1 | // Copyright (C) 2008-2012 NVIDIA Corporation. |
2 | // Copyright (C) 2022 The Qt Company Ltd. |
3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only |
4 | |
5 | #include "qssglayerrenderdata_p.h" |
6 | |
7 | #include <QtQuick3DRuntimeRender/private/qssgrenderer_p.h> |
8 | #include <QtQuick3DRuntimeRender/private/qssgrenderlight_p.h> |
9 | #include <QtQuick3DRuntimeRender/private/qssgrhicustommaterialsystem_p.h> |
10 | #include <QtQuick3DRuntimeRender/private/qssgrhiquadrenderer_p.h> |
11 | #include <QtQuick3DRuntimeRender/private/qssgrhiparticles_p.h> |
12 | #include <QtQuick3DRuntimeRender/private/qssgrenderlayer_p.h> |
13 | #include <QtQuick3DRuntimeRender/private/qssgrendereffect_p.h> |
14 | #include <QtQuick3DRuntimeRender/private/qssgrendercamera_p.h> |
15 | #include <QtQuick3DRuntimeRender/private/qssgrenderskeleton_p.h> |
16 | #include <QtQuick3DRuntimeRender/private/qssgrenderjoint_p.h> |
17 | #include <QtQuick3DRuntimeRender/private/qssgrendermorphtarget_p.h> |
18 | #include <QtQuick3DRuntimeRender/private/qssgrenderparticles_p.h> |
19 | #include "../qssgrendercontextcore.h" |
20 | #include <QtQuick3DRuntimeRender/private/qssgrenderbuffermanager_p.h> |
21 | #include <QtQuick3DRuntimeRender/private/qssgrendershadercache_p.h> |
22 | #include <QtQuick3DRuntimeRender/private/qssgperframeallocator_p.h> |
23 | #include <QtQuick3DRuntimeRender/private/qssgruntimerenderlogging_p.h> |
24 | #include <QtQuick3DRuntimeRender/private/qssglightmapper_p.h> |
25 | #include <QtQuick3DRuntimeRender/private/qssgdebugdrawsystem_p.h> |
26 | |
27 | #include <QtQuick3DUtils/private/qssgutils_p.h> |
28 | #include <QtQuick3DUtils/private/qssgassert_p.h> |
29 | |
30 | #include <QtQuick/private/qsgtexture_p.h> |
31 | #include <QtQuick/private/qsgrenderer_p.h> |
32 | |
33 | #include <QtCore/QCoreApplication> |
34 | #include <QtCore/QBitArray> |
35 | #include <array> |
36 | |
37 | #include "qssgrenderpass_p.h" |
38 | #include "rendererimpl/qssgrenderhelpers_p.h" |
39 | |
40 | QT_BEGIN_NAMESPACE |
41 | |
42 | Q_LOGGING_CATEGORY(lcQuick3DRender, "qt.quick3d.render" ); |
43 | |
44 | #define POS4BONETRANS(x) (sizeof(float) * 16 * (x) * 2) |
45 | #define POS4BONENORM(x) (sizeof(float) * 16 * ((x) * 2 + 1)) |
46 | #define BONEDATASIZE4ID(x) POS4BONETRANS(x + 1) |
47 | |
48 | static bool checkParticleSupport(QRhi *rhi) |
49 | { |
50 | QSSG_ASSERT(rhi, return false); |
51 | |
52 | bool ret = true; |
53 | const bool supportRgba32f = rhi->isTextureFormatSupported(format: QRhiTexture::RGBA32F); |
54 | const bool supportRgba16f = rhi->isTextureFormatSupported(format: QRhiTexture::RGBA16F); |
55 | if (!supportRgba32f && !supportRgba16f) { |
56 | static bool warningShown = false; |
57 | if (!warningShown) { |
58 | qWarning () << "Particles not supported due to missing RGBA32F and RGBA16F texture format support" ; |
59 | warningShown = true; |
60 | } |
61 | ret = false; |
62 | } |
63 | |
64 | return ret; |
65 | } |
66 | |
67 | // These are meant to be pixel offsets, so you need to divide them by the width/height |
68 | // of the layer respectively. |
69 | static const QVector2D s_ProgressiveAAVertexOffsets[QSSGLayerRenderData::MAX_AA_LEVELS] = { |
70 | QVector2D(-0.170840f, -0.553840f), // 1x |
71 | QVector2D(0.162960f, -0.319340f), // 2x |
72 | QVector2D(0.360260f, -0.245840f), // 3x |
73 | QVector2D(-0.561340f, -0.149540f), // 4x |
74 | QVector2D(0.249460f, 0.453460f), // 5x |
75 | QVector2D(-0.336340f, 0.378260f), // 6x |
76 | QVector2D(0.340000f, 0.166260f), // 7x |
77 | QVector2D(0.235760f, 0.527760f), // 8x |
78 | }; |
79 | |
80 | qsizetype QSSGLayerRenderData::frustumCulling(const QSSGClippingFrustum &clipFrustum, const QSSGRenderableObjectList &renderables, QSSGRenderableObjectList &visibleRenderables) |
81 | { |
82 | QSSG_ASSERT(visibleRenderables.isEmpty(), visibleRenderables.clear()); |
83 | visibleRenderables.reserve(asize: renderables.size()); |
84 | for (quint32 end = renderables.size(), idx = quint32(0); idx != end; ++idx) { |
85 | auto handle = renderables.at(i: idx); |
86 | const auto &b = handle.obj->globalBounds; |
87 | if (clipFrustum.intersectsWith(bounds: b)) |
88 | visibleRenderables.push_back(t: handle); |
89 | } |
90 | |
91 | return visibleRenderables.size(); |
92 | } |
93 | |
94 | qsizetype QSSGLayerRenderData::frustumCullingInline(const QSSGClippingFrustum &clipFrustum, QSSGRenderableObjectList &renderables) |
95 | { |
96 | const qint32 end = renderables.size(); |
97 | qint32 front = 0; |
98 | qint32 back = end - 1; |
99 | |
100 | while (front <= back) { |
101 | const auto &b = renderables.at(i: front).obj->globalBounds; |
102 | if (clipFrustum.intersectsWith(bounds: b)) |
103 | ++front; |
104 | else |
105 | renderables.swapItemsAt(i: front, j: back--); |
106 | } |
107 | |
108 | return back + 1; |
109 | } |
110 | |
111 | [[nodiscard]] constexpr static inline bool nearestToFurthestCompare(const QSSGRenderableObjectHandle &lhs, const QSSGRenderableObjectHandle &rhs) noexcept |
112 | { |
113 | return lhs.cameraDistanceSq < rhs.cameraDistanceSq; |
114 | } |
115 | |
116 | [[nodiscard]] constexpr static inline bool furthestToNearestCompare(const QSSGRenderableObjectHandle &lhs, const QSSGRenderableObjectHandle &rhs) noexcept |
117 | { |
118 | return lhs.cameraDistanceSq > rhs.cameraDistanceSq; |
119 | } |
120 | |
121 | static void collectBoneTransforms(QSSGRenderNode *node, QSSGRenderSkeleton *skeletonNode, const QVector<QMatrix4x4> &poses) |
122 | { |
123 | if (node->type == QSSGRenderGraphObject::Type::Joint) { |
124 | QSSGRenderJoint *jointNode = static_cast<QSSGRenderJoint *>(node); |
125 | jointNode->calculateGlobalVariables(); |
126 | QMatrix4x4 globalTrans = jointNode->globalTransform; |
127 | // if user doesn't give the inverseBindPose, identity matrices are used. |
128 | if (poses.size() > jointNode->index) |
129 | globalTrans *= poses[jointNode->index]; |
130 | memcpy(dest: skeletonNode->boneData.data() + POS4BONETRANS(jointNode->index), |
131 | src: reinterpret_cast<const void *>(globalTrans.constData()), |
132 | n: sizeof(float) * 16); |
133 | // only upper 3x3 is meaningful |
134 | memcpy(dest: skeletonNode->boneData.data() + POS4BONENORM(jointNode->index), |
135 | src: reinterpret_cast<const void *>(QMatrix4x4(globalTrans.normalMatrix()).constData()), |
136 | n: sizeof(float) * 11); |
137 | } else { |
138 | skeletonNode->containsNonJointNodes = true; |
139 | } |
140 | for (auto &child : node->children) |
141 | collectBoneTransforms(node: &child, skeletonNode, poses); |
142 | } |
143 | |
144 | static bool hasDirtyNonJointNodes(QSSGRenderNode *node, bool &hasChildJoints) |
145 | { |
146 | if (!node) |
147 | return false; |
148 | // we might be non-joint dirty node, but if we do not have child joints we need to return false |
149 | // Note! The frontend clears TransformDirty. Use dirty instead. |
150 | bool dirtyNonJoint = ((node->type != QSSGRenderGraphObject::Type::Joint) |
151 | && node->isDirty()); |
152 | |
153 | // Tell our parent we are joint |
154 | if (node->type == QSSGRenderGraphObject::Type::Joint) |
155 | hasChildJoints = true; |
156 | bool nodeHasChildJoints = false; |
157 | for (auto &child : node->children) { |
158 | bool ret = hasDirtyNonJointNodes(node: &child, hasChildJoints&: nodeHasChildJoints); |
159 | // return if we have child joints and non-joint dirty nodes, else check other children |
160 | hasChildJoints |= nodeHasChildJoints; |
161 | if (ret && nodeHasChildJoints) |
162 | return true; |
163 | } |
164 | // return true if we have child joints and we are dirty non-joint |
165 | hasChildJoints |= nodeHasChildJoints; |
166 | return dirtyNonJoint && nodeHasChildJoints; |
167 | } |
168 | |
169 | template<typename T, typename V> |
170 | inline void collectNode(V node, QVector<T> &dst, int &dstPos) |
171 | { |
172 | if (dstPos < dst.size()) |
173 | dst[dstPos] = node; |
174 | else |
175 | dst.push_back(node); |
176 | |
177 | ++dstPos; |
178 | } |
179 | template <typename T, typename V> |
180 | static inline void collectNodeFront(V node, QVector<T> &dst, int &dstPos) |
181 | { |
182 | if (dstPos < dst.size()) |
183 | dst[dst.size() - dstPos - 1] = node; |
184 | else |
185 | dst.push_front(node); |
186 | |
187 | ++dstPos; |
188 | } |
189 | |
190 | #define MAX_MORPH_TARGET 8 |
191 | #define MAX_MORPH_TARGET_INDEX_SUPPORTS_NORMALS 3 |
192 | #define MAX_MORPH_TARGET_INDEX_SUPPORTS_TANGENTS 1 |
193 | |
194 | static bool maybeQueueNodeForRender(QSSGRenderNode &inNode, |
195 | QVector<QSSGRenderableNodeEntry> &outRenderableModels, |
196 | int &ioRenderableModelsCount, |
197 | QVector<QSSGRenderableNodeEntry> &outRenderableParticles, |
198 | int &ioRenderableParticlesCount, |
199 | QVector<QSSGRenderItem2D *> &outRenderableItem2Ds, |
200 | int &ioRenderableItem2DsCount, |
201 | QVector<QSSGRenderCamera *> &outCameras, |
202 | int &ioCameraCount, |
203 | QVector<QSSGRenderLight *> &outLights, |
204 | int &ioLightCount, |
205 | QVector<QSSGRenderReflectionProbe *> &outReflectionProbes, |
206 | int &ioReflectionProbeCount, |
207 | quint32 &ioDFSIndex) |
208 | { |
209 | bool wasDirty = inNode.isDirty(dirtyFlag: QSSGRenderNode::DirtyFlag::GlobalValuesDirty) && inNode.calculateGlobalVariables(); |
210 | if (inNode.getGlobalState(stateFlag: QSSGRenderNode::GlobalState::Active)) { |
211 | ++ioDFSIndex; |
212 | inNode.dfsIndex = ioDFSIndex; |
213 | if (QSSGRenderGraphObject::isRenderable(type: inNode.type)) { |
214 | if (inNode.type == QSSGRenderNode::Type::Model) |
215 | collectNode(node: QSSGRenderableNodeEntry(inNode), dst&: outRenderableModels, dstPos&: ioRenderableModelsCount); |
216 | else if (inNode.type == QSSGRenderNode::Type::Particles) |
217 | collectNode(node: QSSGRenderableNodeEntry(inNode), dst&: outRenderableParticles, dstPos&: ioRenderableParticlesCount); |
218 | else if (inNode.type == QSSGRenderNode::Type::Item2D) // Pushing front to keep item order inside QML file |
219 | collectNodeFront(node: static_cast<QSSGRenderItem2D *>(&inNode), dst&: outRenderableItem2Ds, dstPos&: ioRenderableItem2DsCount); |
220 | } else if (QSSGRenderGraphObject::isCamera(type: inNode.type)) { |
221 | collectNode(node: static_cast<QSSGRenderCamera *>(&inNode), dst&: outCameras, dstPos&: ioCameraCount); |
222 | } else if (QSSGRenderGraphObject::isLight(type: inNode.type)) { |
223 | if (auto &light = static_cast<QSSGRenderLight &>(inNode); light.isEnabled()) |
224 | collectNode(node: &light, dst&: outLights, dstPos&: ioLightCount); |
225 | } else if (inNode.type == QSSGRenderGraphObject::Type::ReflectionProbe) { |
226 | collectNode(node: static_cast<QSSGRenderReflectionProbe *>(&inNode), dst&: outReflectionProbes, dstPos&: ioReflectionProbeCount); |
227 | } |
228 | |
229 | for (auto &theChild : inNode.children) |
230 | wasDirty |= maybeQueueNodeForRender(inNode&: theChild, |
231 | outRenderableModels, |
232 | ioRenderableModelsCount, |
233 | outRenderableParticles, |
234 | ioRenderableParticlesCount, |
235 | outRenderableItem2Ds, |
236 | ioRenderableItem2DsCount, |
237 | outCameras, |
238 | ioCameraCount, |
239 | outLights, |
240 | ioLightCount, |
241 | outReflectionProbes, |
242 | ioReflectionProbeCount, |
243 | ioDFSIndex); |
244 | } |
245 | return wasDirty; |
246 | } |
247 | |
248 | QSSGDefaultMaterialPreparationResult::QSSGDefaultMaterialPreparationResult(QSSGShaderDefaultMaterialKey inKey) |
249 | : firstImage(nullptr), opacity(1.0f), materialKey(inKey), dirty(false) |
250 | { |
251 | } |
252 | |
253 | static QSSGRenderCameraData getCameraDataImpl(const QSSGRenderCamera *camera) |
254 | { |
255 | QSSGRenderCameraData ret; |
256 | if (camera) { |
257 | // Calculate viewProjection and clippingFrustum for Render Camera |
258 | QMatrix4x4 viewProjection(Qt::Uninitialized); |
259 | camera->calculateViewProjectionMatrix(outMatrix&: viewProjection); |
260 | std::optional<QSSGClippingFrustum> clippingFrustum; |
261 | if (camera->enableFrustumClipping) { |
262 | QSSGClipPlane nearPlane; |
263 | QMatrix3x3 theUpper33(camera->globalTransform.normalMatrix()); |
264 | QVector3D dir(QSSGUtils::mat33::transform(m: theUpper33, v: QVector3D(0, 0, -1))); |
265 | dir.normalize(); |
266 | nearPlane.normal = dir; |
267 | QVector3D theGlobalPos = camera->getGlobalPos() + camera->clipNear * dir; |
268 | nearPlane.d = -(QVector3D::dotProduct(v1: dir, v2: theGlobalPos)); |
269 | // the near plane's bbox edges are calculated in the clipping frustum's |
270 | // constructor. |
271 | clippingFrustum = QSSGClippingFrustum{viewProjection, nearPlane}; |
272 | } |
273 | ret = { .viewProjection: viewProjection, .clippingFrustum: clippingFrustum, .direction: camera->getScalingCorrectDirection(), .position: camera->getGlobalPos() }; |
274 | } |
275 | |
276 | return ret; |
277 | } |
278 | |
279 | // Returns the cached data for the active render camera(s) (if any) |
280 | const QSSGRenderCameraDataList &QSSGLayerRenderData::getCachedCameraDatas() |
281 | { |
282 | ensureCachedCameraDatas(); |
283 | return *renderedCameraData; |
284 | } |
285 | |
286 | void QSSGLayerRenderData::ensureCachedCameraDatas() |
287 | { |
288 | if (renderedCameraData.has_value()) |
289 | return; |
290 | |
291 | QSSGRenderCameraDataList cameraData; |
292 | for (QSSGRenderCamera *cam : std::as_const(t&: renderedCameras)) |
293 | cameraData.append(t: getCameraDataImpl(camera: cam)); |
294 | renderedCameraData = std::move(cameraData); |
295 | } |
296 | |
297 | [[nodiscard]] static inline float getCameraDistanceSq(const QSSGRenderableObject &obj, |
298 | const QSSGRenderCameraData &camera) noexcept |
299 | { |
300 | const QVector3D difference = obj.worldCenterPoint - camera.position; |
301 | return QVector3D::dotProduct(v1: difference, v2: camera.direction) + obj.depthBiasSq; |
302 | } |
303 | |
304 | // Per-frame cache of renderable objects post-sort. |
305 | const QVector<QSSGRenderableObjectHandle> &QSSGLayerRenderData::getSortedOpaqueRenderableObjects(const QSSGRenderCamera &camera, size_t index) |
306 | { |
307 | index = index * size_t(index < opaqueObjectStore.size()); |
308 | auto &sortedOpaqueObjects = sortedOpaqueObjectCache[index][&camera]; |
309 | if (!sortedOpaqueObjects.empty()) |
310 | return sortedOpaqueObjects; |
311 | |
312 | if (layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest)) |
313 | sortedOpaqueObjects = std::as_const(t&: opaqueObjectStore)[index]; |
314 | |
315 | const auto &clippingFrustum = getCameraRenderData(camera: &camera).clippingFrustum; |
316 | if (clippingFrustum.has_value()) { // Frustum culling |
317 | const auto visibleObjects = QSSGLayerRenderData::frustumCullingInline(clipFrustum: clippingFrustum.value(), renderables&: sortedOpaqueObjects); |
318 | sortedOpaqueObjects.resize(size: visibleObjects); |
319 | } |
320 | |
321 | // Render nearest to furthest objects |
322 | std::sort(first: sortedOpaqueObjects.begin(), last: sortedOpaqueObjects.end(), comp: nearestToFurthestCompare); |
323 | |
324 | return sortedOpaqueObjects; |
325 | } |
326 | |
327 | // If layer depth test is false, this may also contain opaque objects. |
328 | const QVector<QSSGRenderableObjectHandle> &QSSGLayerRenderData::getSortedTransparentRenderableObjects(const QSSGRenderCamera &camera, size_t index) |
329 | { |
330 | index = index * size_t(index < transparentObjectStore.size()); |
331 | auto &sortedTransparentObjects = sortedTransparentObjectCache[index][&camera]; |
332 | |
333 | if (!sortedTransparentObjects.empty()) |
334 | return sortedTransparentObjects; |
335 | |
336 | sortedTransparentObjects = std::as_const(t&: transparentObjectStore)[index]; |
337 | |
338 | if (!layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest)) { |
339 | const auto &opaqueObjects = std::as_const(t&: opaqueObjectStore)[index]; |
340 | sortedTransparentObjects.append(l: opaqueObjects); |
341 | } |
342 | |
343 | const auto &clippingFrustum = getCameraRenderData(camera: &camera).clippingFrustum; |
344 | if (clippingFrustum.has_value()) { // Frustum culling |
345 | const auto visibleObjects = QSSGLayerRenderData::frustumCullingInline(clipFrustum: clippingFrustum.value(), renderables&: sortedTransparentObjects); |
346 | sortedTransparentObjects.resize(size: visibleObjects); |
347 | } |
348 | |
349 | // render furthest to nearest. |
350 | std::sort(first: sortedTransparentObjects.begin(), last: sortedTransparentObjects.end(), comp: furthestToNearestCompare); |
351 | |
352 | return sortedTransparentObjects; |
353 | } |
354 | |
355 | const QVector<QSSGRenderableObjectHandle> &QSSGLayerRenderData::getSortedScreenTextureRenderableObjects(const QSSGRenderCamera &camera, size_t index) |
356 | { |
357 | index = index * size_t(index < screenTextureObjectStore.size()); |
358 | const auto &screenTextureObjects = std::as_const(t&: screenTextureObjectStore)[index]; |
359 | auto &renderedScreenTextureObjects = sortedScreenTextureObjectCache[index][&camera]; |
360 | |
361 | if (!renderedScreenTextureObjects.empty()) |
362 | return renderedScreenTextureObjects; |
363 | renderedScreenTextureObjects = screenTextureObjects; |
364 | if (!renderedScreenTextureObjects.empty()) { |
365 | // render furthest to nearest. |
366 | std::sort(first: renderedScreenTextureObjects.begin(), last: renderedScreenTextureObjects.end(), comp: furthestToNearestCompare); |
367 | } |
368 | return renderedScreenTextureObjects; |
369 | } |
370 | |
371 | const QVector<QSSGBakedLightingModel> &QSSGLayerRenderData::getSortedBakedLightingModels() |
372 | { |
373 | if (!renderedBakedLightingModels.empty() || renderedCameras.isEmpty()) |
374 | return renderedBakedLightingModels; |
375 | if (layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest) && !bakedLightingModels.empty()) { |
376 | renderedBakedLightingModels = bakedLightingModels; |
377 | for (QSSGBakedLightingModel &lm : renderedBakedLightingModels) { |
378 | // sort nearest to furthest (front to back) |
379 | std::sort(first: lm.renderables.begin(), last: lm.renderables.end(), comp: nearestToFurthestCompare); |
380 | } |
381 | } |
382 | return renderedBakedLightingModels; |
383 | } |
384 | |
385 | const QSSGLayerRenderData::RenderableItem2DEntries &QSSGLayerRenderData::getRenderableItem2Ds() |
386 | { |
387 | if (!renderedItem2Ds.isEmpty() || renderedCameras.isEmpty()) |
388 | return renderedItem2Ds; |
389 | |
390 | renderedItem2Ds = renderableItem2Ds; |
391 | |
392 | if (!renderedItem2Ds.isEmpty()) { |
393 | const QSSGRenderCameraDataList &cameraDatas(getCachedCameraDatas()); |
394 | // with multiview this means using the left eye camera |
395 | const QSSGRenderCameraData &cameraDirectionAndPosition(cameraDatas[0]); |
396 | const QVector3D &cameraDirection = cameraDirectionAndPosition.direction; |
397 | const QVector3D &cameraPosition = cameraDirectionAndPosition.position; |
398 | |
399 | const auto isItemNodeDistanceGreatThan = [cameraDirection, cameraPosition] |
400 | (const QSSGRenderItem2D *lhs, const QSSGRenderItem2D *rhs) { |
401 | if (!lhs->parent || !rhs->parent) |
402 | return false; |
403 | const QVector3D lhsDifference = lhs->parent->getGlobalPos() - cameraPosition; |
404 | const float lhsCameraDistanceSq = QVector3D::dotProduct(v1: lhsDifference, v2: cameraDirection); |
405 | const QVector3D rhsDifference = rhs->parent->getGlobalPos() - cameraPosition; |
406 | const float rhsCameraDistanceSq = QVector3D::dotProduct(v1: rhsDifference, v2: cameraDirection); |
