_id != cpu_to_node(cpu: j))
2647 numa_node_id = -1;
2648 }
2649#endif
2650 }
2651
2652 if (copy)
2653 xps_copy_dev_maps(dev_maps, new_dev_maps, index: j, tc,
2654 skip_tc);
2655 }
2656
2657 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658
2659 /* Cleanup old maps */
2660 if (!dev_maps)
2661 goto out_no_old_maps;
2662
2663 for (j = 0; j < dev_maps->nr_ids; j++) {
2664 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665 map = xmap_dereference(dev_maps->attr_map[tci]);
2666 if (!map)
2667 continue;
2668
2669 if (copy) {
2670 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671 if (map == new_map)
2672 continue;
2673 }
2674
2675 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676 kfree_rcu(map, rcu);
2677 }
2678 }
2679
2680 old_dev_maps = dev_maps;
2681
2682out_no_old_maps:
2683 dev_maps = new_dev_maps;
2684 active = true;
2685
2686out_no_new_maps:
2687 if (type == XPS_CPUS)
2688 /* update Tx queue numa node */
2689 netdev_queue_numa_node_write(q: netdev_get_tx_queue(dev, index),
2690 node: (numa_node_id >= 0) ?
2691 numa_node_id : NUMA_NO_NODE);
2692
2693 if (!dev_maps)
2694 goto out_no_maps;
2695
2696 /* removes tx-queue from unused CPUs/rx-queues */
2697 for (j = 0; j < dev_maps->nr_ids; j++) {
2698 tci = j * dev_maps->num_tc;
2699
2700 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701 if (i == tc &&
2702 netif_attr_test_mask(j, mask, nr_bits: dev_maps->nr_ids) &&
2703 netif_attr_test_online(j, online_mask, nr_bits: dev_maps->nr_ids))
2704 continue;
2705
2706 active |= remove_xps_queue(dev_maps,
2707 old_maps: copy ? old_dev_maps : NULL,
2708 tci, index);
2709 }
2710 }
2711
2712 if (old_dev_maps)
2713 kfree_rcu(old_dev_maps, rcu);
2714
2715 /* free map if not active */
2716 if (!active)
2717 reset_xps_maps(dev, dev_maps, type);
2718
2719out_no_maps:
2720 mutex_unlock(lock: &xps_map_mutex);
2721
2722 return 0;
2723error:
2724 /* remove any maps that we added */
2725 for (j = 0; j < nr_ids; j++) {
2726 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728 map = copy ?
2729 xmap_dereference(dev_maps->attr_map[tci]) :
2730 NULL;
2731 if (new_map && new_map != map)
2732 kfree(objp: new_map);
2733 }
2734 }
2735
2736 mutex_unlock(lock: &xps_map_mutex);
2737
2738 kfree(objp: new_dev_maps);
2739 return -ENOMEM;
2740}
2741EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742
2743int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744 u16 index)
2745{
2746 int ret;
2747
2748 cpus_read_lock();
2749 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750 cpus_read_unlock();
2751
2752 return ret;
2753}
2754EXPORT_SYMBOL(netif_set_xps_queue);
2755
2756#endif
2757static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758{
2759 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760
2761 /* Unbind any subordinate channels */
2762 while (txq-- != &dev->_tx[0]) {
2763 if (txq->sb_dev)
2764 netdev_unbind_sb_channel(dev, sb_dev: txq->sb_dev);
2765 }
2766}
2767
2768void netdev_reset_tc(struct net_device *dev)
2769{
2770#ifdef CONFIG_XPS
2771 netif_reset_xps_queues_gt(dev, index: 0);
2772#endif
2773 netdev_unbind_all_sb_channels(dev);
2774
2775 /* Reset TC configuration of device */
2776 dev->num_tc = 0;
2777 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779}
2780EXPORT_SYMBOL(netdev_reset_tc);
2781
2782int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783{
2784 if (tc >= dev->num_tc)
2785 return -EINVAL;
2786
2787#ifdef CONFIG_XPS
2788 netif_reset_xps_queues(dev, offset, count);
2789#endif
2790 dev->tc_to_txq[tc].count = count;
2791 dev->tc_to_txq[tc].offset = offset;
2792 return 0;
2793}
2794EXPORT_SYMBOL(netdev_set_tc_queue);
2795
2796int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797{
2798 if (num_tc > TC_MAX_QUEUE)
2799 return -EINVAL;
2800
2801#ifdef CONFIG_XPS
2802 netif_reset_xps_queues_gt(dev, index: 0);
2803#endif
2804 netdev_unbind_all_sb_channels(dev);
2805
2806 dev->num_tc = num_tc;
2807 return 0;
2808}
2809EXPORT_SYMBOL(netdev_set_num_tc);
2810
2811void netdev_unbind_sb_channel(struct net_device *dev,
2812 struct net_device *sb_dev)
2813{
2814 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816#ifdef CONFIG_XPS
2817 netif_reset_xps_queues_gt(dev: sb_dev, index: 0);
2818#endif
2819 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821
2822 while (txq-- != &dev->_tx[0]) {
2823 if (txq->sb_dev == sb_dev)
2824 txq->sb_dev = NULL;
2825 }
2826}
2827EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828
2829int netdev_bind_sb_channel_queue(struct net_device *dev,
2830 struct net_device *sb_dev,
2831 u8 tc, u16 count, u16 offset)
2832{
2833 /* Make certain the sb_dev and dev are already configured */
2834 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835 return -EINVAL;
2836
2837 /* We cannot hand out queues we don't have */
2838 if ((offset + count) > dev->real_num_tx_queues)
2839 return -EINVAL;
2840
2841 /* Record the mapping */
2842 sb_dev->tc_to_txq[tc].count = count;
2843 sb_dev->tc_to_txq[tc].offset = offset;
2844
2845 /* Provide a way for Tx queue to find the tc_to_txq map or
2846 * XPS map for itself.
2847 */
2848 while (count--)
2849 netdev_get_tx_queue(dev, index: count + offset)->sb_dev = sb_dev;
2850
2851 return 0;
2852}
2853EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854
2855int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856{
2857 /* Do not use a multiqueue device to represent a subordinate channel */
2858 if (netif_is_multiqueue(dev))
2859 return -ENODEV;
2860
2861 /* We allow channels 1 - 32767 to be used for subordinate channels.
2862 * Channel 0 is meant to be "native" mode and used only to represent
2863 * the main root device. We allow writing 0 to reset the device back
2864 * to normal mode after being used as a subordinate channel.
2865 */
2866 if (channel > S16_MAX)
2867 return -EINVAL;
2868
2869 dev->num_tc = -channel;
2870
2871 return 0;
2872}
2873EXPORT_SYMBOL(netdev_set_sb_channel);
2874
2875/*
2876 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878 */
2879int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880{
2881 bool disabling;
2882 int rc;
2883
2884 disabling = txq < dev->real_num_tx_queues;
2885
2886 if (txq < 1 || txq > dev->num_tx_queues)
2887 return -EINVAL;
2888
2889 if (dev->reg_state == NETREG_REGISTERED ||
2890 dev->reg_state == NETREG_UNREGISTERING) {
2891 ASSERT_RTNL();
2892
2893 rc = netdev_queue_update_kobjects(net: dev, old_num: dev->real_num_tx_queues,
2894 new_num: txq);
2895 if (rc)
2896 return rc;
2897
2898 if (dev->num_tc)
2899 netif_setup_tc(dev, txq);
2900
2901 dev_qdisc_change_real_num_tx(dev, new_real_tx: txq);
2902
2903 dev->real_num_tx_queues = txq;
2904
2905 if (disabling) {
2906 synchronize_net();
2907 qdisc_reset_all_tx_gt(dev, i: txq);
2908#ifdef CONFIG_XPS
2909 netif_reset_xps_queues_gt(dev, index: txq);
2910#endif
2911 }
2912 } else {
2913 dev->real_num_tx_queues = txq;
2914 }
2915
2916 return 0;
2917}
2918EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919
2920#ifdef CONFIG_SYSFS
2921/**
2922 * netif_set_real_num_rx_queues - set actual number of RX queues used
2923 * @dev: Network device
2924 * @rxq: Actual number of RX queues
2925 *
2926 * This must be called either with the rtnl_lock held or before
2927 * registration of the net device. Returns 0 on success, or a
2928 * negative error code. If called before registration, it always
2929 * succeeds.
2930 */
2931int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932{
2933 int rc;
2934
2935 if (rxq < 1 || rxq > dev->num_rx_queues)
2936 return -EINVAL;
2937
2938 if (dev->reg_state == NETREG_REGISTERED) {
2939 ASSERT_RTNL();
2940
2941 rc = net_rx_queue_update_kobjects(dev, old_num: dev->real_num_rx_queues,
2942 new_num: rxq);
2943 if (rc)
2944 return rc;
2945 }
2946
2947 dev->real_num_rx_queues = rxq;
2948 return 0;
2949}
2950EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951#endif
2952
2953/**
2954 * netif_set_real_num_queues - set actual number of RX and TX queues used
2955 * @dev: Network device
2956 * @txq: Actual number of TX queues
2957 * @rxq: Actual number of RX queues
2958 *
2959 * Set the real number of both TX and RX queues.
2960 * Does nothing if the number of queues is already correct.
2961 */
2962int netif_set_real_num_queues(struct net_device *dev,
2963 unsigned int txq, unsigned int rxq)
2964{
2965 unsigned int old_rxq = dev->real_num_rx_queues;
2966 int err;
2967
2968 if (txq < 1 || txq > dev->num_tx_queues ||
2969 rxq < 1 || rxq > dev->num_rx_queues)
2970 return -EINVAL;
2971
2972 /* Start from increases, so the error path only does decreases -
2973 * decreases can't fail.
2974 */
2975 if (rxq > dev->real_num_rx_queues) {
2976 err = netif_set_real_num_rx_queues(dev, rxq);
2977 if (err)
2978 return err;
2979 }
2980 if (txq > dev->real_num_tx_queues) {
2981 err = netif_set_real_num_tx_queues(dev, txq);
2982 if (err)
2983 goto undo_rx;
2984 }
2985 if (rxq < dev->real_num_rx_queues)
2986 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987 if (txq < dev->real_num_tx_queues)
2988 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989
2990 return 0;
2991undo_rx:
2992 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993 return err;
2994}
2995EXPORT_SYMBOL(netif_set_real_num_queues);
2996
2997/**
2998 * netif_set_tso_max_size() - set the max size of TSO frames supported
2999 * @dev: netdev to update
3000 * @size: max skb->len of a TSO frame
3001 *
3002 * Set the limit on the size of TSO super-frames the device can handle.
3003 * Unless explicitly set the stack will assume the value of
3004 * %GSO_LEGACY_MAX_SIZE.
3005 */
3006void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007{
3008 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009 if (size < READ_ONCE(dev->gso_max_size))
3010 netif_set_gso_max_size(dev, size);
3011 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3012 netif_set_gso_ipv4_max_size(dev, size);
3013}
3014EXPORT_SYMBOL(netif_set_tso_max_size);
3015
3016/**
3017 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3018 * @dev: netdev to update
3019 * @segs: max number of TCP segments
3020 *
3021 * Set the limit on the number of TCP segments the device can generate from
3022 * a single TSO super-frame.
3023 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3024 */
3025void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3026{
3027 dev->tso_max_segs = segs;
3028 if (segs < READ_ONCE(dev->gso_max_segs))
3029 netif_set_gso_max_segs(dev, segs);
3030}
3031EXPORT_SYMBOL(netif_set_tso_max_segs);
3032
3033/**
3034 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3035 * @to: netdev to update
3036 * @from: netdev from which to copy the limits
3037 */
3038void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3039{
3040 netif_set_tso_max_size(to, from->tso_max_size);
3041 netif_set_tso_max_segs(to, from->tso_max_segs);
3042}
3043EXPORT_SYMBOL(netif_inherit_tso_max);
3044
3045/**
3046 * netif_get_num_default_rss_queues - default number of RSS queues
3047 *
3048 * Default value is the number of physical cores if there are only 1 or 2, or
3049 * divided by 2 if there are more.
3050 */
3051int netif_get_num_default_rss_queues(void)
3052{
3053 cpumask_var_t cpus;
3054 int cpu, count = 0;
3055
3056 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3057 return 1;
3058
3059 cpumask_copy(dstp: cpus, cpu_online_mask);
3060 for_each_cpu(cpu, cpus) {
3061 ++count;
3062 cpumask_andnot(dstp: cpus, src1p: cpus, topology_sibling_cpumask(cpu));
3063 }
3064 free_cpumask_var(mask: cpus);
3065
3066 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3067}
3068EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3069
3070static void __netif_reschedule(struct Qdisc *q)
3071{
3072 struct softnet_data *sd;
3073 unsigned long flags;
3074
3075 local_irq_save(flags);
3076 sd = this_cpu_ptr(&softnet_data);
3077 q->next_sched = NULL;
3078 *sd->output_queue_tailp = q;
3079 sd->output_queue_tailp = &q->next_sched;
3080 raise_softirq_irqoff(nr: NET_TX_SOFTIRQ);
3081 local_irq_restore(flags);
3082}
3083
3084void __netif_schedule(struct Qdisc *q)
3085{
3086 if (!test_and_set_bit(nr: __QDISC_STATE_SCHED, addr: &q->state))
3087 __netif_reschedule(q);
3088}
3089EXPORT_SYMBOL(__netif_schedule);
3090
3091struct dev_kfree_skb_cb {
3092 enum skb_drop_reason reason;
3093};
3094
3095static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3096{
3097 return (struct dev_kfree_skb_cb *)skb->cb;
3098}
3099
3100void netif_schedule_queue(struct netdev_queue *txq)
3101{
3102 rcu_read_lock();
3103 if (!netif_xmit_stopped(dev_queue: txq)) {
3104 struct Qdisc *q = rcu_dereference(txq->qdisc);
3105
3106 __netif_schedule(q);
3107 }
3108 rcu_read_unlock();
3109}
3110EXPORT_SYMBOL(netif_schedule_queue);
3111
3112void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3113{
3114 if (test_and_clear_bit(nr: __QUEUE_STATE_DRV_XOFF, addr: &dev_queue->state)) {
3115 struct Qdisc *q;
3116
3117 rcu_read_lock();
3118 q = rcu_dereference(dev_queue->qdisc);
3119 __netif_schedule(q);
3120 rcu_read_unlock();
3121 }
3122}
3123EXPORT_SYMBOL(netif_tx_wake_queue);
3124
3125void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3126{
3127 unsigned long flags;
3128
3129 if (unlikely(!skb))
3130 return;
3131
3132 if (likely(refcount_read(&skb->users) == 1)) {
3133 smp_rmb();
3134 refcount_set(r: &skb->users, n: 0);
3135 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3136 return;
3137 }
3138 get_kfree_skb_cb(skb)->reason = reason;
3139 local_irq_save(flags);
3140 skb->next = __this_cpu_read(softnet_data.completion_queue);
3141 __this_cpu_write(softnet_data.completion_queue, skb);
3142 raise_softirq_irqoff(nr: NET_TX_SOFTIRQ);
3143 local_irq_restore(flags);
3144}
3145EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3146
3147void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3148{
3149 if (in_hardirq() || irqs_disabled())
3150 dev_kfree_skb_irq_reason(skb, reason);
3151 else
3152 kfree_skb_reason(skb, reason);
3153}
3154EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3155
3156
3157/**
3158 * netif_device_detach - mark device as removed
3159 * @dev: network device
3160 *
3161 * Mark device as removed from system and therefore no longer available.
3162 */
3163void netif_device_detach(struct net_device *dev)
3164{
3165 if (test_and_clear_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state) &&
3166 netif_running(dev)) {
3167 netif_tx_stop_all_queues(dev);
3168 }
3169}
3170EXPORT_SYMBOL(netif_device_detach);
3171
3172/**
3173 * netif_device_attach - mark device as attached
3174 * @dev: network device
3175 *
3176 * Mark device as attached from system and restart if needed.
3177 */
3178void netif_device_attach(struct net_device *dev)
3179{
3180 if (!test_and_set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state) &&
3181 netif_running(dev)) {
3182 netif_tx_wake_all_queues(dev);
3183 __netdev_watchdog_up(dev);
3184 }
3185}
3186EXPORT_SYMBOL(netif_device_attach);
3187
3188/*
3189 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3190 * to be used as a distribution range.
3191 */
3192static u16 skb_tx_hash(const struct net_device *dev,
3193 const struct net_device *sb_dev,
3194 struct sk_buff *skb)
3195{
3196 u32 hash;
3197 u16 qoffset = 0;
3198 u16 qcount = dev->real_num_tx_queues;
3199
3200 if (dev->num_tc) {
3201 u8 tc = netdev_get_prio_tc_map(dev, prio: skb->priority);
3202
3203 qoffset = sb_dev->tc_to_txq[tc].offset;
3204 qcount = sb_dev->tc_to_txq[tc].count;
3205 if (unlikely(!qcount)) {
3206 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3207 sb_dev->name, qoffset, tc);
3208 qoffset = 0;
3209 qcount = dev->real_num_tx_queues;
3210 }
3211 }
3212
3213 if (skb_rx_queue_recorded(skb)) {
3214 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3215 hash = skb_get_rx_queue(skb);
3216 if (hash >= qoffset)
3217 hash -= qoffset;
3218 while (unlikely(hash >= qcount))
3219 hash -= qcount;
3220 return hash + qoffset;
3221 }
3222
3223 return (u16) reciprocal_scale(val: skb_get_hash(skb), ep_ro: qcount) + qoffset;
3224}
3225
3226void skb_warn_bad_offload(const struct sk_buff *skb)
3227{
3228 static const netdev_features_t null_features;
3229 struct net_device *dev = skb->dev;
3230 const char *name = "";
3231
3232 if (!net_ratelimit())
3233 return;
3234
3235 if (dev) {
3236 if (dev->dev.parent)
3237 name = dev_driver_string(dev: dev->dev.parent);
3238 else
3239 name = netdev_name(dev);
3240 }
3241 skb_dump(KERN_WARNING, skb, full_pkt: false);
3242 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3243 name, dev ? &dev->features : &null_features,
3244 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3245}
3246
3247/*
3248 * Invalidate hardware checksum when packet is to be mangled, and
3249 * complete checksum manually on outgoing path.
3250 */
3251int skb_checksum_help(struct sk_buff *skb)
3252{
3253 __wsum csum;
3254 int ret = 0, offset;
3255
3256 if (skb->ip_summed == CHECKSUM_COMPLETE)
3257 goto out_set_summed;
3258
3259 if (unlikely(skb_is_gso(skb))) {
3260 skb_warn_bad_offload(skb);
3261 return -EINVAL;
3262 }
3263
3264 /* Before computing a checksum, we should make sure no frag could
3265 * be modified by an external entity : checksum could be wrong.
3266 */
3267 if (skb_has_shared_frag(skb)) {
3268 ret = __skb_linearize(skb);
3269 if (ret)
3270 goto out;
3271 }
3272
3273 offset = skb_checksum_start_offset(skb);
3274 ret = -EINVAL;
3275 if (unlikely(offset >= skb_headlen(skb))) {
3276 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3277 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3278 offset, skb_headlen(skb));
3279 goto out;
3280 }
3281 csum = skb_checksum(skb, offset, len: skb->len - offset, csum: 0);
3282
3283 offset += skb->csum_offset;
3284 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3285 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3286 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3287 offset + sizeof(__sum16), skb_headlen(skb));
3288 goto out;
3289 }
3290 ret = skb_ensure_writable(skb, write_len: offset + sizeof(__sum16));
3291 if (ret)
3292 goto out;
3293
3294 *(__sum16 *)(skb->data + offset) = csum_fold(sum: csum) ?: CSUM_MANGLED_0;
3295out_set_summed:
3296 skb->ip_summed = CHECKSUM_NONE;
3297out:
3298 return ret;
3299}
3300EXPORT_SYMBOL(skb_checksum_help);
3301
3302int skb_crc32c_csum_help(struct sk_buff *skb)
3303{
3304 __le32 crc32c_csum;
3305 int ret = 0, offset, start;
3306
3307 if (skb->ip_summed != CHECKSUM_PARTIAL)
3308 goto out;
3309
3310 if (unlikely(skb_is_gso(skb)))
3311 goto out;
3312
3313 /* Before computing a checksum, we should make sure no frag could
3314 * be modified by an external entity : checksum could be wrong.
3315 */
3316 if (unlikely(skb_has_shared_frag(skb))) {
3317 ret = __skb_linearize(skb);
3318 if (ret)
3319 goto out;
3320 }
3321 start = skb_checksum_start_offset(skb);
3322 offset = start + offsetof(struct sctphdr, checksum);
3323 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3324 ret = -EINVAL;
3325 goto out;
3326 }
3327
3328 ret = skb_ensure_writable(skb, write_len: offset + sizeof(__le32));
3329 if (ret)
3330 goto out;
3331
3332 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3333 skb->len - start, ~(__u32)0,
3334 crc32c_csum_stub));
3335 *(__le32 *)(skb->data + offset) = crc32c_csum;
3336 skb_reset_csum_not_inet(skb);
3337out:
3338 return ret;
3339}
3340
3341__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3342{
3343 __be16 type = skb->protocol;
3344
3345 /* Tunnel gso handlers can set protocol to ethernet. */
3346 if (type == htons(ETH_P_TEB)) {
3347 struct ethhdr *eth;
3348
3349 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3350 return 0;
3351
3352 eth = (struct ethhdr *)skb->data;
3353 type = eth->h_proto;
3354 }
3355
3356 return vlan_get_protocol_and_depth(skb, type, depth);
3357}
3358
3359
3360/* Take action when hardware reception checksum errors are detected. */
3361#ifdef CONFIG_BUG
3362static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3363{
3364 netdev_err(dev, format: "hw csum failure\n");
3365 skb_dump(KERN_ERR, skb, full_pkt: true);
3366 dump_stack();
3367}
3368
3369void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3370{
3371 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3372}
3373EXPORT_SYMBOL(netdev_rx_csum_fault);
3374#endif
3375
3376/* XXX: check that highmem exists at all on the given machine. */
3377static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3378{
3379#ifdef CONFIG_HIGHMEM
3380 int i;
3381
3382 if (!(dev->features & NETIF_F_HIGHDMA)) {
3383 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3384 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3385
3386 if (PageHighMem(skb_frag_page(frag)))
3387 return 1;
3388 }
3389 }
3390#endif
3391 return 0;
3392}
3393
3394/* If MPLS offload request, verify we are testing hardware MPLS features
3395 * instead of standard features for the netdev.
3396 */
3397#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3398static netdev_features_t net_mpls_features(struct sk_buff *skb,
3399 netdev_features_t features,
3400 __be16 type)
3401{
3402 if (eth_p_mpls(eth_type: type))
3403 features &= skb->dev->mpls_features;
3404
3405 return features;
3406}
3407#else
3408static netdev_features_t net_mpls_features(struct sk_buff *skb,
3409 netdev_features_t features,
3410 __be16 type)
3411{
3412 return features;
3413}
3414#endif
3415
3416static netdev_features_t harmonize_features(struct sk_buff *skb,
3417 netdev_features_t features)
3418{
3419 __be16 type;
3420
3421 type = skb_network_protocol(skb, NULL);
3422 features = net_mpls_features(skb, features, type);
3423
3424 if (skb->ip_summed != CHECKSUM_NONE &&
3425 !can_checksum_protocol(features, protocol: type)) {
3426 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3427 }
3428 if (illegal_highdma(dev: skb->dev, skb))
3429 features &= ~NETIF_F_SG;
3430
3431 return features;
3432}
3433
3434netdev_features_t passthru_features_check(struct sk_buff *skb,
3435 struct net_device *dev,
3436 netdev_features_t features)
3437{
3438 return features;
3439}
3440EXPORT_SYMBOL(passthru_features_check);
3441
3442static netdev_features_t dflt_features_check(struct sk_buff *skb,
3443 struct net_device *dev,
3444 netdev_features_t features)
3445{
3446 return vlan_features_check(skb, features);
3447}
3448
3449static netdev_features_t gso_features_check(const struct sk_buff *skb,
3450 struct net_device *dev,
3451 netdev_features_t features)
3452{
3453 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3454
3455 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3456 return features & ~NETIF_F_GSO_MASK;
3457
3458 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3459 return features & ~NETIF_F_GSO_MASK;
3460
3461 if (!skb_shinfo(skb)->gso_type) {
3462 skb_warn_bad_offload(skb);
3463 return features & ~NETIF_F_GSO_MASK;
3464 }
3465
3466 /* Support for GSO partial features requires software
3467 * intervention before we can actually process the packets
3468 * so we need to strip support for any partial features now
3469 * and we can pull them back in after we have partially
3470 * segmented the frame.
3471 */
3472 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3473 features &= ~dev->gso_partial_features;
3474
3475 /* Make sure to clear the IPv4 ID mangling feature if the
3476 * IPv4 header has the potential to be fragmented.
3477 */
3478 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3479 struct iphdr *iph = skb->encapsulation ?
3480 inner_ip_hdr(skb) : ip_hdr(skb);
3481
3482 if (!(iph->frag_off & htons(IP_DF)))
3483 features &= ~NETIF_F_TSO_MANGLEID;
3484 }
3485
3486 return features;
3487}
3488
3489netdev_features_t netif_skb_features(struct sk_buff *skb)
3490{
3491 struct net_device *dev = skb->dev;
3492 netdev_features_t features = dev->features;
3493
3494 if (skb_is_gso(skb))
3495 features = gso_features_check(skb, dev, features);
3496
3497 /* If encapsulation offload request, verify we are testing
3498 * hardware encapsulation features instead of standard
3499 * features for the netdev
3500 */
3501 if (skb->encapsulation)
3502 features &= dev->hw_enc_features;
3503
3504 if (skb_vlan_tagged(skb))
3505 features = netdev_intersect_features(f1: features,
3506 f2: dev->vlan_features |
3507 NETIF_F_HW_VLAN_CTAG_TX |
3508 NETIF_F_HW_VLAN_STAG_TX);
3509
3510 if (dev->netdev_ops->ndo_features_check)
3511 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3512 features);
3513 else
3514 features &= dflt_features_check(skb, dev, features);
3515
3516 return harmonize_features(skb, features);
3517}
3518EXPORT_SYMBOL(netif_skb_features);
3519
3520static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3521 struct netdev_queue *txq, bool more)
3522{
3523 unsigned int len;
3524 int rc;
3525
3526 if (dev_nit_active(dev))
3527 dev_queue_xmit_nit(skb, dev);
3528
3529 len = skb->len;
3530 trace_net_dev_start_xmit(skb, dev);
3531 rc = netdev_start_xmit(skb, dev, txq, more);
3532 trace_net_dev_xmit(skb, rc, dev, skb_len: len);
3533
3534 return rc;
3535}
3536
3537struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3538 struct netdev_queue *txq, int *ret)
3539{
3540 struct sk_buff *skb = first;
3541 int rc = NETDEV_TX_OK;
3542
3543 while (skb) {
3544 struct sk_buff *next = skb->next;
3545
3546 skb_mark_not_on_list(skb);
3547 rc = xmit_one(skb, dev, txq, more: next != NULL);
3548 if (unlikely(!dev_xmit_complete(rc))) {
3549 skb->next = next;
3550 goto out;
3551 }
3552
3553 skb = next;
3554 if (netif_tx_queue_stopped(dev_queue: txq) && skb) {
3555 rc = NETDEV_TX_BUSY;
3556 break;
3557 }
3558 }
3559
3560out:
3561 *ret = rc;
3562 return skb;
3563}
3564
3565static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3566 netdev_features_t features)
3567{
3568 if (skb_vlan_tag_present(skb) &&
3569 !vlan_hw_offload_capable(features, proto: skb->vlan_proto))
3570 skb = __vlan_hwaccel_push_inside(skb);
3571 return skb;
3572}
3573
3574int skb_csum_hwoffload_help(struct sk_buff *skb,
3575 const netdev_features_t features)
3576{
3577 if (unlikely(skb_csum_is_sctp(skb)))
3578 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3579 skb_crc32c_csum_help(skb);
3580
3581 if (features & NETIF_F_HW_CSUM)
3582 return 0;
3583
3584 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3585 switch (skb->csum_offset) {
3586 case offsetof(struct tcphdr, check):
3587 case offsetof(struct udphdr, check):
3588 return 0;
3589 }
3590 }
3591
3592 return skb_checksum_help(skb);
3593}
3594EXPORT_SYMBOL(skb_csum_hwoffload_help);
3595
3596static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3597{
3598 netdev_features_t features;
3599
3600 features = netif_skb_features(skb);
3601 skb = validate_xmit_vlan(skb, features);
3602 if (unlikely(!skb))
3603 goto out_null;
3604
3605 skb = sk_validate_xmit_skb(skb, dev);
3606 if (unlikely(!skb))
3607 goto out_null;
3608
3609 if (netif_needs_gso(skb, features)) {
3610 struct sk_buff *segs;
3611
3612 segs = skb_gso_segment(skb, features);
3613 if (IS_ERR(ptr: segs)) {
3614 goto out_kfree_skb;
3615 } else if (segs) {
3616 consume_skb(skb);
3617 skb = segs;
3618 }
3619 } else {
3620 if (skb_needs_linearize(skb, features) &&
3621 __skb_linearize(skb))
3622 goto out_kfree_skb;
3623
3624 /* If packet is not checksummed and device does not
3625 * support checksumming for this protocol, complete
3626 * checksumming here.
3627 */
3628 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3629 if (skb->encapsulation)
3630 skb_set_inner_transport_header(skb,
3631 offset: skb_checksum_start_offset(skb));
3632 else
3633 skb_set_transport_header(skb,
3634 offset: skb_checksum_start_offset(skb));
3635 if (skb_csum_hwoffload_help(skb, features))
3636 goto out_kfree_skb;
3637 }
3638 }
3639
3640 skb = validate_xmit_xfrm(skb, features, again);
3641
3642 return skb;
3643
3644out_kfree_skb:
3645 kfree_skb(skb);
3646out_null:
3647 dev_core_stats_tx_dropped_inc(dev);
3648 return NULL;
3649}
3650
3651struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3652{
3653 struct sk_buff *next, *head = NULL, *tail;
3654
3655 for (; skb != NULL; skb = next) {
3656 next = skb->next;
3657 skb_mark_not_on_list(skb);
3658
3659 /* in case skb wont be segmented, point to itself */
3660 skb->prev = skb;
3661
3662 skb = validate_xmit_skb(skb, dev, again);
3663 if (!skb)
3664 continue;
3665
3666 if (!head)
3667 head = skb;
3668 else
3669 tail->next = skb;
3670 /* If skb was segmented, skb->prev points to
3671 * the last segment. If not, it still contains skb.
3672 */
3673 tail = skb->prev;
3674 }
3675 return head;
3676}
3677EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3678
3679static void qdisc_pkt_len_init(struct sk_buff *skb)
3680{
3681 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3682
3683 qdisc_skb_cb(skb)->pkt_len = skb->len;
3684
3685 /* To get more precise estimation of bytes sent on wire,
3686 * we add to pkt_len the headers size of all segments
3687 */
3688 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3689 u16 gso_segs = shinfo->gso_segs;
3690 unsigned int hdr_len;
3691
3692 /* mac layer + network layer */
3693 hdr_len = skb_transport_offset(skb);
3694
3695 /* + transport layer */
3696 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3697 const struct tcphdr *th;
3698 struct tcphdr _tcphdr;
3699
3700 th = skb_header_pointer(skb, offset: hdr_len,
3701 len: sizeof(_tcphdr), buffer: &_tcphdr);
3702 if (likely(th))
3703 hdr_len += __tcp_hdrlen(th);
3704 } else {
3705 struct udphdr _udphdr;
3706
3707 if (skb_header_pointer(skb, offset: hdr_len,
3708 len: sizeof(_udphdr), buffer: &_udphdr))
3709 hdr_len += sizeof(struct udphdr);
3710 }
3711
3712 if (shinfo->gso_type & SKB_GSO_DODGY)
3713 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3714 shinfo->gso_size);
3715
3716 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3717 }
3718}
3719
3720static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3721 struct sk_buff **to_free,
3722 struct netdev_queue *txq)
3723{
3724 int rc;
3725
3726 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3727 if (rc == NET_XMIT_SUCCESS)
3728 trace_qdisc_enqueue(qdisc: q, txq, skb);
3729 return rc;
3730}
3731
3732static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3733 struct net_device *dev,
3734 struct netdev_queue *txq)
3735{
3736 spinlock_t *root_lock = qdisc_lock(qdisc: q);
3737 struct sk_buff *to_free = NULL;
3738 bool contended;
3739 int rc;
3740
3741 qdisc_calculate_pkt_len(skb, sch: q);
3742
3743 tcf_set_drop_reason(skb, reason: SKB_DROP_REASON_QDISC_DROP);
3744
3745 if (q->flags & TCQ_F_NOLOCK) {
3746 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(qdisc: q) &&
3747 qdisc_run_begin(qdisc: q)) {
3748 /* Retest nolock_qdisc_is_empty() within the protection
3749 * of q->seqlock to protect from racing with requeuing.
3750 */
3751 if (unlikely(!nolock_qdisc_is_empty(q))) {
3752 rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq);
3753 __qdisc_run(q);
3754 qdisc_run_end(qdisc: q);
3755
3756 goto no_lock_out;
3757 }
3758
3759 qdisc_bstats_cpu_update(sch: q, skb);
3760 if (sch_direct_xmit(skb, q, dev, txq, NULL, validate: true) &&
3761 !nolock_qdisc_is_empty(qdisc: q))
3762 __qdisc_run(q);
3763
3764 qdisc_run_end(qdisc: q);
3765 return NET_XMIT_SUCCESS;
3766 }
3767
3768 rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq);
3769 qdisc_run(q);
3770
3771no_lock_out:
3772 if (unlikely(to_free))
3773 kfree_skb_list_reason(segs: to_free,
3774 reason: tcf_get_drop_reason(skb: to_free));
3775 return rc;
3776 }
3777
3778 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3779 kfree_skb_reason(skb, reason: SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3780 return NET_XMIT_DROP;
3781 }
3782 /*
3783 * Heuristic to force contended enqueues to serialize on a
3784 * separate lock before trying to get qdisc main lock.
3785 * This permits qdisc->running owner to get the lock more
3786 * often and dequeue packets faster.
3787 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3788 * and then other tasks will only enqueue packets. The packets will be
3789 * sent after the qdisc owner is scheduled again. To prevent this
3790 * scenario the task always serialize on the lock.
3791 */
3792 contended = qdisc_is_running(qdisc: q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3793 if (unlikely(contended))
3794 spin_lock(lock: &q->busylock);
3795
3796 spin_lock(lock: root_lock);
3797 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3798 __qdisc_drop(skb, to_free: &to_free);
3799 rc = NET_XMIT_DROP;
3800 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3801 qdisc_run_begin(qdisc: q)) {
3802 /*
3803 * This is a work-conserving queue; there are no old skbs
3804 * waiting to be sent out; and the qdisc is not running -
3805 * xmit the skb directly.
