1 | // Copyright (C) 2008-2012 NVIDIA Corporation. |
2 | // Copyright (C) 2022 The Qt Company Ltd. |
3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only |
4 | |
5 | #include "qssglayerrenderdata_p.h" |
6 | |
7 | #include <QtQuick3DRuntimeRender/private/qssgrenderer_p.h> |
8 | #include <QtQuick3DRuntimeRender/private/qssgrenderlight_p.h> |
9 | #include <QtQuick3DRuntimeRender/private/qssgrhicustommaterialsystem_p.h> |
10 | #include <QtQuick3DRuntimeRender/private/qssgrhiquadrenderer_p.h> |
11 | #include <QtQuick3DRuntimeRender/private/qssgrhiparticles_p.h> |
12 | #include <QtQuick3DRuntimeRender/private/qssgrenderlayer_p.h> |
13 | #include <QtQuick3DRuntimeRender/private/qssgrendereffect_p.h> |
14 | #include <QtQuick3DRuntimeRender/private/qssgrendercamera_p.h> |
15 | #include <QtQuick3DRuntimeRender/private/qssgrenderskeleton_p.h> |
16 | #include <QtQuick3DRuntimeRender/private/qssgrenderjoint_p.h> |
17 | #include <QtQuick3DRuntimeRender/private/qssgrendermorphtarget_p.h> |
18 | #include <QtQuick3DRuntimeRender/private/qssgrenderparticles_p.h> |
19 | #include <QtQuick3DRuntimeRender/private/qssgrendercontextcore_p.h> |
20 | #include <QtQuick3DRuntimeRender/private/qssgrenderbuffermanager_p.h> |
21 | #include <QtQuick3DRuntimeRender/private/qssgrendershadercache_p.h> |
22 | #include <QtQuick3DRuntimeRender/private/qssgperframeallocator_p.h> |
23 | #include <QtQuick3DRuntimeRender/private/qssgruntimerenderlogging_p.h> |
24 | #include <QtQuick3DRuntimeRender/private/qssglightmapper_p.h> |
25 | |
26 | #include <QtQuick3DUtils/private/qssgutils_p.h> |
27 | #include <QtQuick3DUtils/private/qssgassert_p.h> |
28 | |
29 | #include <QtQuick/private/qsgtexture_p.h> |
30 | #include <QtQuick/private/qsgrenderer_p.h> |
31 | |
32 | #include <QtCore/QCoreApplication> |
33 | #include <QtCore/QBitArray> |
34 | #include <array> |
35 | |
36 | #include "qssgrenderpass_p.h" |
37 | |
38 | QT_BEGIN_NAMESPACE |
39 | |
40 | Q_LOGGING_CATEGORY(lcQuick3DRender, "qt.quick3d.render" ); |
41 | |
42 | #define POS4BONETRANS(x) (sizeof(float) * 16 * (x) * 2) |
43 | #define POS4BONENORM(x) (sizeof(float) * 16 * ((x) * 2 + 1)) |
44 | #define BONEDATASIZE4ID(x) POS4BONETRANS(x + 1) |
45 | |
46 | static bool checkParticleSupport(QRhi *rhi) |
47 | { |
48 | QSSG_ASSERT(rhi, return false); |
49 | |
50 | bool ret = true; |
51 | const bool supportRgba32f = rhi->isTextureFormatSupported(format: QRhiTexture::RGBA32F); |
52 | const bool supportRgba16f = rhi->isTextureFormatSupported(format: QRhiTexture::RGBA16F); |
53 | if (!supportRgba32f && !supportRgba16f) { |
54 | static bool warningShown = false; |
55 | if (!warningShown) { |
56 | qWarning () << "Particles not supported due to missing RGBA32F and RGBA16F texture format support" ; |
57 | warningShown = true; |
58 | } |
59 | ret = false; |
60 | } |
61 | |
62 | return ret; |
63 | } |
64 | |
65 | // These are meant to be pixel offsets, so you need to divide them by the width/height |
66 | // of the layer respectively. |
67 | static const QVector2D s_ProgressiveAAVertexOffsets[QSSGLayerRenderData::MAX_AA_LEVELS] = { |
68 | QVector2D(-0.170840f, -0.553840f), // 1x |
69 | QVector2D(0.162960f, -0.319340f), // 2x |
70 | QVector2D(0.360260f, -0.245840f), // 3x |
71 | QVector2D(-0.561340f, -0.149540f), // 4x |
72 | QVector2D(0.249460f, 0.453460f), // 5x |
73 | QVector2D(-0.336340f, 0.378260f), // 6x |
74 | QVector2D(0.340000f, 0.166260f), // 7x |
75 | QVector2D(0.235760f, 0.527760f), // 8x |
76 | }; |
77 | |
78 | qsizetype QSSGLayerRenderData::frustumCulling(const QSSGClippingFrustum &clipFrustum, const QSSGRenderableObjectList &renderables, QSSGRenderableObjectList &visibleRenderables) |
79 | { |
80 | QSSG_ASSERT(visibleRenderables.isEmpty(), visibleRenderables.clear()); |
81 | visibleRenderables.reserve(asize: renderables.size()); |
82 | for (quint32 end = renderables.size(), idx = quint32(0); idx != end; ++idx) { |
83 | auto handle = renderables.at(i: idx); |
84 | const auto &b = handle.obj->globalBounds; |
85 | if (clipFrustum.intersectsWith(bounds: b)) |
86 | visibleRenderables.push_back(t: handle); |