407 | return lhsCameraDistanceSq > rhsCameraDistanceSq; |
408 | }; |
409 | |
410 | const auto isItemZOrderLessThan = [] |
411 | (const QSSGRenderItem2D *lhs, const QSSGRenderItem2D *rhs) { |
412 | if (lhs->parent && rhs->parent && lhs->parent == rhs->parent) { |
413 | // Same parent nodes, so sort with item z-ordering |
414 | return lhs->zOrder < rhs->zOrder; |
415 | } |
416 | return false; |
417 | }; |
418 | |
419 | // Render furthest to nearest items (parent nodes). |
420 | std::stable_sort(first: renderedItem2Ds.begin(), last: renderedItem2Ds.end(), comp: isItemNodeDistanceGreatThan); |
421 | // Render items inside same node by item z-order. |
422 | // Note: stable_sort so item order in QML file is respected. |
423 | std::stable_sort(first: renderedItem2Ds.begin(), last: renderedItem2Ds.end(), comp: isItemZOrderLessThan); |
424 | } |
425 | |
426 | return renderedItem2Ds; |
427 | } |
428 | |
429 | // Depth Write List |
430 | void QSSGLayerRenderData::updateSortedDepthObjectsListImp(const QSSGRenderCamera &camera, size_t index) |
431 | { |
432 | auto &depthWriteObjects = sortedDepthWriteCache[index][&camera]; |
433 | auto &depthPrepassObjects = sortedOpaqueDepthPrepassCache[index][&camera]; |
434 | |
435 | if (!depthWriteObjects.isEmpty() || !depthPrepassObjects.isEmpty()) |
436 | return; |
437 | |
438 | if (layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest)) { |
439 | if (hasDepthWriteObjects || (depthPrepassObjectsState & DepthPrepassObjectStateT(DepthPrepassObject::Opaque)) != 0) { |
440 | const auto &sortedOpaqueObjects = getSortedOpaqueRenderableObjects(camera, index); // front to back |
441 | for (const auto &opaqueObject : sortedOpaqueObjects) { |
442 | const auto depthMode = opaqueObject.obj->depthWriteMode; |
443 | if (depthMode == QSSGDepthDrawMode::Always || depthMode == QSSGDepthDrawMode::OpaqueOnly) |
444 | depthWriteObjects.append(t: opaqueObject); |
445 | else if (depthMode == QSSGDepthDrawMode::OpaquePrePass) |
446 | depthPrepassObjects.append(t: opaqueObject); |
447 | } |
448 | } |
449 | if (hasDepthWriteObjects || (depthPrepassObjectsState & DepthPrepassObjectStateT(DepthPrepassObject::Transparent)) != 0) { |
450 | const auto &sortedTransparentObjects = getSortedTransparentRenderableObjects(camera, index); // back to front |
451 | for (const auto &transparentObject : sortedTransparentObjects) { |
452 | const auto depthMode = transparentObject.obj->depthWriteMode; |
453 | if (depthMode == QSSGDepthDrawMode::Always) |
454 | depthWriteObjects.append(t: transparentObject); |
455 | else if (depthMode == QSSGDepthDrawMode::OpaquePrePass) |
456 | depthPrepassObjects.append(t: transparentObject); |
457 | } |
458 | } |
459 | if (hasDepthWriteObjects || (depthPrepassObjectsState & DepthPrepassObjectStateT(DepthPrepassObject::ScreenTexture)) != 0) { |
460 | const auto &sortedScreenTextureObjects = getSortedScreenTextureRenderableObjects(camera, index); // back to front |
461 | for (const auto &screenTextureObject : sortedScreenTextureObjects) { |
462 | const auto depthMode = screenTextureObject.obj->depthWriteMode; |
463 | if (depthMode == QSSGDepthDrawMode::Always || depthMode == QSSGDepthDrawMode::OpaqueOnly) |
464 | depthWriteObjects.append(t: screenTextureObject); |
465 | else if (depthMode == QSSGDepthDrawMode::OpaquePrePass) |
466 | depthPrepassObjects.append(t: screenTextureObject); |
467 | } |
468 | } |
469 | } |
470 | } |
471 | |
472 | const std::unique_ptr<QSSGPerFrameAllocator> &QSSGLayerRenderData::perFrameAllocator(QSSGRenderContextInterface &ctx) |
473 | { |
474 | return ctx.perFrameAllocator(); |
475 | } |
476 | |
477 | static constexpr quint16 PREP_CTX_INDEX_MASK = 0xffff; |
478 | static constexpr QSSGPrepContextId createPrepId(size_t index, quint32 frame) { return QSSGPrepContextId { ((quint64(frame) << 32) | index ) * quint64(index <= std::numeric_limits<quint16>::max()) }; } |
479 | static constexpr size_t getPrepContextIndex(QSSGPrepContextId id) { return (static_cast<quint64>(id) & PREP_CTX_INDEX_MASK); } |
480 | static constexpr bool verifyPrepContext(QSSGPrepContextId id, const QSSGRenderer &renderer) { return (getPrepContextIndex(id) > 0) && ((static_cast<quint64>(id) >> 32) == renderer.frameCount()); } |
481 | |
482 | QSSGPrepContextId QSSGLayerRenderData::getOrCreateExtensionContext(const QSSGRenderExtension &ext, QSSGRenderCamera *camera, quint32 slot) |
483 | { |
484 | const auto frame = renderer->frameCount(); |
485 | const auto index = extContexts.size(); |
486 | // Sanity check... Shouldn't get anywhere close to the max in real world usage (unless somethings broken). |
487 | QSSG_ASSERT_X(index < PREP_CTX_INDEX_MASK - 1, "Reached maximum entries!" , return QSSGPrepContextId::Invalid); |
488 | auto it = std::find_if(first: extContexts.cbegin(), last: extContexts.cend(), pred: [&ext, slot](const ExtensionContext &e){ return (e.owner == &ext) && (e.slot == slot); }); |
489 | if (it == extContexts.cend()) { |
490 | extContexts.push_back(x: { .owner: &ext, .camera: camera, .ps: {/* PS */}, .filter: {/* FILTER */}, .index: index, .slot: slot }); |
491 | it = extContexts.cbegin() + index; |
492 | renderableModelStore.emplace_back(); |
493 | modelContextStore.emplace_back(); |
494 | renderableObjectStore.emplace_back(); |
495 | screenTextureObjectStore.emplace_back(); |
496 | opaqueObjectStore.emplace_back(); |
497 | transparentObjectStore.emplace_back(); |
498 | sortedOpaqueObjectCache.emplace_back(); |
499 | sortedTransparentObjectCache.emplace_back(); |
500 | sortedScreenTextureObjectCache.emplace_back(); |
501 | sortedOpaqueDepthPrepassCache.emplace_back(); |
502 | sortedDepthWriteCache.emplace_back(); |
503 | QSSG_ASSERT(renderableModelStore.size() == extContexts.size(), renderableModelStore.resize(extContexts.size())); |
504 | QSSG_ASSERT(modelContextStore.size() == extContexts.size(), modelContextStore.resize(extContexts.size())); |
505 | QSSG_ASSERT(renderableObjectStore.size() == extContexts.size(), renderableObjectStore.resize(extContexts.size())); |
506 | QSSG_ASSERT(screenTextureObjectStore.size() == extContexts.size(), screenTextureObjectStore.resize(extContexts.size())); |
507 | QSSG_ASSERT(opaqueObjectStore.size() == extContexts.size(), opaqueObjectStore.resize(extContexts.size())); |
508 | QSSG_ASSERT(transparentObjectStore.size() == extContexts.size(), transparentObjectStore.resize(extContexts.size())); |
509 | QSSG_ASSERT(sortedOpaqueObjectCache.size() == extContexts.size(), sortedOpaqueObjectCache.resize(extContexts.size())); |
510 | QSSG_ASSERT(sortedTransparentObjectCache.size() == extContexts.size(), sortedTransparentObjectCache.resize(extContexts.size())); |
511 | QSSG_ASSERT(sortedScreenTextureObjectCache.size() == extContexts.size(), sortedScreenTextureObjectCache.resize(extContexts.size())); |
512 | QSSG_ASSERT(sortedOpaqueDepthPrepassCache.size() == extContexts.size(), sortedOpaqueDepthPrepassCache.resize(extContexts.size())); |
513 | QSSG_ASSERT(sortedDepthWriteCache.size() == extContexts.size(), sortedDepthWriteCache.resize(extContexts.size())); |
514 | } |
515 | |
516 | return createPrepId(index: it->index, frame); |
517 | } |
518 | |
519 | static void createRenderablesHelper(QSSGLayerRenderData &layer, const QSSGRenderNode::ChildList &children, QSSGLayerRenderData::RenderableNodeEntries &renderables, QSSGRenderHelpers::CreateFlags createFlags) |
520 | { |
521 | const bool steal = ((createFlags & QSSGRenderHelpers::CreateFlag::Steal) != 0); |
522 | for (auto &chld : children) { |
523 | if (chld.type == QSSGRenderGraphObject::Type::Model) { |
524 | const auto &renderModel = static_cast<const QSSGRenderModel &>(chld); |
525 | auto &renderableModels = layer.renderableModels; |
526 | if (auto it = std::find_if(first: renderableModels.cbegin(), last: renderableModels.cend(), pred: [&renderModel](const QSSGRenderableNodeEntry &e) { return (e.node == &renderModel); }); it != renderableModels.cend()) { |
527 | renderables.emplace_back(args: *it); |
528 | if (steal) |
529 | renderableModels.erase(pos: it); |
530 | } |
531 | } |
532 | |
533 | createRenderablesHelper(layer, children: chld.children, renderables, createFlags); |
534 | } |
535 | } |
536 | |
537 | QSSGRenderablesId QSSGLayerRenderData::createRenderables(QSSGPrepContextId prepId, const QList<QSSGNodeId> &nodes, QSSGRenderHelpers::CreateFlags createFlags) |
538 | { |
539 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid prep id" , return {}); |
540 | |
541 | const size_t index = getPrepContextIndex(id: prepId); |
542 | QSSG_ASSERT(index < renderableModelStore.size(), return {}); |
543 | |
544 | auto &renderables = renderableModelStore[index]; |
545 | if (renderables.size() != 0) { |
546 | qWarning() << "Renderables already created for this context - Previous renderables will be overwritten" ; |
547 | renderables.clear(); |
548 | } |
549 | |
550 | renderables.reserve(asize: nodes.size()); |
551 | |
552 | // We now create the renderable node entries for all the models. |
553 | // NOTE: The nodes are not complete at this point... |
554 | const bool steal = ((createFlags & QSSGRenderHelpers::CreateFlag::Steal) != 0); |
555 | for (const auto &nodeId : nodes) { |
556 | auto *node = QSSGRenderGraphObjectUtils::getNode<QSSGRenderNode>(nodeId); |
557 | if (node && node->type == QSSGRenderGraphObject::Type::Model) { |
558 | auto *renderModel = static_cast<QSSGRenderModel *>(node); |
559 | // NOTE: Not ideal. |
560 | if (auto it = std::find_if(first: renderableModels.cbegin(), last: renderableModels.cend(), pred: [renderModel](const QSSGRenderableNodeEntry &e) { return (e.node == renderModel); }); it != renderableModels.cend()) { |
561 | auto &inserted = renderables.emplace_back(args: *it); |
562 | inserted.overridden = {}; |
563 | if (steal) |
564 | it->overridden |= QSSGRenderableNodeEntry::Overridden::Disabled; |
565 | } else { |
566 | renderables.emplace_back(args&: *renderModel); |
567 | } |
568 | } |
569 | |
570 | if (node && ((createFlags & QSSGRenderHelpers::CreateFlag::Recurse) != 0)) { |
571 | const auto &children = node->children; |
572 | createRenderablesHelper(layer&: *this, children, renderables, createFlags); |
573 | } |
574 | } |
575 | |
576 | return (renderables.size() != 0) ? static_cast<QSSGRenderablesId>(prepId) : QSSGRenderablesId{ QSSGRenderablesId::Invalid }; |
577 | } |
578 | |
579 | void QSSGLayerRenderData::setGlobalTransform(QSSGRenderablesId renderablesId, const QSSGRenderModel &model, const QMatrix4x4 &globalTransform) |
580 | { |
581 | const auto prepId = static_cast<QSSGPrepContextId>(renderablesId); |
582 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid renderables id" , return); |
583 | const size_t index = getPrepContextIndex(id: prepId); |
584 | QSSG_ASSERT_X(index < renderableModelStore.size(), "Missing call to createRenderables()?" , return); |
585 | |
586 | auto &renderables = renderableModelStore[index]; |
587 | auto it = std::find_if(first: renderables.cbegin(), last: renderables.cend(), pred: [&model](const QSSGRenderableNodeEntry &e) { return e.node == &model; }); |
588 | if (it != renderables.cend()) { |
589 | it->globalTransform = globalTransform; |
590 | it->overridden |= QSSGRenderableNodeEntry::Overridden::GlobalTransform; |
591 | } |
592 | } |
593 | |
594 | QMatrix4x4 QSSGLayerRenderData::getGlobalTransform(QSSGPrepContextId prepId, const QSSGRenderModel &model) |
595 | { |
596 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid prep id" , return {}); |
597 | const size_t index = getPrepContextIndex(id: prepId); |
598 | QSSG_ASSERT_X(index < renderableModelStore.size(), "Missing call to createRenderables()?" , return {}); |
599 | |
600 | QMatrix4x4 ret = model.globalTransform; |
601 | auto &renderables = renderableModelStore[index]; |
602 | auto it = std::find_if(first: renderables.cbegin(), last: renderables.cend(), pred: [&model](const QSSGRenderableNodeEntry &e) { return e.node == &model; }); |
603 | if (it != renderables.cend() && (it->overridden & QSSGRenderableNodeEntry::Overridden::GlobalTransform)) |
604 | ret = it->globalTransform; |
605 | |
606 | return ret; |
607 | } |
608 | |
609 | void QSSGLayerRenderData::setGlobalOpacity(QSSGRenderablesId renderablesId, const QSSGRenderModel &model, float opacity) |
610 | { |
611 | const auto prepId = static_cast<QSSGPrepContextId>(renderablesId); |
612 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid renderables id" , return); |
613 | const size_t index = getPrepContextIndex(id: prepId); |
614 | QSSG_ASSERT_X(index < renderableModelStore.size(), "Missing call to createRenderables()?" , return); |
615 | |
616 | auto &renderables = renderableModelStore[index]; |
617 | auto it = std::find_if(first: renderables.cbegin(), last: renderables.cend(), pred: [&model](const QSSGRenderableNodeEntry &e) { return e.node == &model; }); |
618 | if (it != renderables.cend()) { |
619 | it->globalOpacity = opacity; |
620 | it->overridden |= QSSGRenderableNodeEntry::Overridden::GlobalOpacity; |
621 | } |
622 | } |
623 | |
624 | float QSSGLayerRenderData::getGlobalOpacity(QSSGPrepContextId prepId, const QSSGRenderModel &model) |
625 | { |
626 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid prep id" , return {}); |
627 | const size_t index = getPrepContextIndex(id: prepId); |
628 | QSSG_ASSERT_X(index < renderableModelStore.size(), "Missing call to createRenderables()?" , return {}); |
629 | |
630 | float ret = model.globalOpacity; |
631 | auto &renderables = renderableModelStore[index]; |
632 | auto it = std::find_if(first: renderables.cbegin(), last: renderables.cend(), pred: [&model](const QSSGRenderableNodeEntry &e) { return e.node == &model; }); |
633 | if (it != renderables.cend() && (it->overridden & QSSGRenderableNodeEntry::Overridden::GlobalOpacity)) |
634 | ret = it->globalOpacity; |
635 | |
636 | return ret; |
637 | } |
638 | |
639 | void QSSGLayerRenderData::setModelMaterials(QSSGRenderablesId renderablesId, const QSSGRenderModel &model, const QList<QSSGResourceId> &materials) |
640 | { |
641 | const auto prepId = static_cast<QSSGPrepContextId>(renderablesId); |
642 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid renderable id" , return); |
643 | const size_t index = getPrepContextIndex(id: prepId); |
644 | QSSG_ASSERT(index < renderableModelStore.size(), return); |
645 | |
646 | // Sanity check |
647 | if (materials.size() > 0 && !QSSG_GUARD(QSSGRenderGraphObject::isMaterial(QSSGRenderGraphObjectUtils::getResource(materials.at(0))->type))) |
648 | return; |
649 | |
650 | auto &renderables = renderableModelStore[index]; |
651 | auto it = std::find_if(first: renderables.cbegin(), last: renderables.cend(), pred: [&model](const QSSGRenderableNodeEntry &e) { return e.node == &model; }); |
652 | if (it != renderables.cend()) { |
653 | it->materials.resize(size: materials.size()); |
654 | std::memcpy(dest: it->materials.data(), src: materials.data(), n: it->materials.size() * sizeof(QSSGRenderGraphObject *)); |
655 | it->overridden |= QSSGRenderableNodeEntry::Overridden::Materials; |
656 | } |
657 | } |
658 | |
659 | void QSSGLayerRenderData::setModelMaterials(const QSSGRenderablesId renderablesId, const QList<QSSGResourceId> &materials) |
660 | { |
661 | const auto prepId = static_cast<QSSGPrepContextId>(renderablesId); |
662 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid renderablesId or renderables id" , return); |
663 | |
664 | const size_t index = getPrepContextIndex(id: prepId); |
665 | QSSG_ASSERT(index < renderableModelStore.size(), return); |
666 | |
667 | auto &renderables = renderableModelStore[index]; |
668 | for (auto &renderable : renderables) { |
669 | auto &renderableMaterials = renderable.materials; |
670 | renderableMaterials.resize(size: materials.size()); |
671 | std::memcpy(dest: renderableMaterials.data(), src: materials.data(), n: renderableMaterials.size() * sizeof(QSSGRenderGraphObject *)); |
672 | renderable.overridden |= QSSGRenderableNodeEntry::Overridden::Materials; |
673 | } |
674 | } |
675 | |
676 | QSSGPrepResultId QSSGLayerRenderData::prepareModelsForRender(QSSGRenderContextInterface &contextInterface, |
677 | QSSGPrepContextId prepId, |
678 | QSSGRenderablesId renderablesId, |
679 | float lodThreshold) |
680 | { |
681 | QSSG_ASSERT_X(renderablesId != QSSGRenderablesId::Invalid && verifyPrepContext(prepId, *renderer), |
682 | "Expired or invalid prep or renderables id" , return QSSGPrepResultId::Invalid); |
683 | const size_t index = getPrepContextIndex(id: prepId); |
684 | QSSG_ASSERT(index < renderableModelStore.size(), return {}); |
685 | |
686 | const auto &extContext = extContexts.at(n: index); |
687 | |
688 | QSSG_ASSERT_X(extContext.camera != nullptr, "No camera set!" , return {}); |
689 | |
690 | const auto vp = contextInterface.renderer()->viewport(); |
691 | extContext.camera->calculateGlobalVariables(inViewport: vp); |
692 | |
693 | auto &renderables = renderableModelStore[index]; |
694 | |
695 | prepareModelMaterials(renderableModels&: renderables, cullUnrenderables: true /* Cull renderables without materials */); |
696 | |
697 | prepareModelMeshes(contextInterface, renderableModels&: renderables, globalPickingEnabled: false /* globalPickingEnabled */); |
698 | |
699 | // ### multiview |
700 | QSSGRenderCameraList camera({ extContext.camera }); |
701 | QSSGRenderCameraDataList cameraData({ getCameraRenderData(camera: extContext.camera) }); |
702 | |
703 | auto &modelContexts = modelContextStore[index]; |
704 | QSSG_ASSERT(modelContexts.isEmpty(), modelContexts.clear()); |
705 | |
706 | auto &renderableObjects = renderableObjectStore[index]; |
707 | QSSG_ASSERT(renderableObjects.isEmpty(), renderableObjects.clear()); |
708 | |
709 | auto &opaqueObjects = opaqueObjectStore[index]; |
710 | QSSG_ASSERT(opaqueObjects.isEmpty(), opaqueObjects.clear()); |
711 | |
712 | auto &transparentObjects = transparentObjectStore[index]; |
713 | QSSG_ASSERT(transparentObjects.isEmpty(), transparentObjects.clear()); |
714 | |
715 | auto &screenTextureObjects = screenTextureObjectStore[index]; |
716 | QSSG_ASSERT(screenTextureObjects.isEmpty(), screenTextureObjects.clear()); |
717 | |
718 | bool wasDirty = prepareModelsForRender(ctx&: contextInterface, |
719 | renderableModels: renderables, |
720 | ioFlags&: layerPrepResult.flags, |
721 | allCameras: camera, |
722 | allCameraData: cameraData, |
723 | modelContexts, |
724 | opaqueObjects, |
725 | transparentObjects, |
726 | screenTextureObjects, |
727 | lodThreshold); |
728 | |
729 | (void)wasDirty; |
730 | |
731 | return static_cast<QSSGPrepResultId>(prepId); |
732 | } |
733 | |
734 | static constexpr size_t pipelineStateIndex(QSSGRenderablesFilter filter) |
735 | { |
736 | switch (filter) { |
737 | case QSSGRenderablesFilter::All: |
738 | return 0; |
739 | case QSSGRenderablesFilter::Opaque: |
740 | return 1; |
741 | case QSSGRenderablesFilter::Transparent: |
742 | return 2; |
743 | } |
744 | |
745 | Q_UNREACHABLE_RETURN(0); |
746 | } |
747 | |
748 | void QSSGLayerRenderData::prepareRenderables(QSSGRenderContextInterface &ctx, |
749 | QSSGPrepResultId prepId, |
750 | QRhiRenderPassDescriptor *renderPassDescriptor, |
751 | const QSSGRhiGraphicsPipelineState &ps, |
752 | QSSGRenderablesFilters filter) |
753 | { |
754 | QSSG_ASSERT_X(verifyPrepContext(static_cast<QSSGPrepContextId>(prepId), *renderer), "Expired or invalid result id" , return); |