3806 */
3807
3808 qdisc_bstats_update(sch: q, skb);
3809
3810 if (sch_direct_xmit(skb, q, dev, txq, root_lock, validate: true)) {
3811 if (unlikely(contended)) {
3812 spin_unlock(lock: &q->busylock);
3813 contended = false;
3814 }
3815 __qdisc_run(q);
3816 }
3817
3818 qdisc_run_end(qdisc: q);
3819 rc = NET_XMIT_SUCCESS;
3820 } else {
3821 WRITE_ONCE(q->owner, smp_processor_id());
3822 rc = dev_qdisc_enqueue(skb, q, to_free: &to_free, txq);
3823 WRITE_ONCE(q->owner, -1);
3824 if (qdisc_run_begin(qdisc: q)) {
3825 if (unlikely(contended)) {
3826 spin_unlock(lock: &q->busylock);
3827 contended = false;
3828 }
3829 __qdisc_run(q);
3830 qdisc_run_end(qdisc: q);
3831 }
3832 }
3833 spin_unlock(lock: root_lock);
3834 if (unlikely(to_free))
3835 kfree_skb_list_reason(segs: to_free,
3836 reason: tcf_get_drop_reason(skb: to_free));
3837 if (unlikely(contended))
3838 spin_unlock(lock: &q->busylock);
3839 return rc;
3840}
3841
3842#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3843static void skb_update_prio(struct sk_buff *skb)
3844{
3845 const struct netprio_map *map;
3846 const struct sock *sk;
3847 unsigned int prioidx;
3848
3849 if (skb->priority)
3850 return;
3851 map = rcu_dereference_bh(skb->dev->priomap);
3852 if (!map)
3853 return;
3854 sk = skb_to_full_sk(skb);
3855 if (!sk)
3856 return;
3857
3858 prioidx = sock_cgroup_prioidx(skcd: &sk->sk_cgrp_data);
3859
3860 if (prioidx < map->priomap_len)
3861 skb->priority = map->priomap[prioidx];
3862}
3863#else
3864#define skb_update_prio(skb)
3865#endif
3866
3867/**
3868 * dev_loopback_xmit - loop back @skb
3869 * @net: network namespace this loopback is happening in
3870 * @sk: sk needed to be a netfilter okfn
3871 * @skb: buffer to transmit
3872 */
3873int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3874{
3875 skb_reset_mac_header(skb);
3876 __skb_pull(skb, len: skb_network_offset(skb));
3877 skb->pkt_type = PACKET_LOOPBACK;
3878 if (skb->ip_summed == CHECKSUM_NONE)
3879 skb->ip_summed = CHECKSUM_UNNECESSARY;
3880 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3881 skb_dst_force(skb);
3882 netif_rx(skb);
3883 return 0;
3884}
3885EXPORT_SYMBOL(dev_loopback_xmit);
3886
3887#ifdef CONFIG_NET_EGRESS
3888static struct netdev_queue *
3889netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3890{
3891 int qm = skb_get_queue_mapping(skb);
3892
3893 return netdev_get_tx_queue(dev, index: netdev_cap_txqueue(dev, queue_index: qm));
3894}
3895
3896static bool netdev_xmit_txqueue_skipped(void)
3897{
3898 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3899}
3900
3901void netdev_xmit_skip_txqueue(bool skip)
3902{
3903 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3904}
3905EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3906#endif /* CONFIG_NET_EGRESS */
3907
3908#ifdef CONFIG_NET_XGRESS
3909static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3910 enum skb_drop_reason *drop_reason)
3911{
3912 int ret = TC_ACT_UNSPEC;
3913#ifdef CONFIG_NET_CLS_ACT
3914 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3915 struct tcf_result res;
3916
3917 if (!miniq)
3918 return ret;
3919
3920 tc_skb_cb(skb)->mru = 0;
3921 tc_skb_cb(skb)->post_ct = false;
3922 tcf_set_drop_reason(skb, reason: *drop_reason);
3923
3924 mini_qdisc_bstats_cpu_update(miniq, skb);
3925 ret = tcf_classify(skb, block: miniq->block, tp: miniq->filter_list, res: &res, compat_mode: false);
3926 /* Only tcf related quirks below. */
3927 switch (ret) {
3928 case TC_ACT_SHOT:
3929 *drop_reason = tcf_get_drop_reason(skb);
3930 mini_qdisc_qstats_cpu_drop(miniq);
3931 break;
3932 case TC_ACT_OK:
3933 case TC_ACT_RECLASSIFY:
3934 skb->tc_index = TC_H_MIN(res.classid);
3935 break;
3936 }
3937#endif /* CONFIG_NET_CLS_ACT */
3938 return ret;
3939}
3940
3941static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3942
3943void tcx_inc(void)
3944{
3945 static_branch_inc(&tcx_needed_key);
3946}
3947
3948void tcx_dec(void)
3949{
3950 static_branch_dec(&tcx_needed_key);
3951}
3952
3953static __always_inline enum tcx_action_base
3954tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3955 const bool needs_mac)
3956{
3957 const struct bpf_mprog_fp *fp;
3958 const struct bpf_prog *prog;
3959 int ret = TCX_NEXT;
3960
3961 if (needs_mac)
3962 __skb_push(skb, len: skb->mac_len);
3963 bpf_mprog_foreach_prog(entry, fp, prog) {
3964 bpf_compute_data_pointers(skb);
3965 ret = bpf_prog_run(prog, ctx: skb);
3966 if (ret != TCX_NEXT)
3967 break;
3968 }
3969 if (needs_mac)
3970 __skb_pull(skb, len: skb->mac_len);
3971 return tcx_action_code(skb, code: ret);
3972}
3973
3974static __always_inline struct sk_buff *
3975sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3976 struct net_device *orig_dev, bool *another)
3977{
3978 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3979 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3980 int sch_ret;
3981
3982 if (!entry)
3983 return skb;
3984 if (*pt_prev) {
3985 *ret = deliver_skb(skb, pt_prev: *pt_prev, orig_dev);
3986 *pt_prev = NULL;
3987 }
3988
3989 qdisc_skb_cb(skb)->pkt_len = skb->len;
3990 tcx_set_ingress(skb, ingress: true);
3991
3992 if (static_branch_unlikely(&tcx_needed_key)) {
3993 sch_ret = tcx_run(entry, skb, needs_mac: true);
3994 if (sch_ret != TC_ACT_UNSPEC)
3995 goto ingress_verdict;
3996 }
3997 sch_ret = tc_run(entry: tcx_entry(entry), skb, drop_reason: &drop_reason);
3998ingress_verdict:
3999 switch (sch_ret) {
4000 case TC_ACT_REDIRECT:
4001 /* skb_mac_header check was done by BPF, so we can safely
4002 * push the L2 header back before redirecting to another
4003 * netdev.
4004 */
4005 __skb_push(skb, len: skb->mac_len);
4006 if (skb_do_redirect(skb) == -EAGAIN) {
4007 __skb_pull(skb, len: skb->mac_len);
4008 *another = true;
4009 break;
4010 }
4011 *ret = NET_RX_SUCCESS;
4012 return NULL;
4013 case TC_ACT_SHOT:
4014 kfree_skb_reason(skb, reason: drop_reason);
4015 *ret = NET_RX_DROP;
4016 return NULL;
4017 /* used by tc_run */
4018 case TC_ACT_STOLEN:
4019 case TC_ACT_QUEUED:
4020 case TC_ACT_TRAP:
4021 consume_skb(skb);
4022 fallthrough;
4023 case TC_ACT_CONSUMED:
4024 *ret = NET_RX_SUCCESS;
4025 return NULL;
4026 }
4027
4028 return skb;
4029}
4030
4031static __always_inline struct sk_buff *
4032sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4033{
4034 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4035 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4036 int sch_ret;
4037
4038 if (!entry)
4039 return skb;
4040
4041 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4042 * already set by the caller.
4043 */
4044 if (static_branch_unlikely(&tcx_needed_key)) {
4045 sch_ret = tcx_run(entry, skb, needs_mac: false);
4046 if (sch_ret != TC_ACT_UNSPEC)
4047 goto egress_verdict;
4048 }
4049 sch_ret = tc_run(entry: tcx_entry(entry), skb, drop_reason: &drop_reason);
4050egress_verdict:
4051 switch (sch_ret) {
4052 case TC_ACT_REDIRECT:
4053 /* No need to push/pop skb's mac_header here on egress! */
4054 skb_do_redirect(skb);
4055 *ret = NET_XMIT_SUCCESS;
4056 return NULL;
4057 case TC_ACT_SHOT:
4058 kfree_skb_reason(skb, reason: drop_reason);
4059 *ret = NET_XMIT_DROP;
4060 return NULL;
4061 /* used by tc_run */
4062 case TC_ACT_STOLEN:
4063 case TC_ACT_QUEUED:
4064 case TC_ACT_TRAP:
4065 consume_skb(skb);
4066 fallthrough;
4067 case TC_ACT_CONSUMED:
4068 *ret = NET_XMIT_SUCCESS;
4069 return NULL;
4070 }
4071
4072 return skb;
4073}
4074#else
4075static __always_inline struct sk_buff *
4076sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4077 struct net_device *orig_dev, bool *another)
4078{
4079 return skb;
4080}
4081
4082static __always_inline struct sk_buff *
4083sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4084{
4085 return skb;
4086}
4087#endif /* CONFIG_NET_XGRESS */
4088
4089#ifdef CONFIG_XPS
4090static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4091 struct xps_dev_maps *dev_maps, unsigned int tci)
4092{
4093 int tc = netdev_get_prio_tc_map(dev, prio: skb->priority);
4094 struct xps_map *map;
4095 int queue_index = -1;
4096
4097 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4098 return queue_index;
4099
4100 tci *= dev_maps->num_tc;
4101 tci += tc;
4102
4103 map = rcu_dereference(dev_maps->attr_map[tci]);
4104 if (map) {
4105 if (map->len == 1)
4106 queue_index = map->queues[0];
4107 else
4108 queue_index = map->queues[reciprocal_scale(
4109 val: skb_get_hash(skb), ep_ro: map->len)];
4110 if (unlikely(queue_index >= dev->real_num_tx_queues))
4111 queue_index = -1;
4112 }
4113 return queue_index;
4114}
4115#endif
4116
4117static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4118 struct sk_buff *skb)
4119{
4120#ifdef CONFIG_XPS
4121 struct xps_dev_maps *dev_maps;
4122 struct sock *sk = skb->sk;
4123 int queue_index = -1;
4124
4125 if (!static_key_false(key: &xps_needed))
4126 return -1;
4127
4128 rcu_read_lock();
4129 if (!static_key_false(key: &xps_rxqs_needed))
4130 goto get_cpus_map;
4131
4132 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4133 if (dev_maps) {
4134 int tci = sk_rx_queue_get(sk);
4135
4136 if (tci >= 0)
4137 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4138 tci);
4139 }
4140
4141get_cpus_map:
4142 if (queue_index < 0) {
4143 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4144 if (dev_maps) {
4145 unsigned int tci = skb->sender_cpu - 1;
4146
4147 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4148 tci);
4149 }
4150 }
4151 rcu_read_unlock();
4152
4153 return queue_index;
4154#else
4155 return -1;
4156#endif
4157}
4158
4159u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4160 struct net_device *sb_dev)
4161{
4162 return 0;
4163}
4164EXPORT_SYMBOL(dev_pick_tx_zero);
4165
4166u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4167 struct net_device *sb_dev)
4168{
4169 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4170}
4171EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4172
4173u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4174 struct net_device *sb_dev)
4175{
4176 struct sock *sk = skb->sk;
4177 int queue_index = sk_tx_queue_get(sk);
4178
4179 sb_dev = sb_dev ? : dev;
4180
4181 if (queue_index < 0 || skb->ooo_okay ||
4182 queue_index >= dev->real_num_tx_queues) {
4183 int new_index = get_xps_queue(dev, sb_dev, skb);
4184
4185 if (new_index < 0)
4186 new_index = skb_tx_hash(dev, sb_dev, skb);
4187
4188 if (queue_index != new_index && sk &&
4189 sk_fullsock(sk) &&
4190 rcu_access_pointer(sk->sk_dst_cache))
4191 sk_tx_queue_set(sk, tx_queue: new_index);
4192
4193 queue_index = new_index;
4194 }
4195
4196 return queue_index;
4197}
4198EXPORT_SYMBOL(netdev_pick_tx);
4199
4200struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4201 struct sk_buff *skb,
4202 struct net_device *sb_dev)
4203{
4204 int queue_index = 0;
4205
4206#ifdef CONFIG_XPS
4207 u32 sender_cpu = skb->sender_cpu - 1;
4208
4209 if (sender_cpu >= (u32)NR_CPUS)
4210 skb->sender_cpu = raw_smp_processor_id() + 1;
4211#endif
4212
4213 if (dev->real_num_tx_queues != 1) {
4214 const struct net_device_ops *ops = dev->netdev_ops;
4215
4216 if (ops->ndo_select_queue)
4217 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4218 else
4219 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4220
4221 queue_index = netdev_cap_txqueue(dev, queue_index);
4222 }
4223
4224 skb_set_queue_mapping(skb, queue_mapping: queue_index);
4225 return netdev_get_tx_queue(dev, index: queue_index);
4226}
4227
4228/**
4229 * __dev_queue_xmit() - transmit a buffer
4230 * @skb: buffer to transmit
4231 * @sb_dev: suboordinate device used for L2 forwarding offload
4232 *
4233 * Queue a buffer for transmission to a network device. The caller must
4234 * have set the device and priority and built the buffer before calling
4235 * this function. The function can be called from an interrupt.
4236 *
4237 * When calling this method, interrupts MUST be enabled. This is because
4238 * the BH enable code must have IRQs enabled so that it will not deadlock.
4239 *
4240 * Regardless of the return value, the skb is consumed, so it is currently
4241 * difficult to retry a send to this method. (You can bump the ref count
4242 * before sending to hold a reference for retry if you are careful.)
4243 *
4244 * Return:
4245 * * 0 - buffer successfully transmitted
4246 * * positive qdisc return code - NET_XMIT_DROP etc.
4247 * * negative errno - other errors
4248 */
4249int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4250{
4251 struct net_device *dev = skb->dev;
4252 struct netdev_queue *txq = NULL;
4253 struct Qdisc *q;
4254 int rc = -ENOMEM;
4255 bool again = false;
4256
4257 skb_reset_mac_header(skb);
4258 skb_assert_len(skb);
4259
4260 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4261 __skb_tstamp_tx(orig_skb: skb, NULL, NULL, sk: skb->sk, tstype: SCM_TSTAMP_SCHED);
4262
4263 /* Disable soft irqs for various locks below. Also
4264 * stops preemption for RCU.
4265 */
4266 rcu_read_lock_bh();
4267
4268 skb_update_prio(skb);
4269
4270 qdisc_pkt_len_init(skb);
4271 tcx_set_ingress(skb, ingress: false);
4272#ifdef CONFIG_NET_EGRESS
4273 if (static_branch_unlikely(&egress_needed_key)) {
4274 if (nf_hook_egress_active()) {
4275 skb = nf_hook_egress(skb, rc: &rc, dev);
4276 if (!skb)
4277 goto out;
4278 }
4279
4280 netdev_xmit_skip_txqueue(false);
4281
4282 nf_skip_egress(skb, skip: true);
4283 skb = sch_handle_egress(skb, ret: &rc, dev);
4284 if (!skb)
4285 goto out;
4286 nf_skip_egress(skb, skip: false);
4287
4288 if (netdev_xmit_txqueue_skipped())
4289 txq = netdev_tx_queue_mapping(dev, skb);
4290 }
4291#endif
4292 /* If device/qdisc don't need skb->dst, release it right now while
4293 * its hot in this cpu cache.
4294 */
4295 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4296 skb_dst_drop(skb);
4297 else
4298 skb_dst_force(skb);
4299
4300 if (!txq)
4301 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4302
4303 q = rcu_dereference_bh(txq->qdisc);
4304
4305 trace_net_dev_queue(skb);
4306 if (q->enqueue) {
4307 rc = __dev_xmit_skb(skb, q, dev, txq);
4308 goto out;
4309 }
4310
4311 /* The device has no queue. Common case for software devices:
4312 * loopback, all the sorts of tunnels...
4313
4314 * Really, it is unlikely that netif_tx_lock protection is necessary
4315 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4316 * counters.)
4317 * However, it is possible, that they rely on protection
4318 * made by us here.
4319
4320 * Check this and shot the lock. It is not prone from deadlocks.
4321 *Either shot noqueue qdisc, it is even simpler 8)
4322 */
4323 if (dev->flags & IFF_UP) {
4324 int cpu = smp_processor_id(); /* ok because BHs are off */
4325
4326 /* Other cpus might concurrently change txq->xmit_lock_owner
4327 * to -1 or to their cpu id, but not to our id.
4328 */
4329 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4330 if (dev_xmit_recursion())
4331 goto recursion_alert;
4332
4333 skb = validate_xmit_skb(skb, dev, again: &again);
4334 if (!skb)
4335 goto out;
4336
4337 HARD_TX_LOCK(dev, txq, cpu);
4338
4339 if (!netif_xmit_stopped(dev_queue: txq)) {
4340 dev_xmit_recursion_inc();
4341 skb = dev_hard_start_xmit(first: skb, dev, txq, ret: &rc);
4342 dev_xmit_recursion_dec();
4343 if (dev_xmit_complete(rc)) {
4344 HARD_TX_UNLOCK(dev, txq);
4345 goto out;
4346 }
4347 }
4348 HARD_TX_UNLOCK(dev, txq);
4349 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4350 dev->name);
4351 } else {
4352 /* Recursion is detected! It is possible,
4353 * unfortunately
4354 */
4355recursion_alert:
4356 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4357 dev->name);
4358 }
4359 }
4360
4361 rc = -ENETDOWN;
4362 rcu_read_unlock_bh();
4363
4364 dev_core_stats_tx_dropped_inc(dev);
4365 kfree_skb_list(segs: skb);
4366 return rc;
4367out:
4368 rcu_read_unlock_bh();
4369 return rc;
4370}
4371EXPORT_SYMBOL(__dev_queue_xmit);
4372
4373int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4374{
4375 struct net_device *dev = skb->dev;
4376 struct sk_buff *orig_skb = skb;
4377 struct netdev_queue *txq;
4378 int ret = NETDEV_TX_BUSY;
4379 bool again = false;
4380
4381 if (unlikely(!netif_running(dev) ||
4382 !netif_carrier_ok(dev)))
4383 goto drop;
4384
4385 skb = validate_xmit_skb_list(skb, dev, &again);
4386 if (skb != orig_skb)
4387 goto drop;
4388
4389 skb_set_queue_mapping(skb, queue_mapping: queue_id);
4390 txq = skb_get_tx_queue(dev, skb);
4391
4392 local_bh_disable();
4393
4394 dev_xmit_recursion_inc();
4395 HARD_TX_LOCK(dev, txq, smp_processor_id());
4396 if (!netif_xmit_frozen_or_drv_stopped(dev_queue: txq))
4397 ret = netdev_start_xmit(skb, dev, txq, more: false);
4398 HARD_TX_UNLOCK(dev, txq);
4399 dev_xmit_recursion_dec();
4400
4401 local_bh_enable();
4402 return ret;
4403drop:
4404 dev_core_stats_tx_dropped_inc(dev);
4405 kfree_skb_list(segs: skb);
4406 return NET_XMIT_DROP;
4407}
4408EXPORT_SYMBOL(__dev_direct_xmit);
4409
4410/*************************************************************************
4411 * Receiver routines
4412 *************************************************************************/
4413
4414unsigned int sysctl_skb_defer_max __read_mostly = 64;
4415int weight_p __read_mostly = 64; /* old backlog weight */
4416int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4417int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4418
4419/* Called with irq disabled */
4420static inline void ____napi_schedule(struct softnet_data *sd,
4421 struct napi_struct *napi)
4422{
4423 struct task_struct *thread;
4424
4425 lockdep_assert_irqs_disabled();
4426
4427 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4428 /* Paired with smp_mb__before_atomic() in
4429 * napi_enable()/dev_set_threaded().
4430 * Use READ_ONCE() to guarantee a complete
4431 * read on napi->thread. Only call
4432 * wake_up_process() when it's not NULL.
4433 */
4434 thread = READ_ONCE(napi->thread);
4435 if (thread) {
4436 /* Avoid doing set_bit() if the thread is in
4437 * INTERRUPTIBLE state, cause napi_thread_wait()
4438 * makes sure to proceed with napi polling
4439 * if the thread is explicitly woken from here.
4440 */
4441 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4442 set_bit(nr: NAPI_STATE_SCHED_THREADED, addr: &napi->state);
4443 wake_up_process(tsk: thread);
4444 return;
4445 }
4446 }
4447
4448 list_add_tail(new: &napi->poll_list, head: &sd->poll_list);
4449 WRITE_ONCE(napi->list_owner, smp_processor_id());
4450 /* If not called from net_rx_action()
4451 * we have to raise NET_RX_SOFTIRQ.
4452 */
4453 if (!sd->in_net_rx_action)
4454 __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ);
4455}
4456
4457#ifdef CONFIG_RPS
4458
4459struct static_key_false rps_needed __read_mostly;
4460EXPORT_SYMBOL(rps_needed);
4461struct static_key_false rfs_needed __read_mostly;
4462EXPORT_SYMBOL(rfs_needed);
4463
4464static struct rps_dev_flow *
4465set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4466 struct rps_dev_flow *rflow, u16 next_cpu)
4467{
4468 if (next_cpu < nr_cpu_ids) {
4469#ifdef CONFIG_RFS_ACCEL
4470 struct netdev_rx_queue *rxqueue;
4471 struct rps_dev_flow_table *flow_table;
4472 struct rps_dev_flow *old_rflow;
4473 u32 flow_id;
4474 u16 rxq_index;
4475 int rc;
4476
4477 /* Should we steer this flow to a different hardware queue? */
4478 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4479 !(dev->features & NETIF_F_NTUPLE))
4480 goto out;
4481 rxq_index = cpu_rmap_lookup_index(rmap: dev->rx_cpu_rmap, cpu: next_cpu);
4482 if (rxq_index == skb_get_rx_queue(skb))
4483 goto out;
4484
4485 rxqueue = dev->_rx + rxq_index;
4486 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4487 if (!flow_table)
4488 goto out;
4489 flow_id = skb_get_hash(skb) & flow_table->mask;
4490 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4491 rxq_index, flow_id);
4492 if (rc < 0)
4493 goto out;
4494 old_rflow = rflow;
4495 rflow = &flow_table->flows[flow_id];
4496 rflow->filter = rc;
4497 if (old_rflow->filter == rflow->filter)
4498 old_rflow->filter = RPS_NO_FILTER;
4499 out:
4500#endif
4501 rflow->last_qtail =
4502 per_cpu(softnet_data, next_cpu).input_queue_head;
4503 }
4504
4505 rflow->cpu = next_cpu;
4506 return rflow;
4507}
4508
4509/*
4510 * get_rps_cpu is called from netif_receive_skb and returns the target
4511 * CPU from the RPS map of the receiving queue for a given skb.
4512 * rcu_read_lock must be held on entry.
4513 */
4514static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4515 struct rps_dev_flow **rflowp)
4516{
4517 const struct rps_sock_flow_table *sock_flow_table;
4518 struct netdev_rx_queue *rxqueue = dev->_rx;
4519 struct rps_dev_flow_table *flow_table;
4520 struct rps_map *map;
4521 int cpu = -1;
4522 u32 tcpu;
4523 u32 hash;
4524
4525 if (skb_rx_queue_recorded(skb)) {
4526 u16 index = skb_get_rx_queue(skb);
4527
4528 if (unlikely(index >= dev->real_num_rx_queues)) {
4529 WARN_ONCE(dev->real_num_rx_queues > 1,
4530 "%s received packet on queue %u, but number "
4531 "of RX queues is %u\n",
4532 dev->name, index, dev->real_num_rx_queues);
4533 goto done;
4534 }
4535 rxqueue += index;
4536 }
4537
4538 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4539
4540 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4541 map = rcu_dereference(rxqueue->rps_map);
4542 if (!flow_table && !map)
4543 goto done;
4544
4545 skb_reset_network_header(skb);
4546 hash = skb_get_hash(skb);
4547 if (!hash)
4548 goto done;
4549
4550 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4551 if (flow_table && sock_flow_table) {
4552 struct rps_dev_flow *rflow;
4553 u32 next_cpu;
4554 u32 ident;
4555
4556 /* First check into global flow table if there is a match.
4557 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4558 */
4559 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4560 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4561 goto try_rps;
4562
4563 next_cpu = ident & net_hotdata.rps_cpu_mask;
4564
4565 /* OK, now we know there is a match,
4566 * we can look at the local (per receive queue) flow table
4567 */
4568 rflow = &flow_table->flows[hash & flow_table->mask];
4569 tcpu = rflow->cpu;
4570
4571 /*
4572 * If the desired CPU (where last recvmsg was done) is
4573 * different from current CPU (one in the rx-queue flow
4574 * table entry), switch if one of the following holds:
4575 * - Current CPU is unset (>= nr_cpu_ids).
4576 * - Current CPU is offline.
4577 * - The current CPU's queue tail has advanced beyond the
4578 * last packet that was enqueued using this table entry.
4579 * This guarantees that all previous packets for the flow
4580 * have been dequeued, thus preserving in order delivery.
4581 */
4582 if (unlikely(tcpu != next_cpu) &&
4583 (tcpu >= nr_cpu_ids || !cpu_online(cpu: tcpu) ||
4584 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4585 rflow->last_qtail)) >= 0)) {
4586 tcpu = next_cpu;
4587 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4588 }
4589
4590 if (tcpu < nr_cpu_ids && cpu_online(cpu: tcpu)) {
4591 *rflowp = rflow;
4592 cpu = tcpu;
4593 goto done;
4594 }
4595 }
4596
4597try_rps:
4598
4599 if (map) {
4600 tcpu = map->cpus[reciprocal_scale(val: hash, ep_ro: map->len)];
4601 if (cpu_online(cpu: tcpu)) {
4602 cpu = tcpu;
4603 goto done;
4604 }
4605 }
4606
4607done:
4608 return cpu;
4609}
4610
4611#ifdef CONFIG_RFS_ACCEL
4612
4613/**
4614 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4615 * @dev: Device on which the filter was set
4616 * @rxq_index: RX queue index
4617 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4618 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4619 *
4620 * Drivers that implement ndo_rx_flow_steer() should periodically call
4621 * this function for each installed filter and remove the filters for
4622 * which it returns %true.
4623 */
4624bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4625 u32 flow_id, u16 filter_id)
4626{
4627 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4628 struct rps_dev_flow_table *flow_table;
4629 struct rps_dev_flow *rflow;
4630 bool expire = true;
4631 unsigned int cpu;
4632
4633 rcu_read_lock();
4634 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4635 if (flow_table && flow_id <= flow_table->mask) {
4636 rflow = &flow_table->flows[flow_id];
4637 cpu = READ_ONCE(rflow->cpu);
4638 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4639 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4640 rflow->last_qtail) <
4641 (int)(10 * flow_table->mask)))
4642 expire = false;
4643 }
4644 rcu_read_unlock();
4645 return expire;
4646}
4647EXPORT_SYMBOL(rps_may_expire_flow);
4648
4649#endif /* CONFIG_RFS_ACCEL */
4650
4651/* Called from hardirq (IPI) context */
4652static void rps_trigger_softirq(void *data)
4653{
4654 struct softnet_data *sd = data;
4655
4656 ____napi_schedule(sd, napi: &sd->backlog);
4657 sd->received_rps++;
4658}
4659
4660#endif /* CONFIG_RPS */
4661
4662/* Called from hardirq (IPI) context */
4663static void trigger_rx_softirq(void *data)
4664{
4665 struct softnet_data *sd = data;
4666
4667 __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ);
4668 smp_store_release(&sd->defer_ipi_scheduled, 0);
4669}
4670
4671/*
4672 * After we queued a packet into sd->input_pkt_queue,
4673 * we need to make sure this queue is serviced soon.
4674 *
4675 * - If this is another cpu queue, link it to our rps_ipi_list,
4676 * and make sure we will process rps_ipi_list from net_rx_action().
4677 *
4678 * - If this is our own queue, NAPI schedule our backlog.
4679 * Note that this also raises NET_RX_SOFTIRQ.
4680 */
4681static void napi_schedule_rps(struct softnet_data *sd)
4682{
4683 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4684
4685#ifdef CONFIG_RPS
4686 if (sd != mysd) {
4687 sd->rps_ipi_next = mysd->rps_ipi_list;
4688 mysd->rps_ipi_list = sd;
4689
4690 /* If not called from net_rx_action() or napi_threaded_poll()
4691 * we have to raise NET_RX_SOFTIRQ.
4692 */
4693 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4694 __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ);
4695 return;
4696 }
4697#endif /* CONFIG_RPS */
4698 __napi_schedule_irqoff(n: &mysd->backlog);
4699}
4700
4701#ifdef CONFIG_NET_FLOW_LIMIT
4702int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4703#endif
4704
4705static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4706{
4707#ifdef CONFIG_NET_FLOW_LIMIT
4708 struct sd_flow_limit *fl;
4709 struct softnet_data *sd;
4710 unsigned int old_flow, new_flow;
4711
4712 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4713 return false;
4714
4715 sd = this_cpu_ptr(&softnet_data);
4716
4717 rcu_read_lock();
4718 fl = rcu_dereference(sd->flow_limit);
4719 if (fl) {
4720 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4721 old_flow = fl->history[fl->history_head];
4722 fl->history[fl->history_head] = new_flow;
4723
4724 fl->history_head++;
4725 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4726
4727 if (likely(fl->buckets[old_flow]))
4728 fl->buckets[old_flow]--;
4729
4730 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4731 fl->count++;
4732 rcu_read_unlock();
4733 return true;
4734 }
4735 }
4736 rcu_read_unlock();
4737#endif
4738 return false;
4739}
4740
4741/*
4742 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4743 * queue (may be a remote CPU queue).
4744 */
4745static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4746 unsigned int *qtail)
4747{
4748 enum skb_drop_reason reason;
4749 struct softnet_data *sd;
4750 unsigned long flags;
4751 unsigned int qlen;
4752
4753 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4754 sd = &per_cpu(softnet_data, cpu);
4755
4756 rps_lock_irqsave(sd, flags: &flags);
4757 if (!netif_running(dev: skb->dev))
4758 goto drop;
4759 qlen = skb_queue_len(list_: &sd->input_pkt_queue);
4760 if (qlen <= READ_ONCE(net_hotdata.max_backlog) &&
4761 !skb_flow_limit(skb, qlen)) {
4762 if (qlen) {
4763enqueue:
4764 __skb_queue_tail(list: &sd->input_pkt_queue, newsk: skb);
4765 input_queue_tail_incr_save(sd, qtail);
4766 rps_unlock_irq_restore(sd, flags: &flags);
4767 return NET_RX_SUCCESS;
4768 }
4769
4770 /* Schedule NAPI for backlog device
4771 * We can use non atomic operation since we own the queue lock
4772 */
4773 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4774 napi_schedule_rps(sd);
4775 goto enqueue;
4776 }
4777 reason = SKB_DROP_REASON_CPU_BACKLOG;
4778
4779drop:
4780 sd->dropped++;
4781 rps_unlock_irq_restore(sd, flags: &flags);
4782
4783 dev_core_stats_rx_dropped_inc(dev: skb->dev);
4784 kfree_skb_reason(skb, reason);
4785 return NET_RX_DROP;
4786}
4787
4788static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4789{
4790 struct net_device *dev = skb->dev;
4791 struct netdev_rx_queue *rxqueue;
4792
4793 rxqueue = dev->_rx;
4794
4795 if (skb_rx_queue_recorded(skb)) {
4796 u16 index = skb_get_rx_queue(skb);
4797
4798 if (unlikely(index >= dev->real_num_rx_queues)) {
4799 WARN_ONCE(dev->real_num_rx_queues > 1,
4800 "%s received packet on queue %u, but number "
4801 "of RX queues is %u\n",
4802 dev->name, index, dev->real_num_rx_queues);
4803
4804 return rxqueue; /* Return first rxqueue */
4805 }
4806 rxqueue += index;
4807 }
4808 return rxqueue;
4809}
4810
4811u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4812 struct bpf_prog *xdp_prog)
4813{
4814 void *orig_data, *orig_data_end, *hard_start;
4815 struct netdev_rx_queue *rxqueue;
4816 bool orig_bcast, orig_host;
4817 u32 mac_len, frame_sz;
4818 __be16 orig_eth_type;
4819 struct ethhdr *eth;
4820 u32 metalen, act;
4821 int off;
4822
4823 /* The XDP program wants to see the packet starting at the MAC
4824 * header.
4825 */
4826 mac_len = skb->data - skb_mac_header(skb);
4827 hard_start = skb->data - skb_headroom(skb);
4828
4829 /* SKB "head" area always have tailroom for skb_shared_info */
4830 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4831 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4832
4833 rxqueue = netif_get_rxqueue(skb);
4834 xdp_init_buff(xdp, frame_sz, rxq: &rxqueue->xdp_rxq);
4835 xdp_prepare_buff(xdp, hard_start, headroom: skb_headroom(skb) - mac_len,
4836 data_len: skb_headlen(skb) + mac_len, meta_valid: true);
4837 if (skb_is_nonlinear(skb)) {
4838 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4839 xdp_buff_set_frags_flag(xdp);
4840 } else {
4841 xdp_buff_clear_frags_flag(xdp);
4842 }
4843
4844 orig_data_end = xdp->data_end;
4845 orig_data = xdp->data;
4846 eth = (struct ethhdr *)xdp->data;
4847 orig_host = ether_addr_equal_64bits(addr1: eth->h_dest, addr2: skb->dev->dev_addr);
4848 orig_bcast = is_multicast_ether_addr_64bits(addr: eth->h_dest);
4849 orig_eth_type = eth->h_proto;
4850
4851 act = bpf_prog_run_xdp(prog: xdp_prog, xdp);
4852
4853 /* check if bpf_xdp_adjust_head was used */
4854 off = xdp->data - orig_data;
4855 if (off) {
4856 if (off > 0)
4857 __skb_pull(skb, len: off);
4858 else if (off < 0)
4859 __skb_push(skb, len: -off);
4860
4861 skb->mac_header += off;
4862 skb_reset_network_header(skb);
4863 }
4864
4865 /* check if bpf_xdp_adjust_tail was used */
4866 off = xdp->data_end - orig_data_end;
4867 if (off != 0) {
4868 skb_set_tail_pointer(skb, offset: xdp->data_end - xdp->data);
4869 skb->len += off; /* positive on grow, negative on shrink */
4870 }
4871
4872 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4873 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4874 */
4875 if (xdp_buff_has_frags(xdp))
4876 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4877 else
4878 skb->data_len = 0;
4879
4880 /* check if XDP changed eth hdr such SKB needs update */
4881 eth = (struct ethhdr *)xdp->data;
4882 if ((orig_eth_type != eth->h_proto) ||
4883 (orig_host != ether_addr_equal_64bits(addr1: eth->h_dest,
4884 addr2: skb->dev->dev_addr)) ||
4885 (orig_bcast != is_multicast_ether_addr_64bits(addr: eth->h_dest))) {
4886 __skb_push(skb, ETH_HLEN);
4887 skb->pkt_type = PACKET_HOST;
4888 skb->protocol = eth_type_trans(skb, dev: skb->dev);
4889 }
4890
4891 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4892 * before calling us again on redirect path. We do not call do_redirect
4893 * as we leave that up to the caller.
4894 *
4895 * Caller is responsible for managing lifetime of skb (i.e. calling
4896 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4897 */
4898 switch (act) {
4899 case XDP_REDIRECT:
4900 case XDP_TX:
4901 __skb_push(skb, len: mac_len);
4902 break;
4903 case XDP_PASS:
4904 metalen = xdp->data - xdp->data_meta;
4905 if (metalen)
4906 skb_metadata_set(skb, meta_len: metalen);
4907 break;
4908 }
4909
4910 return act;
4911}
4912
4913static int
4914netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
4915{
4916 struct sk_buff *skb = *pskb;
4917 int err, hroom, troom;
4918
4919 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
4920 return 0;
4921
4922 /* In case we have to go down the path and also linearize,
4923 * then lets do the pskb_expand_head() work just once here.