87 | } |
88 | |
89 | return visibleRenderables.size(); |
90 | } |
91 | |
92 | qsizetype QSSGLayerRenderData::frustumCullingInline(const QSSGClippingFrustum &clipFrustum, QSSGRenderableObjectList &renderables) |
93 | { |
94 | const qint32 end = renderables.size(); |
95 | qint32 front = 0; |
96 | qint32 back = end - 1; |
97 | |
98 | while (front <= back) { |
99 | const auto &b = renderables.at(i: front).obj->globalBounds; |
100 | if (clipFrustum.intersectsWith(bounds: b)) |
101 | ++front; |
102 | else |
103 | renderables.swapItemsAt(i: front, j: back--); |
104 | } |
105 | |
106 | return back + 1; |
107 | } |
108 | |
109 | [[nodiscard]] constexpr static inline bool nearestToFurthestCompare(const QSSGRenderableObjectHandle &lhs, const QSSGRenderableObjectHandle &rhs) noexcept |
110 | { |
111 | return lhs.cameraDistanceSq < rhs.cameraDistanceSq; |
112 | } |
113 | |
114 | [[nodiscard]] constexpr static inline bool furthestToNearestCompare(const QSSGRenderableObjectHandle &lhs, const QSSGRenderableObjectHandle &rhs) noexcept |
115 | { |
116 | return lhs.cameraDistanceSq > rhs.cameraDistanceSq; |
117 | } |
118 | |
119 | static void collectBoneTransforms(QSSGRenderNode *node, QSSGRenderSkeleton *skeletonNode, const QVector<QMatrix4x4> &poses) |
120 | { |
121 | if (node->type == QSSGRenderGraphObject::Type::Joint) { |
122 | QSSGRenderJoint *jointNode = static_cast<QSSGRenderJoint *>(node); |
123 | jointNode->calculateGlobalVariables(); |
124 | QMatrix4x4 globalTrans = jointNode->globalTransform; |
125 | // if user doesn't give the inverseBindPose, identity matrices are used. |
126 | if (poses.size() > jointNode->index) |
127 | globalTrans *= poses[jointNode->index]; |
128 | memcpy(dest: skeletonNode->boneData.data() + POS4BONETRANS(jointNode->index), |
129 | src: reinterpret_cast<const void *>(globalTrans.constData()), |
130 | n: sizeof(float) * 16); |
131 | // only upper 3x3 is meaningful |
132 | memcpy(dest: skeletonNode->boneData.data() + POS4BONENORM(jointNode->index), |
133 | src: reinterpret_cast<const void *>(QMatrix4x4(globalTrans.normalMatrix()).constData()), |
134 | n: sizeof(float) * 11); |
135 | } else { |
136 | skeletonNode->containsNonJointNodes = true; |
137 | } |
138 | for (auto &child : node->children) |
139 | collectBoneTransforms(node: &child, skeletonNode, poses); |
140 | } |
141 | |
142 | static bool hasDirtyNonJointNodes(QSSGRenderNode *node, bool &hasChildJoints) |
143 | { |
144 | if (!node) |
145 | return false; |
146 | // we might be non-joint dirty node, but if we do not have child joints we need to return false |
147 | // Note! The frontend clears TransformDirty. Use dirty instead. |
148 | bool dirtyNonJoint = ((node->type != QSSGRenderGraphObject::Type::Joint) |
149 | && node->isDirty()); |
150 | |
151 | // Tell our parent we are joint |
152 | if (node->type == QSSGRenderGraphObject::Type::Joint) |
153 | hasChildJoints = true; |
154 | bool nodeHasChildJoints = false; |
155 | for (auto &child : node->children) { |
156 | bool ret = hasDirtyNonJointNodes(node: &child, hasChildJoints&: nodeHasChildJoints); |
157 | // return if we have child joints and non-joint dirty nodes, else check other children |
158 | hasChildJoints |= nodeHasChildJoints; |
159 | if (ret && nodeHasChildJoints) |
160 | return true; |
161 | } |
162 | // return true if we have child joints and we are dirty non-joint |
163 | hasChildJoints |= nodeHasChildJoints; |
164 | return dirtyNonJoint && nodeHasChildJoints; |
165 | } |
166 | |
167 | template<typename T, typename V> |
168 | inline void collectNode(V node, QVector<T> &dst, int &dstPos) |
169 | { |
170 | if (dstPos < dst.size()) |
171 | dst[dstPos] = node; |
172 | else |
173 | dst.push_back(node); |
174 | |
175 | ++dstPos; |
176 | } |
177 | template <typename T, typename V> |
178 | static inline void collectNodeFront(V node, QVector<T> &dst, int &dstPos) |
179 | { |
180 | if (dstPos < dst.size()) |
181 | dst[dst.size() - dstPos - 1] = node; |
182 | else |
183 | dst.push_front(node); |
184 | |
185 | ++dstPos; |
186 | } |
187 | |
188 | #define MAX_MORPH_TARGET 8 |