755 | const size_t index = getPrepContextIndex(id: static_cast<QSSGPrepContextId>(prepId)); |
756 | QSSG_ASSERT(index < renderableObjectStore.size() && index < extContexts.size(), return); |
757 | |
758 | auto &extCtx = extContexts[index]; |
759 | QSSG_ASSERT(extCtx.camera, return); |
760 | extCtx.filter |= filter; |
761 | |
762 | QSSGShaderFeatures featureSet = getShaderFeatures(); |
763 | |
764 | QSSGPassKey passKey { reinterpret_cast<void *>(quintptr(extCtx.owner) ^ extCtx.slot) }; // TODO: Pass this along |
765 | |
766 | if ((filter & QSSGRenderablesFilter::Opaque) != 0) { |
767 | auto psCpy = ps; |
768 | if (filter == QSSGRenderablesFilter::All) { // If 'All' we set our defaults |
769 | psCpy.depthFunc = QRhiGraphicsPipeline::LessOrEqual; |
770 | psCpy.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::BlendEnabled, on: false); |
771 | } |
772 | const auto &sortedRenderables = getSortedOpaqueRenderableObjects(camera: *extCtx.camera, index); |
773 | OpaquePass::prep(ctx, data&: *this, passKey, ps&: psCpy, shaderFeatures: featureSet, rpDesc: renderPassDescriptor, sortedOpaqueObjects: sortedRenderables); |
774 | const size_t psIndex = pipelineStateIndex(filter: QSSGRenderablesFilter::Opaque); |
775 | extCtx.ps[psIndex] = psCpy; |
776 | } |
777 | |
778 | if ((filter & QSSGRenderablesFilter::Transparent) != 0) { |
779 | auto psCpy = ps; |
780 | if (filter == QSSGRenderablesFilter::All) { // If 'All' we set our defaults |
781 | // transparent objects (or, without LayerEnableDepthTest, all objects) |
782 | psCpy.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::BlendEnabled, on: true); |
783 | psCpy.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::DepthWriteEnabled, on: false); |
784 | } |
785 | const auto &sortedRenderables = getSortedTransparentRenderableObjects(camera: *extCtx.camera, index); |
786 | TransparentPass::prep(ctx, data&: *this, passKey, ps&: psCpy, shaderFeatures: featureSet, rpDesc: renderPassDescriptor, sortedTransparentObjects: sortedRenderables); |
787 | const size_t psIndex = pipelineStateIndex(filter: QSSGRenderablesFilter::Transparent); |
788 | extCtx.ps[psIndex] = psCpy; |
789 | } |
790 | } |
791 | |
792 | void QSSGLayerRenderData::renderRenderables(QSSGRenderContextInterface &ctx, QSSGPrepResultId prepId) |
793 | { |
794 | QSSG_ASSERT_X(verifyPrepContext(static_cast<QSSGPrepContextId>(prepId), *renderer), "Expired or invalid result id" , return); |
795 | const size_t index = getPrepContextIndex(id: static_cast<QSSGPrepContextId>(prepId)); |
796 | QSSG_ASSERT(index < renderableObjectStore.size() && index < extContexts.size(), return); |
797 | |
798 | const auto &extCtx = extContexts.at(n: index); |
799 | const auto filter = extCtx.filter; |
800 | |
801 | if ((filter & QSSGRenderablesFilter::Opaque) != 0) { |
802 | const size_t psIndex = pipelineStateIndex(filter: QSSGRenderablesFilter::Opaque); |
803 | const auto &ps = extCtx.ps[psIndex]; |
804 | const auto &sortedRenderables = getSortedOpaqueRenderableObjects(camera: *extCtx.camera, index); |
805 | OpaquePass::render(ctx, ps, sortedOpaqueObjects: sortedRenderables); |
806 | } |
807 | |
808 | if ((filter & QSSGRenderablesFilter::Transparent) != 0) { |
809 | const size_t psIndex = pipelineStateIndex(filter: QSSGRenderablesFilter::Transparent); |
810 | const auto &ps = extCtx.ps[psIndex]; |
811 | const auto &sortedRenderables = getSortedTransparentRenderableObjects(camera: *extCtx.camera, index); |
812 | TransparentPass::render(ctx, ps, sortedTransparentObjects: sortedRenderables); |
813 | } |
814 | } |
815 | |
816 | const QSSGRenderableObjectList &QSSGLayerRenderData::getSortedRenderedDepthWriteObjects(const QSSGRenderCamera &camera, size_t index) |
817 | { |
818 | updateSortedDepthObjectsListImp(camera, index); |
819 | return sortedDepthWriteCache[index][&camera]; |
820 | } |
821 | |
822 | const QSSGRenderableObjectList &QSSGLayerRenderData::getSortedrenderedOpaqueDepthPrepassObjects(const QSSGRenderCamera &camera, size_t index) |
823 | { |
824 | updateSortedDepthObjectsListImp(camera, index); |
825 | return sortedOpaqueDepthPrepassCache[index][&camera];; |
826 | } |
827 | |
828 | /** |
829 | * Usage: T *ptr = RENDER_FRAME_NEW<T>(context, arg0, arg1, ...); is equivalent to: T *ptr = new T(arg0, arg1, ...); |
830 | * so RENDER_FRAME_NEW() takes the RCI + T's arguments |
831 | */ |
832 | template <typename T, typename... Args> |
833 | [[nodiscard]] inline T *RENDER_FRAME_NEW(QSSGRenderContextInterface &ctx, Args&&... args) |
834 | { |
835 | static_assert(std::is_trivially_destructible_v<T>, "Objects allocated using the per-frame allocator needs to be trivially destructible!" ); |
836 | return new (QSSGLayerRenderData::perFrameAllocator(ctx)->allocate(size: sizeof(T)))T(std::forward<Args>(args)...); |
837 | } |
838 | |
839 | template <typename T> |
840 | [[nodiscard]] inline QSSGDataRef<T> RENDER_FRAME_NEW_BUFFER(QSSGRenderContextInterface &ctx, size_t count) |
841 | { |
842 | static_assert(std::is_trivially_destructible_v<T>, "Objects allocated using the per-frame allocator needs to be trivially destructible!" ); |
843 | const size_t asize = sizeof(T) * count; |
844 | return { reinterpret_cast<T *>(QSSGLayerRenderData::perFrameAllocator(ctx)->allocate(size: asize)), qsizetype(count) }; |
845 | } |
846 | |
847 | QSSGShaderDefaultMaterialKey QSSGLayerRenderData::generateLightingKey( |
848 | QSSGRenderDefaultMaterial::MaterialLighting inLightingType, const QSSGShaderLightListView &lights, bool receivesShadows) |
849 | { |
850 | QSSGShaderDefaultMaterialKey theGeneratedKey(qHash(features)); |
851 | const bool lighting = inLightingType != QSSGRenderDefaultMaterial::MaterialLighting::NoLighting; |
852 | defaultMaterialShaderKeyProperties.m_hasLighting.setValue(inDataStore: theGeneratedKey, inValue: lighting); |
853 | if (lighting) { |
854 | defaultMaterialShaderKeyProperties.m_hasIbl.setValue(inDataStore: theGeneratedKey, inValue: layer.lightProbe != nullptr); |
855 | |
856 | quint32 numLights = quint32(lights.size()); |
857 | Q_ASSERT(numLights <= QSSGShaderDefaultMaterialKeyProperties::LightCount); |
858 | defaultMaterialShaderKeyProperties.m_lightCount.setValue(inDataStore: theGeneratedKey, inValue: numLights); |
859 | |
860 | int shadowMapCount = 0; |
861 | for (int lightIdx = 0, lightEnd = lights.size(); lightIdx < lightEnd; ++lightIdx) { |
862 | QSSGRenderLight *theLight(lights[lightIdx].light); |
863 | const bool isDirectional = theLight->type == QSSGRenderLight::Type::DirectionalLight; |
864 | const bool isSpot = theLight->type == QSSGRenderLight::Type::SpotLight; |
865 | const bool castsShadows = theLight->m_castShadow |
866 | && !theLight->m_fullyBaked |
867 | && receivesShadows |
868 | && shadowMapCount < QSSG_MAX_NUM_SHADOW_MAPS; |
869 | if (castsShadows) |
870 | ++shadowMapCount; |
871 | |
872 | defaultMaterialShaderKeyProperties.m_lightFlags[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: !isDirectional); |
873 | defaultMaterialShaderKeyProperties.m_lightSpotFlags[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: isSpot); |
874 | defaultMaterialShaderKeyProperties.m_lightShadowFlags[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: castsShadows); |
875 | defaultMaterialShaderKeyProperties.m_lightShadowMapSize[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: theLight->m_shadowMapRes); |
876 | defaultMaterialShaderKeyProperties.m_lightSoftShadowQuality[lightIdx].setValue(inDataStore: theGeneratedKey, |
877 | inValue: quint32(theLight->m_softShadowQuality)); |
878 | } |
879 | } |
880 | return theGeneratedKey; |
881 | } |
882 | |
883 | void QSSGLayerRenderData::prepareImageForRender(QSSGRenderImage &inImage, |
884 | QSSGRenderableImage::Type inMapType, |
885 | QSSGRenderableImage *&ioFirstImage, |
886 | QSSGRenderableImage *&ioNextImage, |
887 | QSSGRenderableObjectFlags &ioFlags, |
888 | QSSGShaderDefaultMaterialKey &inShaderKey, |
889 | quint32 inImageIndex, |
890 | QSSGRenderDefaultMaterial *inMaterial) |
891 | { |
892 | QSSGRenderContextInterface &contextInterface = *renderer->contextInterface(); |
893 | const auto &bufferManager = contextInterface.bufferManager(); |
894 | |
895 | if (inImage.clearDirty()) |
896 | ioFlags |= QSSGRenderableObjectFlag::Dirty; |
897 | |
898 | // This is where the QRhiTexture gets created, if not already done. Note |
899 | // that the bufferManager is per-QQuickWindow, and so per-render-thread. |
900 | // Hence using the same Texture (backed by inImage as the backend node) in |
901 | // multiple windows will work by each scene in each window getting its own |
902 | // QRhiTexture. And that's why the QSSGRenderImageTexture cannot be a |
903 | // member of the QSSGRenderImage. Conceptually this matches what we do for |
904 | // models (QSSGRenderModel -> QSSGRenderMesh retrieved from the |
905 | // bufferManager in each prepareModelForRender, etc.). |
906 | |
907 | const QSSGRenderImageTexture texture = bufferManager->loadRenderImage(image: &inImage); |
908 | |
909 | if (texture.m_texture) { |
910 | if (texture.m_flags.hasTransparency() |
911 | && (inMapType == QSSGRenderableImage::Type::Diffuse // note: Type::BaseColor is skipped here intentionally |
912 | || inMapType == QSSGRenderableImage::Type::Opacity |
913 | || inMapType == QSSGRenderableImage::Type::Translucency)) |
914 | { |
915 | ioFlags |= QSSGRenderableObjectFlag::HasTransparency; |
916 | } |
917 | |
918 | QSSGRenderableImage *theImage = RENDER_FRAME_NEW<QSSGRenderableImage>(ctx&: contextInterface, args&: inMapType, args&: inImage, args: texture); |
919 | QSSGShaderKeyImageMap &theKeyProp = defaultMaterialShaderKeyProperties.m_imageMaps[inImageIndex]; |
920 | |
921 | theKeyProp.setEnabled(inKeySet: inShaderKey, val: true); |
922 | switch (inImage.m_mappingMode) { |
923 | case QSSGRenderImage::MappingModes::Normal: |
924 | break; |
925 | case QSSGRenderImage::MappingModes::Environment: |
926 | theKeyProp.setEnvMap(inKeySet: inShaderKey, val: true); |
927 | break; |
928 | case QSSGRenderImage::MappingModes::LightProbe: |
929 | theKeyProp.setLightProbe(inKeySet: inShaderKey, val: true); |
930 | break; |
931 | } |
932 | |
933 | bool hasA = false; |
934 | bool hasG = false; |
935 | bool hasB = false; |
936 | |
937 | |
938 | //### TODO: More formats |
939 | switch (texture.m_texture->format()) { |
940 | case QRhiTexture::Format::RED_OR_ALPHA8: |
941 | hasA = !renderer->contextInterface()->rhiContext()->rhi()->isFeatureSupported(feature: QRhi::RedOrAlpha8IsRed); |
942 | break; |
943 | case QRhiTexture::Format::R8: |
944 | // Leave BGA as false |
945 | break; |
946 | default: |
947 | hasA = true; |
948 | hasG = true; |
949 | hasB = true; |
950 | break; |
951 | } |
952 | |
953 | if (inImage.isImageTransformIdentity()) |
954 | theKeyProp.setIdentityTransform(inKeySet: inShaderKey, val: true); |
955 | |
956 | if (inImage.m_indexUV == 1) |
957 | theKeyProp.setUsesUV1(inKeySet: inShaderKey, val: true); |
958 | |
959 | if (texture.m_flags.isLinear()) |
960 | theKeyProp.setLinear(inKeySet: inShaderKey, val: true); |
961 | |
962 | if (ioFirstImage == nullptr) |
963 | ioFirstImage = theImage; |
964 | else |
965 | ioNextImage->m_nextImage = theImage; |
966 | |
967 | ioNextImage = theImage; |
968 | |
969 | if (inMaterial && inImageIndex >= QSSGShaderDefaultMaterialKeyProperties::SingleChannelImagesFirst) { |
970 | QSSGRenderDefaultMaterial::TextureChannelMapping value = QSSGRenderDefaultMaterial::R; |
971 | |
972 | const quint32 scIndex = inImageIndex - QSSGShaderDefaultMaterialKeyProperties::SingleChannelImagesFirst; |
973 | QSSGShaderKeyTextureChannel &channelKey = defaultMaterialShaderKeyProperties.m_textureChannels[scIndex]; |
974 | switch (inImageIndex) { |
975 | case QSSGShaderDefaultMaterialKeyProperties::OpacityMap: |
976 | value = inMaterial->opacityChannel; |
977 | break; |
978 | case QSSGShaderDefaultMaterialKeyProperties::RoughnessMap: |
979 | value = inMaterial->roughnessChannel; |
980 | break; |
981 | case QSSGShaderDefaultMaterialKeyProperties::MetalnessMap: |
982 | value = inMaterial->metalnessChannel; |
983 | break; |
984 | case QSSGShaderDefaultMaterialKeyProperties::OcclusionMap: |
985 | value = inMaterial->occlusionChannel; |
986 | break; |
987 | case QSSGShaderDefaultMaterialKeyProperties::TranslucencyMap: |
988 | value = inMaterial->translucencyChannel; |
989 | break; |
990 | case QSSGShaderDefaultMaterialKeyProperties::HeightMap: |
991 | value = inMaterial->heightChannel; |
992 | break; |
993 | case QSSGShaderDefaultMaterialKeyProperties::ClearcoatMap: |
994 | value = inMaterial->clearcoatChannel; |
995 | break; |
996 | case QSSGShaderDefaultMaterialKeyProperties::ClearcoatRoughnessMap: |
997 | value = inMaterial->clearcoatRoughnessChannel; |
998 | break; |
999 | case QSSGShaderDefaultMaterialKeyProperties::TransmissionMap: |
1000 | value = inMaterial->transmissionChannel; |
1001 | break; |
1002 | case QSSGShaderDefaultMaterialKeyProperties::ThicknessMap: |
1003 | value = inMaterial->thicknessChannel; |
1004 | break; |
1005 | case QSSGShaderDefaultMaterialKeyProperties::BaseColorMap: |
1006 | value = inMaterial->baseColorChannel; |
1007 | break; |
1008 | case QSSGShaderDefaultMaterialKeyProperties::SpecularAmountMap: |
1009 | value = inMaterial->specularAmountChannel; |
1010 | break; |
1011 | case QSSGShaderDefaultMaterialKeyProperties::EmissiveMap: |
1012 | value = inMaterial->emissiveChannel; |
1013 | break; |
1014 | default: |
1015 | break; |
1016 | } |
1017 | bool useDefault = false; |
1018 | switch (value) { |
1019 | case QSSGRenderDefaultMaterial::TextureChannelMapping::G: |
1020 | useDefault = !hasG; |
1021 | break; |
1022 | case QSSGRenderDefaultMaterial::TextureChannelMapping::B: |
1023 | useDefault = !hasB; |
1024 | break; |
1025 | case QSSGRenderDefaultMaterial::TextureChannelMapping::A: |
1026 | useDefault = !hasA; |
1027 | break; |
1028 | default: |
1029 | break; |
1030 | } |
1031 | if (useDefault) |
1032 | value = QSSGRenderDefaultMaterial::R; // Always Fallback to Red |
1033 | channelKey.setTextureChannel(channel: QSSGShaderKeyTextureChannel::TexturChannelBits(value), inKeySet: inShaderKey); |
1034 | } |
1035 | } |
1036 | } |
1037 | |
1038 | void QSSGLayerRenderData::setVertexInputPresence(const QSSGRenderableObjectFlags &renderableFlags, |
1039 | QSSGShaderDefaultMaterialKey &key) |
1040 | { |
1041 | quint32 vertexAttribs = 0; |
1042 | if (renderableFlags.hasAttributePosition()) |
1043 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Position; |
1044 | if (renderableFlags.hasAttributeNormal()) |
1045 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Normal; |
1046 | if (renderableFlags.hasAttributeTexCoord0()) |
1047 | vertexAttribs |= QSSGShaderKeyVertexAttribute::TexCoord0; |
1048 | if (renderableFlags.hasAttributeTexCoord1()) |
1049 | vertexAttribs |= QSSGShaderKeyVertexAttribute::TexCoord1; |
1050 | if (renderableFlags.hasAttributeTexCoordLightmap()) |
1051 | vertexAttribs |= QSSGShaderKeyVertexAttribute::TexCoordLightmap; |
1052 | if (renderableFlags.hasAttributeTangent()) |
1053 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Tangent; |
1054 | if (renderableFlags.hasAttributeBinormal()) |
1055 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Binormal; |
1056 | if (renderableFlags.hasAttributeColor()) |
1057 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Color; |
1058 | if (renderableFlags.hasAttributeJointAndWeight()) |
1059 | vertexAttribs |= QSSGShaderKeyVertexAttribute::JointAndWeight; |
1060 | defaultMaterialShaderKeyProperties.m_vertexAttributes.setValue(inDataStore: key, inValue: vertexAttribs); |
1061 | } |
1062 | |
1063 | QSSGDefaultMaterialPreparationResult QSSGLayerRenderData::prepareDefaultMaterialForRender( |
1064 | QSSGRenderDefaultMaterial &inMaterial, |
1065 | QSSGRenderableObjectFlags &inExistingFlags, |
1066 | float inOpacity, |
1067 | const QSSGShaderLightListView &lights, |
1068 | QSSGLayerRenderPreparationResultFlags &ioFlags) |
1069 | { |
1070 | QSSGRenderDefaultMaterial *theMaterial = &inMaterial; |
1071 | QSSGDefaultMaterialPreparationResult retval(generateLightingKey(inLightingType: theMaterial->lighting, lights, receivesShadows: inExistingFlags.receivesShadows())); |
1072 | retval.renderableFlags = inExistingFlags; |
1073 | QSSGRenderableObjectFlags &renderableFlags(retval.renderableFlags); |
1074 | QSSGShaderDefaultMaterialKey &theGeneratedKey(retval.materialKey); |
1075 | retval.opacity = inOpacity; |
1076 | float &subsetOpacity(retval.opacity); |
1077 | |
1078 | if (theMaterial->isDirty()) |
1079 | renderableFlags |= QSSGRenderableObjectFlag::Dirty; |
1080 | |
1081 | subsetOpacity *= theMaterial->opacity; |
1082 | |
1083 | QSSGRenderableImage *firstImage = nullptr; |
1084 | |
1085 | defaultMaterialShaderKeyProperties.m_specularAAEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.specularAAEnabled); |
1086 | |
1087 | // isDoubleSided |
1088 | defaultMaterialShaderKeyProperties.m_isDoubleSided.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->cullMode == QSSGCullFaceMode::Disabled); |
1089 | |
1090 | // default materials never define their on position |
1091 | defaultMaterialShaderKeyProperties.m_overridesPosition.setValue(inDataStore: theGeneratedKey, inValue: false); |
1092 | |
1093 | // default materials dont make use of raw projection or inverse projection matrices |
1094 | defaultMaterialShaderKeyProperties.m_usesProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: false); |
1095 | defaultMaterialShaderKeyProperties.m_usesInverseProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: false); |
1096 | // nor they do rely on VAR_COLOR |
1097 | defaultMaterialShaderKeyProperties.m_usesVarColor.setValue(inDataStore: theGeneratedKey, inValue: false); |
1098 | |
1099 | // alpha Mode |
1100 | defaultMaterialShaderKeyProperties.m_alphaMode.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->alphaMode); |
1101 | |
1102 | // vertex attribute presence flags |
1103 | setVertexInputPresence(renderableFlags, key&: theGeneratedKey); |
1104 | |
1105 | // set the flag indicating the need for gl_PointSize |
1106 | defaultMaterialShaderKeyProperties.m_usesPointsTopology.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.isPointsTopology()); |
1107 | |
1108 | // propagate the flag indicating the presence of a lightmap |
1109 | defaultMaterialShaderKeyProperties.m_lightmapEnabled.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.rendersWithLightmap()); |
1110 | |
1111 | defaultMaterialShaderKeyProperties.m_specularGlossyEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->type == QSSGRenderGraphObject::Type::SpecularGlossyMaterial); |
1112 | |
1113 | // debug modes |
1114 | defaultMaterialShaderKeyProperties.m_debugMode.setValue(inDataStore: theGeneratedKey, inValue: int(layer.debugMode)); |
1115 | |
1116 | // fog |
1117 | defaultMaterialShaderKeyProperties.m_fogEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.fog.enabled); |
1118 | |
1119 | // multiview |
1120 | const auto &rhiCtx = renderer->contextInterface()->rhiContext(); |
1121 | defaultMaterialShaderKeyProperties.m_viewCount.setValue(inDataStore: theGeneratedKey, inValue: rhiCtx->mainPassViewCount()); |
1122 | defaultMaterialShaderKeyProperties.m_usesViewIndex.setValue(inDataStore: theGeneratedKey, inValue: rhiCtx->mainPassViewCount() >= 2); |
1123 | |