4924 */
4925 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4926 troom = skb->tail + skb->data_len - skb->end;
4927 err = pskb_expand_head(skb,
4928 nhead: hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4929 ntail: troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
4930 if (err)
4931 return err;
4932
4933 return skb_linearize(skb);
4934}
4935
4936static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
4937 struct xdp_buff *xdp,
4938 struct bpf_prog *xdp_prog)
4939{
4940 struct sk_buff *skb = *pskb;
4941 u32 mac_len, act = XDP_DROP;
4942
4943 /* Reinjected packets coming from act_mirred or similar should
4944 * not get XDP generic processing.
4945 */
4946 if (skb_is_redirected(skb))
4947 return XDP_PASS;
4948
4949 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
4950 * bytes. This is the guarantee that also native XDP provides,
4951 * thus we need to do it here as well.
4952 */
4953 mac_len = skb->data - skb_mac_header(skb);
4954 __skb_push(skb, len: mac_len);
4955
4956 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4957 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4958 if (netif_skb_check_for_xdp(pskb, prog: xdp_prog))
4959 goto do_drop;
4960 }
4961
4962 __skb_pull(skb: *pskb, len: mac_len);
4963
4964 act = bpf_prog_run_generic_xdp(skb: *pskb, xdp, xdp_prog);
4965 switch (act) {
4966 case XDP_REDIRECT:
4967 case XDP_TX:
4968 case XDP_PASS:
4969 break;
4970 default:
4971 bpf_warn_invalid_xdp_action(dev: (*pskb)->dev, prog: xdp_prog, act);
4972 fallthrough;
4973 case XDP_ABORTED:
4974 trace_xdp_exception(dev: (*pskb)->dev, xdp: xdp_prog, act);
4975 fallthrough;
4976 case XDP_DROP:
4977 do_drop:
4978 kfree_skb(skb: *pskb);
4979 break;
4980 }
4981
4982 return act;
4983}
4984
4985/* When doing generic XDP we have to bypass the qdisc layer and the
4986 * network taps in order to match in-driver-XDP behavior. This also means
4987 * that XDP packets are able to starve other packets going through a qdisc,
4988 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4989 * queues, so they do not have this starvation issue.
4990 */
4991void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4992{
4993 struct net_device *dev = skb->dev;
4994 struct netdev_queue *txq;
4995 bool free_skb = true;
4996 int cpu, rc;
4997
4998 txq = netdev_core_pick_tx(dev, skb, NULL);
4999 cpu = smp_processor_id();
5000 HARD_TX_LOCK(dev, txq, cpu);
5001 if (!netif_xmit_frozen_or_drv_stopped(dev_queue: txq)) {
5002 rc = netdev_start_xmit(skb, dev, txq, more: 0);
5003 if (dev_xmit_complete(rc))
5004 free_skb = false;
5005 }
5006 HARD_TX_UNLOCK(dev, txq);
5007 if (free_skb) {
5008 trace_xdp_exception(dev, xdp: xdp_prog, act: XDP_TX);
5009 dev_core_stats_tx_dropped_inc(dev);
5010 kfree_skb(skb);
5011 }
5012}
5013
5014static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5015
5016int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5017{
5018 if (xdp_prog) {
5019 struct xdp_buff xdp;
5020 u32 act;
5021 int err;
5022
5023 act = netif_receive_generic_xdp(pskb, xdp: &xdp, xdp_prog);
5024 if (act != XDP_PASS) {
5025 switch (act) {
5026 case XDP_REDIRECT:
5027 err = xdp_do_generic_redirect(dev: (*pskb)->dev, skb: *pskb,
5028 xdp: &xdp, prog: xdp_prog);
5029 if (err)
5030 goto out_redir;
5031 break;
5032 case XDP_TX:
5033 generic_xdp_tx(skb: *pskb, xdp_prog);
5034 break;
5035 }
5036 return XDP_DROP;
5037 }
5038 }
5039 return XDP_PASS;
5040out_redir:
5041 kfree_skb_reason(skb: *pskb, reason: SKB_DROP_REASON_XDP);
5042 return XDP_DROP;
5043}
5044EXPORT_SYMBOL_GPL(do_xdp_generic);
5045
5046static int netif_rx_internal(struct sk_buff *skb)
5047{
5048 int ret;
5049
5050 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5051
5052 trace_netif_rx(skb);
5053
5054#ifdef CONFIG_RPS
5055 if (static_branch_unlikely(&rps_needed)) {
5056 struct rps_dev_flow voidflow, *rflow = &voidflow;
5057 int cpu;
5058
5059 rcu_read_lock();
5060
5061 cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow);
5062 if (cpu < 0)
5063 cpu = smp_processor_id();
5064
5065 ret = enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail);
5066
5067 rcu_read_unlock();
5068 } else
5069#endif
5070 {
5071 unsigned int qtail;
5072
5073 ret = enqueue_to_backlog(skb, smp_processor_id(), qtail: &qtail);
5074 }
5075 return ret;
5076}
5077
5078/**
5079 * __netif_rx - Slightly optimized version of netif_rx
5080 * @skb: buffer to post
5081 *
5082 * This behaves as netif_rx except that it does not disable bottom halves.
5083 * As a result this function may only be invoked from the interrupt context
5084 * (either hard or soft interrupt).
5085 */
5086int __netif_rx(struct sk_buff *skb)
5087{
5088 int ret;
5089
5090 lockdep_assert_once(hardirq_count() | softirq_count());
5091
5092 trace_netif_rx_entry(skb);
5093 ret = netif_rx_internal(skb);
5094 trace_netif_rx_exit(ret);
5095 return ret;
5096}
5097EXPORT_SYMBOL(__netif_rx);
5098
5099/**
5100 * netif_rx - post buffer to the network code
5101 * @skb: buffer to post
5102 *
5103 * This function receives a packet from a device driver and queues it for
5104 * the upper (protocol) levels to process via the backlog NAPI device. It
5105 * always succeeds. The buffer may be dropped during processing for
5106 * congestion control or by the protocol layers.
5107 * The network buffer is passed via the backlog NAPI device. Modern NIC
5108 * driver should use NAPI and GRO.
5109 * This function can used from interrupt and from process context. The
5110 * caller from process context must not disable interrupts before invoking
5111 * this function.
5112 *
5113 * return values:
5114 * NET_RX_SUCCESS (no congestion)
5115 * NET_RX_DROP (packet was dropped)
5116 *
5117 */
5118int netif_rx(struct sk_buff *skb)
5119{
5120 bool need_bh_off = !(hardirq_count() | softirq_count());
5121 int ret;
5122
5123 if (need_bh_off)
5124 local_bh_disable();
5125 trace_netif_rx_entry(skb);
5126 ret = netif_rx_internal(skb);
5127 trace_netif_rx_exit(ret);
5128 if (need_bh_off)
5129 local_bh_enable();
5130 return ret;
5131}
5132EXPORT_SYMBOL(netif_rx);
5133
5134static __latent_entropy void net_tx_action(struct softirq_action *h)
5135{
5136 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5137
5138 if (sd->completion_queue) {
5139 struct sk_buff *clist;
5140
5141 local_irq_disable();
5142 clist = sd->completion_queue;
5143 sd->completion_queue = NULL;
5144 local_irq_enable();
5145
5146 while (clist) {
5147 struct sk_buff *skb = clist;
5148
5149 clist = clist->next;
5150
5151 WARN_ON(refcount_read(&skb->users));
5152 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5153 trace_consume_skb(skb, location: net_tx_action);
5154 else
5155 trace_kfree_skb(skb, location: net_tx_action,
5156 reason: get_kfree_skb_cb(skb)->reason);
5157
5158 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5159 __kfree_skb(skb);
5160 else
5161 __napi_kfree_skb(skb,
5162 reason: get_kfree_skb_cb(skb)->reason);
5163 }
5164 }
5165
5166 if (sd->output_queue) {
5167 struct Qdisc *head;
5168
5169 local_irq_disable();
5170 head = sd->output_queue;
5171 sd->output_queue = NULL;
5172 sd->output_queue_tailp = &sd->output_queue;
5173 local_irq_enable();
5174
5175 rcu_read_lock();
5176
5177 while (head) {
5178 struct Qdisc *q = head;
5179 spinlock_t *root_lock = NULL;
5180
5181 head = head->next_sched;
5182
5183 /* We need to make sure head->next_sched is read
5184 * before clearing __QDISC_STATE_SCHED
5185 */
5186 smp_mb__before_atomic();
5187
5188 if (!(q->flags & TCQ_F_NOLOCK)) {
5189 root_lock = qdisc_lock(qdisc: q);
5190 spin_lock(lock: root_lock);
5191 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5192 &q->state))) {
5193 /* There is a synchronize_net() between
5194 * STATE_DEACTIVATED flag being set and
5195 * qdisc_reset()/some_qdisc_is_busy() in
5196 * dev_deactivate(), so we can safely bail out
5197 * early here to avoid data race between
5198 * qdisc_deactivate() and some_qdisc_is_busy()
5199 * for lockless qdisc.
5200 */
5201 clear_bit(nr: __QDISC_STATE_SCHED, addr: &q->state);
5202 continue;
5203 }
5204
5205 clear_bit(nr: __QDISC_STATE_SCHED, addr: &q->state);
5206 qdisc_run(q);
5207 if (root_lock)
5208 spin_unlock(lock: root_lock);
5209 }
5210
5211 rcu_read_unlock();
5212 }
5213
5214 xfrm_dev_backlog(sd);
5215}
5216
5217#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5218/* This hook is defined here for ATM LANE */
5219int (*br_fdb_test_addr_hook)(struct net_device *dev,
5220 unsigned char *addr) __read_mostly;
5221EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5222#endif
5223
5224/**
5225 * netdev_is_rx_handler_busy - check if receive handler is registered
5226 * @dev: device to check
5227 *
5228 * Check if a receive handler is already registered for a given device.
5229 * Return true if there one.
5230 *
5231 * The caller must hold the rtnl_mutex.
5232 */
5233bool netdev_is_rx_handler_busy(struct net_device *dev)
5234{
5235 ASSERT_RTNL();
5236 return dev && rtnl_dereference(dev->rx_handler);
5237}
5238EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5239
5240/**
5241 * netdev_rx_handler_register - register receive handler
5242 * @dev: device to register a handler for
5243 * @rx_handler: receive handler to register
5244 * @rx_handler_data: data pointer that is used by rx handler
5245 *
5246 * Register a receive handler for a device. This handler will then be
5247 * called from __netif_receive_skb. A negative errno code is returned
5248 * on a failure.
5249 *
5250 * The caller must hold the rtnl_mutex.
5251 *
5252 * For a general description of rx_handler, see enum rx_handler_result.
5253 */
5254int netdev_rx_handler_register(struct net_device *dev,
5255 rx_handler_func_t *rx_handler,
5256 void *rx_handler_data)
5257{
5258 if (netdev_is_rx_handler_busy(dev))
5259 return -EBUSY;
5260
5261 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5262 return -EINVAL;
5263
5264 /* Note: rx_handler_data must be set before rx_handler */
5265 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5266 rcu_assign_pointer(dev->rx_handler, rx_handler);
5267
5268 return 0;
5269}
5270EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5271
5272/**
5273 * netdev_rx_handler_unregister - unregister receive handler
5274 * @dev: device to unregister a handler from
5275 *
5276 * Unregister a receive handler from a device.
5277 *
5278 * The caller must hold the rtnl_mutex.
5279 */
5280void netdev_rx_handler_unregister(struct net_device *dev)
5281{
5282
5283 ASSERT_RTNL();
5284 RCU_INIT_POINTER(dev->rx_handler, NULL);
5285 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5286 * section has a guarantee to see a non NULL rx_handler_data
5287 * as well.
5288 */
5289 synchronize_net();
5290 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5291}
5292EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5293
5294/*
5295 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5296 * the special handling of PFMEMALLOC skbs.
5297 */
5298static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5299{
5300 switch (skb->protocol) {
5301 case htons(ETH_P_ARP):
5302 case htons(ETH_P_IP):
5303 case htons(ETH_P_IPV6):
5304 case htons(ETH_P_8021Q):
5305 case htons(ETH_P_8021AD):
5306 return true;
5307 default:
5308 return false;
5309 }
5310}
5311
5312static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5313 int *ret, struct net_device *orig_dev)
5314{
5315 if (nf_hook_ingress_active(skb)) {
5316 int ingress_retval;
5317
5318 if (*pt_prev) {
5319 *ret = deliver_skb(skb, pt_prev: *pt_prev, orig_dev);
5320 *pt_prev = NULL;
5321 }
5322
5323 rcu_read_lock();
5324 ingress_retval = nf_hook_ingress(skb);
5325 rcu_read_unlock();
5326 return ingress_retval;
5327 }
5328 return 0;
5329}
5330
5331static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5332 struct packet_type **ppt_prev)
5333{
5334 struct packet_type *ptype, *pt_prev;
5335 rx_handler_func_t *rx_handler;
5336 struct sk_buff *skb = *pskb;
5337 struct net_device *orig_dev;
5338 bool deliver_exact = false;
5339 int ret = NET_RX_DROP;
5340 __be16 type;
5341
5342 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5343
5344 trace_netif_receive_skb(skb);
5345
5346 orig_dev = skb->dev;
5347
5348 skb_reset_network_header(skb);
5349 if (!skb_transport_header_was_set(skb))
5350 skb_reset_transport_header(skb);
5351 skb_reset_mac_len(skb);
5352
5353 pt_prev = NULL;
5354
5355another_round:
5356 skb->skb_iif = skb->dev->ifindex;
5357
5358 __this_cpu_inc(softnet_data.processed);
5359
5360 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5361 int ret2;
5362
5363 migrate_disable();
5364 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5365 &skb);
5366 migrate_enable();
5367
5368 if (ret2 != XDP_PASS) {
5369 ret = NET_RX_DROP;
5370 goto out;
5371 }
5372 }
5373
5374 if (eth_type_vlan(ethertype: skb->protocol)) {
5375 skb = skb_vlan_untag(skb);
5376 if (unlikely(!skb))
5377 goto out;
5378 }
5379
5380 if (skb_skip_tc_classify(skb))
5381 goto skip_classify;
5382
5383 if (pfmemalloc)
5384 goto skip_taps;
5385
5386 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5387 if (pt_prev)
5388 ret = deliver_skb(skb, pt_prev, orig_dev);
5389 pt_prev = ptype;
5390 }
5391
5392 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5393 if (pt_prev)
5394 ret = deliver_skb(skb, pt_prev, orig_dev);
5395 pt_prev = ptype;
5396 }
5397
5398skip_taps:
5399#ifdef CONFIG_NET_INGRESS
5400 if (static_branch_unlikely(&ingress_needed_key)) {
5401 bool another = false;
5402
5403 nf_skip_egress(skb, skip: true);
5404 skb = sch_handle_ingress(skb, pt_prev: &pt_prev, ret: &ret, orig_dev,
5405 another: &another);
5406 if (another)
5407 goto another_round;
5408 if (!skb)
5409 goto out;
5410
5411 nf_skip_egress(skb, skip: false);
5412 if (nf_ingress(skb, pt_prev: &pt_prev, ret: &ret, orig_dev) < 0)
5413 goto out;
5414 }
5415#endif
5416 skb_reset_redirect(skb);
5417skip_classify:
5418 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5419 goto drop;
5420
5421 if (skb_vlan_tag_present(skb)) {
5422 if (pt_prev) {
5423 ret = deliver_skb(skb, pt_prev, orig_dev);
5424 pt_prev = NULL;
5425 }
5426 if (vlan_do_receive(skb: &skb))
5427 goto another_round;
5428 else if (unlikely(!skb))
5429 goto out;
5430 }
5431
5432 rx_handler = rcu_dereference(skb->dev->rx_handler);
5433 if (rx_handler) {
5434 if (pt_prev) {
5435 ret = deliver_skb(skb, pt_prev, orig_dev);
5436 pt_prev = NULL;
5437 }
5438 switch (rx_handler(&skb)) {
5439 case RX_HANDLER_CONSUMED:
5440 ret = NET_RX_SUCCESS;
5441 goto out;
5442 case RX_HANDLER_ANOTHER:
5443 goto another_round;
5444 case RX_HANDLER_EXACT:
5445 deliver_exact = true;
5446 break;
5447 case RX_HANDLER_PASS:
5448 break;
5449 default:
5450 BUG();
5451 }
5452 }
5453
5454 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(dev: skb->dev)) {
5455check_vlan_id:
5456 if (skb_vlan_tag_get_id(skb)) {
5457 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5458 * find vlan device.
5459 */
5460 skb->pkt_type = PACKET_OTHERHOST;
5461 } else if (eth_type_vlan(ethertype: skb->protocol)) {
5462 /* Outer header is 802.1P with vlan 0, inner header is
5463 * 802.1Q or 802.1AD and vlan_do_receive() above could
5464 * not find vlan dev for vlan id 0.
5465 */
5466 __vlan_hwaccel_clear_tag(skb);
5467 skb = skb_vlan_untag(skb);
5468 if (unlikely(!skb))
5469 goto out;
5470 if (vlan_do_receive(skb: &skb))
5471 /* After stripping off 802.1P header with vlan 0
5472 * vlan dev is found for inner header.
5473 */
5474 goto another_round;
5475 else if (unlikely(!skb))
5476 goto out;
5477 else
5478 /* We have stripped outer 802.1P vlan 0 header.
5479 * But could not find vlan dev.
5480 * check again for vlan id to set OTHERHOST.
5481 */
5482 goto check_vlan_id;
5483 }
5484 /* Note: we might in the future use prio bits
5485 * and set skb->priority like in vlan_do_receive()
5486 * For the time being, just ignore Priority Code Point
5487 */
5488 __vlan_hwaccel_clear_tag(skb);
5489 }
5490
5491 type = skb->protocol;
5492
5493 /* deliver only exact match when indicated */
5494 if (likely(!deliver_exact)) {
5495 deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type,
5496 ptype_list: &ptype_base[ntohs(type) &
5497 PTYPE_HASH_MASK]);
5498 }
5499
5500 deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type,
5501 ptype_list: &orig_dev->ptype_specific);
5502
5503 if (unlikely(skb->dev != orig_dev)) {
5504 deliver_ptype_list_skb(skb, pt: &pt_prev, orig_dev, type,
5505 ptype_list: &skb->dev->ptype_specific);
5506 }
5507
5508 if (pt_prev) {
5509 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5510 goto drop;
5511 *ppt_prev = pt_prev;
5512 } else {
5513drop:
5514 if (!deliver_exact)
5515 dev_core_stats_rx_dropped_inc(dev: skb->dev);
5516 else
5517 dev_core_stats_rx_nohandler_inc(dev: skb->dev);
5518 kfree_skb_reason(skb, reason: SKB_DROP_REASON_UNHANDLED_PROTO);
5519 /* Jamal, now you will not able to escape explaining
5520 * me how you were going to use this. :-)
5521 */
5522 ret = NET_RX_DROP;
5523 }
5524
5525out:
5526 /* The invariant here is that if *ppt_prev is not NULL
5527 * then skb should also be non-NULL.
5528 *
5529 * Apparently *ppt_prev assignment above holds this invariant due to
5530 * skb dereferencing near it.
5531 */
5532 *pskb = skb;
5533 return ret;
5534}
5535
5536static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5537{
5538 struct net_device *orig_dev = skb->dev;
5539 struct packet_type *pt_prev = NULL;
5540 int ret;
5541
5542 ret = __netif_receive_skb_core(pskb: &skb, pfmemalloc, ppt_prev: &pt_prev);
5543 if (pt_prev)
5544 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5545 skb->dev, pt_prev, orig_dev);
5546 return ret;
5547}
5548
5549/**
5550 * netif_receive_skb_core - special purpose version of netif_receive_skb
5551 * @skb: buffer to process
5552 *
5553 * More direct receive version of netif_receive_skb(). It should
5554 * only be used by callers that have a need to skip RPS and Generic XDP.
5555 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5556 *
5557 * This function may only be called from softirq context and interrupts
5558 * should be enabled.
5559 *
5560 * Return values (usually ignored):
5561 * NET_RX_SUCCESS: no congestion
5562 * NET_RX_DROP: packet was dropped
5563 */
5564int netif_receive_skb_core(struct sk_buff *skb)
5565{
5566 int ret;
5567
5568 rcu_read_lock();
5569 ret = __netif_receive_skb_one_core(skb, pfmemalloc: false);
5570 rcu_read_unlock();
5571
5572 return ret;
5573}
5574EXPORT_SYMBOL(netif_receive_skb_core);
5575
5576static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5577 struct packet_type *pt_prev,
5578 struct net_device *orig_dev)
5579{
5580 struct sk_buff *skb, *next;
5581
5582 if (!pt_prev)
5583 return;
5584 if (list_empty(head))
5585 return;
5586 if (pt_prev->list_func != NULL)
5587 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5588 ip_list_rcv, head, pt_prev, orig_dev);
5589 else
5590 list_for_each_entry_safe(skb, next, head, list) {
5591 skb_list_del_init(skb);
5592 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5593 }
5594}
5595
5596static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5597{
5598 /* Fast-path assumptions:
5599 * - There is no RX handler.
5600 * - Only one packet_type matches.
5601 * If either of these fails, we will end up doing some per-packet
5602 * processing in-line, then handling the 'last ptype' for the whole
5603 * sublist. This can't cause out-of-order delivery to any single ptype,
5604 * because the 'last ptype' must be constant across the sublist, and all
5605 * other ptypes are handled per-packet.
5606 */
5607 /* Current (common) ptype of sublist */
5608 struct packet_type *pt_curr = NULL;
5609 /* Current (common) orig_dev of sublist */
5610 struct net_device *od_curr = NULL;
5611 struct list_head sublist;
5612 struct sk_buff *skb, *next;
5613
5614 INIT_LIST_HEAD(list: &sublist);
5615 list_for_each_entry_safe(skb, next, head, list) {
5616 struct net_device *orig_dev = skb->dev;
5617 struct packet_type *pt_prev = NULL;
5618
5619 skb_list_del_init(skb);
5620 __netif_receive_skb_core(pskb: &skb, pfmemalloc, ppt_prev: &pt_prev);
5621 if (!pt_prev)
5622 continue;
5623 if (pt_curr != pt_prev || od_curr != orig_dev) {
5624 /* dispatch old sublist */
5625 __netif_receive_skb_list_ptype(head: &sublist, pt_prev: pt_curr, orig_dev: od_curr);
5626 /* start new sublist */
5627 INIT_LIST_HEAD(list: &sublist);
5628 pt_curr = pt_prev;
5629 od_curr = orig_dev;
5630 }
5631 list_add_tail(new: &skb->list, head: &sublist);
5632 }
5633
5634 /* dispatch final sublist */
5635 __netif_receive_skb_list_ptype(head: &sublist, pt_prev: pt_curr, orig_dev: od_curr);
5636}
5637
5638static int __netif_receive_skb(struct sk_buff *skb)
5639{
5640 int ret;
5641
5642 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5643 unsigned int noreclaim_flag;
5644
5645 /*
5646 * PFMEMALLOC skbs are special, they should
5647 * - be delivered to SOCK_MEMALLOC sockets only
5648 * - stay away from userspace
5649 * - have bounded memory usage
5650 *
5651 * Use PF_MEMALLOC as this saves us from propagating the allocation
5652 * context down to all allocation sites.
5653 */
5654 noreclaim_flag = memalloc_noreclaim_save();
5655 ret = __netif_receive_skb_one_core(skb, pfmemalloc: true);
5656 memalloc_noreclaim_restore(flags: noreclaim_flag);
5657 } else
5658 ret = __netif_receive_skb_one_core(skb, pfmemalloc: false);
5659
5660 return ret;
5661}
5662
5663static void __netif_receive_skb_list(struct list_head *head)
5664{
5665 unsigned long noreclaim_flag = 0;
5666 struct sk_buff *skb, *next;
5667 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5668
5669 list_for_each_entry_safe(skb, next, head, list) {
5670 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5671 struct list_head sublist;
5672
5673 /* Handle the previous sublist */
5674 list_cut_before(list: &sublist, head, entry: &skb->list);
5675 if (!list_empty(head: &sublist))
5676 __netif_receive_skb_list_core(head: &sublist, pfmemalloc);
5677 pfmemalloc = !pfmemalloc;
5678 /* See comments in __netif_receive_skb */
5679 if (pfmemalloc)
5680 noreclaim_flag = memalloc_noreclaim_save();
5681 else
5682 memalloc_noreclaim_restore(flags: noreclaim_flag);
5683 }
5684 }
5685 /* Handle the remaining sublist */
5686 if (!list_empty(head))
5687 __netif_receive_skb_list_core(head, pfmemalloc);
5688 /* Restore pflags */
5689 if (pfmemalloc)
5690 memalloc_noreclaim_restore(flags: noreclaim_flag);
5691}
5692
5693static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5694{
5695 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5696 struct bpf_prog *new = xdp->prog;
5697 int ret = 0;
5698
5699 switch (xdp->command) {
5700 case XDP_SETUP_PROG:
5701 rcu_assign_pointer(dev->xdp_prog, new);
5702 if (old)
5703 bpf_prog_put(prog: old);
5704
5705 if (old && !new) {
5706 static_branch_dec(&generic_xdp_needed_key);
5707 } else if (new && !old) {
5708 static_branch_inc(&generic_xdp_needed_key);
5709 dev_disable_lro(dev);
5710 dev_disable_gro_hw(dev);
5711 }
5712 break;
5713
5714 default:
5715 ret = -EINVAL;
5716 break;
5717 }
5718
5719 return ret;
5720}
5721
5722static int netif_receive_skb_internal(struct sk_buff *skb)
5723{
5724 int ret;
5725
5726 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5727
5728 if (skb_defer_rx_timestamp(skb))
5729 return NET_RX_SUCCESS;
5730
5731 rcu_read_lock();
5732#ifdef CONFIG_RPS
5733 if (static_branch_unlikely(&rps_needed)) {
5734 struct rps_dev_flow voidflow, *rflow = &voidflow;
5735 int cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow);
5736
5737 if (cpu >= 0) {
5738 ret = enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail);
5739 rcu_read_unlock();
5740 return ret;
5741 }
5742 }
5743#endif
5744 ret = __netif_receive_skb(skb);
5745 rcu_read_unlock();
5746 return ret;
5747}
5748
5749void netif_receive_skb_list_internal(struct list_head *head)
5750{
5751 struct sk_buff *skb, *next;
5752 struct list_head sublist;
5753
5754 INIT_LIST_HEAD(list: &sublist);
5755 list_for_each_entry_safe(skb, next, head, list) {
5756 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5757 skb);
5758 skb_list_del_init(skb);
5759 if (!skb_defer_rx_timestamp(skb))
5760 list_add_tail(new: &skb->list, head: &sublist);
5761 }
5762 list_splice_init(list: &sublist, head);
5763
5764 rcu_read_lock();
5765#ifdef CONFIG_RPS
5766 if (static_branch_unlikely(&rps_needed)) {
5767 list_for_each_entry_safe(skb, next, head, list) {
5768 struct rps_dev_flow voidflow, *rflow = &voidflow;
5769 int cpu = get_rps_cpu(dev: skb->dev, skb, rflowp: &rflow);
5770
5771 if (cpu >= 0) {
5772 /* Will be handled, remove from list */
5773 skb_list_del_init(skb);
5774 enqueue_to_backlog(skb, cpu, qtail: &rflow->last_qtail);
5775 }
5776 }
5777 }
5778#endif
5779 __netif_receive_skb_list(head);
5780 rcu_read_unlock();
5781}
5782
5783/**
5784 * netif_receive_skb - process receive buffer from network
5785 * @skb: buffer to process
5786 *
5787 * netif_receive_skb() is the main receive data processing function.
5788 * It always succeeds. The buffer may be dropped during processing
5789 * for congestion control or by the protocol layers.
5790 *
5791 * This function may only be called from softirq context and interrupts
5792 * should be enabled.
5793 *
5794 * Return values (usually ignored):
5795 * NET_RX_SUCCESS: no congestion
5796 * NET_RX_DROP: packet was dropped
5797 */
5798int netif_receive_skb(struct sk_buff *skb)
5799{
5800 int ret;
5801
5802 trace_netif_receive_skb_entry(skb);
5803
5804 ret = netif_receive_skb_internal(skb);
5805 trace_netif_receive_skb_exit(ret);
5806
5807 return ret;
5808}
5809EXPORT_SYMBOL(netif_receive_skb);
5810
5811/**
5812 * netif_receive_skb_list - process many receive buffers from network
5813 * @head: list of skbs to process.
5814 *
5815 * Since return value of netif_receive_skb() is normally ignored, and
5816 * wouldn't be meaningful for a list, this function returns void.
5817 *
5818 * This function may only be called from softirq context and interrupts
5819 * should be enabled.
5820 */
5821void netif_receive_skb_list(struct list_head *head)
5822{
5823 struct sk_buff *skb;
5824
5825 if (list_empty(head))
5826 return;
5827 if (trace_netif_receive_skb_list_entry_enabled()) {
5828 list_for_each_entry(skb, head, list)
5829 trace_netif_receive_skb_list_entry(skb);
5830 }
5831 netif_receive_skb_list_internal(head);
5832 trace_netif_receive_skb_list_exit(ret: 0);
5833}
5834EXPORT_SYMBOL(netif_receive_skb_list);
5835
5836static DEFINE_PER_CPU(struct work_struct, flush_works);
5837
5838/* Network device is going away, flush any packets still pending */
5839static void flush_backlog(struct work_struct *work)
5840{
5841 struct sk_buff *skb, *tmp;
5842 struct softnet_data *sd;
5843
5844 local_bh_disable();
5845 sd = this_cpu_ptr(&softnet_data);
5846
5847 rps_lock_irq_disable(sd);
5848 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5849 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5850 __skb_unlink(skb, list: &sd->input_pkt_queue);
5851 dev_kfree_skb_irq(skb);
5852 input_queue_head_incr(sd);
5853 }
5854 }
5855 rps_unlock_irq_enable(sd);
5856
5857 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5858 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5859 __skb_unlink(skb, list: &sd->process_queue);
5860 kfree_skb(skb);
5861 input_queue_head_incr(sd);
5862 }
5863 }
5864 local_bh_enable();
5865}
5866
5867static bool flush_required(int cpu)
5868{
5869#if IS_ENABLED(CONFIG_RPS)
5870 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5871 bool do_flush;
5872
5873 rps_lock_irq_disable(sd);
5874
5875 /* as insertion into process_queue happens with the rps lock held,
5876 * process_queue access may race only with dequeue
5877 */
5878 do_flush = !skb_queue_empty(list: &sd->input_pkt_queue) ||
5879 !skb_queue_empty_lockless(list: &sd->process_queue);
5880 rps_unlock_irq_enable(sd);
5881
5882 return do_flush;
5883#endif
5884 /* without RPS we can't safely check input_pkt_queue: during a
5885 * concurrent remote skb_queue_splice() we can detect as empty both
5886 * input_pkt_queue and process_queue even if the latter could end-up
5887 * containing a lot of packets.
5888 */
5889 return true;
5890}
5891
5892static void flush_all_backlogs(void)
5893{
5894 static cpumask_t flush_cpus;
5895 unsigned int cpu;
5896
5897 /* since we are under rtnl lock protection we can use static data
5898 * for the cpumask and avoid allocating on stack the possibly
5899 * large mask
5900 */
5901 ASSERT_RTNL();
5902
5903 cpus_read_lock();
5904
5905 cpumask_clear(dstp: &flush_cpus);
5906 for_each_online_cpu(cpu) {
5907 if (flush_required(cpu)) {
5908 queue_work_on(cpu, wq: system_highpri_wq,
5909 per_cpu_ptr(&flush_works, cpu));
5910 cpumask_set_cpu(cpu, dstp: &flush_cpus);
5911 }
5912 }
5913
5914 /* we can have in flight packet[s] on the cpus we are not flushing,
5915 * synchronize_net() in unregister_netdevice_many() will take care of
5916 * them
5917 */
5918 for_each_cpu(cpu, &flush_cpus)
5919 flush_work(per_cpu_ptr(&flush_works, cpu));
5920
5921 cpus_read_unlock();
5922}
5923
5924static void net_rps_send_ipi(struct softnet_data *remsd)
5925{
5926#ifdef CONFIG_RPS
5927 while (remsd) {
5928 struct softnet_data *next = remsd->rps_ipi_next;
5929
5930 if (cpu_online(cpu: remsd->cpu))
5931 smp_call_function_single_async(cpu: remsd->cpu, csd: &remsd->csd);
5932 remsd = next;
5933 }
5934#endif
5935}
5936
5937/*
5938 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5939 * Note: called with local irq disabled, but exits with local irq enabled.
5940 */
5941static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5942{
5943#ifdef CONFIG_RPS
5944 struct softnet_data *remsd = sd->rps_ipi_list;
5945
5946 if (remsd) {
5947 sd->rps_ipi_list = NULL;
5948
5949 local_irq_enable();
5950
5951 /* Send pending IPI's to kick RPS processing on remote cpus. */
5952 net_rps_send_ipi(remsd);
5953 } else
5954#endif
5955 local_irq_enable();
5956}
5957
5958static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5959{
5960#ifdef CONFIG_RPS
5961 return sd->rps_ipi_list != NULL;
5962#else
5963 return false;
5964#endif
5965}
5966
5967static int process_backlog(struct napi_struct *napi, int quota)
5968{
5969 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5970 bool again = true;
5971 int work = 0;
5972
5973 /* Check if we have pending ipi, its better to send them now,
5974 * not waiting net_rx_action() end.
5975 */
5976 if (sd_has_rps_ipi_waiting(sd)) {
5977 local_irq_disable();
5978 net_rps_action_and_irq_enable(sd);
5979 }
5980
5981 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
5982 while (again) {
5983 struct sk_buff *skb;
5984
5985 while ((skb = __skb_dequeue(list: &sd->process_queue))) {
5986 rcu_read_lock();
5987 __netif_receive_skb(skb);
5988 rcu_read_unlock();
5989 input_queue_head_incr(sd);
5990 if (++work >= quota)
5991 return work;
5992
5993 }
5994
5995 rps_lock_irq_disable(sd);
5996 if (skb_queue_empty(list: &sd->input_pkt_queue)) {
5997 /*
5998 * Inline a custom version of __napi_complete().
5999 * only current cpu owns and manipulates this napi,
6000 * and NAPI_STATE_SCHED is the only possible flag set
6001 * on backlog.
6002 * We can use a plain write instead of clear_bit(),
6003 * and we dont need an smp_mb() memory barrier.
6004 */
6005 napi->state = 0;
6006 again = false;
6007 } else {
6008 skb_queue_splice_tail_init(list: &sd->input_pkt_queue,
6009 head: &sd->process_queue);
6010 }
6011 rps_unlock_irq_enable(sd);
6012 }
6013
6014 return work;
6015}
6016
6017/**
6018 * __napi_schedule - schedule for receive
6019 * @n: entry to schedule
6020 *
6021 * The entry's receive function will be scheduled to run.
6022 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6023 */
6024void __napi_schedule(struct napi_struct *n)
6025{
6026 unsigned long flags;
6027
6028 local_irq_save(flags);
6029 ____napi_schedule(this_cpu_ptr(&softnet_data), napi: n);
6030 local_irq_restore(flags);
6031}
6032EXPORT_SYMBOL(__napi_schedule);
6033
6034/**
6035 * napi_schedule_prep - check if napi can be scheduled
6036 * @n: napi context
6037 *
6038 * Test if NAPI routine is already running, and if not mark
6039 * it as running. This is used as a condition variable to
6040 * insure only one NAPI poll instance runs. We also make
6041 * sure there is no pending NAPI disable.