189 | #define MAX_MORPH_TARGET_INDEX_SUPPORTS_NORMALS 3 |
190 | #define MAX_MORPH_TARGET_INDEX_SUPPORTS_TANGENTS 1 |
191 | |
192 | static bool maybeQueueNodeForRender(QSSGRenderNode &inNode, |
193 | QVector<QSSGRenderableNodeEntry> &outRenderableModels, |
194 | int &ioRenderableModelsCount, |
195 | QVector<QSSGRenderableNodeEntry> &outRenderableParticles, |
196 | int &ioRenderableParticlesCount, |
197 | QVector<QSSGRenderItem2D *> &outRenderableItem2Ds, |
198 | int &ioRenderableItem2DsCount, |
199 | QVector<QSSGRenderCamera *> &outCameras, |
200 | int &ioCameraCount, |
201 | QVector<QSSGRenderLight *> &outLights, |
202 | int &ioLightCount, |
203 | QVector<QSSGRenderReflectionProbe *> &outReflectionProbes, |
204 | int &ioReflectionProbeCount, |
205 | quint32 &ioDFSIndex) |
206 | { |
207 | bool wasDirty = inNode.isDirty(dirtyFlag: QSSGRenderNode::DirtyFlag::GlobalValuesDirty) && inNode.calculateGlobalVariables(); |
208 | if (inNode.getGlobalState(stateFlag: QSSGRenderNode::GlobalState::Active)) { |
209 | ++ioDFSIndex; |
210 | inNode.dfsIndex = ioDFSIndex; |
211 | if (QSSGRenderGraphObject::isRenderable(type: inNode.type)) { |
212 | if (inNode.type == QSSGRenderNode::Type::Model) |
213 | collectNode(node: QSSGRenderableNodeEntry(inNode), dst&: outRenderableModels, dstPos&: ioRenderableModelsCount); |
214 | else if (inNode.type == QSSGRenderNode::Type::Particles) |
215 | collectNode(node: QSSGRenderableNodeEntry(inNode), dst&: outRenderableParticles, dstPos&: ioRenderableParticlesCount); |
216 | else if (inNode.type == QSSGRenderNode::Type::Item2D) // Pushing front to keep item order inside QML file |
217 | collectNodeFront(node: static_cast<QSSGRenderItem2D *>(&inNode), dst&: outRenderableItem2Ds, dstPos&: ioRenderableItem2DsCount); |
218 | } else if (QSSGRenderGraphObject::isCamera(type: inNode.type)) { |
219 | collectNode(node: static_cast<QSSGRenderCamera *>(&inNode), dst&: outCameras, dstPos&: ioCameraCount); |
220 | } else if (QSSGRenderGraphObject::isLight(type: inNode.type)) { |
221 | if (auto &light = static_cast<QSSGRenderLight &>(inNode); light.isEnabled()) |
222 | collectNode(node: &light, dst&: outLights, dstPos&: ioLightCount); |
223 | } else if (inNode.type == QSSGRenderGraphObject::Type::ReflectionProbe) { |
224 | collectNode(node: static_cast<QSSGRenderReflectionProbe *>(&inNode), dst&: outReflectionProbes, dstPos&: ioReflectionProbeCount); |
225 | } |
226 | |
227 | for (auto &theChild : inNode.children) |
228 | wasDirty |= maybeQueueNodeForRender(inNode&: theChild, |
229 | outRenderableModels, |
230 | ioRenderableModelsCount, |
231 | outRenderableParticles, |
232 | ioRenderableParticlesCount, |
233 | outRenderableItem2Ds, |
234 | ioRenderableItem2DsCount, |
235 | outCameras, |
236 | ioCameraCount, |
237 | outLights, |
238 | ioLightCount, |
239 | outReflectionProbes, |
240 | ioReflectionProbeCount, |
241 | ioDFSIndex); |
242 | } |
243 | return wasDirty; |
244 | } |
245 | |
246 | QSSGDefaultMaterialPreparationResult::QSSGDefaultMaterialPreparationResult(QSSGShaderDefaultMaterialKey inKey) |
247 | : firstImage(nullptr), opacity(1.0f), materialKey(inKey), dirty(false) |
248 | { |
249 | } |
250 | |
251 | static QSSGCameraRenderData getCameraDataImpl(const QSSGRenderCamera *camera) |
252 | { |
253 | QSSGCameraRenderData ret; |
254 | if (camera) { |
255 | // Calculate viewProjection and clippingFrustum for Render Camera |
256 | QMatrix4x4 viewProjection(Qt::Uninitialized); |
257 | camera->calculateViewProjectionMatrix(outMatrix&: viewProjection); |
258 | std::optional<QSSGClippingFrustum> clippingFrustum; |
259 | if (camera->enableFrustumClipping) { |
260 | QSSGClipPlane nearPlane; |
261 | QMatrix3x3 theUpper33(camera->globalTransform.normalMatrix()); |
262 | QVector3D dir(QSSGUtils::mat33::transform(m: theUpper33, v: QVector3D(0, 0, -1))); |
263 | dir.normalize(); |
264 | nearPlane.normal = dir; |
265 | QVector3D theGlobalPos = camera->getGlobalPos() + camera->clipNear * dir; |
266 | nearPlane.d = -(QVector3D::dotProduct(v1: dir, v2: theGlobalPos)); |
267 | // the near plane's bbox edges are calculated in the clipping frustum's |