1124 | if (!defaultMaterialShaderKeyProperties.m_hasIbl.getValue(inDataStore: theGeneratedKey) && theMaterial->iblProbe) { |
1125 | features.set(feature: QSSGShaderFeatures::Feature::LightProbe, val: true); |
1126 | defaultMaterialShaderKeyProperties.m_hasIbl.setValue(inDataStore: theGeneratedKey, inValue: true); |
1127 | // features.set(ShaderFeatureDefines::enableIblFov(), |
1128 | // m_Renderer.GetLayerRenderData()->m_Layer.m_ProbeFov < 180.0f ); |
1129 | } |
1130 | |
1131 | if (subsetOpacity >= QSSG_RENDER_MINIMUM_RENDER_OPACITY) { |
1132 | |
1133 | // Set the semi-transparency flag as specified in PrincipledMaterial's |
1134 | // blendMode and alphaMode: |
1135 | // - the default SourceOver blendMode does not imply alpha blending on |
1136 | // its own, |
1137 | // - but other blendMode values do, |
1138 | // - an alphaMode of Blend guarantees blending to be enabled regardless |
1139 | // of anything else. |
1140 | // Additionally: |
1141 | // - Opacity and texture map alpha are handled elsewhere (that's when a |
1142 | // blendMode of SourceOver or an alphaMode of Default/Opaque can in the |
1143 | // end still result in HasTransparency), |
1144 | // - the presence of an opacityMap guarantees alpha blending regardless |
1145 | // of its content. |
1146 | |
1147 | if (theMaterial->blendMode != QSSGRenderDefaultMaterial::MaterialBlendMode::SourceOver |
1148 | || theMaterial->opacityMap |
1149 | || theMaterial->alphaMode == QSSGRenderDefaultMaterial::Blend) |
1150 | { |
1151 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
1152 | } |
1153 | |
1154 | const bool specularEnabled = theMaterial->isSpecularEnabled(); |
1155 | const bool metalnessEnabled = theMaterial->isMetalnessEnabled(); |
1156 | defaultMaterialShaderKeyProperties.m_specularEnabled.setValue(inDataStore: theGeneratedKey, inValue: (specularEnabled || metalnessEnabled)); |
1157 | if (specularEnabled || metalnessEnabled) |
1158 | defaultMaterialShaderKeyProperties.m_specularModel.setSpecularModel(inKeySet: theGeneratedKey, inModel: theMaterial->specularModel); |
1159 | |
1160 | defaultMaterialShaderKeyProperties.m_fresnelScaleBiasEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->isFresnelScaleBiasEnabled()); |
1161 | |
1162 | defaultMaterialShaderKeyProperties.m_clearcoatFresnelScaleBiasEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->isClearcoatFresnelScaleBiasEnabled()); |
1163 | |
1164 | defaultMaterialShaderKeyProperties.m_fresnelEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->isFresnelEnabled()); |
1165 | |
1166 | defaultMaterialShaderKeyProperties.m_fresnelEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->isFresnelEnabled()); |
1167 | |
1168 | defaultMaterialShaderKeyProperties.m_baseColorSingleChannelEnabled.setValue(inDataStore: theGeneratedKey, |
1169 | inValue: theMaterial->isBaseColorSingleChannelEnabled()); |
1170 | defaultMaterialShaderKeyProperties.m_specularSingleChannelEnabled.setValue(inDataStore: theGeneratedKey, |
1171 | inValue: theMaterial->isSpecularAmountSingleChannelEnabled()); |
1172 | defaultMaterialShaderKeyProperties.m_emissiveSingleChannelEnabled.setValue(inDataStore: theGeneratedKey, |
1173 | inValue: theMaterial->isEmissiveSingleChannelEnabled()); |
1174 | defaultMaterialShaderKeyProperties.m_invertOpacityMapValue.setValue(inDataStore: theGeneratedKey, |
1175 | inValue: theMaterial->isInvertOpacityMapValue()); |
1176 | defaultMaterialShaderKeyProperties.m_vertexColorsEnabled.setValue(inDataStore: theGeneratedKey, |
1177 | inValue: theMaterial->isVertexColorsEnabled()); |
1178 | defaultMaterialShaderKeyProperties.m_vertexColorsMaskEnabled.setValue(inDataStore: theGeneratedKey, |
1179 | inValue: theMaterial->isVertexColorsMaskEnabled()); |
1180 | defaultMaterialShaderKeyProperties.m_vertexColorRedMask.setValue(inDataStore: theGeneratedKey, |
1181 | inValue: theMaterial->vertexColorRedMask.toInt()); |
1182 | defaultMaterialShaderKeyProperties.m_vertexColorGreenMask.setValue(inDataStore: theGeneratedKey, |
1183 | inValue: quint16(theMaterial->vertexColorGreenMask.toInt())); |
1184 | defaultMaterialShaderKeyProperties.m_vertexColorBlueMask.setValue(inDataStore: theGeneratedKey, |
1185 | inValue: quint16(theMaterial->vertexColorBlueMask.toInt())); |
1186 | defaultMaterialShaderKeyProperties.m_vertexColorAlphaMask.setValue(inDataStore: theGeneratedKey, |
1187 | inValue: quint16(theMaterial->vertexColorAlphaMask.toInt())); |
1188 | |
1189 | defaultMaterialShaderKeyProperties.m_clearcoatEnabled.setValue(inDataStore: theGeneratedKey, |
1190 | inValue: theMaterial->isClearcoatEnabled()); |
1191 | defaultMaterialShaderKeyProperties.m_transmissionEnabled.setValue(inDataStore: theGeneratedKey, |
1192 | inValue: theMaterial->isTransmissionEnabled()); |
1193 | |
1194 | // Run through the material's images and prepare them for render. |
1195 | // this may in fact set pickable on the renderable flags if one of the images |
1196 | // links to a sub presentation or any offscreen rendered object. |
1197 | QSSGRenderableImage *nextImage = nullptr; |
1198 | #define CHECK_IMAGE_AND_PREPARE(img, imgtype, shadercomponent) \ |
1199 | if ((img)) \ |
1200 | prepareImageForRender(*(img), imgtype, firstImage, nextImage, renderableFlags, \ |
1201 | theGeneratedKey, shadercomponent, &inMaterial) |
1202 | |
1203 | if (theMaterial->type == QSSGRenderGraphObject::Type::PrincipledMaterial || |
1204 | theMaterial->type == QSSGRenderGraphObject::Type::SpecularGlossyMaterial) { |
1205 | CHECK_IMAGE_AND_PREPARE(theMaterial->colorMap, |
1206 | QSSGRenderableImage::Type::BaseColor, |
1207 | QSSGShaderDefaultMaterialKeyProperties::BaseColorMap); |
1208 | CHECK_IMAGE_AND_PREPARE(theMaterial->occlusionMap, |
1209 | QSSGRenderableImage::Type::Occlusion, |
1210 | QSSGShaderDefaultMaterialKeyProperties::OcclusionMap); |
1211 | CHECK_IMAGE_AND_PREPARE(theMaterial->heightMap, |
1212 | QSSGRenderableImage::Type::Height, |
1213 | QSSGShaderDefaultMaterialKeyProperties::HeightMap); |
1214 | CHECK_IMAGE_AND_PREPARE(theMaterial->clearcoatMap, |
1215 | QSSGRenderableImage::Type::Clearcoat, |
1216 | QSSGShaderDefaultMaterialKeyProperties::ClearcoatMap); |
1217 | CHECK_IMAGE_AND_PREPARE(theMaterial->clearcoatRoughnessMap, |
1218 | QSSGRenderableImage::Type::ClearcoatRoughness, |
1219 | QSSGShaderDefaultMaterialKeyProperties::ClearcoatRoughnessMap); |
1220 | CHECK_IMAGE_AND_PREPARE(theMaterial->clearcoatNormalMap, |
1221 | QSSGRenderableImage::Type::ClearcoatNormal, |
1222 | QSSGShaderDefaultMaterialKeyProperties::ClearcoatNormalMap); |
1223 | CHECK_IMAGE_AND_PREPARE(theMaterial->transmissionMap, |
1224 | QSSGRenderableImage::Type::Transmission, |
1225 | QSSGShaderDefaultMaterialKeyProperties::TransmissionMap); |
1226 | CHECK_IMAGE_AND_PREPARE(theMaterial->thicknessMap, |
1227 | QSSGRenderableImage::Type::Thickness, |
1228 | QSSGShaderDefaultMaterialKeyProperties::ThicknessMap); |
1229 | if (theMaterial->type == QSSGRenderGraphObject::Type::PrincipledMaterial) { |
1230 | CHECK_IMAGE_AND_PREPARE(theMaterial->metalnessMap, |
1231 | QSSGRenderableImage::Type::Metalness, |
1232 | QSSGShaderDefaultMaterialKeyProperties::MetalnessMap); |
1233 | } |
1234 | } else { |
1235 | CHECK_IMAGE_AND_PREPARE(theMaterial->colorMap, |
1236 | QSSGRenderableImage::Type::Diffuse, |
1237 | QSSGShaderDefaultMaterialKeyProperties::DiffuseMap); |
1238 | } |
1239 | CHECK_IMAGE_AND_PREPARE(theMaterial->emissiveMap, QSSGRenderableImage::Type::Emissive, QSSGShaderDefaultMaterialKeyProperties::EmissiveMap); |
1240 | CHECK_IMAGE_AND_PREPARE(theMaterial->specularReflection, |
1241 | QSSGRenderableImage::Type::Specular, |
1242 | QSSGShaderDefaultMaterialKeyProperties::SpecularMap); |
1243 | CHECK_IMAGE_AND_PREPARE(theMaterial->roughnessMap, |
1244 | QSSGRenderableImage::Type::Roughness, |
1245 | QSSGShaderDefaultMaterialKeyProperties::RoughnessMap); |
1246 | CHECK_IMAGE_AND_PREPARE(theMaterial->opacityMap, QSSGRenderableImage::Type::Opacity, QSSGShaderDefaultMaterialKeyProperties::OpacityMap); |
1247 | CHECK_IMAGE_AND_PREPARE(theMaterial->bumpMap, QSSGRenderableImage::Type::Bump, QSSGShaderDefaultMaterialKeyProperties::BumpMap); |
1248 | CHECK_IMAGE_AND_PREPARE(theMaterial->specularMap, |
1249 | QSSGRenderableImage::Type::SpecularAmountMap, |
1250 | QSSGShaderDefaultMaterialKeyProperties::SpecularAmountMap); |
1251 | CHECK_IMAGE_AND_PREPARE(theMaterial->normalMap, QSSGRenderableImage::Type::Normal, QSSGShaderDefaultMaterialKeyProperties::NormalMap); |
1252 | CHECK_IMAGE_AND_PREPARE(theMaterial->translucencyMap, |
1253 | QSSGRenderableImage::Type::Translucency, |
1254 | QSSGShaderDefaultMaterialKeyProperties::TranslucencyMap); |
1255 | } |
1256 | #undef CHECK_IMAGE_AND_PREPARE |
1257 | |
1258 | if (subsetOpacity < QSSG_RENDER_MINIMUM_RENDER_OPACITY) { |
1259 | subsetOpacity = 0.0f; |
1260 | // You can still pick against completely transparent objects(or rather their bounding |
1261 | // box) |
1262 | // you just don't render them. |
1263 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
1264 | renderableFlags |= QSSGRenderableObjectFlag::CompletelyTransparent; |
1265 | } |
1266 | |
1267 | if (subsetOpacity > 1.f - QSSG_RENDER_MINIMUM_RENDER_OPACITY) |
1268 | subsetOpacity = 1.f; |
1269 | else |
1270 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
1271 | |
1272 | if (inMaterial.isTransmissionEnabled()) { |
1273 | ioFlags.setRequiresScreenTexture(true); |
1274 | ioFlags.setRequiresMipmapsForScreenTexture(true); |
1275 | renderableFlags |= QSSGRenderableObjectFlag::RequiresScreenTexture; |
1276 | } |
1277 | |
1278 | retval.firstImage = firstImage; |
1279 | if (retval.renderableFlags.isDirty()) |
1280 | retval.dirty = true; |
1281 | if (retval.dirty) |
1282 | renderer->addMaterialDirtyClear(material: &inMaterial); |
1283 | return retval; |
1284 | } |
1285 | |
1286 | QSSGDefaultMaterialPreparationResult QSSGLayerRenderData::prepareCustomMaterialForRender( |
1287 | QSSGRenderCustomMaterial &inMaterial, QSSGRenderableObjectFlags &inExistingFlags, |
1288 | float inOpacity, bool alreadyDirty, const QSSGShaderLightListView &lights, |
1289 | QSSGLayerRenderPreparationResultFlags &ioFlags) |
1290 | { |
1291 | QSSGDefaultMaterialPreparationResult retval( |
1292 | generateLightingKey(inLightingType: QSSGRenderDefaultMaterial::MaterialLighting::FragmentLighting, |
1293 | lights, receivesShadows: inExistingFlags.receivesShadows())); |
1294 | retval.renderableFlags = inExistingFlags; |
1295 | QSSGRenderableObjectFlags &renderableFlags(retval.renderableFlags); |
1296 | QSSGShaderDefaultMaterialKey &theGeneratedKey(retval.materialKey); |
1297 | retval.opacity = inOpacity; |
1298 | float &subsetOpacity(retval.opacity); |
1299 | |
1300 | if (subsetOpacity < QSSG_RENDER_MINIMUM_RENDER_OPACITY) { |
1301 | subsetOpacity = 0.0f; |
1302 | // You can still pick against completely transparent objects(or rather their bounding |
1303 | // box) |
1304 | // you just don't render them. |
1305 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
1306 | renderableFlags |= QSSGRenderableObjectFlag::CompletelyTransparent; |
1307 | } |
1308 | |
1309 | if (subsetOpacity > 1.f - QSSG_RENDER_MINIMUM_RENDER_OPACITY) |
1310 | subsetOpacity = 1.f; |
1311 | else |
1312 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
1313 | |
1314 | defaultMaterialShaderKeyProperties.m_specularAAEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.specularAAEnabled); |
1315 | |
1316 | // isDoubleSided |
1317 | defaultMaterialShaderKeyProperties.m_isDoubleSided.setValue(inDataStore: theGeneratedKey, |
1318 | inValue: inMaterial.m_cullMode == QSSGCullFaceMode::Disabled); |
1319 | |
1320 | // Does the material override the position output |
1321 | const bool overridesPosition = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::OverridesPosition); |
1322 | defaultMaterialShaderKeyProperties.m_overridesPosition.setValue(inDataStore: theGeneratedKey, inValue: overridesPosition); |
1323 | |
1324 | // Optional usage of PROJECTION_MATRIX and/or INVERSE_PROJECTION_MATRIX |
1325 | const bool usesProjectionMatrix = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ProjectionMatrix); |
1326 | defaultMaterialShaderKeyProperties.m_usesProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: usesProjectionMatrix); |
1327 | const bool usesInvProjectionMatrix = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::InverseProjectionMatrix); |
1328 | defaultMaterialShaderKeyProperties.m_usesInverseProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: usesInvProjectionMatrix); |
1329 | |
1330 | // vertex attribute presence flags |
1331 | setVertexInputPresence(renderableFlags, key&: theGeneratedKey); |
1332 | |
1333 | // set the flag indicating the need for gl_PointSize |
1334 | defaultMaterialShaderKeyProperties.m_usesPointsTopology.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.isPointsTopology()); |
1335 | |
1336 | // propagate the flag indicating the presence of a lightmap |
1337 | defaultMaterialShaderKeyProperties.m_lightmapEnabled.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.rendersWithLightmap()); |
1338 | |
1339 | // debug modes |
1340 | defaultMaterialShaderKeyProperties.m_debugMode.setValue(inDataStore: theGeneratedKey, inValue: int(layer.debugMode)); |
1341 | |
1342 | // fog |
1343 | defaultMaterialShaderKeyProperties.m_fogEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.fog.enabled); |
1344 | |
1345 | // multiview |
1346 | const auto &rhiCtx = renderer->contextInterface()->rhiContext(); |
1347 | defaultMaterialShaderKeyProperties.m_viewCount.setValue(inDataStore: theGeneratedKey, inValue: rhiCtx->mainPassViewCount()); |
1348 | defaultMaterialShaderKeyProperties.m_usesViewIndex.setValue(inDataStore: theGeneratedKey, |
1349 | inValue: inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ViewIndex)); |
1350 | |
1351 | // Knowing whether VAR_COLOR is used becomes relevant when there is no |
1352 | // custom vertex shader, but VAR_COLOR is present in the custom fragment |
1353 | // snippet, because that case needs special care. |
1354 | const bool usesVarColor = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::VarColor); |
1355 | defaultMaterialShaderKeyProperties.m_usesVarColor.setValue(inDataStore: theGeneratedKey, inValue: usesVarColor); |
1356 | |
1357 | const bool usesClearcoat = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::Clearcoat); |
1358 | defaultMaterialShaderKeyProperties.m_clearcoatEnabled.setValue(inDataStore: theGeneratedKey, inValue: usesClearcoat); |
1359 | |
1360 | const bool usesClearcoatFresnelScaleBias = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ClearcoatFresnelScaleBias); |
1361 | defaultMaterialShaderKeyProperties.m_clearcoatFresnelScaleBiasEnabled.setValue(inDataStore: theGeneratedKey, inValue: usesClearcoatFresnelScaleBias); |
1362 | |
1363 | const bool usesFresnelScaleBias = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::FresnelScaleBias); |
1364 | defaultMaterialShaderKeyProperties.m_fresnelScaleBiasEnabled.setValue(inDataStore: theGeneratedKey, inValue: usesFresnelScaleBias); |
1365 | |
1366 | const bool usesTransmission = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::Transmission); |
1367 | defaultMaterialShaderKeyProperties.m_transmissionEnabled.setValue(inDataStore: theGeneratedKey, inValue: usesTransmission); |
1368 | |
1369 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::Blending)) |
1370 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
1371 | |
1372 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ScreenTexture)) { |
1373 | ioFlags.setRequiresScreenTexture(true); |
1374 | renderableFlags |= QSSGRenderableObjectFlag::RequiresScreenTexture; |
1375 | } |
1376 | |
1377 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ScreenMipTexture)) { |
1378 | ioFlags.setRequiresScreenTexture(true); |
1379 | ioFlags.setRequiresMipmapsForScreenTexture(true); |
1380 | renderableFlags |= QSSGRenderableObjectFlag::RequiresScreenTexture; |
1381 | } |
1382 | |
1383 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::DepthTexture)) |
1384 | ioFlags.setRequiresDepthTexture(true); |
1385 | |
1386 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::AoTexture)) { |
1387 | ioFlags.setRequiresDepthTexture(true); |
1388 | ioFlags.setRequiresSsaoPass(true); |
1389 | } |
1390 | |
1391 | retval.firstImage = nullptr; |
1392 | |
1393 | if (retval.dirty || alreadyDirty) |
1394 | renderer->addMaterialDirtyClear(material: &inMaterial); |
1395 | return retval; |
1396 | } |
1397 | |
1398 | enum class CullUnrenderables { Off, On }; |
1399 | template <CullUnrenderables cull = CullUnrenderables::On> |
1400 | static void prepareModelMaterialsImpl(QSSGLayerRenderData::RenderableNodeEntries &renderableModels) |
1401 | { |
1402 | const auto originalModelCount = renderableModels.size(); |
1403 | auto end = originalModelCount; |
1404 | |
1405 | for (int idx = 0; idx < end; ++idx) { |
1406 | const auto &renderable = renderableModels.at(i: idx); |
1407 | const QSSGRenderModel &model = *static_cast<QSSGRenderModel *>(renderable.node); |
1408 | // Ensure we have at least 1 material |
1409 | if ((renderable.overridden & QSSGRenderableNodeEntry::Overridden::Materials) == 0) |
1410 | renderable.materials = model.materials; |
1411 | |
1412 | if constexpr (cull == CullUnrenderables::On) { |
1413 | const bool isDisabled = ((renderable.overridden & QSSGRenderableNodeEntry::Overridden::Disabled) != 0); |
1414 | if (isDisabled || renderable.materials.isEmpty()) { |
1415 | // Swap current (idx) and last item (--end). |
1416 | // Note, post-decrement idx to ensure we recheck the new current item on next iteration |
1417 | // and pre-decrement the end move the end of the list to not include the culled renderable. |
1418 | renderableModels.swapItemsAt(i: idx--, j: --end); |
1419 | } |
1420 | } |
1421 | } |
1422 | |
1423 | if constexpr (cull == CullUnrenderables::On) { |
1424 | // Any models without materials get dropped right here |
1425 | if (end != originalModelCount) |
1426 | renderableModels.resize(size: end); |
1427 | } |
1428 | } |
1429 | |
1430 | void QSSGLayerRenderData::prepareModelMaterials(RenderableNodeEntries &renderableModels, bool cullUnrenderables) |
1431 | { |
1432 | if (cullUnrenderables) |
1433 | prepareModelMaterialsImpl<CullUnrenderables::On>(renderableModels); |
1434 | else |
1435 | prepareModelMaterialsImpl<CullUnrenderables::Off>(renderableModels); |
1436 | } |
1437 | |
1438 | void QSSGLayerRenderData::prepareModelMeshes(const QSSGRenderContextInterface &contextInterface, |
1439 | RenderableNodeEntries &renderableModels, |
1440 | bool globalPickingEnabled) |
1441 | { |
1442 | const auto &bufferManager = contextInterface.bufferManager(); |
1443 | |
1444 | const auto originalModelCount = renderableModels.size(); |
1445 | auto end = originalModelCount; |
1446 | |
1447 | for (int idx = 0; idx < end; ++idx) { |
1448 | // It's up to the BufferManager to employ the appropriate caching mechanisms, so |
1449 | // loadMesh() is expected to be fast if already loaded. Note that preparing |
1450 | // the same QSSGRenderModel in different QQuickWindows (possible when a |
1451 | // scene is shared between View3Ds where the View3Ds belong to different |
1452 | // windows) leads to a different QSSGRenderMesh since the BufferManager is, |
1453 | // very correctly, per window, and so per scenegraph render thread. |