6042 */
6043bool napi_schedule_prep(struct napi_struct *n)
6044{
6045 unsigned long new, val = READ_ONCE(n->state);
6046
6047 do {
6048 if (unlikely(val & NAPIF_STATE_DISABLE))
6049 return false;
6050 new = val | NAPIF_STATE_SCHED;
6051
6052 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6053 * This was suggested by Alexander Duyck, as compiler
6054 * emits better code than :
6055 * if (val & NAPIF_STATE_SCHED)
6056 * new |= NAPIF_STATE_MISSED;
6057 */
6058 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6059 NAPIF_STATE_MISSED;
6060 } while (!try_cmpxchg(&n->state, &val, new));
6061
6062 return !(val & NAPIF_STATE_SCHED);
6063}
6064EXPORT_SYMBOL(napi_schedule_prep);
6065
6066/**
6067 * __napi_schedule_irqoff - schedule for receive
6068 * @n: entry to schedule
6069 *
6070 * Variant of __napi_schedule() assuming hard irqs are masked.
6071 *
6072 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6073 * because the interrupt disabled assumption might not be true
6074 * due to force-threaded interrupts and spinlock substitution.
6075 */
6076void __napi_schedule_irqoff(struct napi_struct *n)
6077{
6078 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6079 ____napi_schedule(this_cpu_ptr(&softnet_data), napi: n);
6080 else
6081 __napi_schedule(n);
6082}
6083EXPORT_SYMBOL(__napi_schedule_irqoff);
6084
6085bool napi_complete_done(struct napi_struct *n, int work_done)
6086{
6087 unsigned long flags, val, new, timeout = 0;
6088 bool ret = true;
6089
6090 /*
6091 * 1) Don't let napi dequeue from the cpu poll list
6092 * just in case its running on a different cpu.
6093 * 2) If we are busy polling, do nothing here, we have
6094 * the guarantee we will be called later.
6095 */
6096 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6097 NAPIF_STATE_IN_BUSY_POLL)))
6098 return false;
6099
6100 if (work_done) {
6101 if (n->gro_bitmask)
6102 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6103 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6104 }
6105 if (n->defer_hard_irqs_count > 0) {
6106 n->defer_hard_irqs_count--;
6107 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6108 if (timeout)
6109 ret = false;
6110 }
6111 if (n->gro_bitmask) {
6112 /* When the NAPI instance uses a timeout and keeps postponing
6113 * it, we need to bound somehow the time packets are kept in
6114 * the GRO layer
6115 */
6116 napi_gro_flush(napi: n, flush_old: !!timeout);
6117 }
6118
6119 gro_normal_list(napi: n);
6120
6121 if (unlikely(!list_empty(&n->poll_list))) {
6122 /* If n->poll_list is not empty, we need to mask irqs */
6123 local_irq_save(flags);
6124 list_del_init(entry: &n->poll_list);
6125 local_irq_restore(flags);
6126 }
6127 WRITE_ONCE(n->list_owner, -1);
6128
6129 val = READ_ONCE(n->state);
6130 do {
6131 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6132
6133 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6134 NAPIF_STATE_SCHED_THREADED |
6135 NAPIF_STATE_PREFER_BUSY_POLL);
6136
6137 /* If STATE_MISSED was set, leave STATE_SCHED set,
6138 * because we will call napi->poll() one more time.
6139 * This C code was suggested by Alexander Duyck to help gcc.
6140 */
6141 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6142 NAPIF_STATE_SCHED;
6143 } while (!try_cmpxchg(&n->state, &val, new));
6144
6145 if (unlikely(val & NAPIF_STATE_MISSED)) {
6146 __napi_schedule(n);
6147 return false;
6148 }
6149
6150 if (timeout)
6151 hrtimer_start(timer: &n->timer, tim: ns_to_ktime(ns: timeout),
6152 mode: HRTIMER_MODE_REL_PINNED);
6153 return ret;
6154}
6155EXPORT_SYMBOL(napi_complete_done);
6156
6157/* must be called under rcu_read_lock(), as we dont take a reference */
6158struct napi_struct *napi_by_id(unsigned int napi_id)
6159{
6160 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6161 struct napi_struct *napi;
6162
6163 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6164 if (napi->napi_id == napi_id)
6165 return napi;
6166
6167 return NULL;
6168}
6169
6170static void skb_defer_free_flush(struct softnet_data *sd)
6171{
6172 struct sk_buff *skb, *next;
6173
6174 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6175 if (!READ_ONCE(sd->defer_list))
6176 return;
6177
6178 spin_lock(lock: &sd->defer_lock);
6179 skb = sd->defer_list;
6180 sd->defer_list = NULL;
6181 sd->defer_count = 0;
6182 spin_unlock(lock: &sd->defer_lock);
6183
6184 while (skb != NULL) {
6185 next = skb->next;
6186 napi_consume_skb(skb, budget: 1);
6187 skb = next;
6188 }
6189}
6190
6191#if defined(CONFIG_NET_RX_BUSY_POLL)
6192
6193static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6194{
6195 if (!skip_schedule) {
6196 gro_normal_list(napi);
6197 __napi_schedule(napi);
6198 return;
6199 }
6200
6201 if (napi->gro_bitmask) {
6202 /* flush too old packets
6203 * If HZ < 1000, flush all packets.
6204 */
6205 napi_gro_flush(napi, HZ >= 1000);
6206 }
6207
6208 gro_normal_list(napi);
6209 clear_bit(nr: NAPI_STATE_SCHED, addr: &napi->state);
6210}
6211
6212enum {
6213 NAPI_F_PREFER_BUSY_POLL = 1,
6214 NAPI_F_END_ON_RESCHED = 2,
6215};
6216
6217static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6218 unsigned flags, u16 budget)
6219{
6220 bool skip_schedule = false;
6221 unsigned long timeout;
6222 int rc;
6223
6224 /* Busy polling means there is a high chance device driver hard irq
6225 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6226 * set in napi_schedule_prep().
6227 * Since we are about to call napi->poll() once more, we can safely
6228 * clear NAPI_STATE_MISSED.
6229 *
6230 * Note: x86 could use a single "lock and ..." instruction
6231 * to perform these two clear_bit()
6232 */
6233 clear_bit(nr: NAPI_STATE_MISSED, addr: &napi->state);
6234 clear_bit(nr: NAPI_STATE_IN_BUSY_POLL, addr: &napi->state);
6235
6236 local_bh_disable();
6237
6238 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6239 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6240 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6241 if (napi->defer_hard_irqs_count && timeout) {
6242 hrtimer_start(timer: &napi->timer, tim: ns_to_ktime(ns: timeout), mode: HRTIMER_MODE_REL_PINNED);
6243 skip_schedule = true;
6244 }
6245 }
6246
6247 /* All we really want here is to re-enable device interrupts.
6248 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6249 */
6250 rc = napi->poll(napi, budget);
6251 /* We can't gro_normal_list() here, because napi->poll() might have
6252 * rearmed the napi (napi_complete_done()) in which case it could
6253 * already be running on another CPU.
6254 */
6255 trace_napi_poll(napi, work: rc, budget);
6256 netpoll_poll_unlock(have: have_poll_lock);
6257 if (rc == budget)
6258 __busy_poll_stop(napi, skip_schedule);
6259 local_bh_enable();
6260}
6261
6262static void __napi_busy_loop(unsigned int napi_id,
6263 bool (*loop_end)(void *, unsigned long),
6264 void *loop_end_arg, unsigned flags, u16 budget)
6265{
6266 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6267 int (*napi_poll)(struct napi_struct *napi, int budget);
6268 void *have_poll_lock = NULL;
6269 struct napi_struct *napi;
6270
6271 WARN_ON_ONCE(!rcu_read_lock_held());
6272
6273restart:
6274 napi_poll = NULL;
6275
6276 napi = napi_by_id(napi_id);
6277 if (!napi)
6278 return;
6279
6280 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6281 preempt_disable();
6282 for (;;) {
6283 int work = 0;
6284
6285 local_bh_disable();
6286 if (!napi_poll) {
6287 unsigned long val = READ_ONCE(napi->state);
6288
6289 /* If multiple threads are competing for this napi,
6290 * we avoid dirtying napi->state as much as we can.
6291 */
6292 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6293 NAPIF_STATE_IN_BUSY_POLL)) {
6294 if (flags & NAPI_F_PREFER_BUSY_POLL)
6295 set_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state);
6296 goto count;
6297 }
6298 if (cmpxchg(&napi->state, val,
6299 val | NAPIF_STATE_IN_BUSY_POLL |
6300 NAPIF_STATE_SCHED) != val) {
6301 if (flags & NAPI_F_PREFER_BUSY_POLL)
6302 set_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state);
6303 goto count;
6304 }
6305 have_poll_lock = netpoll_poll_lock(napi);
6306 napi_poll = napi->poll;
6307 }
6308 work = napi_poll(napi, budget);
6309 trace_napi_poll(napi, work, budget);
6310 gro_normal_list(napi);
6311count:
6312 if (work > 0)
6313 __NET_ADD_STATS(dev_net(napi->dev),
6314 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6315 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6316 local_bh_enable();
6317
6318 if (!loop_end || loop_end(loop_end_arg, start_time))
6319 break;
6320
6321 if (unlikely(need_resched())) {
6322 if (flags & NAPI_F_END_ON_RESCHED)
6323 break;
6324 if (napi_poll)
6325 busy_poll_stop(napi, have_poll_lock, flags, budget);
6326 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6327 preempt_enable();
6328 rcu_read_unlock();
6329 cond_resched();
6330 rcu_read_lock();
6331 if (loop_end(loop_end_arg, start_time))
6332 return;
6333 goto restart;
6334 }
6335 cpu_relax();
6336 }
6337 if (napi_poll)
6338 busy_poll_stop(napi, have_poll_lock, flags, budget);
6339 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6340 preempt_enable();
6341}
6342
6343void napi_busy_loop_rcu(unsigned int napi_id,
6344 bool (*loop_end)(void *, unsigned long),
6345 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6346{
6347 unsigned flags = NAPI_F_END_ON_RESCHED;
6348
6349 if (prefer_busy_poll)
6350 flags |= NAPI_F_PREFER_BUSY_POLL;
6351
6352 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6353}
6354
6355void napi_busy_loop(unsigned int napi_id,
6356 bool (*loop_end)(void *, unsigned long),
6357 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6358{
6359 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6360
6361 rcu_read_lock();
6362 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6363 rcu_read_unlock();
6364}
6365EXPORT_SYMBOL(napi_busy_loop);
6366
6367#endif /* CONFIG_NET_RX_BUSY_POLL */
6368
6369static void napi_hash_add(struct napi_struct *napi)
6370{
6371 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6372 return;
6373
6374 spin_lock(lock: &napi_hash_lock);
6375
6376 /* 0..NR_CPUS range is reserved for sender_cpu use */
6377 do {
6378 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6379 napi_gen_id = MIN_NAPI_ID;
6380 } while (napi_by_id(napi_id: napi_gen_id));
6381 napi->napi_id = napi_gen_id;
6382
6383 hlist_add_head_rcu(n: &napi->napi_hash_node,
6384 h: &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6385
6386 spin_unlock(lock: &napi_hash_lock);
6387}
6388
6389/* Warning : caller is responsible to make sure rcu grace period
6390 * is respected before freeing memory containing @napi
6391 */
6392static void napi_hash_del(struct napi_struct *napi)
6393{
6394 spin_lock(lock: &napi_hash_lock);
6395
6396 hlist_del_init_rcu(n: &napi->napi_hash_node);
6397
6398 spin_unlock(lock: &napi_hash_lock);
6399}
6400
6401static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6402{
6403 struct napi_struct *napi;
6404
6405 napi = container_of(timer, struct napi_struct, timer);
6406
6407 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6408 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6409 */
6410 if (!napi_disable_pending(n: napi) &&
6411 !test_and_set_bit(nr: NAPI_STATE_SCHED, addr: &napi->state)) {
6412 clear_bit(nr: NAPI_STATE_PREFER_BUSY_POLL, addr: &napi->state);
6413 __napi_schedule_irqoff(napi);
6414 }
6415
6416 return HRTIMER_NORESTART;
6417}
6418
6419static void init_gro_hash(struct napi_struct *napi)
6420{
6421 int i;
6422
6423 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6424 INIT_LIST_HEAD(list: &napi->gro_hash[i].list);
6425 napi->gro_hash[i].count = 0;
6426 }
6427 napi->gro_bitmask = 0;
6428}
6429
6430int dev_set_threaded(struct net_device *dev, bool threaded)
6431{
6432 struct napi_struct *napi;
6433 int err = 0;
6434
6435 if (dev->threaded == threaded)
6436 return 0;
6437
6438 if (threaded) {
6439 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6440 if (!napi->thread) {
6441 err = napi_kthread_create(n: napi);
6442 if (err) {
6443 threaded = false;
6444 break;
6445 }
6446 }
6447 }
6448 }
6449
6450 dev->threaded = threaded;
6451
6452 /* Make sure kthread is created before THREADED bit
6453 * is set.
6454 */
6455 smp_mb__before_atomic();
6456
6457 /* Setting/unsetting threaded mode on a napi might not immediately
6458 * take effect, if the current napi instance is actively being
6459 * polled. In this case, the switch between threaded mode and
6460 * softirq mode will happen in the next round of napi_schedule().
6461 * This should not cause hiccups/stalls to the live traffic.
6462 */
6463 list_for_each_entry(napi, &dev->napi_list, dev_list)
6464 assign_bit(nr: NAPI_STATE_THREADED, addr: &napi->state, value: threaded);
6465
6466 return err;
6467}
6468EXPORT_SYMBOL(dev_set_threaded);
6469
6470/**
6471 * netif_queue_set_napi - Associate queue with the napi
6472 * @dev: device to which NAPI and queue belong
6473 * @queue_index: Index of queue
6474 * @type: queue type as RX or TX
6475 * @napi: NAPI context, pass NULL to clear previously set NAPI
6476 *
6477 * Set queue with its corresponding napi context. This should be done after
6478 * registering the NAPI handler for the queue-vector and the queues have been
6479 * mapped to the corresponding interrupt vector.
6480 */
6481void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6482 enum netdev_queue_type type, struct napi_struct *napi)
6483{
6484 struct netdev_rx_queue *rxq;
6485 struct netdev_queue *txq;
6486
6487 if (WARN_ON_ONCE(napi && !napi->dev))
6488 return;
6489 if (dev->reg_state >= NETREG_REGISTERED)
6490 ASSERT_RTNL();
6491
6492 switch (type) {
6493 case NETDEV_QUEUE_TYPE_RX:
6494 rxq = __netif_get_rx_queue(dev, rxq: queue_index);
6495 rxq->napi = napi;
6496 return;
6497 case NETDEV_QUEUE_TYPE_TX:
6498 txq = netdev_get_tx_queue(dev, index: queue_index);
6499 txq->napi = napi;
6500 return;
6501 default:
6502 return;
6503 }
6504}
6505EXPORT_SYMBOL(netif_queue_set_napi);
6506
6507void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6508 int (*poll)(struct napi_struct *, int), int weight)
6509{
6510 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6511 return;
6512
6513 INIT_LIST_HEAD(list: &napi->poll_list);
6514 INIT_HLIST_NODE(h: &napi->napi_hash_node);
6515 hrtimer_init(timer: &napi->timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_PINNED);
6516 napi->timer.function = napi_watchdog;
6517 init_gro_hash(napi);
6518 napi->skb = NULL;
6519 INIT_LIST_HEAD(list: &napi->rx_list);
6520 napi->rx_count = 0;
6521 napi->poll = poll;
6522 if (weight > NAPI_POLL_WEIGHT)
6523 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6524 weight);
6525 napi->weight = weight;
6526 napi->dev = dev;
6527#ifdef CONFIG_NETPOLL
6528 napi->poll_owner = -1;
6529#endif
6530 napi->list_owner = -1;
6531 set_bit(nr: NAPI_STATE_SCHED, addr: &napi->state);
6532 set_bit(nr: NAPI_STATE_NPSVC, addr: &napi->state);
6533 list_add_rcu(new: &napi->dev_list, head: &dev->napi_list);
6534 napi_hash_add(napi);
6535 napi_get_frags_check(napi);
6536 /* Create kthread for this napi if dev->threaded is set.
6537 * Clear dev->threaded if kthread creation failed so that
6538 * threaded mode will not be enabled in napi_enable().
6539 */
6540 if (dev->threaded && napi_kthread_create(n: napi))
6541 dev->threaded = 0;
6542 netif_napi_set_irq(napi, irq: -1);
6543}
6544EXPORT_SYMBOL(netif_napi_add_weight);
6545
6546void napi_disable(struct napi_struct *n)
6547{
6548 unsigned long val, new;
6549
6550 might_sleep();
6551 set_bit(nr: NAPI_STATE_DISABLE, addr: &n->state);
6552
6553 val = READ_ONCE(n->state);
6554 do {
6555 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6556 usleep_range(min: 20, max: 200);
6557 val = READ_ONCE(n->state);
6558 }
6559
6560 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6561 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6562 } while (!try_cmpxchg(&n->state, &val, new));
6563
6564 hrtimer_cancel(timer: &n->timer);
6565
6566 clear_bit(nr: NAPI_STATE_DISABLE, addr: &n->state);
6567}
6568EXPORT_SYMBOL(napi_disable);
6569
6570/**
6571 * napi_enable - enable NAPI scheduling
6572 * @n: NAPI context
6573 *
6574 * Resume NAPI from being scheduled on this context.
6575 * Must be paired with napi_disable.
6576 */
6577void napi_enable(struct napi_struct *n)
6578{
6579 unsigned long new, val = READ_ONCE(n->state);
6580
6581 do {
6582 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6583
6584 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6585 if (n->dev->threaded && n->thread)
6586 new |= NAPIF_STATE_THREADED;
6587 } while (!try_cmpxchg(&n->state, &val, new));
6588}
6589EXPORT_SYMBOL(napi_enable);
6590
6591static void flush_gro_hash(struct napi_struct *napi)
6592{
6593 int i;
6594
6595 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6596 struct sk_buff *skb, *n;
6597
6598 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6599 kfree_skb(skb);
6600 napi->gro_hash[i].count = 0;
6601 }
6602}
6603
6604/* Must be called in process context */
6605void __netif_napi_del(struct napi_struct *napi)
6606{
6607 if (!test_and_clear_bit(nr: NAPI_STATE_LISTED, addr: &napi->state))
6608 return;
6609
6610 napi_hash_del(napi);
6611 list_del_rcu(entry: &napi->dev_list);
6612 napi_free_frags(napi);
6613
6614 flush_gro_hash(napi);
6615 napi->gro_bitmask = 0;
6616
6617 if (napi->thread) {
6618 kthread_stop(k: napi->thread);
6619 napi->thread = NULL;
6620 }
6621}
6622EXPORT_SYMBOL(__netif_napi_del);
6623
6624static int __napi_poll(struct napi_struct *n, bool *repoll)
6625{
6626 int work, weight;
6627
6628 weight = n->weight;
6629
6630 /* This NAPI_STATE_SCHED test is for avoiding a race
6631 * with netpoll's poll_napi(). Only the entity which
6632 * obtains the lock and sees NAPI_STATE_SCHED set will
6633 * actually make the ->poll() call. Therefore we avoid
6634 * accidentally calling ->poll() when NAPI is not scheduled.
6635 */
6636 work = 0;
6637 if (napi_is_scheduled(n)) {
6638 work = n->poll(n, weight);
6639 trace_napi_poll(napi: n, work, budget: weight);
6640
6641 xdp_do_check_flushed(napi: n);
6642 }
6643
6644 if (unlikely(work > weight))
6645 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6646 n->poll, work, weight);
6647
6648 if (likely(work < weight))
6649 return work;
6650
6651 /* Drivers must not modify the NAPI state if they
6652 * consume the entire weight. In such cases this code
6653 * still "owns" the NAPI instance and therefore can
6654 * move the instance around on the list at-will.
6655 */
6656 if (unlikely(napi_disable_pending(n))) {
6657 napi_complete(n);
6658 return work;
6659 }
6660
6661 /* The NAPI context has more processing work, but busy-polling
6662 * is preferred. Exit early.
6663 */
6664 if (napi_prefer_busy_poll(n)) {
6665 if (napi_complete_done(n, work)) {
6666 /* If timeout is not set, we need to make sure
6667 * that the NAPI is re-scheduled.
6668 */
6669 napi_schedule(n);
6670 }
6671 return work;
6672 }
6673
6674 if (n->gro_bitmask) {
6675 /* flush too old packets
6676 * If HZ < 1000, flush all packets.
6677 */
6678 napi_gro_flush(napi: n, HZ >= 1000);
6679 }
6680
6681 gro_normal_list(napi: n);
6682
6683 /* Some drivers may have called napi_schedule
6684 * prior to exhausting their budget.
6685 */
6686 if (unlikely(!list_empty(&n->poll_list))) {
6687 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6688 n->dev ? n->dev->name : "backlog");
6689 return work;
6690 }
6691
6692 *repoll = true;
6693
6694 return work;
6695}
6696
6697static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6698{
6699 bool do_repoll = false;
6700 void *have;
6701 int work;
6702
6703 list_del_init(entry: &n->poll_list);
6704
6705 have = netpoll_poll_lock(napi: n);
6706
6707 work = __napi_poll(n, repoll: &do_repoll);
6708
6709 if (do_repoll)
6710 list_add_tail(new: &n->poll_list, head: repoll);
6711
6712 netpoll_poll_unlock(have);
6713
6714 return work;
6715}
6716
6717static int napi_thread_wait(struct napi_struct *napi)
6718{
6719 bool woken = false;
6720
6721 set_current_state(TASK_INTERRUPTIBLE);
6722
6723 while (!kthread_should_stop()) {
6724 /* Testing SCHED_THREADED bit here to make sure the current
6725 * kthread owns this napi and could poll on this napi.
6726 * Testing SCHED bit is not enough because SCHED bit might be
6727 * set by some other busy poll thread or by napi_disable().
6728 */
6729 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6730 WARN_ON(!list_empty(&napi->poll_list));
6731 __set_current_state(TASK_RUNNING);
6732 return 0;
6733 }
6734
6735 schedule();
6736 /* woken being true indicates this thread owns this napi. */
6737 woken = true;
6738 set_current_state(TASK_INTERRUPTIBLE);
6739 }
6740 __set_current_state(TASK_RUNNING);
6741
6742 return -1;
6743}
6744
6745static int napi_threaded_poll(void *data)
6746{
6747 struct napi_struct *napi = data;
6748 struct softnet_data *sd;
6749 void *have;
6750
6751 while (!napi_thread_wait(napi)) {
6752 unsigned long last_qs = jiffies;
6753
6754 for (;;) {
6755 bool repoll = false;
6756
6757 local_bh_disable();
6758 sd = this_cpu_ptr(&softnet_data);
6759 sd->in_napi_threaded_poll = true;
6760
6761 have = netpoll_poll_lock(napi);
6762 __napi_poll(n: napi, repoll: &repoll);
6763 netpoll_poll_unlock(have);
6764
6765 sd->in_napi_threaded_poll = false;
6766 barrier();
6767
6768 if (sd_has_rps_ipi_waiting(sd)) {
6769 local_irq_disable();
6770 net_rps_action_and_irq_enable(sd);
6771 }
6772 skb_defer_free_flush(sd);
6773 local_bh_enable();
6774
6775 if (!repoll)
6776 break;
6777
6778 rcu_softirq_qs_periodic(last_qs);
6779 cond_resched();
6780 }
6781 }
6782 return 0;
6783}
6784
6785static __latent_entropy void net_rx_action(struct softirq_action *h)
6786{
6787 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6788 unsigned long time_limit = jiffies +
6789 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6790 int budget = READ_ONCE(net_hotdata.netdev_budget);
6791 LIST_HEAD(list);
6792 LIST_HEAD(repoll);
6793
6794start:
6795 sd->in_net_rx_action = true;
6796 local_irq_disable();
6797 list_splice_init(list: &sd->poll_list, head: &list);
6798 local_irq_enable();
6799
6800 for (;;) {
6801 struct napi_struct *n;
6802
6803 skb_defer_free_flush(sd);
6804
6805 if (list_empty(head: &list)) {
6806 if (list_empty(head: &repoll)) {
6807 sd->in_net_rx_action = false;
6808 barrier();
6809 /* We need to check if ____napi_schedule()
6810 * had refilled poll_list while
6811 * sd->in_net_rx_action was true.
6812 */
6813 if (!list_empty(head: &sd->poll_list))
6814 goto start;
6815 if (!sd_has_rps_ipi_waiting(sd))
6816 goto end;
6817 }
6818 break;
6819 }
6820
6821 n = list_first_entry(&list, struct napi_struct, poll_list);
6822 budget -= napi_poll(n, repoll: &repoll);
6823
6824 /* If softirq window is exhausted then punt.
6825 * Allow this to run for 2 jiffies since which will allow
6826 * an average latency of 1.5/HZ.
6827 */
6828 if (unlikely(budget <= 0 ||
6829 time_after_eq(jiffies, time_limit))) {
6830 sd->time_squeeze++;
6831 break;
6832 }
6833 }
6834
6835 local_irq_disable();
6836
6837 list_splice_tail_init(list: &sd->poll_list, head: &list);
6838 list_splice_tail(list: &repoll, head: &list);
6839 list_splice(list: &list, head: &sd->poll_list);
6840 if (!list_empty(head: &sd->poll_list))
6841 __raise_softirq_irqoff(nr: NET_RX_SOFTIRQ);
6842 else
6843 sd->in_net_rx_action = false;
6844
6845 net_rps_action_and_irq_enable(sd);
6846end:;
6847}
6848
6849struct netdev_adjacent {
6850 struct net_device *dev;
6851 netdevice_tracker dev_tracker;
6852
6853 /* upper master flag, there can only be one master device per list */
6854 bool master;
6855
6856 /* lookup ignore flag */
6857 bool ignore;
6858
6859 /* counter for the number of times this device was added to us */
6860 u16 ref_nr;
6861
6862 /* private field for the users */
6863 void *private;
6864
6865 struct list_head list;
6866 struct rcu_head rcu;
6867};
6868
6869static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6870 struct list_head *adj_list)
6871{
6872 struct netdev_adjacent *adj;
6873
6874 list_for_each_entry(adj, adj_list, list) {
6875 if (adj->dev == adj_dev)
6876 return adj;
6877 }
6878 return NULL;
6879}
6880
6881static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6882 struct netdev_nested_priv *priv)
6883{
6884 struct net_device *dev = (struct net_device *)priv->data;
6885
6886 return upper_dev == dev;
6887}
6888
6889/**
6890 * netdev_has_upper_dev - Check if device is linked to an upper device
6891 * @dev: device
6892 * @upper_dev: upper device to check
6893 *
6894 * Find out if a device is linked to specified upper device and return true
6895 * in case it is. Note that this checks only immediate upper device,
6896 * not through a complete stack of devices. The caller must hold the RTNL lock.
6897 */
6898bool netdev_has_upper_dev(struct net_device *dev,
6899 struct net_device *upper_dev)
6900{
6901 struct netdev_nested_priv priv = {
6902 .data = (void *)upper_dev,
6903 };
6904
6905 ASSERT_RTNL();
6906
6907 return netdev_walk_all_upper_dev_rcu(dev, fn: ____netdev_has_upper_dev,
6908 priv: &priv);
6909}
6910EXPORT_SYMBOL(netdev_has_upper_dev);
6911
6912/**
6913 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6914 * @dev: device
6915 * @upper_dev: upper device to check
6916 *
6917 * Find out if a device is linked to specified upper device and return true
6918 * in case it is. Note that this checks the entire upper device chain.
6919 * The caller must hold rcu lock.
6920 */
6921
6922bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6923 struct net_device *upper_dev)
6924{
6925 struct netdev_nested_priv priv = {
6926 .data = (void *)upper_dev,
6927 };
6928
6929 return !!netdev_walk_all_upper_dev_rcu(dev, fn: ____netdev_has_upper_dev,
6930 priv: &priv);
6931}
6932EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6933
6934/**
6935 * netdev_has_any_upper_dev - Check if device is linked to some device
6936 * @dev: device
6937 *
6938 * Find out if a device is linked to an upper device and return true in case
6939 * it is. The caller must hold the RTNL lock.
6940 */
6941bool netdev_has_any_upper_dev(struct net_device *dev)
6942{
6943 ASSERT_RTNL();
6944
6945 return !list_empty(head: &dev->adj_list.upper);
6946}
6947EXPORT_SYMBOL(netdev_has_any_upper_dev);
6948
6949/**
6950 * netdev_master_upper_dev_get - Get master upper device
6951 * @dev: device
6952 *
6953 * Find a master upper device and return pointer to it or NULL in case
6954 * it's not there. The caller must hold the RTNL lock.
6955 */
6956struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6957{
6958 struct netdev_adjacent *upper;
6959
6960 ASSERT_RTNL();
6961
6962 if (list_empty(head: &dev->adj_list.upper))
6963 return NULL;
6964
6965 upper = list_first_entry(&dev->adj_list.upper,
6966 struct netdev_adjacent, list);
6967 if (likely(upper->master))
6968 return upper->dev;
6969 return NULL;
6970}
6971EXPORT_SYMBOL(netdev_master_upper_dev_get);
6972
6973static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6974{
6975 struct netdev_adjacent *upper;
6976
6977 ASSERT_RTNL();
6978
6979 if (list_empty(head: &dev->adj_list.upper))
6980 return NULL;
6981
6982 upper = list_first_entry(&dev->adj_list.upper,
6983 struct netdev_adjacent, list);
6984 if (likely(upper->master) && !upper->ignore)
6985 return upper->dev;
6986 return NULL;
6987}
6988
6989/**
6990 * netdev_has_any_lower_dev - Check if device is linked to some device
6991 * @dev: device
6992 *
6993 * Find out if a device is linked to a lower device and return true in case
6994 * it is. The caller must hold the RTNL lock.
6995 */
6996static bool netdev_has_any_lower_dev(struct net_device *dev)
6997{
6998 ASSERT_RTNL();
6999
7000 return !list_empty(head: &dev->adj_list.lower);
7001}
7002
7003void *netdev_adjacent_get_private(struct list_head *adj_list)
7004{
7005 struct netdev_adjacent *adj;
7006
7007 adj = list_entry(adj_list, struct netdev_adjacent, list);
7008
7009 return adj->private;
7010}
7011EXPORT_SYMBOL(netdev_adjacent_get_private);
7012
7013/**
7014 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7015 * @dev: device
7016 * @iter: list_head ** of the current position
7017 *
7018 * Gets the next device from the dev's upper list, starting from iter
7019 * position. The caller must hold RCU read lock.
7020 */
7021struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7022 struct list_head **iter)
7023{
7024 struct netdev_adjacent *upper;
7025
7026 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7027
7028 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7029
7030 if (&upper->list == &dev->adj_list.upper)
7031 return NULL;
7032
7033 *iter = &upper->list;
7034
7035 return upper->dev;
7036}
7037EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7038
7039static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7040 struct list_head **iter,
7041 bool *ignore)
7042{
7043 struct netdev_adjacent *upper;
7044
7045 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7046
7047 if (&upper->list == &dev->adj_list.upper)
7048 return NULL;
7049
7050 *iter = &upper->list;
7051 *ignore = upper->ignore;
7052
7053 return upper->dev;
7054}
7055
7056static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7057 struct list_head **iter)
7058{
7059 struct netdev_adjacent *upper;
7060
7061 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7062
7063 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7064
7065 if (&upper->list == &dev->adj_list.upper)
7066 return NULL;
7067
7068 *iter = &upper->list;
7069
7070 return upper->dev;
7071}
7072
7073static int __netdev_walk_all_upper_dev(struct net_device *dev,
7074 int (*fn)(struct net_device *dev,
7075 struct netdev_nested_priv *priv),
7076 struct netdev_nested_priv *priv)
7077{
7078 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7079 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7080 int ret, cur = 0;
7081 bool ignore;
7082
7083 now = dev;
7084 iter = &dev->adj_list.upper;
7085
7086 while (1) {
7087 if (now != dev) {
7088 ret = fn(now, priv);
7089 if (ret)
7090 return ret;
7091 }
7092
7093 next = NULL;
7094 while (1) {
7095 udev = __netdev_next_upper_dev(dev: now, iter: &iter, ignore: &ignore);
7096 if (!udev)
7097 break;
7098 if (ignore)
7099 continue;
7100
7101 next = udev;
7102 niter = &udev->adj_list.upper;
7103 dev_stack[cur] = now;
7104 iter_stack[cur++] = iter;
7105 break;
7106 }
7107
7108 if (!next) {
7109 if (!cur)
7110 return 0;
7111 next = dev_stack[--cur];
7112 niter = iter_stack[cur];
7113 }
7114
7115 now = next;
7116 iter = niter;
7117 }
7118
7119 return 0;
7120}
7121
7122int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7123 int (*fn)(struct net_device *dev,
7124 struct netdev_nested_priv *priv),
7125 struct netdev_nested_priv *priv)
7126{
7127 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7128 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7129 int ret, cur = 0;
7130
7131 now = dev;
7132 iter = &dev->adj_list.upper;
7133
7134 while (1) {
7135 if (now != dev) {
7136 ret = fn(now, priv);
7137 if (ret)
7138 return ret;
7139 }
7140
7141 next = NULL;
7142 while (1) {
7143 udev = netdev_next_upper_dev_rcu(dev: now, iter: &iter);
7144 if (!udev)
7145 break;
7146
7147 next = udev;
7148 niter = &udev->adj_list.upper;
7149 dev_stack[cur] = now;
7150 iter_stack[cur++] = iter;
7151 break;
7152 }
7153
7154 if (!next) {
7155 if (!cur)
7156 return 0;
7157 next = dev_stack[--cur];
7158 niter = iter_stack[cur];
7159 }
7160
7161 now = next;
7162 iter = niter;
7163 }
7164
7165 return 0;
7166}
7167EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7168
7169static bool __netdev_has_upper_dev(struct net_device *dev,
7170 struct net_device *upper_dev)
7171{
7172 struct netdev_nested_priv priv = {
7173 .flags = 0,
7174 .data = (void *)upper_dev,
7175 };
7176
7177 ASSERT_RTNL();
7178
7179 return __netdev_walk_all_upper_dev(dev, fn: ____netdev_has_upper_dev,
7180 priv: &priv);
7181}
7182
7183/**
7184 * netdev_lower_get_next_private - Get the next ->private from the
7185 * lower neighbour list
7186 * @dev: device
7187 * @iter: list_head ** of the current position
7188 *
7189 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7190 * list, starting from iter position. The caller must hold either hold the
7191 * RTNL lock or its own locking that guarantees that the neighbour lower
7192 * list will remain unchanged.
7193 */
7194void *netdev_lower_get_next_private(struct net_device *dev,
7195 struct list_head **iter)
7196{
7197 struct netdev_adjacent *lower;
7198
7199 lower = list_entry(*iter, struct netdev_adjacent, list);
7200
7201 if (&lower->list == &dev->adj_list.lower)
7202 return NULL;
7203
7204 *iter = lower->list.next;
7205
7206 return lower->private;
7207}
7208EXPORT_SYMBOL(netdev_lower_get_next_private);
7209
7210/**
7211 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7212 * lower neighbour list, RCU
7213 * variant
7214 * @dev: device
7215 * @iter: list_head ** of the current position
7216 *
7217 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7218 * list, starting from iter position. The caller must hold RCU read lock.