268 | // constructor. |
269 | clippingFrustum = QSSGClippingFrustum{viewProjection, nearPlane}; |
270 | } |
271 | ret = { .viewProjection: viewProjection, .clippingFrustum: clippingFrustum, .direction: camera->getScalingCorrectDirection(), .position: camera->getGlobalPos() }; |
272 | } |
273 | |
274 | return ret; |
275 | } |
276 | |
277 | // Returns the cached data for the active render camera (if any) |
278 | QSSGCameraRenderData QSSGLayerRenderData::getCachedCameraData() |
279 | { |
280 | if (!cameraData.has_value()) |
281 | cameraData = getCameraDataImpl(camera); |
282 | |
283 | return *cameraData; |
284 | } |
285 | |
286 | [[nodiscard]] static inline float getCameraDistanceSq(const QSSGRenderableObject &obj, |
287 | const QSSGCameraRenderData &camera) noexcept |
288 | { |
289 | const QVector3D difference = obj.worldCenterPoint - camera.position; |
290 | return QVector3D::dotProduct(v1: difference, v2: camera.direction) + obj.depthBiasSq; |
291 | } |
292 | |
293 | // Per-frame cache of renderable objects post-sort. |
294 | const QVector<QSSGRenderableObjectHandle> &QSSGLayerRenderData::getSortedOpaqueRenderableObjects() |
295 | { |
296 | if (!renderedOpaqueObjects.empty() || camera == nullptr) |
297 | return renderedOpaqueObjects; |
298 | |
299 | if (layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest) && !opaqueObjects.empty()) { |
300 | renderedOpaqueObjects = opaqueObjects; |
301 | // Render nearest to furthest objects |
302 | std::sort(first: renderedOpaqueObjects.begin(), last: renderedOpaqueObjects.end(), comp: nearestToFurthestCompare); |
303 | } |
304 | return renderedOpaqueObjects; |
305 | } |
306 | |
307 | // If layer depth test is false, this may also contain opaque objects. |
308 | const QVector<QSSGRenderableObjectHandle> &QSSGLayerRenderData::getSortedTransparentRenderableObjects() |
309 | { |
310 | if (!renderedTransparentObjects.empty() || camera == nullptr) |
311 | return renderedTransparentObjects; |
312 | |
313 | renderedTransparentObjects = transparentObjects; |
314 | |
315 | if (!layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest)) |
316 | renderedTransparentObjects.append(l: opaqueObjects); |
317 | |
318 | if (!renderedTransparentObjects.empty()) { |
319 | // render furthest to nearest. |
320 | std::sort(first: renderedTransparentObjects.begin(), last: renderedTransparentObjects.end(), comp: furthestToNearestCompare); |
321 | } |
322 | |
323 | return renderedTransparentObjects; |
324 | } |
325 | |
326 | const QVector<QSSGRenderableObjectHandle> &QSSGLayerRenderData::getSortedScreenTextureRenderableObjects() |
327 | { |
328 | if (!renderedScreenTextureObjects.empty() || camera == nullptr) |
329 | return renderedScreenTextureObjects; |
330 | renderedScreenTextureObjects = screenTextureObjects; |
331 | if (!renderedScreenTextureObjects.empty()) { |
332 | // render furthest to nearest. |
333 | std::sort(first: renderedScreenTextureObjects.begin(), last: renderedScreenTextureObjects.end(), comp: furthestToNearestCompare); |
334 | } |
335 | return renderedScreenTextureObjects; |
336 | } |
337 | |
338 | const QVector<QSSGBakedLightingModel> &QSSGLayerRenderData::getSortedBakedLightingModels() |
339 | { |
340 | if (!renderedBakedLightingModels.empty() || camera == nullptr) |
341 | return renderedBakedLightingModels; |
342 | if (layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest) && !bakedLightingModels.empty()) { |
343 | renderedBakedLightingModels = bakedLightingModels; |
344 | for (QSSGBakedLightingModel &lm : renderedBakedLightingModels) { |
345 | // sort nearest to furthest (front to back) |
346 | std::sort(first: lm.renderables.begin(), last: lm.renderables.end(), comp: nearestToFurthestCompare); |
347 | } |
348 | } |
349 | return renderedBakedLightingModels; |
350 | } |
351 | |
352 | const QSSGLayerRenderData::RenderableItem2DEntries &QSSGLayerRenderData::getRenderableItem2Ds() |
353 | { |
354 | if (!renderedItem2Ds.isEmpty() || camera == nullptr) |
355 | return renderedItem2Ds; |
356 | |
357 | renderedItem2Ds = renderableItem2Ds; |
358 | |