1454 | |
1455 | const auto &renderable = renderableModels.at(i: idx); |
1456 | const QSSGRenderModel &model = *static_cast<QSSGRenderModel *>(renderable.node); |
1457 | // Ensure we have a mesh |
1458 | if (auto *theMesh = bufferManager->loadMesh(model: &model)) { |
1459 | renderable.mesh = theMesh; |
1460 | // Completely transparent models cannot be pickable. But models with completely |
1461 | // transparent materials still are. This allows the artist to control pickability |
1462 | // in a somewhat fine-grained style. |
1463 | const bool canModelBePickable = (model.globalOpacity > QSSG_RENDER_MINIMUM_RENDER_OPACITY) |
1464 | && (globalPickingEnabled |
1465 | || model.getGlobalState(stateFlag: QSSGRenderModel::GlobalState::Pickable)); |
1466 | if (canModelBePickable) { |
1467 | // Check if there is BVH data, if not generate it |
1468 | if (!theMesh->bvh) { |
1469 | if (!model.meshPath.isNull()) |
1470 | theMesh->bvh = bufferManager->loadMeshBVH(inSourcePath: model.meshPath); |
1471 | else if (model.geometry) |
1472 | theMesh->bvh = bufferManager->loadMeshBVH(geometry: model.geometry); |
1473 | |
1474 | if (theMesh->bvh) { |
1475 | const auto &roots = theMesh->bvh->roots(); |
1476 | for (qsizetype i = 0, end = qsizetype(roots.size()); i < end; ++i) |
1477 | theMesh->subsets[i].bvhRoot = roots[i]; |
1478 | } |
1479 | } |
1480 | } |
1481 | } else { |
1482 | // Swap current (idx) and last item (--end). |
1483 | // Note, post-decrement idx to ensure we recheck the new current item on next iteration |
1484 | // and pre-decrement the end move the end of the list to not include the culled renderable. |
1485 | renderableModels.swapItemsAt(i: idx--, j: --end); |
1486 | } |
1487 | } |
1488 | |
1489 | // Any models without a mesh get dropped right here |
1490 | if (end != originalModelCount) |
1491 | renderableModels.resize(size: end); |
1492 | |
1493 | // Now is the time to kick off the vertex/index buffer updates for all the |
1494 | // new meshes (and their submeshes). This here is the last possible place |
1495 | // to kick this off because the rest of the rendering pipeline will only |
1496 | // see the individual sub-objects as "renderable objects". |
1497 | bufferManager->commitBufferResourceUpdates(); |
1498 | } |
1499 | |
1500 | void QSSGLayerRenderData::setLightmapTexture(const QSSGModelContext &modelContext, QRhiTexture *lightmapTexture) |
1501 | { |
1502 | lightmapTextures[&modelContext] = lightmapTexture; |
1503 | } |
1504 | |
1505 | QRhiTexture *QSSGLayerRenderData::getLightmapTexture(const QSSGModelContext &modelContext) const |
1506 | { |
1507 | QRhiTexture *ret = nullptr; |
1508 | if (modelContext.model.hasLightmap()) { |
1509 | const auto it = lightmapTextures.constFind(key: &modelContext); |
1510 | ret = (it != lightmapTextures.cend()) ? *it : nullptr; |
1511 | } |
1512 | |
1513 | return ret; |
1514 | } |
1515 | |
1516 | void QSSGLayerRenderData::setBonemapTexture(const QSSGModelContext &modelContext, QRhiTexture *bonemapTexture) |
1517 | { |
1518 | bonemapTextures[&modelContext] = bonemapTexture; |
1519 | } |
1520 | |
1521 | QRhiTexture *QSSGLayerRenderData::getBonemapTexture(const QSSGModelContext &modelContext) const |
1522 | { |
1523 | QRhiTexture *ret = nullptr; |
1524 | if (modelContext.model.usesBoneTexture()) { |
1525 | const auto it = bonemapTextures.constFind(key: &modelContext); |
1526 | ret = (it != bonemapTextures.cend()) ? *it : nullptr; |
1527 | } |
1528 | |
1529 | return ret; |
1530 | } |
1531 | |
1532 | // inModel is const to emphasize the fact that its members cannot be written |
1533 | // here: in case there is a scene shared between multiple View3Ds in different |
1534 | // QQuickWindows, each window may run this in their own render thread, while |
1535 | // inModel is the same. |
1536 | bool QSSGLayerRenderData::prepareModelsForRender(QSSGRenderContextInterface &contextInterface, |
1537 | const RenderableNodeEntries &renderableModels, |
1538 | QSSGLayerRenderPreparationResultFlags &ioFlags, |
1539 | const QSSGRenderCameraList &allCameras, |
1540 | const QSSGRenderCameraDataList &allCameraData, |
1541 | TModelContextPtrList &modelContexts, |
1542 | QSSGRenderableObjectList &opaqueObjects, |
1543 | QSSGRenderableObjectList &transparentObjects, |
1544 | QSSGRenderableObjectList &screenTextureObjects, |
1545 | float lodThreshold) |
1546 | { |
1547 | const auto &rhiCtx = contextInterface.rhiContext(); |
1548 | const auto &bufferManager = contextInterface.bufferManager(); |
1549 | |
1550 | const auto &debugDrawSystem = contextInterface.debugDrawSystem(); |
1551 | const bool maybeDebugDraw = debugDrawSystem && debugDrawSystem->isEnabled(); |
1552 | |
1553 | bool wasDirty = false; |
1554 | |
1555 | for (const QSSGRenderableNodeEntry &renderable : renderableModels) { |
1556 | if ((renderable.overridden & QSSGRenderableNodeEntry::Overridden::Disabled) != 0) |
1557 | continue; |
1558 | |
1559 | const QSSGRenderModel &model = *static_cast<QSSGRenderModel *>(renderable.node); |
1560 | const auto &lights = renderable.lights; |
1561 | QSSGRenderMesh *theMesh = renderable.mesh; |
1562 | |
1563 | QSSG_ASSERT_X(theMesh != nullptr, "Only renderables with a mesh will be processed!" , continue); |
1564 | |
1565 | const bool altGlobalTransform = ((renderable.overridden & QSSGRenderableNodeEntry::Overridden::GlobalTransform) != 0); |
1566 | const auto &globalTransform = altGlobalTransform ? renderable.globalTransform : model.globalTransform; |
1567 | QSSGModelContext &theModelContext = *RENDER_FRAME_NEW<QSSGModelContext>(ctx&: contextInterface, args: model, args: globalTransform, args: allCameraData); |
1568 | modelContexts.push_back(t: &theModelContext); |
1569 | // We might over-allocate here, as the material list technically can contain an invalid (nullptr) material. |
1570 | // We'll fix that by adjusting the size at the end for now... |
1571 | const auto &meshSubsets = theMesh->subsets; |
1572 | const auto meshSubsetCount = meshSubsets.size(); |
1573 | theModelContext.subsets = RENDER_FRAME_NEW_BUFFER<QSSGSubsetRenderable>(ctx&: contextInterface, count: meshSubsetCount); |
1574 | |
1575 | // Prepare boneTexture for skinning |
1576 | if (model.skin) { |
1577 | auto boneTexture = bufferManager->loadSkinmap(skin: model.skin); |
1578 | setBonemapTexture(modelContext: theModelContext, bonemapTexture: boneTexture.m_texture); |
1579 | } else if (model.skeleton) { |
1580 | auto boneTexture = bufferManager->loadSkinmap(skin: &(model.skeleton->boneTexData)); |
1581 | setBonemapTexture(modelContext: theModelContext, bonemapTexture: boneTexture.m_texture); |
1582 | } else { |
1583 | setBonemapTexture(modelContext: theModelContext, bonemapTexture: nullptr); |
1584 | } |
1585 | |
1586 | // many renderableFlags are the same for all the subsets |
1587 | QSSGRenderableObjectFlags renderableFlagsForModel; |
1588 | |
1589 | if (meshSubsetCount > 0) { |
1590 | const QSSGRenderSubset &theSubset = meshSubsets.at(i: 0); |
1591 | |
1592 | renderableFlagsForModel.setCastsShadows(model.castsShadows); |
1593 | renderableFlagsForModel.setReceivesShadows(model.receivesShadows); |
1594 | renderableFlagsForModel.setReceivesReflections(model.receivesReflections); |
1595 | renderableFlagsForModel.setCastsReflections(model.castsReflections); |
1596 | |
1597 | renderableFlagsForModel.setUsedInBakedLighting(model.usedInBakedLighting); |
1598 | if (model.hasLightmap()) { |
1599 | QSSGRenderImageTexture lmImageTexture = bufferManager->loadLightmap(model); |
1600 | if (lmImageTexture.m_texture) { |
1601 | renderableFlagsForModel.setRendersWithLightmap(true); |
1602 | setLightmapTexture(modelContext: theModelContext, lightmapTexture: lmImageTexture.m_texture); |
1603 | } |
1604 | } |
1605 | |
1606 | // TODO: This should be a oneshot thing, move the flags over! |
1607 | // With the RHI we need to be able to tell the material shader |
1608 | // generator to not generate vertex input attributes that are not |
1609 | // provided by the mesh. (because unlike OpenGL, other graphics |
1610 | // APIs may treat unbound vertex inputs as a fatal error) |
1611 | bool hasJoint = false; |
1612 | bool hasWeight = false; |
1613 | bool hasMorphTarget = theSubset.rhi.targetsTexture != nullptr; |
1614 | for (const QSSGRhiInputAssemblerState::InputSemantic &sem : std::as_const(t: theSubset.rhi.ia.inputs)) { |
1615 | if (sem == QSSGRhiInputAssemblerState::PositionSemantic) { |
1616 | renderableFlagsForModel.setHasAttributePosition(true); |
1617 | } else if (sem == QSSGRhiInputAssemblerState::NormalSemantic) { |
1618 | renderableFlagsForModel.setHasAttributeNormal(true); |
1619 | } else if (sem == QSSGRhiInputAssemblerState::TexCoord0Semantic) { |
1620 | renderableFlagsForModel.setHasAttributeTexCoord0(true); |
1621 | } else if (sem == QSSGRhiInputAssemblerState::TexCoord1Semantic) { |
1622 | renderableFlagsForModel.setHasAttributeTexCoord1(true); |
1623 | } else if (sem == QSSGRhiInputAssemblerState::TexCoordLightmapSemantic) { |
1624 | renderableFlagsForModel.setHasAttributeTexCoordLightmap(true); |
1625 | } else if (sem == QSSGRhiInputAssemblerState::TangentSemantic) { |
1626 | renderableFlagsForModel.setHasAttributeTangent(true); |
1627 | } else if (sem == QSSGRhiInputAssemblerState::BinormalSemantic) { |
1628 | renderableFlagsForModel.setHasAttributeBinormal(true); |
1629 | } else if (sem == QSSGRhiInputAssemblerState::ColorSemantic) { |
1630 | renderableFlagsForModel.setHasAttributeColor(true); |
1631 | // For skinning, we will set the HasAttribute only |
1632 | // if the mesh has both joint and weight |
1633 | } else if (sem == QSSGRhiInputAssemblerState::JointSemantic) { |
1634 | hasJoint = true; |
1635 | } else if (sem == QSSGRhiInputAssemblerState::WeightSemantic) { |
1636 | hasWeight = true; |
1637 | } |
1638 | } |
1639 | renderableFlagsForModel.setHasAttributeJointAndWeight(hasJoint && hasWeight); |
1640 | renderableFlagsForModel.setHasAttributeMorphTarget(hasMorphTarget); |
1641 | } |
1642 | |
1643 | QSSGRenderableObjectList bakedLightingObjects; |
1644 | bool usesBlendParticles = particlesEnabled && theModelContext.model.particleBuffer != nullptr |
1645 | && model.particleBuffer->particleCount(); |
1646 | |
1647 | // Subset(s) |
1648 | auto &renderableSubsets = theModelContext.subsets; |
1649 | const auto &materials = renderable.materials; |
1650 | const auto materialCount = materials.size(); |
1651 | const bool altModelOpacity = ((renderable.overridden & QSSGRenderableNodeEntry::Overridden::GlobalOpacity) != 0); |
1652 | const float modelOpacity = altModelOpacity ? renderable.globalOpacity : model.globalOpacity; |
1653 | QSSGRenderGraphObject *lastMaterial = !materials.isEmpty() ? materials.last() : nullptr; |
1654 | int idx = 0, subsetIdx = 0; |
1655 | for (; idx < meshSubsetCount; ++idx) { |
1656 | // If the materials list < size of subsets, then use the last material for the rest |
1657 | QSSGRenderGraphObject *theMaterialObject = (idx >= materialCount) ? lastMaterial : materials[idx]; |
1658 | QSSG_ASSERT_X(theMaterialObject != nullptr, "No material found for model!" , continue); |
1659 | |
1660 | const QSSGRenderSubset &theSubset = meshSubsets.at(i: idx); |
1661 | QSSGRenderableObjectFlags renderableFlags = renderableFlagsForModel; |
1662 | float subsetOpacity = modelOpacity; |
1663 | |
1664 | renderableFlags.setPointsTopology(theSubset.rhi.ia.topology == QRhiGraphicsPipeline::Points); |
1665 | QSSGRenderableObject *theRenderableObject = &renderableSubsets[subsetIdx++]; |
1666 | |
1667 | bool usesInstancing = theModelContext.model.instancing() |
1668 | && rhiCtx->rhi()->isFeatureSupported(feature: QRhi::Instancing); |
1669 | if (usesInstancing && theModelContext.model.instanceTable->hasTransparency()) |
1670 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
1671 | if (theModelContext.model.hasTransparency) |
1672 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
1673 | |
1674 | // Level Of Detail |
1675 | quint32 subsetLevelOfDetail = 0; |
1676 | if (!theSubset.lods.isEmpty() && lodThreshold > 0.0f) { |
1677 | // Accounts for FOV |
1678 | float lodDistanceMultiplier = cameras[0]->getLevelOfDetailMultiplier(); |
1679 | float distanceThreshold = 0.0f; |
1680 | const auto scale = QSSGUtils::mat44::getScale(m: model.globalTransform); |
1681 | float modelScale = qMax(a: scale.x(), b: qMax(a: scale.y(), b: scale.z())); |
1682 | QSSGBounds3 transformedBounds = theSubset.bounds; |
1683 | if (cameras[0]->type != QSSGRenderGraphObject::Type::OrthographicCamera) { |
1684 | transformedBounds.transform(inMatrix: model.globalTransform); |
1685 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLod)) |
1686 | debugDrawSystem->drawBounds(bounds: transformedBounds, color: QColor(Qt::red)); |
1687 | const QVector3D cameraNormal = cameras[0]->getScalingCorrectDirection(); |
1688 | const QVector3D cameraPosition = cameras[0]->getGlobalPos(); |
1689 | const QSSGPlane cameraPlane = QSSGPlane(cameraPosition, cameraNormal); |
1690 | const QVector3D lodSupportMin = transformedBounds.getSupport(direction: -cameraNormal); |
1691 | const QVector3D lodSupportMax = transformedBounds.getSupport(direction: cameraNormal); |
1692 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLod)) |
1693 | debugDrawSystem->drawPoint(vertex: lodSupportMin, color: QColor("orange" )); |
1694 | |
1695 | const float distanceMin = cameraPlane.distance(p: lodSupportMin); |
1696 | const float distanceMax = cameraPlane.distance(p: lodSupportMax); |
1697 | |
1698 | if (distanceMin * distanceMax < 0.0) |
1699 | distanceThreshold = 0.0; |
1700 | else if (distanceMin >= 0.0) |
1701 | distanceThreshold = distanceMin; |
1702 | else if (distanceMax <= 0.0) |
1703 | distanceThreshold = -distanceMax; |
1704 | |
1705 | } else { |
1706 | // Orthographic Projection |
1707 | distanceThreshold = 1.0; |
1708 | } |
1709 | |
1710 | int currentLod = -1; |
1711 | if (model.levelOfDetailBias > 0.0f) { |
1712 | const float threshold = distanceThreshold * lodDistanceMultiplier; |
1713 | const float modelBias = 1 / model.levelOfDetailBias; |
1714 | for (qsizetype i = 0; i < theSubset.lods.count(); ++i) { |
1715 | float subsetDistance = theSubset.lods[i].distance * modelScale * modelBias; |
1716 | float screenSize = subsetDistance / threshold; |
1717 | if (screenSize > lodThreshold) |
1718 | break; |
1719 | currentLod = i; |
1720 | } |
1721 | } |
1722 | if (currentLod == -1) |
1723 | subsetLevelOfDetail = 0; |
1724 | else |
1725 | subsetLevelOfDetail = currentLod + 1; |
1726 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLod)) |
1727 | debugDrawSystem->drawBounds(bounds: transformedBounds, color: QSSGDebugDrawSystem::levelOfDetailColor(lod: subsetLevelOfDetail)); |
1728 | } |
1729 | |
1730 | QVector3D theModelCenter(theSubset.bounds.center()); |
1731 | theModelCenter = QSSGUtils::mat44::transform(m: model.globalTransform, v: theModelCenter); |
1732 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLodNormal)) |
1733 | debugDrawSystem->debugNormals(bufferManager&: *bufferManager, theModelContext, theSubset, subsetLevelOfDetail, lineLength: (theModelCenter - allCameras[0]->getGlobalPos()).length() * 0.01); |
1734 | |
1735 | static auto checkF32TypeIndex = [&rhiCtx](QRhiVertexInputAttribute::Format f) { |
1736 | if ((f == QRhiVertexInputAttribute::Format::Float4) |
1737 | || (f == QRhiVertexInputAttribute::Format::Float3) |
1738 | || (f == QRhiVertexInputAttribute::Format::Float2) |
1739 | || (f == QRhiVertexInputAttribute::Format::Float)) { |
1740 | return true; |
1741 | } |
1742 | if (!rhiCtx->rhi()->isFeatureSupported(feature: QRhi::IntAttributes)) |
1743 | qWarning() << "WARN: Model has non-integer type indices for skinning but current RHI backend doesn't support it!" ; |
1744 | return false; |
1745 | }; |
1746 | |
1747 | if (theMaterialObject->type == QSSGRenderGraphObject::Type::DefaultMaterial || |
1748 | theMaterialObject->type == QSSGRenderGraphObject::Type::PrincipledMaterial || |
1749 | theMaterialObject->type == QSSGRenderGraphObject::Type::SpecularGlossyMaterial) { |
1750 | QSSGRenderDefaultMaterial &theMaterial(static_cast<QSSGRenderDefaultMaterial &>(*theMaterialObject)); |
1751 | QSSGDefaultMaterialPreparationResult theMaterialPrepResult(prepareDefaultMaterialForRender(inMaterial&: theMaterial, inExistingFlags&: renderableFlags, inOpacity: subsetOpacity, lights, ioFlags)); |
1752 | QSSGShaderDefaultMaterialKey &theGeneratedKey(theMaterialPrepResult.materialKey); |
1753 | subsetOpacity = theMaterialPrepResult.opacity; |
1754 | QSSGRenderableImage *firstImage(theMaterialPrepResult.firstImage); |
1755 | wasDirty |= theMaterialPrepResult.dirty; |
1756 | renderableFlags = theMaterialPrepResult.renderableFlags; |
1757 | |
1758 | // Blend particles |
1759 | defaultMaterialShaderKeyProperties.m_blendParticles.setValue(inDataStore: theGeneratedKey, inValue: usesBlendParticles); |
1760 | |
1761 | // Skin |
1762 | const auto boneCount = model.skin ? model.skin->boneCount : |
1763 | model.skeleton ? model.skeleton->boneCount : 0; |
1764 | defaultMaterialShaderKeyProperties.m_boneCount.setValue(inDataStore: theGeneratedKey, inValue: boneCount); |
1765 | if (auto idJoint = theSubset.rhi.ia.inputs.indexOf(t: QSSGRhiInputAssemblerState::JointSemantic); idJoint != -1) { |
1766 | const auto attr = theSubset.rhi.ia.inputLayout.attributeAt(index: idJoint); |
1767 | defaultMaterialShaderKeyProperties.m_usesFloatJointIndices.setValue(inDataStore: theGeneratedKey, inValue: checkF32TypeIndex(attr->format())); |
1768 | } |
1769 | |
1770 | // Instancing |
1771 | defaultMaterialShaderKeyProperties.m_usesInstancing.setValue(inDataStore: theGeneratedKey, inValue: usesInstancing); |
1772 | // Morphing |
1773 | defaultMaterialShaderKeyProperties.m_targetCount.setValue(inDataStore: theGeneratedKey, |
1774 | inValue: theSubset.rhi.ia.targetCount); |
1775 | defaultMaterialShaderKeyProperties.m_targetPositionOffset.setValue(inDataStore: theGeneratedKey, |
1776 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::PositionSemantic]); |
1777 | defaultMaterialShaderKeyProperties.m_targetNormalOffset.setValue(inDataStore: theGeneratedKey, |
1778 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::NormalSemantic]); |
1779 | defaultMaterialShaderKeyProperties.m_targetTangentOffset.setValue(inDataStore: theGeneratedKey, |
1780 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TangentSemantic]); |
1781 | defaultMaterialShaderKeyProperties.m_targetBinormalOffset.setValue(inDataStore: theGeneratedKey, |
1782 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::BinormalSemantic]); |
1783 | defaultMaterialShaderKeyProperties.m_targetTexCoord0Offset.setValue(inDataStore: theGeneratedKey, |
1784 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord0Semantic]); |
1785 | defaultMaterialShaderKeyProperties.m_targetTexCoord1Offset.setValue(inDataStore: theGeneratedKey, |
1786 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord1Semantic]); |
1787 | defaultMaterialShaderKeyProperties.m_targetColorOffset.setValue(inDataStore: theGeneratedKey, |
1788 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::ColorSemantic]); |
1789 | |
1790 | new (theRenderableObject) QSSGSubsetRenderable(QSSGSubsetRenderable::Type::DefaultMaterialMeshSubset, |
1791 | renderableFlags, |
1792 | theModelCenter, |
1793 | renderer, |
1794 | theSubset, |
1795 | theModelContext, |