7219 */
7220void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7221 struct list_head **iter)
7222{
7223 struct netdev_adjacent *lower;
7224
7225 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7226
7227 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7228
7229 if (&lower->list == &dev->adj_list.lower)
7230 return NULL;
7231
7232 *iter = &lower->list;
7233
7234 return lower->private;
7235}
7236EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7237
7238/**
7239 * netdev_lower_get_next - Get the next device from the lower neighbour
7240 * list
7241 * @dev: device
7242 * @iter: list_head ** of the current position
7243 *
7244 * Gets the next netdev_adjacent from the dev's lower neighbour
7245 * list, starting from iter position. The caller must hold RTNL lock or
7246 * its own locking that guarantees that the neighbour lower
7247 * list will remain unchanged.
7248 */
7249void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7250{
7251 struct netdev_adjacent *lower;
7252
7253 lower = list_entry(*iter, struct netdev_adjacent, list);
7254
7255 if (&lower->list == &dev->adj_list.lower)
7256 return NULL;
7257
7258 *iter = lower->list.next;
7259
7260 return lower->dev;
7261}
7262EXPORT_SYMBOL(netdev_lower_get_next);
7263
7264static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7265 struct list_head **iter)
7266{
7267 struct netdev_adjacent *lower;
7268
7269 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7270
7271 if (&lower->list == &dev->adj_list.lower)
7272 return NULL;
7273
7274 *iter = &lower->list;
7275
7276 return lower->dev;
7277}
7278
7279static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7280 struct list_head **iter,
7281 bool *ignore)
7282{
7283 struct netdev_adjacent *lower;
7284
7285 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7286
7287 if (&lower->list == &dev->adj_list.lower)
7288 return NULL;
7289
7290 *iter = &lower->list;
7291 *ignore = lower->ignore;
7292
7293 return lower->dev;
7294}
7295
7296int netdev_walk_all_lower_dev(struct net_device *dev,
7297 int (*fn)(struct net_device *dev,
7298 struct netdev_nested_priv *priv),
7299 struct netdev_nested_priv *priv)
7300{
7301 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7302 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7303 int ret, cur = 0;
7304
7305 now = dev;
7306 iter = &dev->adj_list.lower;
7307
7308 while (1) {
7309 if (now != dev) {
7310 ret = fn(now, priv);
7311 if (ret)
7312 return ret;
7313 }
7314
7315 next = NULL;
7316 while (1) {
7317 ldev = netdev_next_lower_dev(dev: now, iter: &iter);
7318 if (!ldev)
7319 break;
7320
7321 next = ldev;
7322 niter = &ldev->adj_list.lower;
7323 dev_stack[cur] = now;
7324 iter_stack[cur++] = iter;
7325 break;
7326 }
7327
7328 if (!next) {
7329 if (!cur)
7330 return 0;
7331 next = dev_stack[--cur];
7332 niter = iter_stack[cur];
7333 }
7334
7335 now = next;
7336 iter = niter;
7337 }
7338
7339 return 0;
7340}
7341EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7342
7343static int __netdev_walk_all_lower_dev(struct net_device *dev,
7344 int (*fn)(struct net_device *dev,
7345 struct netdev_nested_priv *priv),
7346 struct netdev_nested_priv *priv)
7347{
7348 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7349 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7350 int ret, cur = 0;
7351 bool ignore;
7352
7353 now = dev;
7354 iter = &dev->adj_list.lower;
7355
7356 while (1) {
7357 if (now != dev) {
7358 ret = fn(now, priv);
7359 if (ret)
7360 return ret;
7361 }
7362
7363 next = NULL;
7364 while (1) {
7365 ldev = __netdev_next_lower_dev(dev: now, iter: &iter, ignore: &ignore);
7366 if (!ldev)
7367 break;
7368 if (ignore)
7369 continue;
7370
7371 next = ldev;
7372 niter = &ldev->adj_list.lower;
7373 dev_stack[cur] = now;
7374 iter_stack[cur++] = iter;
7375 break;
7376 }
7377
7378 if (!next) {
7379 if (!cur)
7380 return 0;
7381 next = dev_stack[--cur];
7382 niter = iter_stack[cur];
7383 }
7384
7385 now = next;
7386 iter = niter;
7387 }
7388
7389 return 0;
7390}
7391
7392struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7393 struct list_head **iter)
7394{
7395 struct netdev_adjacent *lower;
7396
7397 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7398 if (&lower->list == &dev->adj_list.lower)
7399 return NULL;
7400
7401 *iter = &lower->list;
7402
7403 return lower->dev;
7404}
7405EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7406
7407static u8 __netdev_upper_depth(struct net_device *dev)
7408{
7409 struct net_device *udev;
7410 struct list_head *iter;
7411 u8 max_depth = 0;
7412 bool ignore;
7413
7414 for (iter = &dev->adj_list.upper,
7415 udev = __netdev_next_upper_dev(dev, iter: &iter, ignore: &ignore);
7416 udev;
7417 udev = __netdev_next_upper_dev(dev, iter: &iter, ignore: &ignore)) {
7418 if (ignore)
7419 continue;
7420 if (max_depth < udev->upper_level)
7421 max_depth = udev->upper_level;
7422 }
7423
7424 return max_depth;
7425}
7426
7427static u8 __netdev_lower_depth(struct net_device *dev)
7428{
7429 struct net_device *ldev;
7430 struct list_head *iter;
7431 u8 max_depth = 0;
7432 bool ignore;
7433
7434 for (iter = &dev->adj_list.lower,
7435 ldev = __netdev_next_lower_dev(dev, iter: &iter, ignore: &ignore);
7436 ldev;
7437 ldev = __netdev_next_lower_dev(dev, iter: &iter, ignore: &ignore)) {
7438 if (ignore)
7439 continue;
7440 if (max_depth < ldev->lower_level)
7441 max_depth = ldev->lower_level;
7442 }
7443
7444 return max_depth;
7445}
7446
7447static int __netdev_update_upper_level(struct net_device *dev,
7448 struct netdev_nested_priv *__unused)
7449{
7450 dev->upper_level = __netdev_upper_depth(dev) + 1;
7451 return 0;
7452}
7453
7454#ifdef CONFIG_LOCKDEP
7455static LIST_HEAD(net_unlink_list);
7456
7457static void net_unlink_todo(struct net_device *dev)
7458{
7459 if (list_empty(head: &dev->unlink_list))
7460 list_add_tail(new: &dev->unlink_list, head: &net_unlink_list);
7461}
7462#endif
7463
7464static int __netdev_update_lower_level(struct net_device *dev,
7465 struct netdev_nested_priv *priv)
7466{
7467 dev->lower_level = __netdev_lower_depth(dev) + 1;
7468
7469#ifdef CONFIG_LOCKDEP
7470 if (!priv)
7471 return 0;
7472
7473 if (priv->flags & NESTED_SYNC_IMM)
7474 dev->nested_level = dev->lower_level - 1;
7475 if (priv->flags & NESTED_SYNC_TODO)
7476 net_unlink_todo(dev);
7477#endif
7478 return 0;
7479}
7480
7481int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7482 int (*fn)(struct net_device *dev,
7483 struct netdev_nested_priv *priv),
7484 struct netdev_nested_priv *priv)
7485{
7486 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7487 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7488 int ret, cur = 0;
7489
7490 now = dev;
7491 iter = &dev->adj_list.lower;
7492
7493 while (1) {
7494 if (now != dev) {
7495 ret = fn(now, priv);
7496 if (ret)
7497 return ret;
7498 }
7499
7500 next = NULL;
7501 while (1) {
7502 ldev = netdev_next_lower_dev_rcu(now, &iter);
7503 if (!ldev)
7504 break;
7505
7506 next = ldev;
7507 niter = &ldev->adj_list.lower;
7508 dev_stack[cur] = now;
7509 iter_stack[cur++] = iter;
7510 break;
7511 }
7512
7513 if (!next) {
7514 if (!cur)
7515 return 0;
7516 next = dev_stack[--cur];
7517 niter = iter_stack[cur];
7518 }
7519
7520 now = next;
7521 iter = niter;
7522 }
7523
7524 return 0;
7525}
7526EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7527
7528/**
7529 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7530 * lower neighbour list, RCU
7531 * variant
7532 * @dev: device
7533 *
7534 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7535 * list. The caller must hold RCU read lock.
7536 */
7537void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7538{
7539 struct netdev_adjacent *lower;
7540
7541 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7542 struct netdev_adjacent, list);
7543 if (lower)
7544 return lower->private;
7545 return NULL;
7546}
7547EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7548
7549/**
7550 * netdev_master_upper_dev_get_rcu - Get master upper device
7551 * @dev: device
7552 *
7553 * Find a master upper device and return pointer to it or NULL in case
7554 * it's not there. The caller must hold the RCU read lock.
7555 */
7556struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7557{
7558 struct netdev_adjacent *upper;
7559
7560 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7561 struct netdev_adjacent, list);
7562 if (upper && likely(upper->master))
7563 return upper->dev;
7564 return NULL;
7565}
7566EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7567
7568static int netdev_adjacent_sysfs_add(struct net_device *dev,
7569 struct net_device *adj_dev,
7570 struct list_head *dev_list)
7571{
7572 char linkname[IFNAMSIZ+7];
7573
7574 sprintf(buf: linkname, fmt: dev_list == &dev->adj_list.upper ?
7575 "upper_%s" : "lower_%s", adj_dev->name);
7576 return sysfs_create_link(kobj: &(dev->dev.kobj), target: &(adj_dev->dev.kobj),
7577 name: linkname);
7578}
7579static void netdev_adjacent_sysfs_del(struct net_device *dev,
7580 char *name,
7581 struct list_head *dev_list)
7582{
7583 char linkname[IFNAMSIZ+7];
7584
7585 sprintf(buf: linkname, fmt: dev_list == &dev->adj_list.upper ?
7586 "upper_%s" : "lower_%s", name);
7587 sysfs_remove_link(kobj: &(dev->dev.kobj), name: linkname);
7588}
7589
7590static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7591 struct net_device *adj_dev,
7592 struct list_head *dev_list)
7593{
7594 return (dev_list == &dev->adj_list.upper ||
7595 dev_list == &dev->adj_list.lower) &&
7596 net_eq(net1: dev_net(dev), net2: dev_net(dev: adj_dev));
7597}
7598
7599static int __netdev_adjacent_dev_insert(struct net_device *dev,
7600 struct net_device *adj_dev,
7601 struct list_head *dev_list,
7602 void *private, bool master)
7603{
7604 struct netdev_adjacent *adj;
7605 int ret;
7606
7607 adj = __netdev_find_adj(adj_dev, adj_list: dev_list);
7608
7609 if (adj) {
7610 adj->ref_nr += 1;
7611 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7612 dev->name, adj_dev->name, adj->ref_nr);
7613
7614 return 0;
7615 }
7616
7617 adj = kmalloc(size: sizeof(*adj), GFP_KERNEL);
7618 if (!adj)
7619 return -ENOMEM;
7620
7621 adj->dev = adj_dev;
7622 adj->master = master;
7623 adj->ref_nr = 1;
7624 adj->private = private;
7625 adj->ignore = false;
7626 netdev_hold(dev: adj_dev, tracker: &adj->dev_tracker, GFP_KERNEL);
7627
7628 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7629 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7630
7631 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7632 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7633 if (ret)
7634 goto free_adj;
7635 }
7636
7637 /* Ensure that master link is always the first item in list. */
7638 if (master) {
7639 ret = sysfs_create_link(kobj: &(dev->dev.kobj),
7640 target: &(adj_dev->dev.kobj), name: "master");
7641 if (ret)
7642 goto remove_symlinks;
7643
7644 list_add_rcu(new: &adj->list, head: dev_list);
7645 } else {
7646 list_add_tail_rcu(new: &adj->list, head: dev_list);
7647 }
7648
7649 return 0;
7650
7651remove_symlinks:
7652 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7653 netdev_adjacent_sysfs_del(dev, name: adj_dev->name, dev_list);
7654free_adj:
7655 netdev_put(dev: adj_dev, tracker: &adj->dev_tracker);
7656 kfree(objp: adj);
7657
7658 return ret;
7659}
7660
7661static void __netdev_adjacent_dev_remove(struct net_device *dev,
7662 struct net_device *adj_dev,
7663 u16 ref_nr,
7664 struct list_head *dev_list)
7665{
7666 struct netdev_adjacent *adj;
7667
7668 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7669 dev->name, adj_dev->name, ref_nr);
7670
7671 adj = __netdev_find_adj(adj_dev, adj_list: dev_list);
7672
7673 if (!adj) {
7674 pr_err("Adjacency does not exist for device %s from %s\n",
7675 dev->name, adj_dev->name);
7676 WARN_ON(1);
7677 return;
7678 }
7679
7680 if (adj->ref_nr > ref_nr) {
7681 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7682 dev->name, adj_dev->name, ref_nr,
7683 adj->ref_nr - ref_nr);
7684 adj->ref_nr -= ref_nr;
7685 return;
7686 }
7687
7688 if (adj->master)
7689 sysfs_remove_link(kobj: &(dev->dev.kobj), name: "master");
7690
7691 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7692 netdev_adjacent_sysfs_del(dev, name: adj_dev->name, dev_list);
7693
7694 list_del_rcu(entry: &adj->list);
7695 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7696 adj_dev->name, dev->name, adj_dev->name);
7697 netdev_put(dev: adj_dev, tracker: &adj->dev_tracker);
7698 kfree_rcu(adj, rcu);
7699}
7700
7701static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7702 struct net_device *upper_dev,
7703 struct list_head *up_list,
7704 struct list_head *down_list,
7705 void *private, bool master)
7706{
7707 int ret;
7708
7709 ret = __netdev_adjacent_dev_insert(dev, adj_dev: upper_dev, dev_list: up_list,
7710 private, master);
7711 if (ret)
7712 return ret;
7713
7714 ret = __netdev_adjacent_dev_insert(dev: upper_dev, adj_dev: dev, dev_list: down_list,
7715 private, master: false);
7716 if (ret) {
7717 __netdev_adjacent_dev_remove(dev, adj_dev: upper_dev, ref_nr: 1, dev_list: up_list);
7718 return ret;
7719 }
7720
7721 return 0;
7722}
7723
7724static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7725 struct net_device *upper_dev,
7726 u16 ref_nr,
7727 struct list_head *up_list,
7728 struct list_head *down_list)
7729{
7730 __netdev_adjacent_dev_remove(dev, adj_dev: upper_dev, ref_nr, dev_list: up_list);
7731 __netdev_adjacent_dev_remove(dev: upper_dev, adj_dev: dev, ref_nr, dev_list: down_list);
7732}
7733
7734static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7735 struct net_device *upper_dev,
7736 void *private, bool master)
7737{
7738 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7739 up_list: &dev->adj_list.upper,
7740 down_list: &upper_dev->adj_list.lower,
7741 private, master);
7742}
7743
7744static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7745 struct net_device *upper_dev)
7746{
7747 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr: 1,
7748 up_list: &dev->adj_list.upper,
7749 down_list: &upper_dev->adj_list.lower);
7750}
7751
7752static int __netdev_upper_dev_link(struct net_device *dev,
7753 struct net_device *upper_dev, bool master,
7754 void *upper_priv, void *upper_info,
7755 struct netdev_nested_priv *priv,
7756 struct netlink_ext_ack *extack)
7757{
7758 struct netdev_notifier_changeupper_info changeupper_info = {
7759 .info = {
7760 .dev = dev,
7761 .extack = extack,
7762 },
7763 .upper_dev = upper_dev,
7764 .master = master,
7765 .linking = true,
7766 .upper_info = upper_info,
7767 };
7768 struct net_device *master_dev;
7769 int ret = 0;
7770
7771 ASSERT_RTNL();
7772
7773 if (dev == upper_dev)
7774 return -EBUSY;
7775
7776 /* To prevent loops, check if dev is not upper device to upper_dev. */
7777 if (__netdev_has_upper_dev(dev: upper_dev, upper_dev: dev))
7778 return -EBUSY;
7779
7780 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7781 return -EMLINK;
7782
7783 if (!master) {
7784 if (__netdev_has_upper_dev(dev, upper_dev))
7785 return -EEXIST;
7786 } else {
7787 master_dev = __netdev_master_upper_dev_get(dev);
7788 if (master_dev)
7789 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7790 }
7791
7792 ret = call_netdevice_notifiers_info(val: NETDEV_PRECHANGEUPPER,
7793 info: &changeupper_info.info);
7794 ret = notifier_to_errno(ret);
7795 if (ret)
7796 return ret;
7797
7798 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private: upper_priv,
7799 master);
7800 if (ret)
7801 return ret;
7802
7803 ret = call_netdevice_notifiers_info(val: NETDEV_CHANGEUPPER,
7804 info: &changeupper_info.info);
7805 ret = notifier_to_errno(ret);
7806 if (ret)
7807 goto rollback;
7808
7809 __netdev_update_upper_level(dev, NULL);
7810 __netdev_walk_all_lower_dev(dev, fn: __netdev_update_upper_level, NULL);
7811
7812 __netdev_update_lower_level(dev: upper_dev, priv);
7813 __netdev_walk_all_upper_dev(dev: upper_dev, fn: __netdev_update_lower_level,
7814 priv);
7815
7816 return 0;
7817
7818rollback:
7819 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7820
7821 return ret;
7822}
7823
7824/**
7825 * netdev_upper_dev_link - Add a link to the upper device
7826 * @dev: device
7827 * @upper_dev: new upper device
7828 * @extack: netlink extended ack
7829 *
7830 * Adds a link to device which is upper to this one. The caller must hold
7831 * the RTNL lock. On a failure a negative errno code is returned.
7832 * On success the reference counts are adjusted and the function
7833 * returns zero.
7834 */
7835int netdev_upper_dev_link(struct net_device *dev,
7836 struct net_device *upper_dev,
7837 struct netlink_ext_ack *extack)
7838{
7839 struct netdev_nested_priv priv = {
7840 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7841 .data = NULL,
7842 };
7843
7844 return __netdev_upper_dev_link(dev, upper_dev, master: false,
7845 NULL, NULL, priv: &priv, extack);
7846}
7847EXPORT_SYMBOL(netdev_upper_dev_link);
7848
7849/**
7850 * netdev_master_upper_dev_link - Add a master link to the upper device
7851 * @dev: device
7852 * @upper_dev: new upper device
7853 * @upper_priv: upper device private
7854 * @upper_info: upper info to be passed down via notifier
7855 * @extack: netlink extended ack
7856 *
7857 * Adds a link to device which is upper to this one. In this case, only
7858 * one master upper device can be linked, although other non-master devices
7859 * might be linked as well. The caller must hold the RTNL lock.
7860 * On a failure a negative errno code is returned. On success the reference
7861 * counts are adjusted and the function returns zero.
7862 */
7863int netdev_master_upper_dev_link(struct net_device *dev,
7864 struct net_device *upper_dev,
7865 void *upper_priv, void *upper_info,
7866 struct netlink_ext_ack *extack)
7867{
7868 struct netdev_nested_priv priv = {
7869 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7870 .data = NULL,
7871 };
7872
7873 return __netdev_upper_dev_link(dev, upper_dev, master: true,
7874 upper_priv, upper_info, priv: &priv, extack);
7875}
7876EXPORT_SYMBOL(netdev_master_upper_dev_link);
7877
7878static void __netdev_upper_dev_unlink(struct net_device *dev,
7879 struct net_device *upper_dev,
7880 struct netdev_nested_priv *priv)
7881{
7882 struct netdev_notifier_changeupper_info changeupper_info = {
7883 .info = {
7884 .dev = dev,
7885 },
7886 .upper_dev = upper_dev,
7887 .linking = false,
7888 };
7889
7890 ASSERT_RTNL();
7891
7892 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7893
7894 call_netdevice_notifiers_info(val: NETDEV_PRECHANGEUPPER,
7895 info: &changeupper_info.info);
7896
7897 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7898
7899 call_netdevice_notifiers_info(val: NETDEV_CHANGEUPPER,
7900 info: &changeupper_info.info);
7901
7902 __netdev_update_upper_level(dev, NULL);
7903 __netdev_walk_all_lower_dev(dev, fn: __netdev_update_upper_level, NULL);
7904
7905 __netdev_update_lower_level(dev: upper_dev, priv);
7906 __netdev_walk_all_upper_dev(dev: upper_dev, fn: __netdev_update_lower_level,
7907 priv);
7908}
7909
7910/**
7911 * netdev_upper_dev_unlink - Removes a link to upper device
7912 * @dev: device
7913 * @upper_dev: new upper device
7914 *
7915 * Removes a link to device which is upper to this one. The caller must hold
7916 * the RTNL lock.
7917 */
7918void netdev_upper_dev_unlink(struct net_device *dev,
7919 struct net_device *upper_dev)
7920{
7921 struct netdev_nested_priv priv = {
7922 .flags = NESTED_SYNC_TODO,
7923 .data = NULL,
7924 };
7925
7926 __netdev_upper_dev_unlink(dev, upper_dev, priv: &priv);
7927}
7928EXPORT_SYMBOL(netdev_upper_dev_unlink);
7929
7930static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7931 struct net_device *lower_dev,
7932 bool val)
7933{
7934 struct netdev_adjacent *adj;
7935
7936 adj = __netdev_find_adj(adj_dev: lower_dev, adj_list: &upper_dev->adj_list.lower);
7937 if (adj)
7938 adj->ignore = val;
7939
7940 adj = __netdev_find_adj(adj_dev: upper_dev, adj_list: &lower_dev->adj_list.upper);
7941 if (adj)
7942 adj->ignore = val;
7943}
7944
7945static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7946 struct net_device *lower_dev)
7947{
7948 __netdev_adjacent_dev_set(upper_dev, lower_dev, val: true);
7949}
7950
7951static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7952 struct net_device *lower_dev)
7953{
7954 __netdev_adjacent_dev_set(upper_dev, lower_dev, val: false);
7955}
7956
7957int netdev_adjacent_change_prepare(struct net_device *old_dev,
7958 struct net_device *new_dev,
7959 struct net_device *dev,
7960 struct netlink_ext_ack *extack)
7961{
7962 struct netdev_nested_priv priv = {
7963 .flags = 0,
7964 .data = NULL,
7965 };
7966 int err;
7967
7968 if (!new_dev)
7969 return 0;
7970
7971 if (old_dev && new_dev != old_dev)
7972 netdev_adjacent_dev_disable(upper_dev: dev, lower_dev: old_dev);
7973 err = __netdev_upper_dev_link(dev: new_dev, upper_dev: dev, master: false, NULL, NULL, priv: &priv,
7974 extack);
7975 if (err) {
7976 if (old_dev && new_dev != old_dev)
7977 netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev);
7978 return err;
7979 }
7980
7981 return 0;
7982}
7983EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7984
7985void netdev_adjacent_change_commit(struct net_device *old_dev,
7986 struct net_device *new_dev,
7987 struct net_device *dev)
7988{
7989 struct netdev_nested_priv priv = {
7990 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7991 .data = NULL,
7992 };
7993
7994 if (!new_dev || !old_dev)
7995 return;
7996
7997 if (new_dev == old_dev)
7998 return;
7999
8000 netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev);
8001 __netdev_upper_dev_unlink(dev: old_dev, upper_dev: dev, priv: &priv);
8002}
8003EXPORT_SYMBOL(netdev_adjacent_change_commit);
8004
8005void netdev_adjacent_change_abort(struct net_device *old_dev,
8006 struct net_device *new_dev,
8007 struct net_device *dev)
8008{
8009 struct netdev_nested_priv priv = {
8010 .flags = 0,
8011 .data = NULL,
8012 };
8013
8014 if (!new_dev)
8015 return;
8016
8017 if (old_dev && new_dev != old_dev)
8018 netdev_adjacent_dev_enable(upper_dev: dev, lower_dev: old_dev);
8019
8020 __netdev_upper_dev_unlink(dev: new_dev, upper_dev: dev, priv: &priv);
8021}
8022EXPORT_SYMBOL(netdev_adjacent_change_abort);
8023
8024/**
8025 * netdev_bonding_info_change - Dispatch event about slave change
8026 * @dev: device
8027 * @bonding_info: info to dispatch
8028 *
8029 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8030 * The caller must hold the RTNL lock.
8031 */
8032void netdev_bonding_info_change(struct net_device *dev,
8033 struct netdev_bonding_info *bonding_info)
8034{
8035 struct netdev_notifier_bonding_info info = {
8036 .info.dev = dev,
8037 };
8038
8039 memcpy(&info.bonding_info, bonding_info,
8040 sizeof(struct netdev_bonding_info));
8041 call_netdevice_notifiers_info(val: NETDEV_BONDING_INFO,
8042 info: &info.info);
8043}
8044EXPORT_SYMBOL(netdev_bonding_info_change);
8045
8046static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8047 struct netlink_ext_ack *extack)
8048{
8049 struct netdev_notifier_offload_xstats_info info = {
8050 .info.dev = dev,
8051 .info.extack = extack,
8052 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8053 };
8054 int err;
8055 int rc;
8056
8057 dev->offload_xstats_l3 = kzalloc(size: sizeof(*dev->offload_xstats_l3),
8058 GFP_KERNEL);
8059 if (!dev->offload_xstats_l3)
8060 return -ENOMEM;
8061
8062 rc = call_netdevice_notifiers_info_robust(val_up: NETDEV_OFFLOAD_XSTATS_ENABLE,
8063 val_down: NETDEV_OFFLOAD_XSTATS_DISABLE,
8064 info: &info.info);
8065 err = notifier_to_errno(ret: rc);
8066 if (err)
8067 goto free_stats;
8068
8069 return 0;
8070
8071free_stats:
8072 kfree(objp: dev->offload_xstats_l3);
8073 dev->offload_xstats_l3 = NULL;
8074 return err;
8075}
8076
8077int netdev_offload_xstats_enable(struct net_device *dev,
8078 enum netdev_offload_xstats_type type,
8079 struct netlink_ext_ack *extack)
8080{
8081 ASSERT_RTNL();
8082
8083 if (netdev_offload_xstats_enabled(dev, type))
8084 return -EALREADY;
8085
8086 switch (type) {
8087 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8088 return netdev_offload_xstats_enable_l3(dev, extack);
8089 }
8090
8091 WARN_ON(1);
8092 return -EINVAL;
8093}
8094EXPORT_SYMBOL(netdev_offload_xstats_enable);
8095
8096static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8097{
8098 struct netdev_notifier_offload_xstats_info info = {
8099 .info.dev = dev,
8100 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8101 };
8102
8103 call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_DISABLE,
8104 info: &info.info);
8105 kfree(objp: dev->offload_xstats_l3);
8106 dev->offload_xstats_l3 = NULL;
8107}
8108
8109int netdev_offload_xstats_disable(struct net_device *dev,
8110 enum netdev_offload_xstats_type type)
8111{
8112 ASSERT_RTNL();
8113
8114 if (!netdev_offload_xstats_enabled(dev, type))
8115 return -EALREADY;
8116
8117 switch (type) {
8118 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8119 netdev_offload_xstats_disable_l3(dev);
8120 return 0;
8121 }
8122
8123 WARN_ON(1);
8124 return -EINVAL;
8125}
8126EXPORT_SYMBOL(netdev_offload_xstats_disable);
8127
8128static void netdev_offload_xstats_disable_all(struct net_device *dev)
8129{
8130 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8131}
8132
8133static struct rtnl_hw_stats64 *
8134netdev_offload_xstats_get_ptr(const struct net_device *dev,
8135 enum netdev_offload_xstats_type type)
8136{
8137 switch (type) {
8138 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8139 return dev->offload_xstats_l3;
8140 }
8141
8142 WARN_ON(1);
8143 return NULL;
8144}
8145
8146bool netdev_offload_xstats_enabled(const struct net_device *dev,
8147 enum netdev_offload_xstats_type type)
8148{
8149 ASSERT_RTNL();
8150
8151 return netdev_offload_xstats_get_ptr(dev, type);
8152}
8153EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8154
8155struct netdev_notifier_offload_xstats_ru {
8156 bool used;
8157};
8158
8159struct netdev_notifier_offload_xstats_rd {
8160 struct rtnl_hw_stats64 stats;
8161 bool used;
8162};
8163
8164static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8165 const struct rtnl_hw_stats64 *src)
8166{
8167 dest->rx_packets += src->rx_packets;
8168 dest->tx_packets += src->tx_packets;
8169 dest->rx_bytes += src->rx_bytes;
8170 dest->tx_bytes += src->tx_bytes;
8171 dest->rx_errors += src->rx_errors;
8172 dest->tx_errors += src->tx_errors;
8173 dest->rx_dropped += src->rx_dropped;
8174 dest->tx_dropped += src->tx_dropped;
8175 dest->multicast += src->multicast;
8176}
8177
8178static int netdev_offload_xstats_get_used(struct net_device *dev,
8179 enum netdev_offload_xstats_type type,
8180 bool *p_used,
8181 struct netlink_ext_ack *extack)
8182{
8183 struct netdev_notifier_offload_xstats_ru report_used = {};
8184 struct netdev_notifier_offload_xstats_info info = {
8185 .info.dev = dev,
8186 .info.extack = extack,
8187 .type = type,
8188 .report_used = &report_used,
8189 };
8190 int rc;
8191
8192 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8193 rc = call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8194 info: &info.info);
8195 *p_used = report_used.used;
8196 return notifier_to_errno(ret: rc);
8197}
8198
8199static int netdev_offload_xstats_get_stats(struct net_device *dev,
8200 enum netdev_offload_xstats_type type,
8201 struct rtnl_hw_stats64 *p_stats,
8202 bool *p_used,
8203 struct netlink_ext_ack *extack)
8204{
8205 struct netdev_notifier_offload_xstats_rd report_delta = {};
8206 struct netdev_notifier_offload_xstats_info info = {
8207 .info.dev = dev,
8208 .info.extack = extack,
8209 .type = type,
8210 .report_delta = &report_delta,
8211 };
8212 struct rtnl_hw_stats64 *stats;
8213 int rc;
8214
8215 stats = netdev_offload_xstats_get_ptr(dev, type);
8216 if (WARN_ON(!stats))
8217 return -EINVAL;
8218
8219 rc = call_netdevice_notifiers_info(val: NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8220 info: &info.info);
8221
8222 /* Cache whatever we got, even if there was an error, otherwise the
8223 * successful stats retrievals would get lost.
8224 */
8225 netdev_hw_stats64_add(dest: stats, src: &report_delta.stats);
8226
8227 if (p_stats)
8228 *p_stats = *stats;
8229 *p_used = report_delta.used;
8230
8231 return notifier_to_errno(ret: rc);
8232}
8233
8234int netdev_offload_xstats_get(struct net_device *dev,
8235 enum netdev_offload_xstats_type type,
8236 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8237 struct netlink_ext_ack *extack)
8238{
8239 ASSERT_RTNL();
8240
8241 if (p_stats)
8242 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8243 p_used, extack);
8244 else
8245 return netdev_offload_xstats_get_used(dev, type, p_used,
8246 extack);
8247}
8248EXPORT_SYMBOL(netdev_offload_xstats_get);
8249
8250void
8251netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8252 const struct rtnl_hw_stats64 *stats)
8253{
8254 report_delta->used = true;
8255 netdev_hw_stats64_add(dest: &report_delta->stats, src: stats);
8256}
8257EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8258
8259void
8260netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8261{
8262 report_used->used = true;
8263}
8264EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8265
8266void netdev_offload_xstats_push_delta(struct net_device *dev,
8267 enum netdev_offload_xstats_type type,
8268 const struct rtnl_hw_stats64 *p_stats)
8269{
8270 struct rtnl_hw_stats64 *stats;
8271
8272 ASSERT_RTNL();
8273
8274 stats = netdev_offload_xstats_get_ptr(dev, type);
8275 if (WARN_ON(!stats))
8276 return;
8277
8278 netdev_hw_stats64_add(dest: stats, src: p_stats);
8279}
8280EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8281
8282/**
8283 * netdev_get_xmit_slave - Get the xmit slave of master device
8284 * @dev: device
8285 * @skb: The packet
8286 * @all_slaves: assume all the slaves are active
8287 *
8288 * The reference counters are not incremented so the caller must be
8289 * careful with locks. The caller must hold RCU lock.
8290 * %NULL is returned if no slave is found.
8291 */
8292
8293struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8294 struct sk_buff *skb,
8295 bool all_slaves)
8296{
8297 const struct net_device_ops *ops = dev->netdev_ops;
8298
8299 if (!ops->ndo_get_xmit_slave)
8300 return NULL;
8301 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8302}
8303EXPORT_SYMBOL(netdev_get_xmit_slave);
8304
8305static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8306 struct sock *sk)
8307{
8308 const struct net_device_ops *ops = dev->netdev_ops;
8309
8310 if (!ops->ndo_sk_get_lower_dev)
8311 return NULL;
8312 return ops->ndo_sk_get_lower_dev(dev, sk);
8313}
8314
8315/**
8316 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8317 * @dev: device
8318 * @sk: the socket
8319 *
8320 * %NULL is returned if no lower device is found.
8321 */
8322
8323struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8324 struct sock *sk)
8325{
8326 struct net_device *lower;
8327
8328 lower = netdev_sk_get_lower_dev(dev, sk);
8329 while (lower) {
8330 dev = lower;
8331 lower = netdev_sk_get_lower_dev(dev, sk);
8332 }
8333
8334 return dev;
8335}
8336EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8337
8338static void netdev_adjacent_add_links(struct net_device *dev)
8339{
8340 struct netdev_adjacent *iter;
8341
8342 struct net *net = dev_net(dev);
8343
8344 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8345 if (!net_eq(net1: net, net2: dev_net(dev: iter->dev)))
8346 continue;
8347 netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev,
8348 dev_list: &iter->dev->adj_list.lower);
8349 netdev_adjacent_sysfs_add(dev, adj_dev: iter->dev,
8350 dev_list: &dev->adj_list.upper);
8351 }
8352
8353 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8354 if (!net_eq(net1: net, net2: dev_net(dev: iter->dev)))
8355 continue;
8356 netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev,
8357 dev_list: &iter->dev->adj_list.upper);
8358 netdev_adjacent_sysfs_add(dev, adj_dev: iter->dev,
8359 dev_list: &dev->adj_list.lower);
8360 }
8361}
8362
8363static void netdev_adjacent_del_links(struct net_device *dev)
8364{
8365 struct netdev_adjacent *iter;
8366
8367 struct net *net = dev_net(dev);
8368
8369 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8370 if (!net_eq(net1: net, net2: dev_net(dev: iter->dev)))
8371 continue;
8372 netdev_adjacent_sysfs_del(dev: iter->dev, name: dev->name,
8373 dev_list: &iter->dev->adj_list.lower);
8374 netdev_adjacent_sysfs_del(dev, name: iter->dev->name,
8375 dev_list: &dev->adj_list.upper);
8376 }
8377
8378 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8379 if (!net_eq(net1: net, net2: dev_net(dev: iter->dev)))
8380 continue;
8381 netdev_adjacent_sysfs_del(dev: iter->dev, name: dev->name,
8382 dev_list: &iter->dev->adj_list.upper);
8383 netdev_adjacent_sysfs_del(dev, name: iter->dev->name,
8384 dev_list: &dev->adj_list.lower);
8385 }
8386}
8387
8388void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8389{
8390 struct netdev_adjacent *iter;
8391
8392 struct net *net = dev_net(dev);
8393
8394 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8395 if (!net_eq(net1: net, net2: dev_net(dev: iter->dev)))
8396 continue;
8397 netdev_adjacent_sysfs_del(dev: iter->dev, name: oldname,
8398 dev_list: &iter->dev->adj_list.lower);
8399 netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev,
8400 dev_list: &iter->dev->adj_list.lower);
8401 }
8402
8403 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8404 if (!net_eq(net1: net, net2: dev_net(dev: iter->dev)))
8405 continue;
8406 netdev_adjacent_sysfs_del(dev: iter->dev, name: oldname,
8407 dev_list: &iter->dev->adj_list.upper);
8408 netdev_adjacent_sysfs_add(dev: iter->dev, adj_dev: dev,
8409 dev_list: &iter->dev->adj_list.upper);
8410 }
8411}
8412
8413void *netdev_lower_dev_get_private(struct net_device *dev,
8414 struct net_device *lower_dev)
8415{
8416 struct netdev_adjacent *lower;
8417
8418 if (!lower_dev)
8419 return NULL;
8420 lower = __netdev_find_adj(adj_dev: lower_dev, adj_list: &dev->adj_list.lower);
8421 if (!lower)
8422 return NULL;
8423
8424 return lower->private;
8425}
8426EXPORT_SYMBOL(netdev_lower_dev_get_private);
8427
8428
8429/**
8430 * netdev_lower_state_changed - Dispatch event about lower device state change
8431 * @lower_dev: device
8432 * @lower_state_info: state to dispatch
8433 *
8434 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8435 * The caller must hold the RTNL lock.