359 | if (!renderedItem2Ds.isEmpty()) { |
360 | const auto cameraDirectionAndPosition = getCachedCameraData(); |
361 | const QVector3D &cameraDirection = cameraDirectionAndPosition.direction; |
362 | const QVector3D &cameraPosition = cameraDirectionAndPosition.position; |
363 | |
364 | const auto isItemNodeDistanceGreatThan = [cameraDirection, cameraPosition] |
365 | (const QSSGRenderItem2D *lhs, const QSSGRenderItem2D *rhs) { |
366 | if (!lhs->parent || !rhs->parent) |
367 | return false; |
368 | const QVector3D lhsDifference = lhs->parent->getGlobalPos() - cameraPosition; |
369 | const float lhsCameraDistanceSq = QVector3D::dotProduct(v1: lhsDifference, v2: cameraDirection); |
370 | const QVector3D rhsDifference = rhs->parent->getGlobalPos() - cameraPosition; |
371 | const float rhsCameraDistanceSq = QVector3D::dotProduct(v1: rhsDifference, v2: cameraDirection); |
372 | return lhsCameraDistanceSq > rhsCameraDistanceSq; |
373 | }; |
374 | |
375 | const auto isItemZOrderLessThan = [] |
376 | (const QSSGRenderItem2D *lhs, const QSSGRenderItem2D *rhs) { |
377 | if (lhs->parent && rhs->parent && lhs->parent == rhs->parent) { |
378 | // Same parent nodes, so sort with item z-ordering |
379 | return lhs->zOrder < rhs->zOrder; |
380 | } |
381 | return false; |
382 | }; |
383 | |
384 | // Render furthest to nearest items (parent nodes). |
385 | std::stable_sort(first: renderedItem2Ds.begin(), last: renderedItem2Ds.end(), comp: isItemNodeDistanceGreatThan); |
386 | // Render items inside same node by item z-order. |
387 | // Note: stable_sort so item order in QML file is respected. |
388 | std::stable_sort(first: renderedItem2Ds.begin(), last: renderedItem2Ds.end(), comp: isItemZOrderLessThan); |
389 | } |
390 | |
391 | return renderedItem2Ds; |
392 | } |
393 | |
394 | // Depth Write List |
395 | void QSSGLayerRenderData::updateSortedDepthObjectsListImp() |
396 | { |
397 | if (!renderedDepthWriteObjects.isEmpty() || !renderedOpaqueDepthPrepassObjects.isEmpty()) |
398 | return; |
399 | |
400 | if (layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest)) { |
401 | if (hasDepthWriteObjects || (depthPrepassObjectsState & DepthPrepassObjectStateT(DepthPrepassObject::Opaque)) != 0) { |
402 | const auto &sortedOpaqueObjects = getSortedOpaqueRenderableObjects(); // front to back |
403 | for (const auto &opaqueObject : sortedOpaqueObjects) { |
404 | const auto depthMode = opaqueObject.obj->depthWriteMode; |
405 | if (depthMode == QSSGDepthDrawMode::Always || depthMode == QSSGDepthDrawMode::OpaqueOnly) |
406 | renderedDepthWriteObjects.append(t: opaqueObject); |
407 | else if (depthMode == QSSGDepthDrawMode::OpaquePrePass) |
408 | renderedOpaqueDepthPrepassObjects.append(t: opaqueObject); |
409 | } |
410 | } |
411 | if (hasDepthWriteObjects || (depthPrepassObjectsState & DepthPrepassObjectStateT(DepthPrepassObject::Transparent)) != 0) { |
412 | const auto &sortedTransparentObjects = getSortedTransparentRenderableObjects(); // back to front |
413 | for (const auto &transparentObject : sortedTransparentObjects) { |
414 | const auto depthMode = transparentObject.obj->depthWriteMode; |
415 | if (depthMode == QSSGDepthDrawMode::Always) |
416 | renderedDepthWriteObjects.append(t: transparentObject); |
417 | else if (depthMode == QSSGDepthDrawMode::OpaquePrePass) |
418 | renderedOpaqueDepthPrepassObjects.append(t: transparentObject); |
419 | } |
420 | } |
421 | if (hasDepthWriteObjects || (depthPrepassObjectsState & DepthPrepassObjectStateT(DepthPrepassObject::ScreenTexture)) != 0) { |
422 | const auto &sortedScreenTextureObjects = getSortedScreenTextureRenderableObjects(); // back to front |
423 | for (const auto &screenTextureObject : sortedScreenTextureObjects) { |
424 | const auto depthMode = screenTextureObject.obj->depthWriteMode; |
425 | if (depthMode == QSSGDepthDrawMode::Always || depthMode == QSSGDepthDrawMode::OpaqueOnly) |
426 | renderedDepthWriteObjects.append(t: screenTextureObject); |
427 | else if (depthMode == QSSGDepthDrawMode::OpaquePrePass) |
428 | renderedOpaqueDepthPrepassObjects.append(t: screenTextureObject); |
429 | } |