1796 | subsetOpacity, |
1797 | subsetLevelOfDetail, |
1798 | theMaterial, |
1799 | firstImage, |
1800 | theGeneratedKey, |
1801 | lights); |
1802 | wasDirty = wasDirty || renderableFlags.isDirty(); |
1803 | } else if (theMaterialObject->type == QSSGRenderGraphObject::Type::CustomMaterial) { |
1804 | QSSGRenderCustomMaterial &theMaterial(static_cast<QSSGRenderCustomMaterial &>(*theMaterialObject)); |
1805 | |
1806 | const auto &theMaterialSystem(contextInterface.customMaterialSystem()); |
1807 | wasDirty |= theMaterialSystem->prepareForRender(inModel: theModelContext.model, inSubset: theSubset, inMaterial&: theMaterial); |
1808 | |
1809 | QSSGDefaultMaterialPreparationResult theMaterialPrepResult( |
1810 | prepareCustomMaterialForRender(inMaterial&: theMaterial, inExistingFlags&: renderableFlags, inOpacity: subsetOpacity, alreadyDirty: wasDirty, |
1811 | lights, ioFlags)); |
1812 | QSSGShaderDefaultMaterialKey &theGeneratedKey(theMaterialPrepResult.materialKey); |
1813 | subsetOpacity = theMaterialPrepResult.opacity; |
1814 | QSSGRenderableImage *firstImage(theMaterialPrepResult.firstImage); |
1815 | renderableFlags = theMaterialPrepResult.renderableFlags; |
1816 | |
1817 | if (model.particleBuffer && model.particleBuffer->particleCount()) |
1818 | defaultMaterialShaderKeyProperties.m_blendParticles.setValue(inDataStore: theGeneratedKey, inValue: true); |
1819 | else |
1820 | defaultMaterialShaderKeyProperties.m_blendParticles.setValue(inDataStore: theGeneratedKey, inValue: false); |
1821 | |
1822 | // Skin |
1823 | const auto boneCount = model.skin ? model.skin->boneCount : |
1824 | model.skeleton ? model.skeleton->boneCount : 0; |
1825 | defaultMaterialShaderKeyProperties.m_boneCount.setValue(inDataStore: theGeneratedKey, inValue: boneCount); |
1826 | if (auto idJoint = theSubset.rhi.ia.inputs.indexOf(t: QSSGRhiInputAssemblerState::JointSemantic); idJoint != -1) { |
1827 | const auto attr = theSubset.rhi.ia.inputLayout.attributeAt(index: idJoint); |
1828 | defaultMaterialShaderKeyProperties.m_usesFloatJointIndices.setValue(inDataStore: theGeneratedKey, inValue: checkF32TypeIndex(attr->format())); |
1829 | } |
1830 | |
1831 | // Instancing |
1832 | bool usesInstancing = theModelContext.model.instancing() |
1833 | && rhiCtx->rhi()->isFeatureSupported(feature: QRhi::Instancing); |
1834 | defaultMaterialShaderKeyProperties.m_usesInstancing.setValue(inDataStore: theGeneratedKey, inValue: usesInstancing); |
1835 | // Morphing |
1836 | defaultMaterialShaderKeyProperties.m_targetCount.setValue(inDataStore: theGeneratedKey, |
1837 | inValue: theSubset.rhi.ia.targetCount); |
1838 | defaultMaterialShaderKeyProperties.m_targetPositionOffset.setValue(inDataStore: theGeneratedKey, |
1839 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::PositionSemantic]); |
1840 | defaultMaterialShaderKeyProperties.m_targetNormalOffset.setValue(inDataStore: theGeneratedKey, |
1841 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::NormalSemantic]); |
1842 | defaultMaterialShaderKeyProperties.m_targetTangentOffset.setValue(inDataStore: theGeneratedKey, |
1843 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TangentSemantic]); |
1844 | defaultMaterialShaderKeyProperties.m_targetBinormalOffset.setValue(inDataStore: theGeneratedKey, |
1845 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::BinormalSemantic]); |
1846 | defaultMaterialShaderKeyProperties.m_targetTexCoord0Offset.setValue(inDataStore: theGeneratedKey, |
1847 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord0Semantic]); |
1848 | defaultMaterialShaderKeyProperties.m_targetTexCoord1Offset.setValue(inDataStore: theGeneratedKey, |
1849 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord1Semantic]); |
1850 | defaultMaterialShaderKeyProperties.m_targetColorOffset.setValue(inDataStore: theGeneratedKey, |
1851 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::ColorSemantic]); |
1852 | |
1853 | if (theMaterial.m_iblProbe) |
1854 | theMaterial.m_iblProbe->clearDirty(); |
1855 | |
1856 | new (theRenderableObject) QSSGSubsetRenderable(QSSGSubsetRenderable::Type::CustomMaterialMeshSubset, |
1857 | renderableFlags, |
1858 | theModelCenter, |
1859 | renderer, |
1860 | theSubset, |
1861 | theModelContext, |
1862 | subsetOpacity, |
1863 | subsetLevelOfDetail, |
1864 | theMaterial, |
1865 | firstImage, |
1866 | theGeneratedKey, |
1867 | lights); |
1868 | } |
1869 | if (theRenderableObject) // NOTE: Should just go in with the ctor args |
1870 | theRenderableObject->camdistSq = getCameraDistanceSq(obj: *theRenderableObject, camera: allCameraData[0]); |
1871 | } |
1872 | |
1873 | // If the indices don't match then something's off and we need to adjust the subset renderable list size. |
1874 | if (Q_UNLIKELY(idx != subsetIdx)) |
1875 | renderableSubsets.mSize = subsetIdx + 1; |
1876 | |
1877 | for (auto &ro : renderableSubsets) { |
1878 | const auto depthMode = ro.depthWriteMode; |
1879 | hasDepthWriteObjects |= (depthMode == QSSGDepthDrawMode::Always || depthMode == QSSGDepthDrawMode::OpaqueOnly); |
1880 | enum ObjectType : quint8 { ScreenTexture, Transparent, Opaque }; |
1881 | static constexpr DepthPrepassObject ppState[][2] = { {DepthPrepassObject::None, DepthPrepassObject::ScreenTexture}, |
1882 | {DepthPrepassObject::None, DepthPrepassObject::Transparent}, |
1883 | {DepthPrepassObject::None, DepthPrepassObject::Opaque} }; |
1884 | |
1885 | if (ro.renderableFlags.requiresScreenTexture()) { |
1886 | depthPrepassObjectsState |= DepthPrepassObjectStateT(ppState[ObjectType::ScreenTexture][size_t(depthMode == QSSGDepthDrawMode::OpaquePrePass)]); |
1887 | screenTextureObjects.push_back(t: {&ro, ro.camdistSq}); |
1888 | } else if (ro.renderableFlags.hasTransparency()) { |
1889 | depthPrepassObjectsState |= DepthPrepassObjectStateT(ppState[ObjectType::Transparent][size_t(depthMode == QSSGDepthDrawMode::OpaquePrePass)]); |
1890 | transparentObjects.push_back(t: {&ro, ro.camdistSq}); |
1891 | } else { |
1892 | depthPrepassObjectsState |= DepthPrepassObjectStateT(ppState[ObjectType::Opaque][size_t(depthMode == QSSGDepthDrawMode::OpaquePrePass)]); |
1893 | opaqueObjects.push_back(t: {&ro, ro.camdistSq}); |
1894 | } |
1895 | |
1896 | if (ro.renderableFlags.usedInBakedLighting()) |
1897 | bakedLightingObjects.push_back(t: {&ro, ro.camdistSq}); |
1898 | } |
1899 | |
1900 | if (!bakedLightingObjects.isEmpty()) |
1901 | bakedLightingModels.push_back(t: QSSGBakedLightingModel(&model, bakedLightingObjects)); |
1902 | } |
1903 | |
1904 | return wasDirty; |
1905 | } |
1906 | |
1907 | bool QSSGLayerRenderData::prepareParticlesForRender(const RenderableNodeEntries &renderableParticles, const QSSGRenderCameraData &cameraData) |
1908 | { |
1909 | QSSG_ASSERT(particlesEnabled, return false); |
1910 | |
1911 | QSSGRenderContextInterface &contextInterface = *renderer->contextInterface(); |
1912 | |
1913 | bool dirty = false; |
1914 | |
1915 | // |
1916 | auto &opaqueObjects = opaqueObjectStore[0]; |
1917 | auto &transparentObjects = transparentObjectStore[0]; |
1918 | auto &screenTextureObjects = screenTextureObjectStore[0]; |
1919 | |
1920 | for (const auto &renderable : renderableParticles) { |
1921 | const QSSGRenderParticles &particles = *static_cast<QSSGRenderParticles *>(renderable.node); |
1922 | const auto &lights = renderable.lights; |
1923 | |
1924 | QSSGRenderableObjectFlags renderableFlags; |
1925 | renderableFlags.setCastsShadows(false); |
1926 | renderableFlags.setReceivesShadows(false); |
1927 | renderableFlags.setHasAttributePosition(true); |
1928 | renderableFlags.setHasAttributeNormal(true); |
1929 | renderableFlags.setHasAttributeTexCoord0(true); |
1930 | renderableFlags.setHasAttributeColor(true); |
1931 | renderableFlags.setHasTransparency(particles.m_hasTransparency); |
1932 | renderableFlags.setCastsReflections(particles.m_castsReflections); |
1933 | |
1934 | float opacity = particles.globalOpacity; |
1935 | QVector3D center(particles.m_particleBuffer.bounds().center()); |
1936 | center = QSSGUtils::mat44::transform(m: particles.globalTransform, v: center); |
1937 | |
1938 | QSSGRenderableImage *firstImage = nullptr; |
1939 | if (particles.m_sprite) { |
1940 | const auto &bufferManager = contextInterface.bufferManager(); |
1941 | |
1942 | if (particles.m_sprite->clearDirty()) |
1943 | dirty = true; |
1944 | |
1945 | const QSSGRenderImageTexture texture = bufferManager->loadRenderImage(image: particles.m_sprite); |
1946 | QSSGRenderableImage *theImage = RENDER_FRAME_NEW<QSSGRenderableImage>(ctx&: contextInterface, args: QSSGRenderableImage::Type::Diffuse, args&: *particles.m_sprite, args: texture); |
1947 | firstImage = theImage; |
1948 | } |
1949 | |
1950 | QSSGRenderableImage *colorTable = nullptr; |
1951 | if (particles.m_colorTable) { |
1952 | const auto &bufferManager = contextInterface.bufferManager(); |
1953 | |
1954 | if (particles.m_colorTable->clearDirty()) |
1955 | dirty = true; |
1956 | |
1957 | const QSSGRenderImageTexture texture = bufferManager->loadRenderImage(image: particles.m_colorTable); |
1958 | |
1959 | QSSGRenderableImage *theImage = RENDER_FRAME_NEW<QSSGRenderableImage>(ctx&: contextInterface, args: QSSGRenderableImage::Type::Diffuse, args&: *particles.m_colorTable, args: texture); |
1960 | colorTable = theImage; |
1961 | } |
1962 | |
1963 | if (opacity > 0.0f && particles.m_particleBuffer.particleCount()) { |
1964 | auto *theRenderableObject = RENDER_FRAME_NEW<QSSGParticlesRenderable>(ctx&: contextInterface, |
1965 | args&: renderableFlags, |
1966 | args&: center, |
1967 | args&: renderer, |
1968 | args: particles, |
1969 | args&: firstImage, |
1970 | args&: colorTable, |
1971 | args: lights, |
1972 | args&: opacity); |
1973 | if (theRenderableObject) { |
1974 | if (theRenderableObject->renderableFlags.requiresScreenTexture()) |
1975 | screenTextureObjects.push_back(t: {theRenderableObject, getCameraDistanceSq(obj: *theRenderableObject, camera: cameraData)}); |
1976 | else if (theRenderableObject->renderableFlags.hasTransparency()) |
1977 | transparentObjects.push_back(t: {theRenderableObject, getCameraDistanceSq(obj: *theRenderableObject, camera: cameraData)}); |
1978 | else |
1979 | opaqueObjects.push_back(t: {theRenderableObject, getCameraDistanceSq(obj: *theRenderableObject, camera: cameraData)}); |
1980 | } |
1981 | } |
1982 | } |
1983 | |
1984 | return dirty; |
1985 | } |
1986 | |
1987 | bool QSSGLayerRenderData::prepareItem2DsForRender(const QSSGRenderContextInterface &ctxIfc, |
1988 | const RenderableItem2DEntries &renderableItem2Ds) |
1989 | { |
1990 | const bool hasItems = (renderableItem2Ds.size() != 0); |
1991 | if (hasItems) { |
1992 | const auto &clipSpaceCorrMatrix = ctxIfc.rhiContext()->rhi()->clipSpaceCorrMatrix(); |
1993 | const QSSGRenderCameraDataList &cameraDatas(getCachedCameraDatas()); |
1994 | for (const auto &theItem2D : renderableItem2Ds) { |
1995 | theItem2D->mvps.clear(); |
1996 | for (const QSSGRenderCameraData &camData : cameraDatas) { |
1997 | QMatrix4x4 mvp = camData.viewProjection * theItem2D->globalTransform; |
1998 | static const QMatrix4x4 flipMatrix(1.0f, 0.0f, 0.0f, 0.0f, |
1999 | 0.0f, -1.0f, 0.0f, 0.0f, |
2000 | 0.0f, 0.0f, 1.0f, 0.0f, |
2001 | 0.0f, 0.0f, 0.0f, 1.0f); |
2002 | mvp = clipSpaceCorrMatrix * mvp * flipMatrix; |
2003 | theItem2D->mvps.append(t: mvp); |
2004 | } |
2005 | } |
2006 | } |
2007 | |
2008 | return hasItems; |
2009 | } |
2010 | |
2011 | void QSSGLayerRenderData::prepareResourceLoaders() |
2012 | { |
2013 | QSSGRenderContextInterface &contextInterface = *renderer->contextInterface(); |
2014 | const auto &bufferManager = contextInterface.bufferManager(); |
2015 | |
2016 | for (const auto resourceLoader : std::as_const(t&: layer.resourceLoaders)) |
2017 | bufferManager->processResourceLoader(loader: static_cast<QSSGRenderResourceLoader *>(resourceLoader)); |
2018 | } |
2019 | |
2020 | void QSSGLayerRenderData::prepareReflectionProbesForRender() |
2021 | { |
2022 | const auto probeCount = reflectionProbes.size(); |
2023 | requestReflectionMapManager(); // ensure that we have a reflection map manager |
2024 | |
2025 | for (int i = 0; i < probeCount; i++) { |
2026 | QSSGRenderReflectionProbe* probe = reflectionProbes.at(i); |
2027 | |
2028 | int reflectionObjectCount = 0; |
2029 | QVector3D probeExtent = probe->boxSize / 2; |
2030 | QSSGBounds3 probeBound = QSSGBounds3::centerExtents(center: probe->getGlobalPos() + probe->boxOffset, extent: probeExtent); |
2031 | |
2032 | const auto injectProbe = [&](const QSSGRenderableObjectHandle &handle) { |
2033 | if (handle.obj->renderableFlags.testFlag(flag: QSSGRenderableObjectFlag::ReceivesReflections) |
2034 | && !(handle.obj->type == QSSGRenderableObject::Type::Particles)) { |
2035 | QSSGSubsetRenderable* renderableObj = static_cast<QSSGSubsetRenderable*>(handle.obj); |
2036 | QSSGBounds3 nodeBound = renderableObj->bounds; |
2037 | QVector4D vmin(nodeBound.minimum, 1.0); |
2038 | QVector4D vmax(nodeBound.maximum, 1.0); |
2039 | vmin = renderableObj->globalTransform * vmin; |
2040 | vmax = renderableObj->globalTransform * vmax; |
2041 | nodeBound.minimum = vmin.toVector3D(); |
2042 | nodeBound.maximum = vmax.toVector3D(); |
2043 | if (probeBound.intersects(b: nodeBound)) { |
2044 | QVector3D nodeBoundCenter = nodeBound.center(); |
2045 | QVector3D probeBoundCenter = probeBound.center(); |
2046 | float distance = nodeBoundCenter.distanceToPoint(point: probeBoundCenter); |
2047 | if (renderableObj->reflectionProbeIndex == -1 || distance < renderableObj->distanceFromReflectionProbe) { |
2048 | renderableObj->reflectionProbeIndex = i; |
2049 | renderableObj->distanceFromReflectionProbe = distance; |
2050 | renderableObj->reflectionProbe.parallaxCorrection = probe->parallaxCorrection; |
2051 | renderableObj->reflectionProbe.probeCubeMapCenter = probe->getGlobalPos(); |
2052 | renderableObj->reflectionProbe.probeBoxMax = probeBound.maximum; |
2053 | renderableObj->reflectionProbe.probeBoxMin = probeBound.minimum; |
2054 | renderableObj->reflectionProbe.enabled = true; |
2055 | reflectionObjectCount++; |
2056 | } |
2057 | } |
2058 | } |
2059 | }; |
2060 | |
2061 | const auto &transparentObjects = std::as_const(t&: transparentObjectStore[0]); |
2062 | const auto &opaqueObjects = std::as_const(t&: opaqueObjectStore[0]); |
2063 | const auto &screenTextureObjects = std::as_const(t&: screenTextureObjectStore[0]); |
2064 | |
2065 | for (const auto &handle : std::as_const(t: transparentObjects)) |
2066 | injectProbe(handle); |
2067 | |
2068 | for (const auto &handle : std::as_const(t: opaqueObjects)) |
2069 | injectProbe(handle); |
2070 | |
2071 | for (const auto &handle : std::as_const(t: screenTextureObjects)) |
2072 | injectProbe(handle); |
2073 | |
2074 | if (probe->texture) |
2075 | reflectionMapManager->addTexturedReflectionMapEntry(probeIdx: i, probe: *probe); |
2076 | else if (reflectionObjectCount > 0) |
2077 | reflectionMapManager->addReflectionMapEntry(probeIdx: i, probe: *probe); |
2078 | } |
2079 | } |
2080 | |
2081 | static bool scopeLight(QSSGRenderNode *node, QSSGRenderNode *lightScope) |
2082 | { |
2083 | // check if the node is parent of the lightScope |
2084 | while (node) { |
2085 | if (node == lightScope) |
2086 | return true; |
2087 | node = node->parent; |
2088 | } |
2089 | return false; |
2090 | } |
2091 | |
2092 | static const int REDUCED_MAX_LIGHT_COUNT_THRESHOLD_BYTES = 4096; // 256 vec4 |
2093 | |
2094 | static inline int effectiveMaxLightCount(const QSSGShaderFeatures &features) |
2095 | { |
2096 | if (features.isSet(feature: QSSGShaderFeatures::Feature::ReduceMaxNumLights)) |
2097 | return QSSG_REDUCED_MAX_NUM_LIGHTS; |
2098 | |
2099 | return QSSG_MAX_NUM_LIGHTS; |
2100 | } |
2101 | |
2102 | void updateDirtySkeletons(const QVector<QSSGRenderableNodeEntry> &renderableNodes) |
2103 | { |
2104 | // First model using skeleton clears the dirty flag so we need another mechanism |
2105 | // to tell to the other models the skeleton is dirty. |
2106 | QSet<QSSGRenderSkeleton *> dirtySkeletons; |
2107 | for (const auto &node : std::as_const(t: renderableNodes)) { |
2108 | if (node.node->type == QSSGRenderGraphObject::Type::Model) { |
2109 | auto modelNode = static_cast<QSSGRenderModel *>(node.node); |
2110 | auto skeletonNode = modelNode->skeleton; |
2111 | bool hcj = false; |
2112 | if (skeletonNode) { |
2113 | const bool dirtySkeleton = dirtySkeletons.contains(value: skeletonNode); |
2114 | const bool hasDirtyNonJoints = (skeletonNode->containsNonJointNodes |
2115 | && (hasDirtyNonJointNodes(node: skeletonNode, hasChildJoints&: hcj) || dirtySkeleton)); |
2116 | const bool dirtyTransform = skeletonNode->isDirty(dirtyFlag: QSSGRenderNode::DirtyFlag::TransformDirty); |
2117 | if (skeletonNode->skinningDirty || hasDirtyNonJoints || dirtyTransform) { |
2118 | skeletonNode->boneTransformsDirty = false; |
2119 | if (hasDirtyNonJoints && !dirtySkeleton) |
2120 | dirtySkeletons.insert(value: skeletonNode); |
2121 | skeletonNode->skinningDirty = false; |
2122 | const qsizetype dataSize = BONEDATASIZE4ID(skeletonNode->maxIndex); |
2123 | if (skeletonNode->boneData.size() < dataSize) |
2124 | skeletonNode->boneData.resize(size: dataSize); |
2125 | skeletonNode->calculateGlobalVariables(); |
2126 | skeletonNode->containsNonJointNodes = false; |
2127 | for (auto &child : skeletonNode->children) |
2128 | collectBoneTransforms(node: &child, skeletonNode, poses: modelNode->inverseBindPoses); |
2129 | } |
2130 | skeletonNode->boneCount = skeletonNode->boneData.size() / 2 / 4 / 16; |
2131 | const int boneTexWidth = qCeil(v: qSqrt(v: skeletonNode->boneCount * 4 * 2)); |
2132 | skeletonNode->boneTexData.setSize(QSize(boneTexWidth, boneTexWidth)); |
2133 | skeletonNode->boneData.resize(size: boneTexWidth * boneTexWidth * 16); |
2134 | skeletonNode->boneTexData.setTextureData(skeletonNode->boneData); |
2135 | } |
2136 | const int numMorphTarget = modelNode->morphTargets.size(); |
2137 | for (int i = 0; i < numMorphTarget; ++i) { |
2138 | auto morphTarget = static_cast<const QSSGRenderMorphTarget *>(modelNode->morphTargets.at(i)); |
2139 | modelNode->morphWeights[i] = morphTarget->weight; |
2140 | modelNode->morphAttributes[i] = morphTarget->attributes; |
2141 | if (i > MAX_MORPH_TARGET_INDEX_SUPPORTS_NORMALS) |
2142 | modelNode->morphAttributes[i] &= 0x1; // MorphTarget.Position |
2143 | else if (i > MAX_MORPH_TARGET_INDEX_SUPPORTS_TANGENTS) |
2144 | modelNode->morphAttributes[i] &= 0x3; // MorphTarget.Position | MorphTarget.Normal |
2145 | } |
2146 | } |
2147 | } |
2148 | |
2149 | dirtySkeletons.clear(); |
2150 | } |
2151 | |
2152 | void QSSGLayerRenderData::prepareForRender() |
2153 | { |
2154 | QSSG_ASSERT_X(layerPrepResult.isNull(), "Prep-result was not reset for render!" , layerPrepResult = {}); |
2155 | |
2156 | QRect theViewport(renderer->viewport()); |
2157 | |
2158 | // NOTE: The renderer won't change in practice (after being set the first time), but just update |
2159 | // it anyways. |
2160 | frameData.m_ctx = renderer->contextInterface(); |
2161 | frameData.clear(); |
2162 | |
2163 | // Create base pipeline state |
2164 | ps = {}; // Reset |
2165 | ps.viewport = { float(theViewport.x()), float(theViewport.y()), float(theViewport.width()), float(theViewport.height()), 0.0f, 1.0f }; |
2166 | if (layer.scissorRect.isValid()) { |
2167 | ps.flags |= QSSGRhiGraphicsPipelineState::Flag::UsesScissor; |