8436 */
8437void netdev_lower_state_changed(struct net_device *lower_dev,
8438 void *lower_state_info)
8439{
8440 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8441 .info.dev = lower_dev,
8442 };
8443
8444 ASSERT_RTNL();
8445 changelowerstate_info.lower_state_info = lower_state_info;
8446 call_netdevice_notifiers_info(val: NETDEV_CHANGELOWERSTATE,
8447 info: &changelowerstate_info.info);
8448}
8449EXPORT_SYMBOL(netdev_lower_state_changed);
8450
8451static void dev_change_rx_flags(struct net_device *dev, int flags)
8452{
8453 const struct net_device_ops *ops = dev->netdev_ops;
8454
8455 if (ops->ndo_change_rx_flags)
8456 ops->ndo_change_rx_flags(dev, flags);
8457}
8458
8459static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8460{
8461 unsigned int old_flags = dev->flags;
8462 kuid_t uid;
8463 kgid_t gid;
8464
8465 ASSERT_RTNL();
8466
8467 dev->flags |= IFF_PROMISC;
8468 dev->promiscuity += inc;
8469 if (dev->promiscuity == 0) {
8470 /*
8471 * Avoid overflow.
8472 * If inc causes overflow, untouch promisc and return error.
8473 */
8474 if (inc < 0)
8475 dev->flags &= ~IFF_PROMISC;
8476 else {
8477 dev->promiscuity -= inc;
8478 netdev_warn(dev, format: "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8479 return -EOVERFLOW;
8480 }
8481 }
8482 if (dev->flags != old_flags) {
8483 netdev_info(dev, format: "%s promiscuous mode\n",
8484 dev->flags & IFF_PROMISC ? "entered" : "left");
8485 if (audit_enabled) {
8486 current_uid_gid(&uid, &gid);
8487 audit_log(ctx: audit_context(), GFP_ATOMIC,
8488 AUDIT_ANOM_PROMISCUOUS,
8489 fmt: "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8490 dev->name, (dev->flags & IFF_PROMISC),
8491 (old_flags & IFF_PROMISC),
8492 from_kuid(to: &init_user_ns, uid: audit_get_loginuid(current)),
8493 from_kuid(to: &init_user_ns, uid),
8494 from_kgid(to: &init_user_ns, gid),
8495 audit_get_sessionid(current));
8496 }
8497
8498 dev_change_rx_flags(dev, IFF_PROMISC);
8499 }
8500 if (notify)
8501 __dev_notify_flags(dev, old_flags, IFF_PROMISC, portid: 0, NULL);
8502 return 0;
8503}
8504
8505/**
8506 * dev_set_promiscuity - update promiscuity count on a device
8507 * @dev: device
8508 * @inc: modifier
8509 *
8510 * Add or remove promiscuity from a device. While the count in the device
8511 * remains above zero the interface remains promiscuous. Once it hits zero
8512 * the device reverts back to normal filtering operation. A negative inc
8513 * value is used to drop promiscuity on the device.
8514 * Return 0 if successful or a negative errno code on error.
8515 */
8516int dev_set_promiscuity(struct net_device *dev, int inc)
8517{
8518 unsigned int old_flags = dev->flags;
8519 int err;
8520
8521 err = __dev_set_promiscuity(dev, inc, notify: true);
8522 if (err < 0)
8523 return err;
8524 if (dev->flags != old_flags)
8525 dev_set_rx_mode(dev);
8526 return err;
8527}
8528EXPORT_SYMBOL(dev_set_promiscuity);
8529
8530static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8531{
8532 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8533
8534 ASSERT_RTNL();
8535
8536 dev->flags |= IFF_ALLMULTI;
8537 dev->allmulti += inc;
8538 if (dev->allmulti == 0) {
8539 /*
8540 * Avoid overflow.
8541 * If inc causes overflow, untouch allmulti and return error.
8542 */
8543 if (inc < 0)
8544 dev->flags &= ~IFF_ALLMULTI;
8545 else {
8546 dev->allmulti -= inc;
8547 netdev_warn(dev, format: "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8548 return -EOVERFLOW;
8549 }
8550 }
8551 if (dev->flags ^ old_flags) {
8552 netdev_info(dev, format: "%s allmulticast mode\n",
8553 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8554 dev_change_rx_flags(dev, IFF_ALLMULTI);
8555 dev_set_rx_mode(dev);
8556 if (notify)
8557 __dev_notify_flags(dev, old_flags,
8558 gchanges: dev->gflags ^ old_gflags, portid: 0, NULL);
8559 }
8560 return 0;
8561}
8562
8563/**
8564 * dev_set_allmulti - update allmulti count on a device
8565 * @dev: device
8566 * @inc: modifier
8567 *
8568 * Add or remove reception of all multicast frames to a device. While the
8569 * count in the device remains above zero the interface remains listening
8570 * to all interfaces. Once it hits zero the device reverts back to normal
8571 * filtering operation. A negative @inc value is used to drop the counter
8572 * when releasing a resource needing all multicasts.
8573 * Return 0 if successful or a negative errno code on error.
8574 */
8575
8576int dev_set_allmulti(struct net_device *dev, int inc)
8577{
8578 return __dev_set_allmulti(dev, inc, notify: true);
8579}
8580EXPORT_SYMBOL(dev_set_allmulti);
8581
8582/*
8583 * Upload unicast and multicast address lists to device and
8584 * configure RX filtering. When the device doesn't support unicast
8585 * filtering it is put in promiscuous mode while unicast addresses
8586 * are present.
8587 */
8588void __dev_set_rx_mode(struct net_device *dev)
8589{
8590 const struct net_device_ops *ops = dev->netdev_ops;
8591
8592 /* dev_open will call this function so the list will stay sane. */
8593 if (!(dev->flags&IFF_UP))
8594 return;
8595
8596 if (!netif_device_present(dev))
8597 return;
8598
8599 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8600 /* Unicast addresses changes may only happen under the rtnl,
8601 * therefore calling __dev_set_promiscuity here is safe.
8602 */
8603 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8604 __dev_set_promiscuity(dev, inc: 1, notify: false);
8605 dev->uc_promisc = true;
8606 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8607 __dev_set_promiscuity(dev, inc: -1, notify: false);
8608 dev->uc_promisc = false;
8609 }
8610 }
8611
8612 if (ops->ndo_set_rx_mode)
8613 ops->ndo_set_rx_mode(dev);
8614}
8615
8616void dev_set_rx_mode(struct net_device *dev)
8617{
8618 netif_addr_lock_bh(dev);
8619 __dev_set_rx_mode(dev);
8620 netif_addr_unlock_bh(dev);
8621}
8622
8623/**
8624 * dev_get_flags - get flags reported to userspace
8625 * @dev: device
8626 *
8627 * Get the combination of flag bits exported through APIs to userspace.
8628 */
8629unsigned int dev_get_flags(const struct net_device *dev)
8630{
8631 unsigned int flags;
8632
8633 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8634 IFF_ALLMULTI |
8635 IFF_RUNNING |
8636 IFF_LOWER_UP |
8637 IFF_DORMANT)) |
8638 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
8639 IFF_ALLMULTI));
8640
8641 if (netif_running(dev)) {
8642 if (netif_oper_up(dev))
8643 flags |= IFF_RUNNING;
8644 if (netif_carrier_ok(dev))
8645 flags |= IFF_LOWER_UP;
8646 if (netif_dormant(dev))
8647 flags |= IFF_DORMANT;
8648 }
8649
8650 return flags;
8651}
8652EXPORT_SYMBOL(dev_get_flags);
8653
8654int __dev_change_flags(struct net_device *dev, unsigned int flags,
8655 struct netlink_ext_ack *extack)
8656{
8657 unsigned int old_flags = dev->flags;
8658 int ret;
8659
8660 ASSERT_RTNL();
8661
8662 /*
8663 * Set the flags on our device.
8664 */
8665
8666 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8667 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8668 IFF_AUTOMEDIA)) |
8669 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8670 IFF_ALLMULTI));
8671
8672 /*
8673 * Load in the correct multicast list now the flags have changed.
8674 */
8675
8676 if ((old_flags ^ flags) & IFF_MULTICAST)
8677 dev_change_rx_flags(dev, IFF_MULTICAST);
8678
8679 dev_set_rx_mode(dev);
8680
8681 /*
8682 * Have we downed the interface. We handle IFF_UP ourselves
8683 * according to user attempts to set it, rather than blindly
8684 * setting it.
8685 */
8686
8687 ret = 0;
8688 if ((old_flags ^ flags) & IFF_UP) {
8689 if (old_flags & IFF_UP)
8690 __dev_close(dev);
8691 else
8692 ret = __dev_open(dev, extack);
8693 }
8694
8695 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8696 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8697 unsigned int old_flags = dev->flags;
8698
8699 dev->gflags ^= IFF_PROMISC;
8700
8701 if (__dev_set_promiscuity(dev, inc, notify: false) >= 0)
8702 if (dev->flags != old_flags)
8703 dev_set_rx_mode(dev);
8704 }
8705
8706 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8707 * is important. Some (broken) drivers set IFF_PROMISC, when
8708 * IFF_ALLMULTI is requested not asking us and not reporting.
8709 */
8710 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8711 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8712
8713 dev->gflags ^= IFF_ALLMULTI;
8714 __dev_set_allmulti(dev, inc, notify: false);
8715 }
8716
8717 return ret;
8718}
8719
8720void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8721 unsigned int gchanges, u32 portid,
8722 const struct nlmsghdr *nlh)
8723{
8724 unsigned int changes = dev->flags ^ old_flags;
8725
8726 if (gchanges)
8727 rtmsg_ifinfo(RTM_NEWLINK, dev, change: gchanges, GFP_ATOMIC, portid, nlh);
8728
8729 if (changes & IFF_UP) {
8730 if (dev->flags & IFF_UP)
8731 call_netdevice_notifiers(NETDEV_UP, dev);
8732 else
8733 call_netdevice_notifiers(NETDEV_DOWN, dev);
8734 }
8735
8736 if (dev->flags & IFF_UP &&
8737 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8738 struct netdev_notifier_change_info change_info = {
8739 .info = {
8740 .dev = dev,
8741 },
8742 .flags_changed = changes,
8743 };
8744
8745 call_netdevice_notifiers_info(val: NETDEV_CHANGE, info: &change_info.info);
8746 }
8747}
8748
8749/**
8750 * dev_change_flags - change device settings
8751 * @dev: device
8752 * @flags: device state flags
8753 * @extack: netlink extended ack
8754 *
8755 * Change settings on device based state flags. The flags are
8756 * in the userspace exported format.
8757 */
8758int dev_change_flags(struct net_device *dev, unsigned int flags,
8759 struct netlink_ext_ack *extack)
8760{
8761 int ret;
8762 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8763
8764 ret = __dev_change_flags(dev, flags, extack);
8765 if (ret < 0)
8766 return ret;
8767
8768 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8769 __dev_notify_flags(dev, old_flags, gchanges: changes, portid: 0, NULL);
8770 return ret;
8771}
8772EXPORT_SYMBOL(dev_change_flags);
8773
8774int __dev_set_mtu(struct net_device *dev, int new_mtu)
8775{
8776 const struct net_device_ops *ops = dev->netdev_ops;
8777
8778 if (ops->ndo_change_mtu)
8779 return ops->ndo_change_mtu(dev, new_mtu);
8780
8781 /* Pairs with all the lockless reads of dev->mtu in the stack */
8782 WRITE_ONCE(dev->mtu, new_mtu);
8783 return 0;
8784}
8785EXPORT_SYMBOL(__dev_set_mtu);
8786
8787int dev_validate_mtu(struct net_device *dev, int new_mtu,
8788 struct netlink_ext_ack *extack)
8789{
8790 /* MTU must be positive, and in range */
8791 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8792 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8793 return -EINVAL;
8794 }
8795
8796 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8797 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8798 return -EINVAL;
8799 }
8800 return 0;
8801}
8802
8803/**
8804 * dev_set_mtu_ext - Change maximum transfer unit
8805 * @dev: device
8806 * @new_mtu: new transfer unit
8807 * @extack: netlink extended ack
8808 *
8809 * Change the maximum transfer size of the network device.
8810 */
8811int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8812 struct netlink_ext_ack *extack)
8813{
8814 int err, orig_mtu;
8815
8816 if (new_mtu == dev->mtu)
8817 return 0;
8818
8819 err = dev_validate_mtu(dev, new_mtu, extack);
8820 if (err)
8821 return err;
8822
8823 if (!netif_device_present(dev))
8824 return -ENODEV;
8825
8826 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8827 err = notifier_to_errno(ret: err);
8828 if (err)
8829 return err;
8830
8831 orig_mtu = dev->mtu;
8832 err = __dev_set_mtu(dev, new_mtu);
8833
8834 if (!err) {
8835 err = call_netdevice_notifiers_mtu(val: NETDEV_CHANGEMTU, dev,
8836 arg: orig_mtu);
8837 err = notifier_to_errno(ret: err);
8838 if (err) {
8839 /* setting mtu back and notifying everyone again,
8840 * so that they have a chance to revert changes.
8841 */
8842 __dev_set_mtu(dev, orig_mtu);
8843 call_netdevice_notifiers_mtu(val: NETDEV_CHANGEMTU, dev,
8844 arg: new_mtu);
8845 }
8846 }
8847 return err;
8848}
8849
8850int dev_set_mtu(struct net_device *dev, int new_mtu)
8851{
8852 struct netlink_ext_ack extack;
8853 int err;
8854
8855 memset(&extack, 0, sizeof(extack));
8856 err = dev_set_mtu_ext(dev, new_mtu, extack: &extack);
8857 if (err && extack._msg)
8858 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8859 return err;
8860}
8861EXPORT_SYMBOL(dev_set_mtu);
8862
8863/**
8864 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8865 * @dev: device
8866 * @new_len: new tx queue length
8867 */
8868int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8869{
8870 unsigned int orig_len = dev->tx_queue_len;
8871 int res;
8872
8873 if (new_len != (unsigned int)new_len)
8874 return -ERANGE;
8875
8876 if (new_len != orig_len) {
8877 dev->tx_queue_len = new_len;
8878 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8879 res = notifier_to_errno(ret: res);
8880 if (res)
8881 goto err_rollback;
8882 res = dev_qdisc_change_tx_queue_len(dev);
8883 if (res)
8884 goto err_rollback;
8885 }
8886
8887 return 0;
8888
8889err_rollback:
8890 netdev_err(dev, format: "refused to change device tx_queue_len\n");
8891 dev->tx_queue_len = orig_len;
8892 return res;
8893}
8894
8895/**
8896 * dev_set_group - Change group this device belongs to
8897 * @dev: device
8898 * @new_group: group this device should belong to
8899 */
8900void dev_set_group(struct net_device *dev, int new_group)
8901{
8902 dev->group = new_group;
8903}
8904
8905/**
8906 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8907 * @dev: device
8908 * @addr: new address
8909 * @extack: netlink extended ack
8910 */
8911int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8912 struct netlink_ext_ack *extack)
8913{
8914 struct netdev_notifier_pre_changeaddr_info info = {
8915 .info.dev = dev,
8916 .info.extack = extack,
8917 .dev_addr = addr,
8918 };
8919 int rc;
8920
8921 rc = call_netdevice_notifiers_info(val: NETDEV_PRE_CHANGEADDR, info: &info.info);
8922 return notifier_to_errno(ret: rc);
8923}
8924EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8925
8926/**
8927 * dev_set_mac_address - Change Media Access Control Address
8928 * @dev: device
8929 * @sa: new address
8930 * @extack: netlink extended ack
8931 *
8932 * Change the hardware (MAC) address of the device
8933 */
8934int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8935 struct netlink_ext_ack *extack)
8936{
8937 const struct net_device_ops *ops = dev->netdev_ops;
8938 int err;
8939
8940 if (!ops->ndo_set_mac_address)
8941 return -EOPNOTSUPP;
8942 if (sa->sa_family != dev->type)
8943 return -EINVAL;
8944 if (!netif_device_present(dev))
8945 return -ENODEV;
8946 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8947 if (err)
8948 return err;
8949 if (memcmp(p: dev->dev_addr, q: sa->sa_data, size: dev->addr_len)) {
8950 err = ops->ndo_set_mac_address(dev, sa);
8951 if (err)
8952 return err;
8953 }
8954 dev->addr_assign_type = NET_ADDR_SET;
8955 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8956 add_device_randomness(buf: dev->dev_addr, len: dev->addr_len);
8957 return 0;
8958}
8959EXPORT_SYMBOL(dev_set_mac_address);
8960
8961DECLARE_RWSEM(dev_addr_sem);
8962
8963int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8964 struct netlink_ext_ack *extack)
8965{
8966 int ret;
8967
8968 down_write(sem: &dev_addr_sem);
8969 ret = dev_set_mac_address(dev, sa, extack);
8970 up_write(sem: &dev_addr_sem);
8971 return ret;
8972}
8973EXPORT_SYMBOL(dev_set_mac_address_user);
8974
8975int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8976{
8977 size_t size = sizeof(sa->sa_data_min);
8978 struct net_device *dev;
8979 int ret = 0;
8980
8981 down_read(sem: &dev_addr_sem);
8982 rcu_read_lock();
8983
8984 dev = dev_get_by_name_rcu(net, dev_name);
8985 if (!dev) {
8986 ret = -ENODEV;
8987 goto unlock;
8988 }
8989 if (!dev->addr_len)
8990 memset(sa->sa_data, 0, size);
8991 else
8992 memcpy(sa->sa_data, dev->dev_addr,
8993 min_t(size_t, size, dev->addr_len));
8994 sa->sa_family = dev->type;
8995
8996unlock:
8997 rcu_read_unlock();
8998 up_read(sem: &dev_addr_sem);
8999 return ret;
9000}
9001EXPORT_SYMBOL(dev_get_mac_address);
9002
9003/**
9004 * dev_change_carrier - Change device carrier
9005 * @dev: device
9006 * @new_carrier: new value
9007 *
9008 * Change device carrier
9009 */
9010int dev_change_carrier(struct net_device *dev, bool new_carrier)
9011{
9012 const struct net_device_ops *ops = dev->netdev_ops;
9013
9014 if (!ops->ndo_change_carrier)
9015 return -EOPNOTSUPP;
9016 if (!netif_device_present(dev))
9017 return -ENODEV;
9018 return ops->ndo_change_carrier(dev, new_carrier);
9019}
9020
9021/**
9022 * dev_get_phys_port_id - Get device physical port ID
9023 * @dev: device
9024 * @ppid: port ID
9025 *
9026 * Get device physical port ID
9027 */
9028int dev_get_phys_port_id(struct net_device *dev,
9029 struct netdev_phys_item_id *ppid)
9030{
9031 const struct net_device_ops *ops = dev->netdev_ops;
9032
9033 if (!ops->ndo_get_phys_port_id)
9034 return -EOPNOTSUPP;
9035 return ops->ndo_get_phys_port_id(dev, ppid);
9036}
9037
9038/**
9039 * dev_get_phys_port_name - Get device physical port name
9040 * @dev: device
9041 * @name: port name
9042 * @len: limit of bytes to copy to name
9043 *
9044 * Get device physical port name
9045 */
9046int dev_get_phys_port_name(struct net_device *dev,
9047 char *name, size_t len)
9048{
9049 const struct net_device_ops *ops = dev->netdev_ops;
9050 int err;
9051
9052 if (ops->ndo_get_phys_port_name) {
9053 err = ops->ndo_get_phys_port_name(dev, name, len);
9054 if (err != -EOPNOTSUPP)
9055 return err;
9056 }
9057 return devlink_compat_phys_port_name_get(dev, name, len);
9058}
9059
9060/**
9061 * dev_get_port_parent_id - Get the device's port parent identifier
9062 * @dev: network device
9063 * @ppid: pointer to a storage for the port's parent identifier
9064 * @recurse: allow/disallow recursion to lower devices
9065 *
9066 * Get the devices's port parent identifier
9067 */
9068int dev_get_port_parent_id(struct net_device *dev,
9069 struct netdev_phys_item_id *ppid,
9070 bool recurse)
9071{
9072 const struct net_device_ops *ops = dev->netdev_ops;
9073 struct netdev_phys_item_id first = { };
9074 struct net_device *lower_dev;
9075 struct list_head *iter;
9076 int err;
9077
9078 if (ops->ndo_get_port_parent_id) {
9079 err = ops->ndo_get_port_parent_id(dev, ppid);
9080 if (err != -EOPNOTSUPP)
9081 return err;
9082 }
9083
9084 err = devlink_compat_switch_id_get(dev, ppid);
9085 if (!recurse || err != -EOPNOTSUPP)
9086 return err;
9087
9088 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9089 err = dev_get_port_parent_id(dev: lower_dev, ppid, recurse: true);
9090 if (err)
9091 break;
9092 if (!first.id_len)
9093 first = *ppid;
9094 else if (memcmp(p: &first, q: ppid, size: sizeof(*ppid)))
9095 return -EOPNOTSUPP;
9096 }
9097
9098 return err;
9099}
9100EXPORT_SYMBOL(dev_get_port_parent_id);
9101
9102/**
9103 * netdev_port_same_parent_id - Indicate if two network devices have
9104 * the same port parent identifier
9105 * @a: first network device
9106 * @b: second network device
9107 */
9108bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9109{
9110 struct netdev_phys_item_id a_id = { };
9111 struct netdev_phys_item_id b_id = { };
9112
9113 if (dev_get_port_parent_id(a, &a_id, true) ||
9114 dev_get_port_parent_id(b, &b_id, true))
9115 return false;
9116
9117 return netdev_phys_item_id_same(a: &a_id, b: &b_id);
9118}
9119EXPORT_SYMBOL(netdev_port_same_parent_id);
9120
9121/**
9122 * dev_change_proto_down - set carrier according to proto_down.
9123 *
9124 * @dev: device
9125 * @proto_down: new value
9126 */
9127int dev_change_proto_down(struct net_device *dev, bool proto_down)
9128{
9129 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9130 return -EOPNOTSUPP;
9131 if (!netif_device_present(dev))
9132 return -ENODEV;
9133 if (proto_down)
9134 netif_carrier_off(dev);
9135 else
9136 netif_carrier_on(dev);
9137 dev->proto_down = proto_down;
9138 return 0;
9139}
9140
9141/**
9142 * dev_change_proto_down_reason - proto down reason
9143 *
9144 * @dev: device
9145 * @mask: proto down mask
9146 * @value: proto down value
9147 */
9148void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9149 u32 value)
9150{
9151 int b;
9152
9153 if (!mask) {
9154 dev->proto_down_reason = value;
9155 } else {
9156 for_each_set_bit(b, &mask, 32) {
9157 if (value & (1 << b))
9158 dev->proto_down_reason |= BIT(b);
9159 else
9160 dev->proto_down_reason &= ~BIT(b);
9161 }
9162 }
9163}
9164
9165struct bpf_xdp_link {
9166 struct bpf_link link;
9167 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9168 int flags;
9169};
9170
9171static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9172{
9173 if (flags & XDP_FLAGS_HW_MODE)
9174 return XDP_MODE_HW;
9175 if (flags & XDP_FLAGS_DRV_MODE)
9176 return XDP_MODE_DRV;
9177 if (flags & XDP_FLAGS_SKB_MODE)
9178 return XDP_MODE_SKB;
9179 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9180}
9181
9182static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9183{
9184 switch (mode) {
9185 case XDP_MODE_SKB:
9186 return generic_xdp_install;
9187 case XDP_MODE_DRV:
9188 case XDP_MODE_HW:
9189 return dev->netdev_ops->ndo_bpf;
9190 default:
9191 return NULL;
9192 }
9193}
9194
9195static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9196 enum bpf_xdp_mode mode)
9197{
9198 return dev->xdp_state[mode].link;
9199}
9200
9201static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9202 enum bpf_xdp_mode mode)
9203{
9204 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9205
9206 if (link)
9207 return link->link.prog;
9208 return dev->xdp_state[mode].prog;
9209}
9210
9211u8 dev_xdp_prog_count(struct net_device *dev)
9212{
9213 u8 count = 0;
9214 int i;
9215
9216 for (i = 0; i < __MAX_XDP_MODE; i++)
9217 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9218 count++;
9219 return count;
9220}
9221EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9222
9223u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9224{
9225 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9226
9227 return prog ? prog->aux->id : 0;
9228}
9229
9230static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9231 struct bpf_xdp_link *link)
9232{
9233 dev->xdp_state[mode].link = link;
9234 dev->xdp_state[mode].prog = NULL;
9235}
9236
9237static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9238 struct bpf_prog *prog)
9239{
9240 dev->xdp_state[mode].link = NULL;
9241 dev->xdp_state[mode].prog = prog;
9242}
9243
9244static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9245 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9246 u32 flags, struct bpf_prog *prog)
9247{
9248 struct netdev_bpf xdp;
9249 int err;
9250
9251 memset(&xdp, 0, sizeof(xdp));
9252 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9253 xdp.extack = extack;
9254 xdp.flags = flags;
9255 xdp.prog = prog;
9256
9257 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9258 * "moved" into driver), so they don't increment it on their own, but
9259 * they do decrement refcnt when program is detached or replaced.
9260 * Given net_device also owns link/prog, we need to bump refcnt here
9261 * to prevent drivers from underflowing it.
9262 */
9263 if (prog)
9264 bpf_prog_inc(prog);
9265 err = bpf_op(dev, &xdp);
9266 if (err) {
9267 if (prog)
9268 bpf_prog_put(prog);
9269 return err;
9270 }
9271
9272 if (mode != XDP_MODE_HW)
9273 bpf_prog_change_xdp(prev_prog: dev_xdp_prog(dev, mode), prog);
9274
9275 return 0;
9276}
9277
9278static void dev_xdp_uninstall(struct net_device *dev)
9279{
9280 struct bpf_xdp_link *link;
9281 struct bpf_prog *prog;
9282 enum bpf_xdp_mode mode;
9283 bpf_op_t bpf_op;
9284
9285 ASSERT_RTNL();
9286
9287 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9288 prog = dev_xdp_prog(dev, mode);
9289 if (!prog)
9290 continue;
9291
9292 bpf_op = dev_xdp_bpf_op(dev, mode);
9293 if (!bpf_op)
9294 continue;
9295
9296 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9297
9298 /* auto-detach link from net device */
9299 link = dev_xdp_link(dev, mode);
9300 if (link)
9301 link->dev = NULL;
9302 else
9303 bpf_prog_put(prog);
9304
9305 dev_xdp_set_link(dev, mode, NULL);
9306 }
9307}
9308
9309static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9310 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9311 struct bpf_prog *old_prog, u32 flags)
9312{
9313 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9314 struct bpf_prog *cur_prog;
9315 struct net_device *upper;
9316 struct list_head *iter;
9317 enum bpf_xdp_mode mode;
9318 bpf_op_t bpf_op;
9319 int err;
9320
9321 ASSERT_RTNL();
9322
9323 /* either link or prog attachment, never both */
9324 if (link && (new_prog || old_prog))
9325 return -EINVAL;
9326 /* link supports only XDP mode flags */
9327 if (link && (flags & ~XDP_FLAGS_MODES)) {
9328 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9329 return -EINVAL;
9330 }
9331 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9332 if (num_modes > 1) {
9333 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9334 return -EINVAL;
9335 }
9336 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9337 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9338 NL_SET_ERR_MSG(extack,
9339 "More than one program loaded, unset mode is ambiguous");
9340 return -EINVAL;
9341 }
9342 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9343 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9344 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9345 return -EINVAL;
9346 }
9347
9348 mode = dev_xdp_mode(dev, flags);
9349 /* can't replace attached link */
9350 if (dev_xdp_link(dev, mode)) {
9351 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9352 return -EBUSY;
9353 }
9354
9355 /* don't allow if an upper device already has a program */
9356 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9357 if (dev_xdp_prog_count(upper) > 0) {
9358 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9359 return -EEXIST;
9360 }
9361 }
9362
9363 cur_prog = dev_xdp_prog(dev, mode);
9364 /* can't replace attached prog with link */
9365 if (link && cur_prog) {
9366 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9367 return -EBUSY;
9368 }
9369 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9370 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9371 return -EEXIST;
9372 }
9373
9374 /* put effective new program into new_prog */
9375 if (link)
9376 new_prog = link->link.prog;
9377
9378 if (new_prog) {
9379 bool offload = mode == XDP_MODE_HW;
9380 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9381 ? XDP_MODE_DRV : XDP_MODE_SKB;
9382
9383 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9384 NL_SET_ERR_MSG(extack, "XDP program already attached");
9385 return -EBUSY;
9386 }
9387 if (!offload && dev_xdp_prog(dev, mode: other_mode)) {
9388 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9389 return -EEXIST;
9390 }
9391 if (!offload && bpf_prog_is_offloaded(aux: new_prog->aux)) {
9392 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9393 return -EINVAL;
9394 }
9395 if (bpf_prog_is_dev_bound(aux: new_prog->aux) && !bpf_offload_dev_match(prog: new_prog, netdev: dev)) {
9396 NL_SET_ERR_MSG(extack, "Program bound to different device");
9397 return -EINVAL;
9398 }
9399 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9400 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9401 return -EINVAL;
9402 }
9403 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9404 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9405 return -EINVAL;
9406 }
9407 }
9408
9409 /* don't call drivers if the effective program didn't change */
9410 if (new_prog != cur_prog) {
9411 bpf_op = dev_xdp_bpf_op(dev, mode);
9412 if (!bpf_op) {
9413 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9414 return -EOPNOTSUPP;
9415 }
9416
9417 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, prog: new_prog);
9418 if (err)
9419 return err;
9420 }
9421
9422 if (link)
9423 dev_xdp_set_link(dev, mode, link);
9424 else
9425 dev_xdp_set_prog(dev, mode, prog: new_prog);
9426 if (cur_prog)
9427 bpf_prog_put(prog: cur_prog);
9428
9429 return 0;
9430}
9431
9432static int dev_xdp_attach_link(struct net_device *dev,
9433 struct netlink_ext_ack *extack,
9434 struct bpf_xdp_link *link)
9435{
9436 return dev_xdp_attach(dev, extack, link, NULL, NULL, flags: link->flags);
9437}
9438
9439static int dev_xdp_detach_link(struct net_device *dev,
9440 struct netlink_ext_ack *extack,
9441 struct bpf_xdp_link *link)
9442{
9443 enum bpf_xdp_mode mode;
9444 bpf_op_t bpf_op;
9445
9446 ASSERT_RTNL();
9447
9448 mode = dev_xdp_mode(dev, flags: link->flags);
9449 if (dev_xdp_link(dev, mode) != link)
9450 return -EINVAL;
9451
9452 bpf_op = dev_xdp_bpf_op(dev, mode);
9453 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9454 dev_xdp_set_link(dev, mode, NULL);
9455 return 0;
9456}
9457
9458static void bpf_xdp_link_release(struct bpf_link *link)
9459{
9460 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9461
9462 rtnl_lock();
9463
9464 /* if racing with net_device's tear down, xdp_link->dev might be
9465 * already NULL, in which case link was already auto-detached
9466 */
9467 if (xdp_link->dev) {
9468 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9469 xdp_link->dev = NULL;
9470 }
9471
9472 rtnl_unlock();
9473}
9474
9475static int bpf_xdp_link_detach(struct bpf_link *link)
9476{
9477 bpf_xdp_link_release(link);
9478 return 0;
9479}
9480
9481static void bpf_xdp_link_dealloc(struct bpf_link *link)
9482{
9483 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9484
9485 kfree(objp: xdp_link);
9486}
9487
9488static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9489 struct seq_file *seq)
9490{
9491 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9492 u32 ifindex = 0;
9493
9494 rtnl_lock();
9495 if (xdp_link->dev)
9496 ifindex = xdp_link->dev->ifindex;
9497 rtnl_unlock();
9498
9499 seq_printf(m: seq, fmt: "ifindex:\t%u\n", ifindex);
9500}
9501
9502static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9503 struct bpf_link_info *info)
9504{
9505 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9506 u32 ifindex = 0;
9507
9508 rtnl_lock();
9509 if (xdp_link->dev)
9510 ifindex = xdp_link->dev->ifindex;
9511 rtnl_unlock();
9512
9513 info->xdp.ifindex = ifindex;
9514 return 0;
9515}
9516
9517static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9518 struct bpf_prog *old_prog)
9519{
9520 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9521 enum bpf_xdp_mode mode;
9522 bpf_op_t bpf_op;
9523 int err = 0;
9524
9525 rtnl_lock();
9526
9527 /* link might have been auto-released already, so fail */
9528 if (!xdp_link->dev) {
9529 err = -ENOLINK;
9530 goto out_unlock;
9531 }
9532
9533 if (old_prog && link->prog != old_prog) {
9534 err = -EPERM;
9535 goto out_unlock;
9536 }
9537 old_prog = link->prog;
9538 if (old_prog->type != new_prog->type ||
9539 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9540 err = -EINVAL;
9541 goto out_unlock;
9542 }
9543
9544 if (old_prog == new_prog) {
9545 /* no-op, don't disturb drivers */
9546 bpf_prog_put(prog: new_prog);
9547 goto out_unlock;
9548 }
9549
9550 mode = dev_xdp_mode(dev: xdp_link->dev, flags: xdp_link->flags);
9551 bpf_op = dev_xdp_bpf_op(dev: xdp_link->dev, mode);
9552 err = dev_xdp_install(dev: xdp_link->dev, mode, bpf_op, NULL,
9553 flags: xdp_link->flags, prog: new_prog);
9554 if (err)
9555 goto out_unlock;
9556
9557 old_prog = xchg(&link->prog, new_prog);
9558 bpf_prog_put(prog: old_prog);
9559
9560out_unlock:
9561 rtnl_unlock();
9562 return err;
9563}
9564
9565static const struct bpf_link_ops bpf_xdp_link_lops = {
9566 .release = bpf_xdp_link_release,
9567 .dealloc = bpf_xdp_link_dealloc,
9568 .detach = bpf_xdp_link_detach,
9569 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9570 .fill_link_info = bpf_xdp_link_fill_link_info,
9571 .update_prog = bpf_xdp_link_update,
9572};
9573
9574int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9575{
9576 struct net *net = current->nsproxy->net_ns;
9577 struct bpf_link_primer link_primer;
9578 struct netlink_ext_ack extack = {};
9579 struct bpf_xdp_link *link;
9580 struct net_device *dev;
9581 int err, fd;
9582
9583 rtnl_lock();
9584 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9585 if (!dev) {
9586 rtnl_unlock();
9587 return -EINVAL;
9588 }
9589
9590 link = kzalloc(size: sizeof(*link), GFP_USER);
9591 if (!link) {
9592 err = -ENOMEM;
9593 goto unlock;
9594 }
9595
9596 bpf_link_init(link: &link->link, type: BPF_LINK_TYPE_XDP, ops: &bpf_xdp_link_lops, prog);
9597 link->dev = dev;
9598 link->flags = attr->link_create.flags;
9599
9600 err = bpf_link_prime(link: &link->link, primer: &link_primer);
9601 if (err) {
9602 kfree(objp: link);
9603 goto unlock;
9604 }
9605
9606 err = dev_xdp_attach_link(dev, extack: &extack, link);
9607 rtnl_unlock();
9608
9609 if (err) {
9610 link->dev = NULL;
9611 bpf_link_cleanup(primer: &link_primer);
9612 trace_bpf_xdp_link_attach_failed(msg: extack._msg);
9613 goto out_put_dev;
9614 }
9615
9616 fd = bpf_link_settle(primer: &link_primer);
9617 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9618 dev_put(dev);
9619 return fd;
9620
9621unlock:
9622 rtnl_unlock();
9623
9624out_put_dev:
9625 dev_put(dev);
9626 return err;
9627}
9628
9629/**
9630 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9631 * @dev: device
9632 * @extack: netlink extended ack
9633 * @fd: new program fd or negative value to clear
9634 * @expected_fd: old program fd that userspace expects to replace or clear
9635 * @flags: xdp-related flags
9636 *
9637 * Set or clear a bpf program for a device
9638 */
9639int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9640 int fd, int expected_fd, u32 flags)
9641{
9642 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9643 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9644 int err;
9645
9646 ASSERT_RTNL();
9647
9648 if (fd >= 0) {
9649 new_prog = bpf_prog_get_type_dev(ufd: fd, type: BPF_PROG_TYPE_XDP,
9650 attach_drv: mode != XDP_MODE_SKB);
9651 if (IS_ERR(ptr: new_prog))
9652 return PTR_ERR(ptr: new_prog);
9653 }
9654
9655 if (expected_fd >= 0) {
9656 old_prog = bpf_prog_get_type_dev(ufd: expected_fd, type: BPF_PROG_TYPE_XDP,
9657 attach_drv: mode != XDP_MODE_SKB);
9658 if (IS_ERR(ptr: old_prog)) {
9659 err = PTR_ERR(ptr: old_prog);
9660 old_prog = NULL;
9661 goto err_out;
9662 }
9663 }
9664
9665 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9666
9667err_out:
9668 if (err && new_prog)
9669 bpf_prog_put(prog: new_prog);
9670 if (old_prog)
9671 bpf_prog_put(prog: old_prog);
9672 return err;
9673}
9674
9675/**
9676 * dev_index_reserve() - allocate an ifindex in a namespace
9677 * @net: the applicable net namespace
9678 * @ifindex: requested ifindex, pass %0 to get one allocated
9679 *
9680 * Allocate a ifindex for a new device. Caller must either use the ifindex
9681 * to store the device (via list_netdevice()) or call dev_index_release()
9682 * to give the index up.