430 | } |
431 | } |
432 | } |
433 | |
434 | const QSSGRenderableObjectList &QSSGLayerRenderData::getSortedRenderedDepthWriteObjects() |
435 | { |
436 | updateSortedDepthObjectsListImp(); |
437 | return renderedDepthWriteObjects; |
438 | } |
439 | |
440 | const QSSGRenderableObjectList &QSSGLayerRenderData::getSortedrenderedOpaqueDepthPrepassObjects() |
441 | { |
442 | updateSortedDepthObjectsListImp(); |
443 | return renderedOpaqueDepthPrepassObjects; |
444 | } |
445 | |
446 | /** |
447 | * Usage: T *ptr = RENDER_FRAME_NEW<T>(context, arg0, arg1, ...); is equivalent to: T *ptr = new T(arg0, arg1, ...); |
448 | * so RENDER_FRAME_NEW() takes the RCI + T's arguments |
449 | */ |
450 | template <typename T, typename... Args> |
451 | Q_REQUIRED_RESULT inline T *RENDER_FRAME_NEW(QSSGRenderContextInterface &ctx, Args&&... args) |
452 | { |
453 | static_assert(std::is_trivially_destructible_v<T>, "Objects allocated using the per-frame allocator needs to be trivially destructible!" ); |
454 | return new (ctx.perFrameAllocator().allocate(size: sizeof(T)))T(std::forward<Args>(args)...); |
455 | } |
456 | |
457 | template <typename T> |
458 | Q_REQUIRED_RESULT inline QSSGDataRef<T> RENDER_FRAME_NEW_BUFFER(QSSGRenderContextInterface &ctx, size_t count) |
459 | { |
460 | static_assert(std::is_trivially_destructible_v<T>, "Objects allocated using the per-frame allocator needs to be trivially destructible!" ); |
461 | const size_t asize = sizeof(T) * count; |
462 | return { reinterpret_cast<T *>(ctx.perFrameAllocator().allocate(size: asize)), qsizetype(count) }; |
463 | } |
464 | |
465 | QSSGShaderDefaultMaterialKey QSSGLayerRenderData::generateLightingKey( |
466 | QSSGRenderDefaultMaterial::MaterialLighting inLightingType, const QSSGShaderLightListView &lights, bool receivesShadows) |
467 | { |
468 | QSSGShaderDefaultMaterialKey theGeneratedKey(qHash(features)); |
469 | const bool lighting = inLightingType != QSSGRenderDefaultMaterial::MaterialLighting::NoLighting; |
470 | renderer->defaultMaterialShaderKeyProperties().m_hasLighting.setValue(inDataStore: theGeneratedKey, inValue: lighting); |
471 | if (lighting) { |
472 | renderer->defaultMaterialShaderKeyProperties().m_hasIbl.setValue(inDataStore: theGeneratedKey, inValue: layer.lightProbe != nullptr); |
473 | |
474 | quint32 numLights = quint32(lights.size()); |
475 | Q_ASSERT(numLights <= QSSGShaderDefaultMaterialKeyProperties::LightCount); |
476 | renderer->defaultMaterialShaderKeyProperties().m_lightCount.setValue(inDataStore: theGeneratedKey, inValue: numLights); |
477 | |
478 | int shadowMapCount = 0; |
479 | for (int lightIdx = 0, lightEnd = lights.size(); lightIdx < lightEnd; ++lightIdx) { |
480 | QSSGRenderLight *theLight(lights[lightIdx].light); |
481 | const bool isDirectional = theLight->type == QSSGRenderLight::Type::DirectionalLight; |
482 | const bool isSpot = theLight->type == QSSGRenderLight::Type::SpotLight; |
483 | const bool castsShadows = theLight->m_castShadow |
484 | && !theLight->m_fullyBaked |
485 | && receivesShadows |
486 | && shadowMapCount < QSSG_MAX_NUM_SHADOW_MAPS; |
487 | if (castsShadows) |
488 | ++shadowMapCount; |
489 | |
490 | renderer->defaultMaterialShaderKeyProperties().m_lightFlags[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: !isDirectional); |
491 | renderer->defaultMaterialShaderKeyProperties().m_lightSpotFlags[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: isSpot); |
492 | renderer->defaultMaterialShaderKeyProperties().m_lightShadowFlags[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: castsShadows); |
493 | } |
494 | } |
495 | return theGeneratedKey; |
496 | } |
497 | |
498 | void QSSGLayerRenderData::prepareImageForRender(QSSGRenderImage &inImage, |
499 | QSSGRenderableImage::Type inMapType, |
500 | QSSGRenderableImage *&ioFirstImage, |
501 | QSSGRenderableImage *&ioNextImage, |
502 | QSSGRenderableObjectFlags &ioFlags, |
503 | QSSGShaderDefaultMaterialKey &inShaderKey, |
504 | quint32 inImageIndex, |
505 | QSSGRenderDefaultMaterial *inMaterial) |
506 | { |
507 | QSSGRenderContextInterface &contextInterface = *renderer->contextInterface(); |