2168 | ps.scissor = { layer.scissorRect.x(), |
2169 | theViewport.height() - (layer.scissorRect.y() + layer.scissorRect.height()), |
2170 | layer.scissorRect.width(), |
2171 | layer.scissorRect.height() }; |
2172 | } |
2173 | |
2174 | ps.depthFunc = QRhiGraphicsPipeline::LessOrEqual; |
2175 | ps.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::BlendEnabled, on: false); |
2176 | |
2177 | // Enable Wireframe mode |
2178 | ps.polygonMode = layer.wireframeMode ? QRhiGraphicsPipeline::Line : QRhiGraphicsPipeline::Fill; |
2179 | |
2180 | bool wasDirty = false; |
2181 | bool wasDataDirty = false; |
2182 | wasDirty = layer.isDirty(); |
2183 | |
2184 | layerPrepResult = { theViewport, layer }; |
2185 | |
2186 | // SSAO |
2187 | const bool SSAOEnabled = layer.ssaoEnabled(); |
2188 | layerPrepResult.flags.setRequiresSsaoPass(SSAOEnabled); |
2189 | features.set(feature: QSSGShaderFeatures::Feature::Ssao, val: SSAOEnabled); |
2190 | |
2191 | // Effects |
2192 | bool requiresDepthTexture = SSAOEnabled; |
2193 | for (QSSGRenderEffect *theEffect = layer.firstEffect; theEffect; theEffect = theEffect->m_nextEffect) { |
2194 | if (theEffect->isDirty()) { |
2195 | wasDirty = true; |
2196 | theEffect->clearDirty(); |
2197 | } |
2198 | if (theEffect->requiresDepthTexture) |
2199 | requiresDepthTexture = true; |
2200 | } |
2201 | layerPrepResult.flags.setRequiresDepthTexture(requiresDepthTexture); |
2202 | |
2203 | // Tonemapping. Except when there are effects, then it is up to the |
2204 | // last pass of the last effect to perform tonemapping. |
2205 | if (!layer.firstEffect) |
2206 | QSSGLayerRenderData::setTonemapFeatures(features, tonemapMode: layer.tonemapMode); |
2207 | |
2208 | // We may not be able to have an array of 15 light struct elements in |
2209 | // the shaders. Switch on the reduced-max-number-of-lights feature |
2210 | // if necessary. In practice this is relevant with OpenGL ES 3.0 or |
2211 | // 2.0, because there are still implementations in use that only |
2212 | // support the spec mandated minimum of 224 vec4s (so 3584 bytes). |
2213 | const auto &rhiCtx = renderer->contextInterface()->rhiContext(); |
2214 | if (rhiCtx->rhi()->resourceLimit(limit: QRhi::MaxUniformBufferRange) < REDUCED_MAX_LIGHT_COUNT_THRESHOLD_BYTES) { |
2215 | features.set(feature: QSSGShaderFeatures::Feature::ReduceMaxNumLights, val: true); |
2216 | static bool notified = false; |
2217 | if (!notified) { |
2218 | notified = true; |
2219 | qCDebug(lcQuick3DRender, "Qt Quick 3D maximum number of lights has been reduced from %d to %d due to the graphics driver's limitations" , |
2220 | QSSG_MAX_NUM_LIGHTS, QSSG_REDUCED_MAX_NUM_LIGHTS); |
2221 | } |
2222 | } |
2223 | |
2224 | // IBL Lightprobe Image |
2225 | QSSGRenderImageTexture lightProbeTexture; |
2226 | if (layer.lightProbe) { |
2227 | const auto &lightProbeSettings = layer.lightProbeSettings; |
2228 | if (layer.lightProbe->m_format == QSSGRenderTextureFormat::Unknown) { |
2229 | // Choose on a format that makes sense for a light probe |
2230 | // At this point it's just a suggestion |
2231 | if (renderer->contextInterface()->rhiContext()->rhi()->isTextureFormatSupported(format: QRhiTexture::RGBA16F)) |
2232 | layer.lightProbe->m_format = QSSGRenderTextureFormat::RGBA16F; |
2233 | else |
2234 | layer.lightProbe->m_format = QSSGRenderTextureFormat::RGBE8; |
2235 | } |
2236 | |
2237 | if (layer.lightProbe->clearDirty()) |
2238 | wasDataDirty = true; |
2239 | |
2240 | // NOTE: This call can lead to rendering (of envmap) and a texture upload |
2241 | lightProbeTexture = renderer->contextInterface()->bufferManager()->loadRenderImage(image: layer.lightProbe, inMipMode: QSSGBufferManager::MipModeBsdf); |
2242 | if (lightProbeTexture.m_texture) { |
2243 | |
2244 | features.set(feature: QSSGShaderFeatures::Feature::LightProbe, val: true); |
2245 | features.set(feature: QSSGShaderFeatures::Feature::IblOrientation, val: !lightProbeSettings.probeOrientation.isIdentity()); |
2246 | |
2247 | // By this point we will know what the actual texture format of the light probe is |
2248 | // Check if using RGBE format light probe texture (the Rhi format will be RGBA8) |
2249 | if (lightProbeTexture.m_flags.isRgbe8()) |
2250 | features.set(feature: QSSGShaderFeatures::Feature::RGBELightProbe, val: true); |
2251 | } else { |
2252 | layer.lightProbe = nullptr; |
2253 | } |
2254 | |
2255 | const bool forceIblExposureValues = (features.isSet(feature: QSSGShaderFeatures::Feature::LightProbe) && layer.tonemapMode == QSSGRenderLayer::TonemapMode::Custom); |
2256 | features.set(feature: QSSGShaderFeatures::Feature::ForceIblExposure, val: forceIblExposureValues); |
2257 | } |
2258 | |
2259 | // Gather Spatial Nodes from Render Tree |
2260 | // Do not just clear() renderableNodes and friends. Rather, reuse |
2261 | // the space (even if clear does not actually deallocate, it still |
2262 | // costs time to run dtors and such). In scenes with a static node |
2263 | // count in the range of thousands this may matter. |
2264 | int renderableModelsCount = 0; |
2265 | int renderableParticlesCount = 0; |
2266 | int renderableItem2DsCount = 0; |
2267 | int cameraNodeCount = 0; |
2268 | int lightNodeCount = 0; |
2269 | int reflectionProbeCount = 0; |
2270 | quint32 dfsIndex = 0; |
2271 | for (auto &theChild : layer.children) |
2272 | wasDataDirty |= maybeQueueNodeForRender(inNode&: theChild, |
2273 | outRenderableModels&: renderableModels, |
2274 | ioRenderableModelsCount&: renderableModelsCount, |
2275 | outRenderableParticles&: renderableParticles, |
2276 | ioRenderableParticlesCount&: renderableParticlesCount, |
2277 | outRenderableItem2Ds&: renderableItem2Ds, |
2278 | ioRenderableItem2DsCount&: renderableItem2DsCount, |
2279 | outCameras&: cameras, |
2280 | ioCameraCount&: cameraNodeCount, |
2281 | outLights&: lights, |
2282 | ioLightCount&: lightNodeCount, |
2283 | outReflectionProbes&: reflectionProbes, |
2284 | ioReflectionProbeCount&: reflectionProbeCount, |
2285 | ioDFSIndex&: dfsIndex); |
2286 | |
2287 | if (renderableModels.size() != renderableModelsCount) |
2288 | renderableModels.resize(size: renderableModelsCount); |
2289 | if (renderableParticles.size() != renderableParticlesCount) |
2290 | renderableParticles.resize(size: renderableParticlesCount); |
2291 | if (renderableItem2Ds.size() != renderableItem2DsCount) |
2292 | renderableItem2Ds.resize(size: renderableItem2DsCount); |
2293 | |
2294 | if (cameras.size() != cameraNodeCount) |
2295 | cameras.resize(size: cameraNodeCount); |
2296 | if (lights.size() != lightNodeCount) |
2297 | lights.resize(size: lightNodeCount); |
2298 | if (reflectionProbes.size() != reflectionProbeCount) |
2299 | reflectionProbes.resize(size: reflectionProbeCount); |
2300 | |
2301 | // Cameras |
2302 | // 1. If there's an explicit camera set and it's active (visible) we'll use that. |
2303 | // 2. ... if the explicitly set camera is not visible, no further attempts will be done. |
2304 | // 3. If no explicit camera is set, we'll search and pick the first active camera. |
2305 | renderedCameras.clear(); |
2306 | if (!layer.explicitCameras.isEmpty()) { |
2307 | for (QSSGRenderCamera *cam : std::as_const(t&: layer.explicitCameras)) { |
2308 | // 1. |
2309 | wasDataDirty = wasDataDirty || cam->isDirty(); |
2310 | QSSGCameraGlobalCalculationResult theResult = layerPrepResult.setupCameraForRender(inCamera&: *cam, dpr: renderer->dpr()); |
2311 | wasDataDirty = wasDataDirty || theResult.m_wasDirty; |
2312 | if (!theResult.m_computeFrustumSucceeded) |
2313 | qCCritical(INTERNAL_ERROR, "Failed to calculate camera frustum" ); |
2314 | |
2315 | // 2. |
2316 | if (cam->getGlobalState(stateFlag: QSSGRenderCamera::GlobalState::Active)) |
2317 | renderedCameras.append(t: cam); |
2318 | } |
2319 | } else { // this path can never be hit with multiview |
2320 | // 3. |
2321 | for (auto iter = cameras.cbegin(); renderedCameras.isEmpty() && iter != cameras.cend(); iter++) { |
2322 | QSSGRenderCamera *theCamera = *iter; |
2323 | wasDataDirty = wasDataDirty || theCamera->isDirty(); |
2324 | QSSGCameraGlobalCalculationResult theResult = layerPrepResult.setupCameraForRender(inCamera&: *theCamera, dpr: renderer->dpr()); |
2325 | wasDataDirty = wasDataDirty || theResult.m_wasDirty; |
2326 | if (!theResult.m_computeFrustumSucceeded) |
2327 | qCCritical(INTERNAL_ERROR, "Failed to calculate camera frustum" ); |
2328 | if (theCamera->getGlobalState(stateFlag: QSSGRenderCamera::GlobalState::Active)) |
2329 | renderedCameras.append(t: theCamera); |
2330 | } |
2331 | } |
2332 | |
2333 | for (QSSGRenderCamera *cam : renderedCameras) |
2334 | cam->dpr = renderer->dpr(); |
2335 | |
2336 | float meshLodThreshold = 1.0f; |
2337 | if (!renderedCameras.isEmpty()) |
2338 | meshLodThreshold = renderedCameras[0]->levelOfDetailPixelThreshold / theViewport.width(); |
2339 | |
2340 | layer.renderedCamerasMutex.lock(); |
2341 | layer.renderedCameras = renderedCameras; |
2342 | layer.renderedCamerasMutex.unlock(); |
2343 | |
2344 | // ResourceLoaders |
2345 | prepareResourceLoaders(); |
2346 | |
2347 | // Skeletons |
2348 | updateDirtySkeletons(renderableNodes: renderableModels); |
2349 | |
2350 | // Lights |
2351 | int shadowMapCount = 0; |
2352 | bool hasScopedLights = false; |
2353 | // Determine which lights will actually Render |
2354 | // Determine how many lights will need shadow maps |
2355 | // NOTE: This culling is specific to our Forward renderer |
2356 | const int maxLightCount = effectiveMaxLightCount(features); |
2357 | const bool showLightCountWarning = !tooManyLightsWarningShown && (lights.size() > maxLightCount); |
2358 | if (showLightCountWarning) { |
2359 | qWarning(msg: "Too many lights in scene, maximum is %d" , maxLightCount); |
2360 | tooManyLightsWarningShown = true; |
2361 | } |
2362 | |
2363 | QSSGShaderLightList renderableLights; // All lights (upto 'maxLightCount') |
2364 | |
2365 | // List should contain only enabled lights (active && birghtness > 0). |
2366 | { |
2367 | auto it = lights.crbegin(); |
2368 | const auto end = it + qMin(a: maxLightCount, b: lights.size()); |
2369 | |
2370 | for (; it != end; ++it) { |
2371 | QSSGRenderLight *renderLight = (*it); |
2372 | hasScopedLights |= (renderLight->m_scope != nullptr); |
2373 | const bool mightCastShadows = renderLight->m_castShadow && !renderLight->m_fullyBaked; |
2374 | const bool shadows = mightCastShadows && (shadowMapCount < QSSG_MAX_NUM_SHADOW_MAPS); |
2375 | shadowMapCount += int(shadows); |
2376 | const auto &direction = renderLight->getScalingCorrectDirection(); |
2377 | renderableLights.push_back(t: QSSGShaderLight{ .light: renderLight, .shadows: shadows, .direction: direction }); |
2378 | } |
2379 | |
2380 | if ((shadowMapCount >= QSSG_MAX_NUM_SHADOW_MAPS) && !tooManyShadowLightsWarningShown) { |
2381 | qWarning(msg: "Too many shadow casting lights in scene, maximum is %d" , QSSG_MAX_NUM_SHADOW_MAPS); |
2382 | tooManyShadowLightsWarningShown = true; |
2383 | } |
2384 | } |
2385 | |
2386 | if (shadowMapCount > 0) { // Setup Shadow Maps Entries for Lights casting shadows |
2387 | requestShadowMapManager(); // Ensure we have a shadow map manager |
2388 | layerPrepResult.flags.setRequiresShadowMapPass(true); |
2389 | // Any light with castShadow=true triggers shadow mapping |
2390 | // in the generated shaders. The fact that some (or even |
2391 | // all) objects may opt out from receiving shadows plays no |
2392 | // role here whatsoever. |
2393 | features.set(feature: QSSGShaderFeatures::Feature::Ssm, val: true); |
2394 | shadowMapManager->addShadowMaps(renderableLights); |
2395 | } else if (shadowMapManager) { |
2396 | // No shadows but a shadow manager so clear old resources |
2397 | shadowMapManager->releaseCachedResources(); |
2398 | } |
2399 | |
2400 | // Give each renderable a copy of the lights available |
2401 | // Also setup scoping for scoped lights |
2402 | |
2403 | QSSG_ASSERT(globalLights.isEmpty(), globalLights.clear()); |
2404 | if (hasScopedLights) { // Filter out scoped lights from the global lights list |
2405 | for (const auto &shaderLight : std::as_const(t&: renderableLights)) { |
2406 | if (!shaderLight.light->m_scope) |
2407 | globalLights.push_back(t: shaderLight); |
2408 | } |
2409 | |
2410 | const auto prepareLightsWithScopedLights = [&renderableLights, this](QVector<QSSGRenderableNodeEntry> &renderableNodes) { |
2411 | for (qint32 idx = 0, end = renderableNodes.size(); idx < end; ++idx) { |
2412 | QSSGRenderableNodeEntry &theNodeEntry(renderableNodes[idx]); |
2413 | QSSGShaderLightList filteredLights; |
2414 | for (const auto &light : std::as_const(t&: renderableLights)) { |
2415 | if (light.light->m_scope && !scopeLight(node: theNodeEntry.node, lightScope: light.light->m_scope)) |
2416 | continue; |
2417 | filteredLights.push_back(t: light); |
2418 | } |
2419 | |
2420 | if (filteredLights.isEmpty()) { // Node without scoped lights, just reference the global light list. |
2421 | theNodeEntry.lights = QSSGDataView(globalLights); |
2422 | } else { |
2423 | // This node has scoped lights, i.e., it's lights differ from the global list |
2424 | // we therefore create a bespoke light list for it. Technically this might be the same for |
2425 | // more then this one node, but the overhead for tracking that is not worth it. |
2426 | auto customLightList = RENDER_FRAME_NEW_BUFFER<QSSGShaderLight>(ctx&: *renderer->contextInterface(), count: filteredLights.size()); |
2427 | std::copy(first: filteredLights.cbegin(), last: filteredLights.cend(), result: customLightList.begin()); |
2428 | theNodeEntry.lights = customLightList; |
2429 | } |
2430 | } |
2431 | }; |
2432 | |
2433 | prepareLightsWithScopedLights(renderableModels); |
2434 | prepareLightsWithScopedLights(renderableParticles); |
2435 | } else { // Just a simple copy |
2436 | globalLights = renderableLights; |
2437 | // No scoped lights, all nodes can just reference the global light list. |
2438 | const auto prepareLights = [this](QVector<QSSGRenderableNodeEntry> &renderableNodes) { |
2439 | for (qint32 idx = 0, end = renderableNodes.size(); idx < end; ++idx) { |
2440 | QSSGRenderableNodeEntry &theNodeEntry(renderableNodes[idx]); |
2441 | theNodeEntry.lights = QSSGDataView(globalLights); |
2442 | } |
2443 | }; |
2444 | |
2445 | prepareLights(renderableModels); |
2446 | prepareLights(renderableParticles); |
2447 | } |
2448 | |
2449 | bool hasUserExtensions = false; |
2450 | |
2451 | { |
2452 | // Give user provided passes a chance to modify the renderable data before starting |
2453 | // Note: All non-active extensions should be filtered out by now |
2454 | Q_STATIC_ASSERT(USERPASSES == size_t(QSSGRenderLayer::RenderExtensionStage::Count)); |
2455 | for (size_t i = 0; i != size_t(QSSGRenderLayer::RenderExtensionStage::Count); ++i) { |
2456 | const auto &renderExtensions = layer.renderExtensions[i]; |
2457 | auto &userPass = userPasses[i]; |
2458 | for (auto rit = renderExtensions.crbegin(), rend = renderExtensions.crend(); rit != rend; ++rit) { |
2459 | hasUserExtensions = true; |
2460 | if ((*rit)->prepareData(data&: frameData)) { |
2461 | wasDirty |= true; |
2462 | userPass.extensions.push_back(t: *rit); |
2463 | } |
2464 | } |
2465 | } |
2466 | } |
2467 | |
2468 | // Ensure materials (If there are user extensions we don't cull renderables without materials!) |
2469 | prepareModelMaterials(renderableModels, cullUnrenderables: !hasUserExtensions); |
2470 | // Ensure meshes for models |
2471 | prepareModelMeshes(contextInterface: *renderer->contextInterface(), renderableModels, globalPickingEnabled: QSSGRendererPrivate::isGlobalPickingEnabled(renderer: *renderer)); |
2472 | |
2473 | auto &opaqueObjects = opaqueObjectStore[0]; |
2474 | auto &transparentObjects = transparentObjectStore[0]; |
2475 | auto &screenTextureObjects = screenTextureObjectStore[0]; |
2476 | |
2477 | if (!renderedCameras.isEmpty()) { // NOTE: We shouldn't really get this far without a camera... |
2478 | wasDirty |= prepareModelsForRender(contextInterface&: *renderer->contextInterface(), renderableModels, ioFlags&: layerPrepResult.flags, allCameras: renderedCameras, allCameraData: getCachedCameraDatas(), modelContexts, opaqueObjects, transparentObjects, screenTextureObjects, lodThreshold: meshLodThreshold); |
2479 | if (particlesEnabled) { |
2480 | const auto &cameraDatas = getCachedCameraDatas(); |
2481 | wasDirty |= prepareParticlesForRender(renderableParticles, cameraData: cameraDatas[0]); |
2482 | } |
2483 | wasDirty |= prepareItem2DsForRender(ctxIfc: *renderer->contextInterface(), renderableItem2Ds); |
2484 | } |
2485 | |
2486 | prepareReflectionProbesForRender(); |
2487 | |
2488 | wasDirty = wasDirty || wasDataDirty; |
2489 | layerPrepResult.flags.setWasDirty(wasDirty); |
2490 | layerPrepResult.flags.setLayerDataDirty(wasDataDirty); |
2491 | |
2492 | // |
2493 | const bool animating = wasDirty; |
2494 | if (animating) |
2495 | layer.progAAPassIndex = 0; |
2496 | |
2497 | const bool progressiveAA = layer.antialiasingMode == QSSGRenderLayer::AAMode::ProgressiveAA && !animating; |
2498 | layer.progressiveAAIsActive = progressiveAA; |
2499 | const bool temporalAA = layer.temporalAAEnabled && !progressiveAA && layer.antialiasingMode != QSSGRenderLayer::AAMode::MSAA; |
2500 | |
2501 | layer.temporalAAIsActive = temporalAA; |
2502 | |
2503 | QVector2D vertexOffsetsAA; |
2504 | |
2505 | if (progressiveAA && layer.progAAPassIndex > 0 && layer.progAAPassIndex < quint32(layer.antialiasingQuality)) { |
2506 | int idx = layer.progAAPassIndex - 1; |
2507 | vertexOffsetsAA = s_ProgressiveAAVertexOffsets[idx] / QVector2D{ float(theViewport.width()/2.0), float(theViewport.height()/2.0) }; |
2508 | } |
2509 | |
2510 | if (temporalAA) { |
2511 | const int t = 1 - 2 * (layer.tempAAPassIndex % 2); |
2512 | const float f = t * layer.temporalAAStrength; |
2513 | vertexOffsetsAA = { f / float(theViewport.width()/2.0), f / float(theViewport.height()/2.0) }; |
2514 | } |
2515 | |
2516 | if (!renderedCameras.isEmpty()) { |
2517 | if (temporalAA || progressiveAA /*&& !vertexOffsetsAA.isNull()*/) { |
2518 | QMatrix4x4 offsetProjection = renderedCameras[0]->projection; |
2519 | QMatrix4x4 invProjection = renderedCameras[0]->projection.inverted(); |
2520 | if (renderedCameras[0]->type == QSSGRenderCamera::Type::OrthographicCamera) { |
2521 | offsetProjection(0, 3) -= vertexOffsetsAA.x(); |
2522 | offsetProjection(1, 3) -= vertexOffsetsAA.y(); |
2523 | } else if (renderedCameras[0]->type == QSSGRenderCamera::Type::PerspectiveCamera) { |
2524 | offsetProjection(0, 2) += vertexOffsetsAA.x(); |
2525 | offsetProjection(1, 2) += vertexOffsetsAA.y(); |
2526 | } |
2527 | for (auto &modelContext : std::as_const(t&: modelContexts)) { |
2528 | for (int mvpIdx = 0; mvpIdx < renderedCameras.count(); ++mvpIdx) |
2529 | modelContext->modelViewProjections[mvpIdx] = offsetProjection * invProjection * modelContext->modelViewProjections[mvpIdx]; |
2530 | } |
2531 | } |
2532 | } |
2533 | |
2534 | const bool hasItem2Ds = (renderableItem2DsCount > 0); |
2535 | const bool layerEnableDepthTest = layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest); |
2536 | const bool layerEnabledDepthPrePass = layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthPrePass); |
2537 | const bool depthTestEnableDefault = layerEnableDepthTest && (!opaqueObjects.isEmpty() || depthPrepassObjectsState || hasDepthWriteObjects); |