9683 *
9684 * Return: a suitable unique value for a new device interface number or -errno.
9685 */
9686static int dev_index_reserve(struct net *net, u32 ifindex)
9687{
9688 int err;
9689
9690 if (ifindex > INT_MAX) {
9691 DEBUG_NET_WARN_ON_ONCE(1);
9692 return -EINVAL;
9693 }
9694
9695 if (!ifindex)
9696 err = xa_alloc_cyclic(xa: &net->dev_by_index, id: &ifindex, NULL,
9697 xa_limit_31b, next: &net->ifindex, GFP_KERNEL);
9698 else
9699 err = xa_insert(xa: &net->dev_by_index, index: ifindex, NULL, GFP_KERNEL);
9700 if (err < 0)
9701 return err;
9702
9703 return ifindex;
9704}
9705
9706static void dev_index_release(struct net *net, int ifindex)
9707{
9708 /* Expect only unused indexes, unlist_netdevice() removes the used */
9709 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9710}
9711
9712/* Delayed registration/unregisteration */
9713LIST_HEAD(net_todo_list);
9714DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9715atomic_t dev_unreg_count = ATOMIC_INIT(0);
9716
9717static void net_set_todo(struct net_device *dev)
9718{
9719 list_add_tail(new: &dev->todo_list, head: &net_todo_list);
9720}
9721
9722static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9723 struct net_device *upper, netdev_features_t features)
9724{
9725 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9726 netdev_features_t feature;
9727 int feature_bit;
9728
9729 for_each_netdev_feature(upper_disables, feature_bit) {
9730 feature = __NETIF_F_BIT(feature_bit);
9731 if (!(upper->wanted_features & feature)
9732 && (features & feature)) {
9733 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9734 &feature, upper->name);
9735 features &= ~feature;
9736 }
9737 }
9738
9739 return features;
9740}
9741
9742static void netdev_sync_lower_features(struct net_device *upper,
9743 struct net_device *lower, netdev_features_t features)
9744{
9745 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9746 netdev_features_t feature;
9747 int feature_bit;
9748
9749 for_each_netdev_feature(upper_disables, feature_bit) {
9750 feature = __NETIF_F_BIT(feature_bit);
9751 if (!(features & feature) && (lower->features & feature)) {
9752 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9753 &feature, lower->name);
9754 lower->wanted_features &= ~feature;
9755 __netdev_update_features(dev: lower);
9756
9757 if (unlikely(lower->features & feature))
9758 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9759 &feature, lower->name);
9760 else
9761 netdev_features_change(lower);
9762 }
9763 }
9764}
9765
9766static netdev_features_t netdev_fix_features(struct net_device *dev,
9767 netdev_features_t features)
9768{
9769 /* Fix illegal checksum combinations */
9770 if ((features & NETIF_F_HW_CSUM) &&
9771 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9772 netdev_warn(dev, format: "mixed HW and IP checksum settings.\n");
9773 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9774 }
9775
9776 /* TSO requires that SG is present as well. */
9777 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9778 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9779 features &= ~NETIF_F_ALL_TSO;
9780 }
9781
9782 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9783 !(features & NETIF_F_IP_CSUM)) {
9784 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9785 features &= ~NETIF_F_TSO;
9786 features &= ~NETIF_F_TSO_ECN;
9787 }
9788
9789 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9790 !(features & NETIF_F_IPV6_CSUM)) {
9791 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9792 features &= ~NETIF_F_TSO6;
9793 }
9794
9795 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9796 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9797 features &= ~NETIF_F_TSO_MANGLEID;
9798
9799 /* TSO ECN requires that TSO is present as well. */
9800 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9801 features &= ~NETIF_F_TSO_ECN;
9802
9803 /* Software GSO depends on SG. */
9804 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9805 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9806 features &= ~NETIF_F_GSO;
9807 }
9808
9809 /* GSO partial features require GSO partial be set */
9810 if ((features & dev->gso_partial_features) &&
9811 !(features & NETIF_F_GSO_PARTIAL)) {
9812 netdev_dbg(dev,
9813 "Dropping partially supported GSO features since no GSO partial.\n");
9814 features &= ~dev->gso_partial_features;
9815 }
9816
9817 if (!(features & NETIF_F_RXCSUM)) {
9818 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9819 * successfully merged by hardware must also have the
9820 * checksum verified by hardware. If the user does not
9821 * want to enable RXCSUM, logically, we should disable GRO_HW.
9822 */
9823 if (features & NETIF_F_GRO_HW) {
9824 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9825 features &= ~NETIF_F_GRO_HW;
9826 }
9827 }
9828
9829 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9830 if (features & NETIF_F_RXFCS) {
9831 if (features & NETIF_F_LRO) {
9832 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9833 features &= ~NETIF_F_LRO;
9834 }
9835
9836 if (features & NETIF_F_GRO_HW) {
9837 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9838 features &= ~NETIF_F_GRO_HW;
9839 }
9840 }
9841
9842 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9843 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9844 features &= ~NETIF_F_LRO;
9845 }
9846
9847 if (features & NETIF_F_HW_TLS_TX) {
9848 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9849 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9850 bool hw_csum = features & NETIF_F_HW_CSUM;
9851
9852 if (!ip_csum && !hw_csum) {
9853 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9854 features &= ~NETIF_F_HW_TLS_TX;
9855 }
9856 }
9857
9858 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9859 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9860 features &= ~NETIF_F_HW_TLS_RX;
9861 }
9862
9863 return features;
9864}
9865
9866int __netdev_update_features(struct net_device *dev)
9867{
9868 struct net_device *upper, *lower;
9869 netdev_features_t features;
9870 struct list_head *iter;
9871 int err = -1;
9872
9873 ASSERT_RTNL();
9874
9875 features = netdev_get_wanted_features(dev);
9876
9877 if (dev->netdev_ops->ndo_fix_features)
9878 features = dev->netdev_ops->ndo_fix_features(dev, features);
9879
9880 /* driver might be less strict about feature dependencies */
9881 features = netdev_fix_features(dev, features);
9882
9883 /* some features can't be enabled if they're off on an upper device */
9884 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9885 features = netdev_sync_upper_features(lower: dev, upper, features);
9886
9887 if (dev->features == features)
9888 goto sync_lower;
9889
9890 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9891 &dev->features, &features);
9892
9893 if (dev->netdev_ops->ndo_set_features)
9894 err = dev->netdev_ops->ndo_set_features(dev, features);
9895 else
9896 err = 0;
9897
9898 if (unlikely(err < 0)) {
9899 netdev_err(dev,
9900 format: "set_features() failed (%d); wanted %pNF, left %pNF\n",
9901 err, &features, &dev->features);
9902 /* return non-0 since some features might have changed and
9903 * it's better to fire a spurious notification than miss it
9904 */
9905 return -1;
9906 }
9907
9908sync_lower:
9909 /* some features must be disabled on lower devices when disabled
9910 * on an upper device (think: bonding master or bridge)
9911 */
9912 netdev_for_each_lower_dev(dev, lower, iter)
9913 netdev_sync_lower_features(upper: dev, lower, features);
9914
9915 if (!err) {
9916 netdev_features_t diff = features ^ dev->features;
9917
9918 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9919 /* udp_tunnel_{get,drop}_rx_info both need
9920 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9921 * device, or they won't do anything.
9922 * Thus we need to update dev->features
9923 * *before* calling udp_tunnel_get_rx_info,
9924 * but *after* calling udp_tunnel_drop_rx_info.
9925 */
9926 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9927 dev->features = features;
9928 udp_tunnel_get_rx_info(dev);
9929 } else {
9930 udp_tunnel_drop_rx_info(dev);
9931 }
9932 }
9933
9934 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9935 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9936 dev->features = features;
9937 err |= vlan_get_rx_ctag_filter_info(dev);
9938 } else {
9939 vlan_drop_rx_ctag_filter_info(dev);
9940 }
9941 }
9942
9943 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9944 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9945 dev->features = features;
9946 err |= vlan_get_rx_stag_filter_info(dev);
9947 } else {
9948 vlan_drop_rx_stag_filter_info(dev);
9949 }
9950 }
9951
9952 dev->features = features;
9953 }
9954
9955 return err < 0 ? 0 : 1;
9956}
9957
9958/**
9959 * netdev_update_features - recalculate device features
9960 * @dev: the device to check
9961 *
9962 * Recalculate dev->features set and send notifications if it
9963 * has changed. Should be called after driver or hardware dependent
9964 * conditions might have changed that influence the features.
9965 */
9966void netdev_update_features(struct net_device *dev)
9967{
9968 if (__netdev_update_features(dev))
9969 netdev_features_change(dev);
9970}
9971EXPORT_SYMBOL(netdev_update_features);
9972
9973/**
9974 * netdev_change_features - recalculate device features
9975 * @dev: the device to check
9976 *
9977 * Recalculate dev->features set and send notifications even
9978 * if they have not changed. Should be called instead of
9979 * netdev_update_features() if also dev->vlan_features might
9980 * have changed to allow the changes to be propagated to stacked
9981 * VLAN devices.
9982 */
9983void netdev_change_features(struct net_device *dev)
9984{
9985 __netdev_update_features(dev);
9986 netdev_features_change(dev);
9987}
9988EXPORT_SYMBOL(netdev_change_features);
9989
9990/**
9991 * netif_stacked_transfer_operstate - transfer operstate
9992 * @rootdev: the root or lower level device to transfer state from
9993 * @dev: the device to transfer operstate to
9994 *
9995 * Transfer operational state from root to device. This is normally
9996 * called when a stacking relationship exists between the root
9997 * device and the device(a leaf device).
9998 */
9999void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10000 struct net_device *dev)
10001{
10002 if (rootdev->operstate == IF_OPER_DORMANT)
10003 netif_dormant_on(dev);
10004 else
10005 netif_dormant_off(dev);
10006
10007 if (rootdev->operstate == IF_OPER_TESTING)
10008 netif_testing_on(dev);
10009 else
10010 netif_testing_off(dev);
10011
10012 if (netif_carrier_ok(dev: rootdev))
10013 netif_carrier_on(dev);
10014 else
10015 netif_carrier_off(dev);
10016}
10017EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10018
10019static int netif_alloc_rx_queues(struct net_device *dev)
10020{
10021 unsigned int i, count = dev->num_rx_queues;
10022 struct netdev_rx_queue *rx;
10023 size_t sz = count * sizeof(*rx);
10024 int err = 0;
10025
10026 BUG_ON(count < 1);
10027
10028 rx = kvzalloc(size: sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10029 if (!rx)
10030 return -ENOMEM;
10031
10032 dev->_rx = rx;
10033
10034 for (i = 0; i < count; i++) {
10035 rx[i].dev = dev;
10036
10037 /* XDP RX-queue setup */
10038 err = xdp_rxq_info_reg(xdp_rxq: &rx[i].xdp_rxq, dev, queue_index: i, napi_id: 0);
10039 if (err < 0)
10040 goto err_rxq_info;
10041 }
10042 return 0;
10043
10044err_rxq_info:
10045 /* Rollback successful reg's and free other resources */
10046 while (i--)
10047 xdp_rxq_info_unreg(xdp_rxq: &rx[i].xdp_rxq);
10048 kvfree(addr: dev->_rx);
10049 dev->_rx = NULL;
10050 return err;
10051}
10052
10053static void netif_free_rx_queues(struct net_device *dev)
10054{
10055 unsigned int i, count = dev->num_rx_queues;
10056
10057 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10058 if (!dev->_rx)
10059 return;
10060
10061 for (i = 0; i < count; i++)
10062 xdp_rxq_info_unreg(xdp_rxq: &dev->_rx[i].xdp_rxq);
10063
10064 kvfree(addr: dev->_rx);
10065}
10066
10067static void netdev_init_one_queue(struct net_device *dev,
10068 struct netdev_queue *queue, void *_unused)
10069{
10070 /* Initialize queue lock */
10071 spin_lock_init(&queue->_xmit_lock);
10072 netdev_set_xmit_lockdep_class(lock: &queue->_xmit_lock, dev_type: dev->type);
10073 queue->xmit_lock_owner = -1;
10074 netdev_queue_numa_node_write(q: queue, NUMA_NO_NODE);
10075 queue->dev = dev;
10076#ifdef CONFIG_BQL
10077 dql_init(dql: &queue->dql, HZ);
10078#endif
10079}
10080
10081static void netif_free_tx_queues(struct net_device *dev)
10082{
10083 kvfree(addr: dev->_tx);
10084}
10085
10086static int netif_alloc_netdev_queues(struct net_device *dev)
10087{
10088 unsigned int count = dev->num_tx_queues;
10089 struct netdev_queue *tx;
10090 size_t sz = count * sizeof(*tx);
10091
10092 if (count < 1 || count > 0xffff)
10093 return -EINVAL;
10094
10095 tx = kvzalloc(size: sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10096 if (!tx)
10097 return -ENOMEM;
10098
10099 dev->_tx = tx;
10100
10101 netdev_for_each_tx_queue(dev, f: netdev_init_one_queue, NULL);
10102 spin_lock_init(&dev->tx_global_lock);
10103
10104 return 0;
10105}
10106
10107void netif_tx_stop_all_queues(struct net_device *dev)
10108{
10109 unsigned int i;
10110
10111 for (i = 0; i < dev->num_tx_queues; i++) {
10112 struct netdev_queue *txq = netdev_get_tx_queue(dev, index: i);
10113
10114 netif_tx_stop_queue(dev_queue: txq);
10115 }
10116}
10117EXPORT_SYMBOL(netif_tx_stop_all_queues);
10118
10119static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10120{
10121 void __percpu *v;
10122
10123 /* Drivers implementing ndo_get_peer_dev must support tstat
10124 * accounting, so that skb_do_redirect() can bump the dev's
10125 * RX stats upon network namespace switch.
10126 */
10127 if (dev->netdev_ops->ndo_get_peer_dev &&
10128 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10129 return -EOPNOTSUPP;
10130
10131 switch (dev->pcpu_stat_type) {
10132 case NETDEV_PCPU_STAT_NONE:
10133 return 0;
10134 case NETDEV_PCPU_STAT_LSTATS:
10135 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10136 break;
10137 case NETDEV_PCPU_STAT_TSTATS:
10138 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10139 break;
10140 case NETDEV_PCPU_STAT_DSTATS:
10141 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10142 break;
10143 default:
10144 return -EINVAL;
10145 }
10146
10147 return v ? 0 : -ENOMEM;
10148}
10149
10150static void netdev_do_free_pcpu_stats(struct net_device *dev)
10151{
10152 switch (dev->pcpu_stat_type) {
10153 case NETDEV_PCPU_STAT_NONE:
10154 return;
10155 case NETDEV_PCPU_STAT_LSTATS:
10156 free_percpu(pdata: dev->lstats);
10157 break;
10158 case NETDEV_PCPU_STAT_TSTATS:
10159 free_percpu(pdata: dev->tstats);
10160 break;
10161 case NETDEV_PCPU_STAT_DSTATS:
10162 free_percpu(pdata: dev->dstats);
10163 break;
10164 }
10165}
10166
10167/**
10168 * register_netdevice() - register a network device
10169 * @dev: device to register
10170 *
10171 * Take a prepared network device structure and make it externally accessible.
10172 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10173 * Callers must hold the rtnl lock - you may want register_netdev()
10174 * instead of this.
10175 */
10176int register_netdevice(struct net_device *dev)
10177{
10178 int ret;
10179 struct net *net = dev_net(dev);
10180
10181 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10182 NETDEV_FEATURE_COUNT);
10183 BUG_ON(dev_boot_phase);
10184 ASSERT_RTNL();
10185
10186 might_sleep();
10187
10188 /* When net_device's are persistent, this will be fatal. */
10189 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10190 BUG_ON(!net);
10191
10192 ret = ethtool_check_ops(ops: dev->ethtool_ops);
10193 if (ret)
10194 return ret;
10195
10196 spin_lock_init(&dev->addr_list_lock);
10197 netdev_set_addr_lockdep_class(dev);
10198
10199 ret = dev_get_valid_name(net, dev, name: dev->name);
10200 if (ret < 0)
10201 goto out;
10202
10203 ret = -ENOMEM;
10204 dev->name_node = netdev_name_node_head_alloc(dev);
10205 if (!dev->name_node)
10206 goto out;
10207
10208 /* Init, if this function is available */
10209 if (dev->netdev_ops->ndo_init) {
10210 ret = dev->netdev_ops->ndo_init(dev);
10211 if (ret) {
10212 if (ret > 0)
10213 ret = -EIO;
10214 goto err_free_name;
10215 }
10216 }
10217
10218 if (((dev->hw_features | dev->features) &
10219 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10220 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10221 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10222 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10223 ret = -EINVAL;
10224 goto err_uninit;
10225 }
10226
10227 ret = netdev_do_alloc_pcpu_stats(dev);
10228 if (ret)
10229 goto err_uninit;
10230
10231 ret = dev_index_reserve(net, ifindex: dev->ifindex);
10232 if (ret < 0)
10233 goto err_free_pcpu;
10234 dev->ifindex = ret;
10235
10236 /* Transfer changeable features to wanted_features and enable
10237 * software offloads (GSO and GRO).
10238 */
10239 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10240 dev->features |= NETIF_F_SOFT_FEATURES;
10241
10242 if (dev->udp_tunnel_nic_info) {
10243 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10244 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10245 }
10246
10247 dev->wanted_features = dev->features & dev->hw_features;
10248
10249 if (!(dev->flags & IFF_LOOPBACK))
10250 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10251
10252 /* If IPv4 TCP segmentation offload is supported we should also
10253 * allow the device to enable segmenting the frame with the option
10254 * of ignoring a static IP ID value. This doesn't enable the
10255 * feature itself but allows the user to enable it later.
10256 */
10257 if (dev->hw_features & NETIF_F_TSO)
10258 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10259 if (dev->vlan_features & NETIF_F_TSO)
10260 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10261 if (dev->mpls_features & NETIF_F_TSO)
10262 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10263 if (dev->hw_enc_features & NETIF_F_TSO)
10264 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10265
10266 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10267 */
10268 dev->vlan_features |= NETIF_F_HIGHDMA;
10269
10270 /* Make NETIF_F_SG inheritable to tunnel devices.
10271 */
10272 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10273
10274 /* Make NETIF_F_SG inheritable to MPLS.
10275 */
10276 dev->mpls_features |= NETIF_F_SG;
10277
10278 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10279 ret = notifier_to_errno(ret);
10280 if (ret)
10281 goto err_ifindex_release;
10282
10283 ret = netdev_register_kobject(dev);
10284
10285 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10286
10287 if (ret)
10288 goto err_uninit_notify;
10289
10290 __netdev_update_features(dev);
10291
10292 /*
10293 * Default initial state at registry is that the
10294 * device is present.
10295 */
10296
10297 set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state);
10298
10299 linkwatch_init_dev(dev);
10300
10301 dev_init_scheduler(dev);
10302
10303 netdev_hold(dev, tracker: &dev->dev_registered_tracker, GFP_KERNEL);
10304 list_netdevice(dev);
10305
10306 add_device_randomness(buf: dev->dev_addr, len: dev->addr_len);
10307
10308 /* If the device has permanent device address, driver should
10309 * set dev_addr and also addr_assign_type should be set to
10310 * NET_ADDR_PERM (default value).
10311 */
10312 if (dev->addr_assign_type == NET_ADDR_PERM)
10313 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10314
10315 /* Notify protocols, that a new device appeared. */
10316 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10317 ret = notifier_to_errno(ret);
10318 if (ret) {
10319 /* Expect explicit free_netdev() on failure */
10320 dev->needs_free_netdev = false;
10321 unregister_netdevice_queue(dev, NULL);
10322 goto out;
10323 }
10324 /*
10325 * Prevent userspace races by waiting until the network
10326 * device is fully setup before sending notifications.
10327 */
10328 if (!dev->rtnl_link_ops ||
10329 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10330 rtmsg_ifinfo(RTM_NEWLINK, dev, change: ~0U, GFP_KERNEL, portid: 0, NULL);
10331
10332out:
10333 return ret;
10334
10335err_uninit_notify:
10336 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10337err_ifindex_release:
10338 dev_index_release(net, ifindex: dev->ifindex);
10339err_free_pcpu:
10340 netdev_do_free_pcpu_stats(dev);
10341err_uninit:
10342 if (dev->netdev_ops->ndo_uninit)
10343 dev->netdev_ops->ndo_uninit(dev);
10344 if (dev->priv_destructor)
10345 dev->priv_destructor(dev);
10346err_free_name:
10347 netdev_name_node_free(name_node: dev->name_node);
10348 goto out;
10349}
10350EXPORT_SYMBOL(register_netdevice);
10351
10352/**
10353 * init_dummy_netdev - init a dummy network device for NAPI
10354 * @dev: device to init
10355 *
10356 * This takes a network device structure and initialize the minimum
10357 * amount of fields so it can be used to schedule NAPI polls without
10358 * registering a full blown interface. This is to be used by drivers
10359 * that need to tie several hardware interfaces to a single NAPI
10360 * poll scheduler due to HW limitations.
10361 */
10362void init_dummy_netdev(struct net_device *dev)
10363{
10364 /* Clear everything. Note we don't initialize spinlocks
10365 * are they aren't supposed to be taken by any of the
10366 * NAPI code and this dummy netdev is supposed to be
10367 * only ever used for NAPI polls
10368 */
10369 memset(dev, 0, sizeof(struct net_device));
10370
10371 /* make sure we BUG if trying to hit standard
10372 * register/unregister code path
10373 */
10374 dev->reg_state = NETREG_DUMMY;
10375
10376 /* NAPI wants this */
10377 INIT_LIST_HEAD(list: &dev->napi_list);
10378
10379 /* a dummy interface is started by default */
10380 set_bit(nr: __LINK_STATE_PRESENT, addr: &dev->state);
10381 set_bit(nr: __LINK_STATE_START, addr: &dev->state);
10382
10383 /* napi_busy_loop stats accounting wants this */
10384 dev_net_set(dev, net: &init_net);
10385
10386 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10387 * because users of this 'device' dont need to change
10388 * its refcount.
10389 */
10390}
10391EXPORT_SYMBOL_GPL(init_dummy_netdev);
10392
10393
10394/**
10395 * register_netdev - register a network device
10396 * @dev: device to register
10397 *
10398 * Take a completed network device structure and add it to the kernel
10399 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10400 * chain. 0 is returned on success. A negative errno code is returned
10401 * on a failure to set up the device, or if the name is a duplicate.
10402 *
10403 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10404 * and expands the device name if you passed a format string to
10405 * alloc_netdev.
10406 */
10407int register_netdev(struct net_device *dev)
10408{
10409 int err;
10410
10411 if (rtnl_lock_killable())
10412 return -EINTR;
10413 err = register_netdevice(dev);
10414 rtnl_unlock();
10415 return err;
10416}
10417EXPORT_SYMBOL(register_netdev);
10418
10419int netdev_refcnt_read(const struct net_device *dev)
10420{
10421#ifdef CONFIG_PCPU_DEV_REFCNT
10422 int i, refcnt = 0;
10423
10424 for_each_possible_cpu(i)
10425 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10426 return refcnt;
10427#else
10428 return refcount_read(&dev->dev_refcnt);
10429#endif
10430}
10431EXPORT_SYMBOL(netdev_refcnt_read);
10432
10433int netdev_unregister_timeout_secs __read_mostly = 10;
10434
10435#define WAIT_REFS_MIN_MSECS 1
10436#define WAIT_REFS_MAX_MSECS 250
10437/**
10438 * netdev_wait_allrefs_any - wait until all references are gone.
10439 * @list: list of net_devices to wait on
10440 *
10441 * This is called when unregistering network devices.
10442 *
10443 * Any protocol or device that holds a reference should register
10444 * for netdevice notification, and cleanup and put back the
10445 * reference if they receive an UNREGISTER event.
10446 * We can get stuck here if buggy protocols don't correctly
10447 * call dev_put.
10448 */
10449static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10450{
10451 unsigned long rebroadcast_time, warning_time;
10452 struct net_device *dev;
10453 int wait = 0;
10454
10455 rebroadcast_time = warning_time = jiffies;
10456
10457 list_for_each_entry(dev, list, todo_list)
10458 if (netdev_refcnt_read(dev) == 1)
10459 return dev;
10460
10461 while (true) {
10462 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10463 rtnl_lock();
10464
10465 /* Rebroadcast unregister notification */
10466 list_for_each_entry(dev, list, todo_list)
10467 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10468
10469 __rtnl_unlock();
10470 rcu_barrier();
10471 rtnl_lock();
10472
10473 list_for_each_entry(dev, list, todo_list)
10474 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10475 &dev->state)) {
10476 /* We must not have linkwatch events
10477 * pending on unregister. If this
10478 * happens, we simply run the queue
10479 * unscheduled, resulting in a noop
10480 * for this device.
10481 */
10482 linkwatch_run_queue();
10483 break;
10484 }
10485
10486 __rtnl_unlock();
10487
10488 rebroadcast_time = jiffies;
10489 }
10490
10491 if (!wait) {
10492 rcu_barrier();
10493 wait = WAIT_REFS_MIN_MSECS;
10494 } else {
10495 msleep(msecs: wait);
10496 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10497 }
10498
10499 list_for_each_entry(dev, list, todo_list)
10500 if (netdev_refcnt_read(dev) == 1)
10501 return dev;
10502
10503 if (time_after(jiffies, warning_time +
10504 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10505 list_for_each_entry(dev, list, todo_list) {
10506 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10507 dev->name, netdev_refcnt_read(dev));
10508 ref_tracker_dir_print(dir: &dev->refcnt_tracker, display_limit: 10);
10509 }
10510
10511 warning_time = jiffies;
10512 }
10513 }
10514}
10515
10516/* The sequence is:
10517 *
10518 * rtnl_lock();
10519 * ...
10520 * register_netdevice(x1);
10521 * register_netdevice(x2);
10522 * ...
10523 * unregister_netdevice(y1);
10524 * unregister_netdevice(y2);
10525 * ...
10526 * rtnl_unlock();
10527 * free_netdev(y1);
10528 * free_netdev(y2);
10529 *
10530 * We are invoked by rtnl_unlock().
10531 * This allows us to deal with problems:
10532 * 1) We can delete sysfs objects which invoke hotplug
10533 * without deadlocking with linkwatch via keventd.
10534 * 2) Since we run with the RTNL semaphore not held, we can sleep
10535 * safely in order to wait for the netdev refcnt to drop to zero.
10536 *
10537 * We must not return until all unregister events added during
10538 * the interval the lock was held have been completed.
10539 */
10540void netdev_run_todo(void)
10541{
10542 struct net_device *dev, *tmp;
10543 struct list_head list;
10544 int cnt;
10545#ifdef CONFIG_LOCKDEP
10546 struct list_head unlink_list;
10547
10548 list_replace_init(old: &net_unlink_list, new: &unlink_list);
10549
10550 while (!list_empty(head: &unlink_list)) {
10551 struct net_device *dev = list_first_entry(&unlink_list,
10552 struct net_device,
10553 unlink_list);
10554 list_del_init(entry: &dev->unlink_list);
10555 dev->nested_level = dev->lower_level - 1;
10556 }
10557#endif
10558
10559 /* Snapshot list, allow later requests */
10560 list_replace_init(old: &net_todo_list, new: &list);
10561
10562 __rtnl_unlock();
10563
10564 /* Wait for rcu callbacks to finish before next phase */
10565 if (!list_empty(head: &list))
10566 rcu_barrier();
10567
10568 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10569 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10570 netdev_WARN(dev, "run_todo but not unregistering\n");
10571 list_del(entry: &dev->todo_list);
10572 continue;
10573 }
10574
10575 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10576 linkwatch_sync_dev(dev);
10577 }
10578
10579 cnt = 0;
10580 while (!list_empty(head: &list)) {
10581 dev = netdev_wait_allrefs_any(list: &list);
10582 list_del(entry: &dev->todo_list);
10583
10584 /* paranoia */
10585 BUG_ON(netdev_refcnt_read(dev) != 1);
10586 BUG_ON(!list_empty(&dev->ptype_all));
10587 BUG_ON(!list_empty(&dev->ptype_specific));
10588 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10589 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10590
10591 netdev_do_free_pcpu_stats(dev);
10592 if (dev->priv_destructor)
10593 dev->priv_destructor(dev);
10594 if (dev->needs_free_netdev)
10595 free_netdev(dev);
10596
10597 cnt++;
10598
10599 /* Free network device */
10600 kobject_put(kobj: &dev->dev.kobj);
10601 }
10602 if (cnt && atomic_sub_and_test(i: cnt, v: &dev_unreg_count))
10603 wake_up(&netdev_unregistering_wq);
10604}
10605
10606/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10607 * all the same fields in the same order as net_device_stats, with only
10608 * the type differing, but rtnl_link_stats64 may have additional fields
10609 * at the end for newer counters.
10610 */
10611void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10612 const struct net_device_stats *netdev_stats)
10613{
10614 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10615 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10616 u64 *dst = (u64 *)stats64;
10617
10618 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10619 for (i = 0; i < n; i++)
10620 dst[i] = (unsigned long)atomic_long_read(v: &src[i]);
10621 /* zero out counters that only exist in rtnl_link_stats64 */
10622 memset((char *)stats64 + n * sizeof(u64), 0,
10623 sizeof(*stats64) - n * sizeof(u64));
10624}
10625EXPORT_SYMBOL(netdev_stats_to_stats64);
10626
10627static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10628 struct net_device *dev)
10629{
10630 struct net_device_core_stats __percpu *p;
10631
10632 p = alloc_percpu_gfp(struct net_device_core_stats,
10633 GFP_ATOMIC | __GFP_NOWARN);
10634
10635 if (p && cmpxchg(&dev->core_stats, NULL, p))
10636 free_percpu(pdata: p);
10637
10638 /* This READ_ONCE() pairs with the cmpxchg() above */
10639 return READ_ONCE(dev->core_stats);
10640}
10641
10642noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10643{
10644 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10645 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10646 unsigned long __percpu *field;
10647
10648 if (unlikely(!p)) {
10649 p = netdev_core_stats_alloc(dev);
10650 if (!p)
10651 return;
10652 }
10653
10654 field = (__force unsigned long __percpu *)((__force void *)p + offset);
10655 this_cpu_inc(*field);
10656}
10657EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10658
10659/**
10660 * dev_get_stats - get network device statistics
10661 * @dev: device to get statistics from
10662 * @storage: place to store stats
10663 *
10664 * Get network statistics from device. Return @storage.
10665 * The device driver may provide its own method by setting
10666 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10667 * otherwise the internal statistics structure is used.
10668 */
10669struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10670 struct rtnl_link_stats64 *storage)
10671{
10672 const struct net_device_ops *ops = dev->netdev_ops;
10673 const struct net_device_core_stats __percpu *p;
10674
10675 if (ops->ndo_get_stats64) {
10676 memset(storage, 0, sizeof(*storage));
10677 ops->ndo_get_stats64(dev, storage);
10678 } else if (ops->ndo_get_stats) {
10679 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10680 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10681 dev_get_tstats64(dev, s: storage);
10682 } else {
10683 netdev_stats_to_stats64(storage, &dev->stats);
10684 }
10685
10686 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10687 p = READ_ONCE(dev->core_stats);
10688 if (p) {
10689 const struct net_device_core_stats *core_stats;
10690 int i;
10691
10692 for_each_possible_cpu(i) {
10693 core_stats = per_cpu_ptr(p, i);
10694 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10695 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10696 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10697 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10698 }
10699 }
10700 return storage;
10701}
10702EXPORT_SYMBOL(dev_get_stats);
10703
10704/**
10705 * dev_fetch_sw_netstats - get per-cpu network device statistics
10706 * @s: place to store stats
10707 * @netstats: per-cpu network stats to read from
10708 *
10709 * Read per-cpu network statistics and populate the related fields in @s.