508 | const auto &bufferManager = contextInterface.bufferManager(); |
509 | |
510 | if (inImage.clearDirty()) |
511 | ioFlags |= QSSGRenderableObjectFlag::Dirty; |
512 | |
513 | // This is where the QRhiTexture gets created, if not already done. Note |
514 | // that the bufferManager is per-QQuickWindow, and so per-render-thread. |
515 | // Hence using the same Texture (backed by inImage as the backend node) in |
516 | // multiple windows will work by each scene in each window getting its own |
517 | // QRhiTexture. And that's why the QSSGRenderImageTexture cannot be a |
518 | // member of the QSSGRenderImage. Conceptually this matches what we do for |
519 | // models (QSSGRenderModel -> QSSGRenderMesh retrieved from the |
520 | // bufferManager in each prepareModelForRender, etc.). |
521 | |
522 | const QSSGRenderImageTexture texture = bufferManager->loadRenderImage(image: &inImage); |
523 | |
524 | if (texture.m_texture) { |
525 | if (texture.m_flags.hasTransparency() |
526 | && (inMapType == QSSGRenderableImage::Type::Diffuse // note: Type::BaseColor is skipped here intentionally |
527 | || inMapType == QSSGRenderableImage::Type::Opacity |
528 | || inMapType == QSSGRenderableImage::Type::Translucency)) |
529 | { |
530 | ioFlags |= QSSGRenderableObjectFlag::HasTransparency; |
531 | } |
532 | |
533 | QSSGRenderableImage *theImage = RENDER_FRAME_NEW<QSSGRenderableImage>(ctx&: contextInterface, args&: inMapType, args&: inImage, args: texture); |
534 | QSSGShaderKeyImageMap &theKeyProp = renderer->defaultMaterialShaderKeyProperties().m_imageMaps[inImageIndex]; |
535 | |
536 | theKeyProp.setEnabled(inKeySet: inShaderKey, val: true); |
537 | switch (inImage.m_mappingMode) { |
538 | case QSSGRenderImage::MappingModes::Normal: |
539 | break; |
540 | case QSSGRenderImage::MappingModes::Environment: |
541 | theKeyProp.setEnvMap(inKeySet: inShaderKey, val: true); |
542 | break; |
543 | case QSSGRenderImage::MappingModes::LightProbe: |
544 | theKeyProp.setLightProbe(inKeySet: inShaderKey, val: true); |
545 | break; |
546 | } |
547 | |
548 | bool hasA = false; |
549 | bool hasG = false; |
550 | bool hasB = false; |
551 | |
552 | |
553 | //### TODO: More formats |
554 | switch (texture.m_texture->format()) { |
555 | case QRhiTexture::Format::RED_OR_ALPHA8: |
556 | hasA = !renderer->contextInterface()->rhiContext()->rhi()->isFeatureSupported(feature: QRhi::RedOrAlpha8IsRed); |
557 | break; |
558 | case QRhiTexture::Format::R8: |
559 | // Leave BGA as false |
560 | break; |
561 | default: |
562 | hasA = true; |
563 | hasG = true; |
564 | hasB = true; |
565 | break; |
566 | } |
567 | |
568 | if (inImage.isImageTransformIdentity()) |
569 | theKeyProp.setIdentityTransform(inKeySet: inShaderKey, val: true); |
570 | |
571 | if (inImage.m_indexUV == 1) |
572 | theKeyProp.setUsesUV1(inKeySet: inShaderKey, val: true); |
573 | |
574 | if (ioFirstImage == nullptr) |
575 | ioFirstImage = theImage; |
576 | else |
577 | ioNextImage->m_nextImage = theImage; |
578 | |
579 | ioNextImage = theImage; |
580 | |
581 | if (inMaterial && inImageIndex >= QSSGShaderDefaultMaterialKeyProperties::SingleChannelImagesFirst) { |
582 | QSSGRenderDefaultMaterial::TextureChannelMapping value = QSSGRenderDefaultMaterial::R; |
583 | |
584 | const quint32 scIndex = inImageIndex - QSSGShaderDefaultMaterialKeyProperties::SingleChannelImagesFirst; |
585 | QSSGShaderKeyTextureChannel &channelKey = renderer->defaultMaterialShaderKeyProperties().m_textureChannels[scIndex]; |
586 | switch (inImageIndex) { |
587 | case QSSGShaderDefaultMaterialKeyProperties::OpacityMap: |
588 | value = inMaterial->opacityChannel; |
589 | break; |
590 | case QSSGShaderDefaultMaterialKeyProperties::RoughnessMap: |
591 | value = inMaterial->roughnessChannel; |
592 | break; |
593 | case QSSGShaderDefaultMaterialKeyProperties::MetalnessMap: |
594 | value = inMaterial->metalnessChannel; |
595 | break; |
596 | case QSSGShaderDefaultMaterialKeyProperties::OcclusionMap: |
597 | value = inMaterial->occlusionChannel; |
598 | break; |