2538 | const bool zPrePassForced = (depthPrepassObjectsState != 0); |
2539 | zPrePassActive = zPrePassForced || (layerEnabledDepthPrePass && layerEnableDepthTest && (hasDepthWriteObjects || hasItem2Ds)); |
2540 | const bool depthWriteEnableDefault = depthTestEnableDefault && (!layerEnabledDepthPrePass || !zPrePassActive); |
2541 | |
2542 | ps.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::DepthTestEnabled, on: depthTestEnableDefault); |
2543 | ps.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::DepthWriteEnabled, on: depthWriteEnableDefault); |
2544 | |
2545 | // Prepare passes |
2546 | QSSG_ASSERT(activePasses.isEmpty(), activePasses.clear()); |
2547 | // If needed, generate a depth texture with the opaque objects. This |
2548 | // and the SSAO texture must come first since other passes may want to |
2549 | // expose these textures to their shaders. |
2550 | if (layerPrepResult.flags.requiresDepthTexture()) |
2551 | activePasses.push_back(t: &depthMapPass); |
2552 | |
2553 | // Screen space ambient occlusion. Relies on the depth texture and generates an AO map. |
2554 | if (layerPrepResult.flags.requiresSsaoPass()) |
2555 | activePasses.push_back(t: &ssaoMapPass); |
2556 | |
2557 | // Shadows. Generates a 2D or cube shadow map. (opaque + pre-pass transparent objects) |
2558 | if (layerPrepResult.flags.requiresShadowMapPass()) |
2559 | activePasses.push_back(t: &shadowMapPass); |
2560 | |
2561 | if (zPrePassActive) |
2562 | activePasses.push_back(t: &zPrePassPass); |
2563 | |
2564 | // Screen texture with opaque objects. |
2565 | if (layerPrepResult.flags.requiresScreenTexture()) |
2566 | activePasses.push_back(t: &screenMapPass); |
2567 | |
2568 | // Reflection pass |
2569 | activePasses.push_back(t: &reflectionMapPass); |
2570 | |
2571 | auto &underlayPass = userPasses[size_t(QSSGRenderLayer::RenderExtensionStage::Underlay)]; |
2572 | if (underlayPass.hasData()) |
2573 | activePasses.push_back(t: &underlayPass); |
2574 | |
2575 | const bool hasOpaqueObjects = (opaqueObjects.size() > 0); |
2576 | |
2577 | if (hasOpaqueObjects) |
2578 | activePasses.push_back(t: &opaquePass); |
2579 | |
2580 | // NOTE: When the a screen texture is used, the skybox pass will be called twice. First from |
2581 | // the screen texture pass and later as part of the normal run through the list. |
2582 | if (renderer->contextInterface()->rhiContext()->rhi()->isFeatureSupported(feature: QRhi::TexelFetch)) { |
2583 | if (layer.background == QSSGRenderLayer::Background::SkyBoxCubeMap && layer.skyBoxCubeMap) |
2584 | activePasses.push_back(t: &skyboxCubeMapPass); |
2585 | else if (layer.background == QSSGRenderLayer::Background::SkyBox && layer.lightProbe) |
2586 | activePasses.push_back(t: &skyboxPass); |
2587 | } |
2588 | |
2589 | if (hasItem2Ds) |
2590 | activePasses.push_back(t: &item2DPass); |
2591 | |
2592 | if (layerPrepResult.flags.requiresScreenTexture()) |
2593 | activePasses.push_back(t: &reflectionPass); |
2594 | |
2595 | // Note: Transparent pass includeds opaque objects when layerEnableDepthTest is false. |
2596 | if (transparentObjects.size() > 0 || (!layerEnableDepthTest && hasOpaqueObjects)) |
2597 | activePasses.push_back(t: &transparentPass); |
2598 | |
2599 | auto &overlayPass = userPasses[size_t(QSSGRenderLayer::RenderExtensionStage::Overlay)]; |
2600 | if (overlayPass.hasData()) |
2601 | activePasses.push_back(t: &overlayPass); |
2602 | |
2603 | if (layer.gridEnabled) |
2604 | activePasses.push_back(t: &infiniteGridPass); |
2605 | |
2606 | if (const auto &dbgDrawSystem = renderer->contextInterface()->debugDrawSystem(); dbgDrawSystem && dbgDrawSystem->isEnabled()) |
2607 | activePasses.push_back(t: &debugDrawPass); |
2608 | } |
2609 | |
2610 | template<typename T> |
2611 | static void clearTable(std::vector<T> &entry) |
2612 | { |
2613 | for (auto &e : entry) |
2614 | e.clear(); |
2615 | } |
2616 | |
2617 | void QSSGLayerRenderData::resetForFrame() |
2618 | { |
2619 | for (const auto &pass : activePasses) |
2620 | pass->resetForFrame(); |
2621 | activePasses.clear(); |
2622 | bakedLightingModels.clear(); |
2623 | layerPrepResult = {}; |
2624 | renderedCameras.clear(); |
2625 | renderedCameraData.reset(); |
2626 | renderedItem2Ds.clear(); |
2627 | renderedBakedLightingModels.clear(); |
2628 | renderableItem2Ds.clear(); |
2629 | lightmapTextures.clear(); |
2630 | bonemapTextures.clear(); |
2631 | globalLights.clear(); |
2632 | modelContexts.clear(); |
2633 | features = QSSGShaderFeatures(); |
2634 | hasDepthWriteObjects = false; |
2635 | depthPrepassObjectsState = { DepthPrepassObjectStateT(DepthPrepassObject::None) }; |
2636 | zPrePassActive = false; |
2637 | |
2638 | clearTable(entry&: renderableModelStore); |
2639 | clearTable(entry&: modelContextStore); |
2640 | clearTable(entry&: renderableObjectStore); |
2641 | clearTable(entry&: opaqueObjectStore); |
2642 | clearTable(entry&: transparentObjectStore); |
2643 | clearTable(entry&: screenTextureObjectStore); |
2644 | clearTable(entry&: sortedOpaqueObjectCache); |
2645 | clearTable(entry&: sortedTransparentObjectCache); |
2646 | clearTable(entry&: sortedScreenTextureObjectCache); |
2647 | clearTable(entry&: sortedOpaqueDepthPrepassCache); |
2648 | clearTable(entry&: sortedDepthWriteCache); |
2649 | } |
2650 | |
2651 | QSSGLayerRenderPreparationResult::QSSGLayerRenderPreparationResult(const QRectF &inViewport, QSSGRenderLayer &inLayer) |
2652 | : layer(&inLayer) |
2653 | { |
2654 | viewport = inViewport; |
2655 | } |
2656 | |
2657 | bool QSSGLayerRenderPreparationResult::isLayerVisible() const |
2658 | { |
2659 | return viewport.height() >= 2.0f && viewport.width() >= 2.0f; |
2660 | } |
2661 | |
2662 | QSize QSSGLayerRenderPreparationResult::textureDimensions() const |
2663 | { |
2664 | const auto size = viewport.size().toSize(); |
2665 | return QSize(QSSGRendererUtil::nextMultipleOf4(value: size.width()), QSSGRendererUtil::nextMultipleOf4(value: size.height())); |
2666 | } |
2667 | |
2668 | QSSGCameraGlobalCalculationResult QSSGLayerRenderPreparationResult::setupCameraForRender(QSSGRenderCamera &inCamera, float dpr) |
2669 | { |
2670 | // When using ssaa we need to zoom with the ssaa multiplier since otherwise the |
2671 | // orthographic camera will be zoomed out due to the bigger viewport. We therefore |
2672 | // scale the magnification before calulating the camera variables and then revert. |
2673 | // Since the same camera can be used in several View3Ds with or without ssaa we |
2674 | // cannot store the magnification permanently. |
2675 | const float horizontalMagnification = inCamera.horizontalMagnification; |
2676 | const float verticalMagnification = inCamera.verticalMagnification; |
2677 | inCamera.dpr = dpr; |
2678 | inCamera.horizontalMagnification *= layer->ssaaEnabled ? layer->ssaaMultiplier : 1.0f; |
2679 | inCamera.verticalMagnification *= layer->ssaaEnabled ? layer->ssaaMultiplier : 1.0f; |
2680 | const auto result = inCamera.calculateGlobalVariables(inViewport: viewport); |
2681 | inCamera.horizontalMagnification = horizontalMagnification; |
2682 | inCamera.verticalMagnification = verticalMagnification; |
2683 | return result; |
2684 | } |
2685 | |
2686 | QSSGLayerRenderData::QSSGLayerRenderData(QSSGRenderLayer &inLayer, QSSGRenderer &inRenderer) |
2687 | : layer(inLayer) |
2688 | , renderer(&inRenderer) |
2689 | , particlesEnabled(checkParticleSupport(rhi: inRenderer.contextInterface()->rhi())) |
2690 | { |
2691 | } |
2692 | |
2693 | QSSGLayerRenderData::~QSSGLayerRenderData() |
2694 | { |
2695 | delete m_lightmapper; |
2696 | for (auto &pass : activePasses) |
2697 | pass->resetForFrame(); |
2698 | |
2699 | for (auto &renderResult : renderResults) |
2700 | renderResult.reset(); |
2701 | } |
2702 | |
2703 | static void sortInstances(QByteArray &sortedData, QList<QSSGRhiSortData> &sortData, const void *instances, |
2704 | int stride, int count, const QVector3D &cameraDirection) |
2705 | { |
2706 | sortData.resize(size: count); |
2707 | Q_ASSERT(stride == sizeof(QSSGRenderInstanceTableEntry)); |
2708 | // create sort data |
2709 | { |
2710 | const QSSGRenderInstanceTableEntry *instance = reinterpret_cast<const QSSGRenderInstanceTableEntry *>(instances); |
2711 | for (int i = 0; i < count; i++) { |
2712 | const QVector3D pos = QVector3D(instance->row0.w(), instance->row1.w(), instance->row2.w()); |
2713 | sortData[i] = {.d: QVector3D::dotProduct(v1: pos, v2: cameraDirection), .indexOrOffset: i}; |
2714 | instance++; |
2715 | } |
2716 | } |
2717 | |
2718 | // sort |
2719 | std::sort(first: sortData.begin(), last: sortData.end(), comp: [](const QSSGRhiSortData &a, const QSSGRhiSortData &b){ |
2720 | return a.d > b.d; |
2721 | }); |
2722 | |
2723 | // copy instances |
2724 | { |
2725 | const QSSGRenderInstanceTableEntry *instance = reinterpret_cast<const QSSGRenderInstanceTableEntry *>(instances); |
2726 | QSSGRenderInstanceTableEntry *dest = reinterpret_cast<QSSGRenderInstanceTableEntry *>(sortedData.data()); |
2727 | for (auto &s : sortData) |
2728 | *dest++ = instance[s.indexOrOffset]; |
2729 | } |
2730 | } |
2731 | |
2732 | static void cullLodInstances(QByteArray &lodData, const void *instances, int count, |
2733 | const QVector3D &cameraPosition, float minThreshold, float maxThreshold) |
2734 | { |
2735 | const QSSGRenderInstanceTableEntry *instance = reinterpret_cast<const QSSGRenderInstanceTableEntry *>(instances); |
2736 | QSSGRenderInstanceTableEntry *dest = reinterpret_cast<QSSGRenderInstanceTableEntry *>(lodData.data()); |
2737 | for (int i = 0; i < count; ++i) { |
2738 | const float x = cameraPosition.x() - instance->row0.w(); |
2739 | const float y = cameraPosition.y() - instance->row1.w(); |
2740 | const float z = cameraPosition.z() - instance->row2.w(); |
2741 | const float distanceSq = x * x + y * y + z * z; |
2742 | if (distanceSq >= minThreshold * minThreshold && (maxThreshold < 0 || distanceSq < maxThreshold * maxThreshold)) |
2743 | *dest = *instance; |
2744 | else |
2745 | *dest= {}; |
2746 | dest++; |
2747 | instance++; |
2748 | } |
2749 | } |
2750 | |
2751 | bool QSSGLayerRenderData::prepareInstancing(QSSGRhiContext *rhiCtx, |
2752 | QSSGSubsetRenderable *renderable, |
2753 | const QVector3D &cameraDirection, |
2754 | const QVector3D &cameraPosition, |
2755 | float minThreshold, |
2756 | float maxThreshold) |
2757 | { |
2758 | QSSGRhiContextPrivate *rhiCtxD = QSSGRhiContextPrivate::get(q: rhiCtx); |
2759 | auto &modelContext = renderable->modelContext; |
2760 | auto &instanceBuffer = renderable->instanceBuffer; // intentional ref2ptr |
2761 | if (!modelContext.model.instancing() || instanceBuffer) |
2762 | return instanceBuffer; |
2763 | auto *table = modelContext.model.instanceTable; |
2764 | bool usesLod = minThreshold >= 0 || maxThreshold >= 0; |
2765 | QSSGRhiInstanceBufferData &instanceData(usesLod ? rhiCtxD->instanceBufferData(model: &modelContext.model) : rhiCtxD->instanceBufferData(instanceTable: table)); |
2766 | quint32 instanceBufferSize = table->dataSize(); |
2767 | // Create or resize the instance buffer ### if (instanceData.owned) |
2768 | bool sortingChanged = table->isDepthSortingEnabled() != instanceData.sorting; |
2769 | bool cameraDirectionChanged = !qFuzzyCompare(v1: instanceData.sortedCameraDirection, v2: cameraDirection); |
2770 | bool cameraPositionChanged = !qFuzzyCompare(v1: instanceData.cameraPosition, v2: cameraPosition); |
2771 | bool updateInstanceBuffer = table->serial() != instanceData.serial || sortingChanged || (cameraDirectionChanged && table->isDepthSortingEnabled()); |
2772 | bool updateForLod = cameraPositionChanged && usesLod; |
2773 | if (sortingChanged && !table->isDepthSortingEnabled()) { |
2774 | instanceData.sortedData.clear(); |
2775 | instanceData.sortData.clear(); |
2776 | instanceData.sortedCameraDirection = {}; |
2777 | } |
2778 | instanceData.sorting = table->isDepthSortingEnabled(); |
2779 | if (instanceData.buffer && instanceData.buffer->size() < instanceBufferSize) { |
2780 | updateInstanceBuffer = true; |
2781 | // qDebug() << "Resizing instance buffer"; |
2782 | instanceData.buffer->setSize(instanceBufferSize); |
2783 | instanceData.buffer->create(); |
2784 | } |
2785 | if (!instanceData.buffer) { |
2786 | // qDebug() << "Creating instance buffer"; |
2787 | updateInstanceBuffer = true; |
2788 | instanceData.buffer = rhiCtx->rhi()->newBuffer(type: QRhiBuffer::Dynamic, usage: QRhiBuffer::VertexBuffer, size: instanceBufferSize); |
2789 | instanceData.buffer->create(); |
2790 | } |
2791 | if (updateInstanceBuffer || updateForLod) { |
2792 | const void *data = nullptr; |
2793 | if (table->isDepthSortingEnabled()) { |
2794 | if (updateInstanceBuffer) { |
2795 | QMatrix4x4 invGlobalTransform = modelContext.model.globalTransform.inverted(); |
2796 | instanceData.sortedData.resize(size: table->dataSize()); |
2797 | sortInstances(sortedData&: instanceData.sortedData, |
2798 | sortData&: instanceData.sortData, |
2799 | instances: table->constData(), |
2800 | stride: table->stride(), |
2801 | count: table->count(), |
2802 | cameraDirection: invGlobalTransform.map(point: cameraDirection).normalized()); |
2803 | } |
2804 | data = instanceData.sortedData.constData(); |
2805 | instanceData.sortedCameraDirection = cameraDirection; |
2806 | } else { |
2807 | data = table->constData(); |
2808 | } |
2809 | if (data) { |
2810 | if (updateForLod) { |
2811 | if (table->isDepthSortingEnabled()) { |
2812 | instanceData.lodData.resize(size: table->dataSize()); |
2813 | cullLodInstances(lodData&: instanceData.lodData, instances: instanceData.sortedData.constData(), count: instanceData.sortedData.size(), cameraPosition, minThreshold, maxThreshold); |
2814 | data = instanceData.lodData.constData(); |
2815 | } else { |
2816 | instanceData.lodData.resize(size: table->dataSize()); |
2817 | cullLodInstances(lodData&: instanceData.lodData, instances: table->constData(), count: table->count(), cameraPosition, minThreshold, maxThreshold); |
2818 | data = instanceData.lodData.constData(); |
2819 | } |
2820 | } |
2821 | QRhiResourceUpdateBatch *rub = rhiCtx->rhi()->nextResourceUpdateBatch(); |
2822 | rub->updateDynamicBuffer(buf: instanceData.buffer, offset: 0, size: instanceBufferSize, data); |
2823 | rhiCtx->commandBuffer()->resourceUpdate(resourceUpdates: rub); |
2824 | //qDebug() << "****** UPDATING INST BUFFER. Size" << instanceBufferSize; |
2825 | } else { |
2826 | qWarning() << "NO DATA IN INSTANCE TABLE" ; |
2827 | } |
2828 | instanceData.serial = table->serial(); |
2829 | instanceData.cameraPosition = cameraPosition; |
2830 | } |
2831 | instanceBuffer = instanceData.buffer; |
2832 | return instanceBuffer; |
2833 | } |
2834 | |
2835 | void QSSGLayerRenderData::maybeBakeLightmap() |
2836 | { |
2837 | if (!interactiveLightmapBakingRequested) { |
2838 | static bool bakeRequested = false; |
2839 | static bool bakeFlagChecked = false; |
2840 | if (!bakeFlagChecked) { |
2841 | bakeFlagChecked = true; |
2842 | const bool cmdLineReq = QCoreApplication::arguments().contains(QStringLiteral("--bake-lightmaps" )); |
2843 | const bool envReq = qEnvironmentVariableIntValue(varName: "QT_QUICK3D_BAKE_LIGHTMAPS" ); |
2844 | bakeRequested = cmdLineReq || envReq; |
2845 | } |
2846 | if (!bakeRequested) |
2847 | return; |
2848 | } |
2849 | |
2850 | const auto &sortedBakedLightingModels = getSortedBakedLightingModels(); // front to back |
2851 | |
2852 | QSSGRhiContext *rhiCtx = renderer->contextInterface()->rhiContext().get(); |
2853 | |
2854 | if (!m_lightmapper) |
2855 | m_lightmapper = new QSSGLightmapper(rhiCtx, renderer); |
2856 | |
2857 | // sortedBakedLightingModels contains all models with |
2858 | // usedInBakedLighting: true. These, together with lights that |
2859 | // have a bakeMode set to either Indirect or All, form the |
2860 | // lightmapped scene. A lightmap is stored persistently only |
2861 | // for models that have their lightmapKey set. |
2862 | |
2863 | m_lightmapper->reset(); |
2864 | m_lightmapper->setOptions(layer.lmOptions); |
2865 | m_lightmapper->setOutputCallback(lightmapBakingOutputCallback); |
2866 | |
2867 | for (int i = 0, ie = sortedBakedLightingModels.size(); i != ie; ++i) |
2868 | m_lightmapper->add(model: sortedBakedLightingModels[i]); |
2869 | |
2870 | QRhiCommandBuffer *cb = rhiCtx->commandBuffer(); |
2871 | cb->debugMarkBegin(name: "Quick3D lightmap baking" ); |
2872 | m_lightmapper->bake(); |
2873 | cb->debugMarkEnd(); |
2874 | |
2875 | if (!interactiveLightmapBakingRequested) { |
2876 | qDebug(msg: "Lightmap baking done, exiting application" ); |
2877 | QMetaObject::invokeMethod(qApp, member: "quit" ); |
2878 | } |
2879 | |
2880 | interactiveLightmapBakingRequested = false; |
2881 | } |
2882 | |
2883 | QSSGFrameData &QSSGLayerRenderData::getFrameData() |
2884 | { |
2885 | return frameData; |
2886 | } |
2887 | |
2888 | QSSGRenderGraphObject *QSSGLayerRenderData::getCamera(QSSGCameraId id) const |
2889 | { |
2890 | QSSGRenderGraphObject *ret = nullptr; |
2891 | if (auto res = reinterpret_cast<QSSGRenderGraphObject *>(id)) |
2892 | ret = res; |
2893 | |
2894 | return ret; |
2895 | } |
2896 | |
2897 | QSSGRenderCameraData QSSGLayerRenderData::getCameraRenderData(const QSSGRenderCamera *camera_) |
2898 | { |
2899 | if ((!camera_ || camera_ == renderedCameras[0]) && renderedCameraData.has_value()) |
2900 | return renderedCameraData.value()[0]; |
2901 | if (camera_) |
2902 | return getCameraDataImpl(camera: camera_); |
2903 | return {}; |
2904 | } |
2905 | |
2906 | QSSGRenderCameraData QSSGLayerRenderData::getCameraRenderData(const QSSGRenderCamera *camera_) const |
2907 | { |
2908 | if ((!camera_ || camera_ == renderedCameras[0]) && renderedCameraData.has_value()) |
2909 | return renderedCameraData.value()[0]; |
2910 | if (camera_) |
2911 | return getCameraDataImpl(camera: camera_); |
2912 | return {}; |
2913 | } |
2914 | |
2915 | QSSGRenderContextInterface *QSSGLayerRenderData::contextInterface() const |
2916 | { |
2917 | return renderer ? renderer->contextInterface() : nullptr; |
2918 | } |
2919 | |
2920 | QSSGLayerRenderData::GlobalRenderProperties QSSGLayerRenderData::globalRenderProperties(const QSSGRenderContextInterface &ctx) |
2921 | { |
2922 | GlobalRenderProperties props {}; |
2923 | if (const auto &rhiCtx = ctx.rhiContext(); rhiCtx->isValid()) { |
2924 | QRhi *rhi = rhiCtx->rhi(); |
2925 | props.isYUpInFramebuffer = rhi->isYUpInFramebuffer(); |
2926 | props.isYUpInNDC = rhi->isYUpInNDC(); |
2927 | props.isClipDepthZeroToOne = rhi->isClipDepthZeroToOne(); |
2928 | } |
2929 | |
2930 | return props; |
2931 | } |
2932 | |
2933 | const QSSGRenderShadowMapPtr &QSSGLayerRenderData::requestShadowMapManager() |
2934 | { |
2935 | if (!shadowMapManager && QSSG_GUARD(renderer && renderer->contextInterface())) |
2936 | shadowMapManager.reset(p: new QSSGRenderShadowMap(*renderer->contextInterface())); |
2937 | return shadowMapManager; |
2938 | } |
2939 | |
2940 | const QSSGRenderReflectionMapPtr &QSSGLayerRenderData::requestReflectionMapManager() |
2941 | { |
2942 | if (!reflectionMapManager && QSSG_GUARD(renderer && renderer->contextInterface())) |
2943 | reflectionMapManager.reset(p: new QSSGRenderReflectionMap(*renderer->contextInterface())); |
2944 | return reflectionMapManager; |
2945 | } |
2946 | |
2947 | QT_END_NAMESPACE |
2948 | |