10710 */
10711void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10712 const struct pcpu_sw_netstats __percpu *netstats)
10713{
10714 int cpu;
10715
10716 for_each_possible_cpu(cpu) {
10717 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10718 const struct pcpu_sw_netstats *stats;
10719 unsigned int start;
10720
10721 stats = per_cpu_ptr(netstats, cpu);
10722 do {
10723 start = u64_stats_fetch_begin(syncp: &stats->syncp);
10724 rx_packets = u64_stats_read(p: &stats->rx_packets);
10725 rx_bytes = u64_stats_read(p: &stats->rx_bytes);
10726 tx_packets = u64_stats_read(p: &stats->tx_packets);
10727 tx_bytes = u64_stats_read(p: &stats->tx_bytes);
10728 } while (u64_stats_fetch_retry(syncp: &stats->syncp, start));
10729
10730 s->rx_packets += rx_packets;
10731 s->rx_bytes += rx_bytes;
10732 s->tx_packets += tx_packets;
10733 s->tx_bytes += tx_bytes;
10734 }
10735}
10736EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10737
10738/**
10739 * dev_get_tstats64 - ndo_get_stats64 implementation
10740 * @dev: device to get statistics from
10741 * @s: place to store stats
10742 *
10743 * Populate @s from dev->stats and dev->tstats. Can be used as
10744 * ndo_get_stats64() callback.
10745 */
10746void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10747{
10748 netdev_stats_to_stats64(s, &dev->stats);
10749 dev_fetch_sw_netstats(s, dev->tstats);
10750}
10751EXPORT_SYMBOL_GPL(dev_get_tstats64);
10752
10753struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10754{
10755 struct netdev_queue *queue = dev_ingress_queue(dev);
10756
10757#ifdef CONFIG_NET_CLS_ACT
10758 if (queue)
10759 return queue;
10760 queue = kzalloc(size: sizeof(*queue), GFP_KERNEL);
10761 if (!queue)
10762 return NULL;
10763 netdev_init_one_queue(dev, queue, NULL);
10764 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10765 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10766 rcu_assign_pointer(dev->ingress_queue, queue);
10767#endif
10768 return queue;
10769}
10770
10771static const struct ethtool_ops default_ethtool_ops;
10772
10773void netdev_set_default_ethtool_ops(struct net_device *dev,
10774 const struct ethtool_ops *ops)
10775{
10776 if (dev->ethtool_ops == &default_ethtool_ops)
10777 dev->ethtool_ops = ops;
10778}
10779EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10780
10781/**
10782 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10783 * @dev: netdev to enable the IRQ coalescing on
10784 *
10785 * Sets a conservative default for SW IRQ coalescing. Users can use
10786 * sysfs attributes to override the default values.
10787 */
10788void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10789{
10790 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10791
10792 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10793 dev->gro_flush_timeout = 20000;
10794 dev->napi_defer_hard_irqs = 1;
10795 }
10796}
10797EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10798
10799void netdev_freemem(struct net_device *dev)
10800{
10801 char *addr = (char *)dev - dev->padded;
10802
10803 kvfree(addr);
10804}
10805
10806/**
10807 * alloc_netdev_mqs - allocate network device
10808 * @sizeof_priv: size of private data to allocate space for
10809 * @name: device name format string
10810 * @name_assign_type: origin of device name
10811 * @setup: callback to initialize device
10812 * @txqs: the number of TX subqueues to allocate
10813 * @rxqs: the number of RX subqueues to allocate
10814 *
10815 * Allocates a struct net_device with private data area for driver use
10816 * and performs basic initialization. Also allocates subqueue structs
10817 * for each queue on the device.
10818 */
10819struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10820 unsigned char name_assign_type,
10821 void (*setup)(struct net_device *),
10822 unsigned int txqs, unsigned int rxqs)
10823{
10824 struct net_device *dev;
10825 unsigned int alloc_size;
10826 struct net_device *p;
10827
10828 BUG_ON(strlen(name) >= sizeof(dev->name));
10829
10830 if (txqs < 1) {
10831 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10832 return NULL;
10833 }
10834
10835 if (rxqs < 1) {
10836 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10837 return NULL;
10838 }
10839
10840 alloc_size = sizeof(struct net_device);
10841 if (sizeof_priv) {
10842 /* ensure 32-byte alignment of private area */
10843 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10844 alloc_size += sizeof_priv;
10845 }
10846 /* ensure 32-byte alignment of whole construct */
10847 alloc_size += NETDEV_ALIGN - 1;
10848
10849 p = kvzalloc(size: alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10850 if (!p)
10851 return NULL;
10852
10853 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10854 dev->padded = (char *)dev - (char *)p;
10855
10856 ref_tracker_dir_init(dir: &dev->refcnt_tracker, quarantine_count: 128, name);
10857#ifdef CONFIG_PCPU_DEV_REFCNT
10858 dev->pcpu_refcnt = alloc_percpu(int);
10859 if (!dev->pcpu_refcnt)
10860 goto free_dev;
10861 __dev_hold(dev);
10862#else
10863 refcount_set(&dev->dev_refcnt, 1);
10864#endif
10865
10866 if (dev_addr_init(dev))
10867 goto free_pcpu;
10868
10869 dev_mc_init(dev);
10870 dev_uc_init(dev);
10871
10872 dev_net_set(dev, net: &init_net);
10873
10874 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10875 dev->xdp_zc_max_segs = 1;
10876 dev->gso_max_segs = GSO_MAX_SEGS;
10877 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10878 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10879 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10880 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10881 dev->tso_max_segs = TSO_MAX_SEGS;
10882 dev->upper_level = 1;
10883 dev->lower_level = 1;
10884#ifdef CONFIG_LOCKDEP
10885 dev->nested_level = 0;
10886 INIT_LIST_HEAD(list: &dev->unlink_list);
10887#endif
10888
10889 INIT_LIST_HEAD(list: &dev->napi_list);
10890 INIT_LIST_HEAD(list: &dev->unreg_list);
10891 INIT_LIST_HEAD(list: &dev->close_list);
10892 INIT_LIST_HEAD(list: &dev->link_watch_list);
10893 INIT_LIST_HEAD(list: &dev->adj_list.upper);
10894 INIT_LIST_HEAD(list: &dev->adj_list.lower);
10895 INIT_LIST_HEAD(list: &dev->ptype_all);
10896 INIT_LIST_HEAD(list: &dev->ptype_specific);
10897 INIT_LIST_HEAD(list: &dev->net_notifier_list);
10898#ifdef CONFIG_NET_SCHED
10899 hash_init(dev->qdisc_hash);
10900#endif
10901 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10902 setup(dev);
10903
10904 if (!dev->tx_queue_len) {
10905 dev->priv_flags |= IFF_NO_QUEUE;
10906 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10907 }
10908
10909 dev->num_tx_queues = txqs;
10910 dev->real_num_tx_queues = txqs;
10911 if (netif_alloc_netdev_queues(dev))
10912 goto free_all;
10913
10914 dev->num_rx_queues = rxqs;
10915 dev->real_num_rx_queues = rxqs;
10916 if (netif_alloc_rx_queues(dev))
10917 goto free_all;
10918
10919 strcpy(p: dev->name, q: name);
10920 dev->name_assign_type = name_assign_type;
10921 dev->group = INIT_NETDEV_GROUP;
10922 if (!dev->ethtool_ops)
10923 dev->ethtool_ops = &default_ethtool_ops;
10924
10925 nf_hook_netdev_init(dev);
10926
10927 return dev;
10928
10929free_all:
10930 free_netdev(dev);
10931 return NULL;
10932
10933free_pcpu:
10934#ifdef CONFIG_PCPU_DEV_REFCNT
10935 free_percpu(pdata: dev->pcpu_refcnt);
10936free_dev:
10937#endif
10938 netdev_freemem(dev);
10939 return NULL;
10940}
10941EXPORT_SYMBOL(alloc_netdev_mqs);
10942
10943/**
10944 * free_netdev - free network device
10945 * @dev: device
10946 *
10947 * This function does the last stage of destroying an allocated device
10948 * interface. The reference to the device object is released. If this
10949 * is the last reference then it will be freed.Must be called in process
10950 * context.
10951 */
10952void free_netdev(struct net_device *dev)
10953{
10954 struct napi_struct *p, *n;
10955
10956 might_sleep();
10957
10958 /* When called immediately after register_netdevice() failed the unwind
10959 * handling may still be dismantling the device. Handle that case by
10960 * deferring the free.
10961 */
10962 if (dev->reg_state == NETREG_UNREGISTERING) {
10963 ASSERT_RTNL();
10964 dev->needs_free_netdev = true;
10965 return;
10966 }
10967
10968 netif_free_tx_queues(dev);
10969 netif_free_rx_queues(dev);
10970
10971 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10972
10973 /* Flush device addresses */
10974 dev_addr_flush(dev);
10975
10976 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10977 netif_napi_del(napi: p);
10978
10979 ref_tracker_dir_exit(dir: &dev->refcnt_tracker);
10980#ifdef CONFIG_PCPU_DEV_REFCNT
10981 free_percpu(pdata: dev->pcpu_refcnt);
10982 dev->pcpu_refcnt = NULL;
10983#endif
10984 free_percpu(pdata: dev->core_stats);
10985 dev->core_stats = NULL;
10986 free_percpu(pdata: dev->xdp_bulkq);
10987 dev->xdp_bulkq = NULL;
10988
10989 /* Compatibility with error handling in drivers */
10990 if (dev->reg_state == NETREG_UNINITIALIZED) {
10991 netdev_freemem(dev);
10992 return;
10993 }
10994
10995 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10996 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
10997
10998 /* will free via device release */
10999 put_device(dev: &dev->dev);
11000}
11001EXPORT_SYMBOL(free_netdev);
11002
11003/**
11004 * synchronize_net - Synchronize with packet receive processing
11005 *
11006 * Wait for packets currently being received to be done.
11007 * Does not block later packets from starting.
11008 */
11009void synchronize_net(void)
11010{
11011 might_sleep();
11012 if (rtnl_is_locked())
11013 synchronize_rcu_expedited();
11014 else
11015 synchronize_rcu();
11016}
11017EXPORT_SYMBOL(synchronize_net);
11018
11019/**
11020 * unregister_netdevice_queue - remove device from the kernel
11021 * @dev: device
11022 * @head: list
11023 *
11024 * This function shuts down a device interface and removes it
11025 * from the kernel tables.
11026 * If head not NULL, device is queued to be unregistered later.
11027 *
11028 * Callers must hold the rtnl semaphore. You may want
11029 * unregister_netdev() instead of this.
11030 */
11031
11032void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11033{
11034 ASSERT_RTNL();
11035
11036 if (head) {
11037 list_move_tail(list: &dev->unreg_list, head);
11038 } else {
11039 LIST_HEAD(single);
11040
11041 list_add(new: &dev->unreg_list, head: &single);
11042 unregister_netdevice_many(head: &single);
11043 }
11044}
11045EXPORT_SYMBOL(unregister_netdevice_queue);
11046
11047void unregister_netdevice_many_notify(struct list_head *head,
11048 u32 portid, const struct nlmsghdr *nlh)
11049{
11050 struct net_device *dev, *tmp;
11051 LIST_HEAD(close_head);
11052 int cnt = 0;
11053
11054 BUG_ON(dev_boot_phase);
11055 ASSERT_RTNL();
11056
11057 if (list_empty(head))
11058 return;
11059
11060 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11061 /* Some devices call without registering
11062 * for initialization unwind. Remove those
11063 * devices and proceed with the remaining.
11064 */
11065 if (dev->reg_state == NETREG_UNINITIALIZED) {
11066 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11067 dev->name, dev);
11068
11069 WARN_ON(1);
11070 list_del(entry: &dev->unreg_list);
11071 continue;
11072 }
11073 dev->dismantle = true;
11074 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11075 }
11076
11077 /* If device is running, close it first. */
11078 list_for_each_entry(dev, head, unreg_list)
11079 list_add_tail(new: &dev->close_list, head: &close_head);
11080 dev_close_many(&close_head, true);
11081
11082 list_for_each_entry(dev, head, unreg_list) {
11083 /* And unlink it from device chain. */
11084 unlist_netdevice(dev);
11085 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11086 }
11087 flush_all_backlogs();
11088
11089 synchronize_net();
11090
11091 list_for_each_entry(dev, head, unreg_list) {
11092 struct sk_buff *skb = NULL;
11093
11094 /* Shutdown queueing discipline. */
11095 dev_shutdown(dev);
11096 dev_tcx_uninstall(dev);
11097 dev_xdp_uninstall(dev);
11098 bpf_dev_bound_netdev_unregister(dev);
11099
11100 netdev_offload_xstats_disable_all(dev);
11101
11102 /* Notify protocols, that we are about to destroy
11103 * this device. They should clean all the things.
11104 */
11105 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11106
11107 if (!dev->rtnl_link_ops ||
11108 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11109 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, change: ~0U, event: 0,
11110 GFP_KERNEL, NULL, new_ifindex: 0,
11111 portid, nlh);
11112
11113 /*
11114 * Flush the unicast and multicast chains
11115 */
11116 dev_uc_flush(dev);
11117 dev_mc_flush(dev);
11118
11119 netdev_name_node_alt_flush(dev);
11120 netdev_name_node_free(name_node: dev->name_node);
11121
11122 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11123
11124 if (dev->netdev_ops->ndo_uninit)
11125 dev->netdev_ops->ndo_uninit(dev);
11126
11127 if (skb)
11128 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11129
11130 /* Notifier chain MUST detach us all upper devices. */
11131 WARN_ON(netdev_has_any_upper_dev(dev));
11132 WARN_ON(netdev_has_any_lower_dev(dev));
11133
11134 /* Remove entries from kobject tree */
11135 netdev_unregister_kobject(dev);
11136#ifdef CONFIG_XPS
11137 /* Remove XPS queueing entries */
11138 netif_reset_xps_queues_gt(dev, index: 0);
11139#endif
11140 }
11141
11142 synchronize_net();
11143
11144 list_for_each_entry(dev, head, unreg_list) {
11145 netdev_put(dev, tracker: &dev->dev_registered_tracker);
11146 net_set_todo(dev);
11147 cnt++;
11148 }
11149 atomic_add(i: cnt, v: &dev_unreg_count);
11150
11151 list_del(entry: head);
11152}
11153
11154/**
11155 * unregister_netdevice_many - unregister many devices
11156 * @head: list of devices
11157 *
11158 * Note: As most callers use a stack allocated list_head,
11159 * we force a list_del() to make sure stack wont be corrupted later.
11160 */
11161void unregister_netdevice_many(struct list_head *head)
11162{
11163 unregister_netdevice_many_notify(head, portid: 0, NULL);
11164}
11165EXPORT_SYMBOL(unregister_netdevice_many);
11166
11167/**
11168 * unregister_netdev - remove device from the kernel
11169 * @dev: device
11170 *
11171 * This function shuts down a device interface and removes it
11172 * from the kernel tables.
11173 *
11174 * This is just a wrapper for unregister_netdevice that takes
11175 * the rtnl semaphore. In general you want to use this and not
11176 * unregister_netdevice.
11177 */
11178void unregister_netdev(struct net_device *dev)
11179{
11180 rtnl_lock();
11181 unregister_netdevice(dev);
11182 rtnl_unlock();
11183}
11184EXPORT_SYMBOL(unregister_netdev);
11185
11186/**
11187 * __dev_change_net_namespace - move device to different nethost namespace
11188 * @dev: device
11189 * @net: network namespace
11190 * @pat: If not NULL name pattern to try if the current device name
11191 * is already taken in the destination network namespace.
11192 * @new_ifindex: If not zero, specifies device index in the target
11193 * namespace.
11194 *
11195 * This function shuts down a device interface and moves it
11196 * to a new network namespace. On success 0 is returned, on
11197 * a failure a netagive errno code is returned.
11198 *
11199 * Callers must hold the rtnl semaphore.
11200 */
11201
11202int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11203 const char *pat, int new_ifindex)
11204{
11205 struct netdev_name_node *name_node;
11206 struct net *net_old = dev_net(dev);
11207 char new_name[IFNAMSIZ] = {};
11208 int err, new_nsid;
11209
11210 ASSERT_RTNL();
11211
11212 /* Don't allow namespace local devices to be moved. */
11213 err = -EINVAL;
11214 if (dev->features & NETIF_F_NETNS_LOCAL)
11215 goto out;
11216
11217 /* Ensure the device has been registrered */
11218 if (dev->reg_state != NETREG_REGISTERED)
11219 goto out;
11220
11221 /* Get out if there is nothing todo */
11222 err = 0;
11223 if (net_eq(net1: net_old, net2: net))
11224 goto out;
11225
11226 /* Pick the destination device name, and ensure
11227 * we can use it in the destination network namespace.
11228 */
11229 err = -EEXIST;
11230 if (netdev_name_in_use(net, dev->name)) {
11231 /* We get here if we can't use the current device name */
11232 if (!pat)
11233 goto out;
11234 err = dev_prep_valid_name(net, dev, want_name: pat, out_name: new_name, EEXIST);
11235 if (err < 0)
11236 goto out;
11237 }
11238 /* Check that none of the altnames conflicts. */
11239 err = -EEXIST;
11240 netdev_for_each_altname(dev, name_node)
11241 if (netdev_name_in_use(net, name_node->name))
11242 goto out;
11243
11244 /* Check that new_ifindex isn't used yet. */
11245 if (new_ifindex) {
11246 err = dev_index_reserve(net, ifindex: new_ifindex);
11247 if (err < 0)
11248 goto out;
11249 } else {
11250 /* If there is an ifindex conflict assign a new one */
11251 err = dev_index_reserve(net, ifindex: dev->ifindex);
11252 if (err == -EBUSY)
11253 err = dev_index_reserve(net, ifindex: 0);
11254 if (err < 0)
11255 goto out;
11256 new_ifindex = err;
11257 }
11258
11259 /*
11260 * And now a mini version of register_netdevice unregister_netdevice.
11261 */
11262
11263 /* If device is running close it first. */
11264 dev_close(dev);
11265
11266 /* And unlink it from device chain */
11267 unlist_netdevice(dev);
11268
11269 synchronize_net();
11270
11271 /* Shutdown queueing discipline. */
11272 dev_shutdown(dev);
11273
11274 /* Notify protocols, that we are about to destroy
11275 * this device. They should clean all the things.
11276 *
11277 * Note that dev->reg_state stays at NETREG_REGISTERED.
11278 * This is wanted because this way 8021q and macvlan know
11279 * the device is just moving and can keep their slaves up.
11280 */
11281 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11282 rcu_barrier();
11283
11284 new_nsid = peernet2id_alloc(net: dev_net(dev), peer: net, GFP_KERNEL);
11285
11286 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, change: ~0U, GFP_KERNEL, new_nsid: &new_nsid,
11287 new_ifindex);
11288
11289 /*
11290 * Flush the unicast and multicast chains
11291 */
11292 dev_uc_flush(dev);
11293 dev_mc_flush(dev);
11294
11295 /* Send a netdev-removed uevent to the old namespace */
11296 kobject_uevent(kobj: &dev->dev.kobj, action: KOBJ_REMOVE);
11297 netdev_adjacent_del_links(dev);
11298
11299 /* Move per-net netdevice notifiers that are following the netdevice */
11300 move_netdevice_notifiers_dev_net(dev, net);
11301
11302 /* Actually switch the network namespace */
11303 dev_net_set(dev, net);
11304 dev->ifindex = new_ifindex;
11305
11306 if (new_name[0]) /* Rename the netdev to prepared name */
11307 strscpy(dev->name, new_name, IFNAMSIZ);
11308
11309 /* Fixup kobjects */
11310 dev_set_uevent_suppress(dev: &dev->dev, val: 1);
11311 err = device_rename(dev: &dev->dev, new_name: dev->name);
11312 dev_set_uevent_suppress(dev: &dev->dev, val: 0);
11313 WARN_ON(err);
11314
11315 /* Send a netdev-add uevent to the new namespace */
11316 kobject_uevent(kobj: &dev->dev.kobj, action: KOBJ_ADD);
11317 netdev_adjacent_add_links(dev);
11318
11319 /* Adapt owner in case owning user namespace of target network
11320 * namespace is different from the original one.
11321 */
11322 err = netdev_change_owner(dev, net_old, net_new: net);
11323 WARN_ON(err);
11324
11325 /* Add the device back in the hashes */
11326 list_netdevice(dev);
11327
11328 /* Notify protocols, that a new device appeared. */
11329 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11330
11331 /*
11332 * Prevent userspace races by waiting until the network
11333 * device is fully setup before sending notifications.
11334 */
11335 rtmsg_ifinfo(RTM_NEWLINK, dev, change: ~0U, GFP_KERNEL, portid: 0, NULL);
11336
11337 synchronize_net();
11338 err = 0;
11339out:
11340 return err;
11341}
11342EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11343
11344static int dev_cpu_dead(unsigned int oldcpu)
11345{
11346 struct sk_buff **list_skb;
11347 struct sk_buff *skb;
11348 unsigned int cpu;
11349 struct softnet_data *sd, *oldsd, *remsd = NULL;
11350
11351 local_irq_disable();
11352 cpu = smp_processor_id();
11353 sd = &per_cpu(softnet_data, cpu);
11354 oldsd = &per_cpu(softnet_data, oldcpu);
11355
11356 /* Find end of our completion_queue. */
11357 list_skb = &sd->completion_queue;
11358 while (*list_skb)
11359 list_skb = &(*list_skb)->next;
11360 /* Append completion queue from offline CPU. */
11361 *list_skb = oldsd->completion_queue;
11362 oldsd->completion_queue = NULL;
11363
11364 /* Append output queue from offline CPU. */
11365 if (oldsd->output_queue) {
11366 *sd->output_queue_tailp = oldsd->output_queue;
11367 sd->output_queue_tailp = oldsd->output_queue_tailp;
11368 oldsd->output_queue = NULL;
11369 oldsd->output_queue_tailp = &oldsd->output_queue;
11370 }
11371 /* Append NAPI poll list from offline CPU, with one exception :
11372 * process_backlog() must be called by cpu owning percpu backlog.
11373 * We properly handle process_queue & input_pkt_queue later.
11374 */
11375 while (!list_empty(head: &oldsd->poll_list)) {
11376 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11377 struct napi_struct,
11378 poll_list);
11379
11380 list_del_init(entry: &napi->poll_list);
11381 if (napi->poll == process_backlog)
11382 napi->state = 0;
11383 else
11384 ____napi_schedule(sd, napi);
11385 }
11386
11387 raise_softirq_irqoff(nr: NET_TX_SOFTIRQ);
11388 local_irq_enable();
11389
11390#ifdef CONFIG_RPS
11391 remsd = oldsd->rps_ipi_list;
11392 oldsd->rps_ipi_list = NULL;
11393#endif
11394 /* send out pending IPI's on offline CPU */
11395 net_rps_send_ipi(remsd);
11396
11397 /* Process offline CPU's input_pkt_queue */
11398 while ((skb = __skb_dequeue(list: &oldsd->process_queue))) {
11399 netif_rx(skb);
11400 input_queue_head_incr(sd: oldsd);
11401 }
11402 while ((skb = skb_dequeue(list: &oldsd->input_pkt_queue))) {
11403 netif_rx(skb);
11404 input_queue_head_incr(sd: oldsd);
11405 }
11406
11407 return 0;
11408}
11409
11410/**
11411 * netdev_increment_features - increment feature set by one
11412 * @all: current feature set
11413 * @one: new feature set
11414 * @mask: mask feature set
11415 *
11416 * Computes a new feature set after adding a device with feature set
11417 * @one to the master device with current feature set @all. Will not
11418 * enable anything that is off in @mask. Returns the new feature set.
11419 */
11420netdev_features_t netdev_increment_features(netdev_features_t all,
11421 netdev_features_t one, netdev_features_t mask)
11422{
11423 if (mask & NETIF_F_HW_CSUM)
11424 mask |= NETIF_F_CSUM_MASK;
11425 mask |= NETIF_F_VLAN_CHALLENGED;
11426
11427 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11428 all &= one | ~NETIF_F_ALL_FOR_ALL;
11429
11430 /* If one device supports hw checksumming, set for all. */
11431 if (all & NETIF_F_HW_CSUM)
11432 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11433
11434 return all;
11435}
11436EXPORT_SYMBOL(netdev_increment_features);
11437
11438static struct hlist_head * __net_init netdev_create_hash(void)
11439{
11440 int i;
11441 struct hlist_head *hash;
11442
11443 hash = kmalloc_array(NETDEV_HASHENTRIES, size: sizeof(*hash), GFP_KERNEL);
11444 if (hash != NULL)
11445 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11446 INIT_HLIST_HEAD(&hash[i]);
11447
11448 return hash;
11449}
11450
11451/* Initialize per network namespace state */
11452static int __net_init netdev_init(struct net *net)
11453{
11454 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11455 8 * sizeof_field(struct napi_struct, gro_bitmask));
11456
11457 INIT_LIST_HEAD(list: &net->dev_base_head);
11458
11459 net->dev_name_head = netdev_create_hash();
11460 if (net->dev_name_head == NULL)
11461 goto err_name;
11462
11463 net->dev_index_head = netdev_create_hash();
11464 if (net->dev_index_head == NULL)
11465 goto err_idx;
11466
11467 xa_init_flags(xa: &net->dev_by_index, XA_FLAGS_ALLOC1);
11468
11469 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11470
11471 return 0;
11472
11473err_idx:
11474 kfree(objp: net->dev_name_head);
11475err_name:
11476 return -ENOMEM;
11477}
11478
11479/**
11480 * netdev_drivername - network driver for the device
11481 * @dev: network device
11482 *
11483 * Determine network driver for device.
11484 */
11485const char *netdev_drivername(const struct net_device *dev)
11486{
11487 const struct device_driver *driver;
11488 const struct device *parent;
11489 const char *empty = "";
11490
11491 parent = dev->dev.parent;
11492 if (!parent)
11493 return empty;
11494
11495 driver = parent->driver;
11496 if (driver && driver->name)
11497 return driver->name;
11498 return empty;
11499}
11500
11501static void __netdev_printk(const char *level, const struct net_device *dev,
11502 struct va_format *vaf)
11503{
11504 if (dev && dev->dev.parent) {
11505 dev_printk_emit(level: level[1] - '0',
11506 dev: dev->dev.parent,
11507 fmt: "%s %s %s%s: %pV",
11508 dev_driver_string(dev: dev->dev.parent),
11509 dev_name(dev: dev->dev.parent),
11510 netdev_name(dev), netdev_reg_state(dev),
11511 vaf);
11512 } else if (dev) {
11513 printk("%s%s%s: %pV",
11514 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11515 } else {
11516 printk("%s(NULL net_device): %pV", level, vaf);
11517 }
11518}
11519
11520void netdev_printk(const char *level, const struct net_device *dev,
11521 const char *format, ...)
11522{
11523 struct va_format vaf;
11524 va_list args;
11525
11526 va_start(args, format);
11527
11528 vaf.fmt = format;
11529 vaf.va = &args;
11530
11531 __netdev_printk(level, dev, vaf: &vaf);
11532
11533 va_end(args);
11534}
11535EXPORT_SYMBOL(netdev_printk);
11536
11537#define define_netdev_printk_level(func, level) \
11538void func(const struct net_device *dev, const char *fmt, ...) \
11539{ \
11540 struct va_format vaf; \
11541 va_list args; \
11542 \
11543 va_start(args, fmt); \
11544 \
11545 vaf.fmt = fmt; \
11546 vaf.va = &args; \
11547 \
11548 __netdev_printk(level, dev, &vaf); \
11549 \
11550 va_end(args); \
11551} \
11552EXPORT_SYMBOL(func);
11553
11554define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11555define_netdev_printk_level(netdev_alert, KERN_ALERT);
11556define_netdev_printk_level(netdev_crit, KERN_CRIT);
11557define_netdev_printk_level(netdev_err, KERN_ERR);
11558define_netdev_printk_level(netdev_warn, KERN_WARNING);
11559define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11560define_netdev_printk_level(netdev_info, KERN_INFO);
11561
11562static void __net_exit netdev_exit(struct net *net)
11563{
11564 kfree(objp: net->dev_name_head);
11565 kfree(objp: net->dev_index_head);
11566 xa_destroy(&net->dev_by_index);
11567 if (net != &init_net)
11568 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11569}
11570
11571static struct pernet_operations __net_initdata netdev_net_ops = {
11572 .init = netdev_init,
11573 .exit = netdev_exit,
11574};
11575
11576static void __net_exit default_device_exit_net(struct net *net)
11577{
11578 struct netdev_name_node *name_node, *tmp;
11579 struct net_device *dev, *aux;
11580 /*
11581 * Push all migratable network devices back to the
11582 * initial network namespace
11583 */
11584 ASSERT_RTNL();
11585 for_each_netdev_safe(net, dev, aux) {
11586 int err;
11587 char fb_name[IFNAMSIZ];
11588
11589 /* Ignore unmoveable devices (i.e. loopback) */
11590 if (dev->features & NETIF_F_NETNS_LOCAL)
11591 continue;
11592
11593 /* Leave virtual devices for the generic cleanup */
11594 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11595 continue;
11596
11597 /* Push remaining network devices to init_net */
11598 snprintf(buf: fb_name, IFNAMSIZ, fmt: "dev%d", dev->ifindex);
11599 if (netdev_name_in_use(&init_net, fb_name))
11600 snprintf(buf: fb_name, IFNAMSIZ, fmt: "dev%%d");
11601
11602 netdev_for_each_altname_safe(dev, name_node, tmp)
11603 if (netdev_name_in_use(&init_net, name_node->name))
11604 __netdev_name_node_alt_destroy(name_node);
11605
11606 err = dev_change_net_namespace(dev, net: &init_net, pat: fb_name);
11607 if (err) {
11608 pr_emerg("%s: failed to move %s to init_net: %d\n",
11609 __func__, dev->name, err);
11610 BUG();
11611 }
11612 }
11613}
11614
11615static void __net_exit default_device_exit_batch(struct list_head *net_list)
11616{
11617 /* At exit all network devices most be removed from a network
11618 * namespace. Do this in the reverse order of registration.
11619 * Do this across as many network namespaces as possible to
11620 * improve batching efficiency.
11621 */
11622 struct net_device *dev;
11623 struct net *net;
11624 LIST_HEAD(dev_kill_list);
11625
11626 rtnl_lock();
11627 list_for_each_entry(net, net_list, exit_list) {
11628 default_device_exit_net(net);
11629 cond_resched();
11630 }
11631
11632 list_for_each_entry(net, net_list, exit_list) {
11633 for_each_netdev_reverse(net, dev) {
11634 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11635 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11636 else
11637 unregister_netdevice_queue(dev, &dev_kill_list);
11638 }
11639 }
11640 unregister_netdevice_many(&dev_kill_list);
11641 rtnl_unlock();
11642}
11643
11644static struct pernet_operations __net_initdata default_device_ops = {
11645 .exit_batch = default_device_exit_batch,
11646};
11647
11648static void __init net_dev_struct_check(void)
11649{
11650 /* TX read-mostly hotpath */
11651 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11652 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11653 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11654 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11655 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11656 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11657 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11658 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11659 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11660 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11661 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11662 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11663 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11664#ifdef CONFIG_XPS
11665 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11666#endif
11667#ifdef CONFIG_NETFILTER_EGRESS
11668 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11669#endif
11670#ifdef CONFIG_NET_XGRESS
11671 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11672#endif
11673 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11674
11675 /* TXRX read-mostly hotpath */
11676 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11677 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11678 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11679 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11680 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11681 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11682 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11683
11684 /* RX read-mostly hotpath */
11685 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11686 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11687 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11688 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11689 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11690 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11691 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11692 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11693 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11694 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11695 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11696#ifdef CONFIG_NETPOLL
11697 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11698#endif
11699#ifdef CONFIG_NET_XGRESS
11700 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11701#endif
11702 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11703}
11704
11705/*
11706 * Initialize the DEV module. At boot time this walks the device list and
11707 * unhooks any devices that fail to initialise (normally hardware not
11708 * present) and leaves us with a valid list of present and active devices.
11709 *
11710 */
11711
11712/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11713#define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
11714
11715static int net_page_pool_create(int cpuid)
11716{
11717#if IS_ENABLED(CONFIG_PAGE_POOL)
11718 struct page_pool_params page_pool_params = {
11719 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11720 .flags = PP_FLAG_SYSTEM_POOL,
11721 .nid = NUMA_NO_NODE,
11722 };
11723 struct page_pool *pp_ptr;
11724
11725 pp_ptr = page_pool_create_percpu(params: &page_pool_params, cpuid);
11726 if (IS_ERR(ptr: pp_ptr))
11727 return -ENOMEM;
11728
11729 per_cpu(system_page_pool, cpuid) = pp_ptr;
11730#endif
11731 return 0;
11732}
11733
11734/*
11735 * This is called single threaded during boot, so no need
11736 * to take the rtnl semaphore.
11737 */
11738static int __init net_dev_init(void)
11739{
11740 int i, rc = -ENOMEM;
11741
11742 BUG_ON(!dev_boot_phase);
11743
11744 net_dev_struct_check();
11745
11746 if (dev_proc_init())
11747 goto out;
11748
11749 if (netdev_kobject_init())
11750 goto out;
11751
11752 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11753 INIT_LIST_HEAD(list: &ptype_base[i]);
11754
11755 if (register_pernet_subsys(&netdev_net_ops))
11756 goto out;
11757
11758 /*
11759 * Initialise the packet receive queues.
11760 */
11761
11762 for_each_possible_cpu(i) {
11763 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11764 struct softnet_data *sd = &per_cpu(softnet_data, i);
11765
11766 INIT_WORK(flush, flush_backlog);
11767
11768 skb_queue_head_init(list: &sd->input_pkt_queue);
11769 skb_queue_head_init(list: &sd->process_queue);
11770#ifdef CONFIG_XFRM_OFFLOAD
11771 skb_queue_head_init(list: &sd->xfrm_backlog);
11772#endif
11773 INIT_LIST_HEAD(list: &sd->poll_list);
11774 sd->output_queue_tailp = &sd->output_queue;
11775#ifdef CONFIG_RPS
11776 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11777 sd->cpu = i;
11778#endif
11779 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11780 spin_lock_init(&sd->defer_lock);
11781
11782 init_gro_hash(napi: &sd->backlog);
11783 sd->backlog.poll = process_backlog;
11784 sd->backlog.weight = weight_p;
11785
11786 if (net_page_pool_create(cpuid: i))
11787 goto out;
11788 }
11789
11790 dev_boot_phase = 0;
11791
11792 /* The loopback device is special if any other network devices
11793 * is present in a network namespace the loopback device must
11794 * be present. Since we now dynamically allocate and free the
11795 * loopback device ensure this invariant is maintained by
11796 * keeping the loopback device as the first device on the
11797 * list of network devices. Ensuring the loopback devices
11798 * is the first device that appears and the last network device
11799 * that disappears.
11800 */
11801 if (register_pernet_device(&loopback_net_ops))
11802 goto out;
11803
11804 if (register_pernet_device(&default_device_ops))
11805 goto out;
11806
11807 open_softirq(nr: NET_TX_SOFTIRQ, action: net_tx_action);
11808 open_softirq(nr: NET_RX_SOFTIRQ, action: net_rx_action);
11809
11810 rc = cpuhp_setup_state_nocalls(state: CPUHP_NET_DEV_DEAD, name: "net/dev:dead",
11811 NULL, teardown: dev_cpu_dead);
11812 WARN_ON(rc < 0);
11813 rc = 0;
11814out:
11815 if (rc < 0) {
11816 for_each_possible_cpu(i) {
11817 struct page_pool *pp_ptr;
11818
11819 pp_ptr = per_cpu(system_page_pool, i);
11820 if (!pp_ptr)
11821 continue;
11822
11823 page_pool_destroy(pool: pp_ptr);
11824 per_cpu(system_page_pool, i) = NULL;
11825 }
11826 }
11827
11828 return rc;
11829}
11830
11831subsys_initcall(net_dev_init);
11832

source code of linux/net/core/dev.c