599 | case QSSGShaderDefaultMaterialKeyProperties::TranslucencyMap: |
600 | value = inMaterial->translucencyChannel; |
601 | break; |
602 | case QSSGShaderDefaultMaterialKeyProperties::HeightMap: |
603 | value = inMaterial->heightChannel; |
604 | break; |
605 | case QSSGShaderDefaultMaterialKeyProperties::ClearcoatMap: |
606 | value = inMaterial->clearcoatChannel; |
607 | break; |
608 | case QSSGShaderDefaultMaterialKeyProperties::ClearcoatRoughnessMap: |
609 | value = inMaterial->clearcoatRoughnessChannel; |
610 | break; |
611 | case QSSGShaderDefaultMaterialKeyProperties::TransmissionMap: |
612 | value = inMaterial->transmissionChannel; |
613 | break; |
614 | case QSSGShaderDefaultMaterialKeyProperties::ThicknessMap: |
615 | value = inMaterial->thicknessChannel; |
616 | break; |
617 | default: |
618 | break; |
619 | } |
620 | bool useDefault = false; |
621 | switch (value) { |
622 | case QSSGRenderDefaultMaterial::TextureChannelMapping::G: |
623 | useDefault = !hasG; |
624 | break; |
625 | case QSSGRenderDefaultMaterial::TextureChannelMapping::B: |
626 | useDefault = !hasB; |
627 | break; |
628 | case QSSGRenderDefaultMaterial::TextureChannelMapping::A: |
629 | useDefault = !hasA; |
630 | break; |
631 | default: |
632 | break; |
633 | } |
634 | if (useDefault) |
635 | value = QSSGRenderDefaultMaterial::R; // Always Fallback to Red |
636 | channelKey.setTextureChannel(channel: QSSGShaderKeyTextureChannel::TexturChannelBits(value), inKeySet: inShaderKey); |
637 | } |
638 | } |
639 | } |
640 | |
641 | void QSSGLayerRenderData::setVertexInputPresence(const QSSGRenderableObjectFlags &renderableFlags, |
642 | QSSGShaderDefaultMaterialKey &key, |
643 | QSSGRenderer *renderer) |
644 | { |
645 | quint32 vertexAttribs = 0; |
646 | if (renderableFlags.hasAttributePosition()) |
647 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Position; |
648 | if (renderableFlags.hasAttributeNormal()) |
649 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Normal; |
650 | if (renderableFlags.hasAttributeTexCoord0()) |
651 | vertexAttribs |= QSSGShaderKeyVertexAttribute::TexCoord0; |
652 | if (renderableFlags.hasAttributeTexCoord1()) |
653 | vertexAttribs |= QSSGShaderKeyVertexAttribute::TexCoord1; |
654 | if (renderableFlags.hasAttributeTexCoordLightmap()) |
655 | vertexAttribs |= QSSGShaderKeyVertexAttribute::TexCoordLightmap; |
656 | if (renderableFlags.hasAttributeTangent()) |
657 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Tangent; |
658 | if (renderableFlags.hasAttributeBinormal()) |
659 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Binormal; |
660 | if (renderableFlags.hasAttributeColor()) |
661 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Color; |
662 | if (renderableFlags.hasAttributeJointAndWeight()) |
663 | vertexAttribs |= QSSGShaderKeyVertexAttribute::JointAndWeight; |
664 | renderer->defaultMaterialShaderKeyProperties().m_vertexAttributes.setValue(inDataStore: key, inValue: vertexAttribs); |
665 | } |
666 | |
667 | QSSGDefaultMaterialPreparationResult QSSGLayerRenderData::prepareDefaultMaterialForRender( |
668 | QSSGRenderDefaultMaterial &inMaterial, |
669 | QSSGRenderableObjectFlags &inExistingFlags, |
670 | float inOpacity, |
671 | const QSSGShaderLightListView &lights, |
672 | QSSGLayerRenderPreparationResultFlags &ioFlags) |
673 | { |
674 | QSSGRenderDefaultMaterial *theMaterial = &inMaterial; |
675 | QSSGDefaultMaterialPreparationResult retval(generateLightingKey(inLightingType: theMaterial->lighting, lights, receivesShadows: inExistingFlags.receivesShadows())); |
676 | retval.renderableFlags = inExistingFlags; |
677 | QSSGRenderableObjectFlags &renderableFlags(retval.renderableFlags); |
678 | QSSGShaderDefaultMaterialKey &theGeneratedKey(retval.materialKey); |
679 | retval.opacity = inOpacity; |
680 | float &subsetOpacity(retval.opacity); |
681 | |
682 | if (theMaterial->isDirty()) |
683 | renderableFlags |= QSSGRenderableObjectFlag::Dirty; |
684 | |
685 | subsetOpacity *= theMaterial->opacity; |
686 | |
687 | QSSGRenderableImage *firstImage = nullptr; |
688 | |
689 | renderer->defaultMaterialShaderKeyProperties().m_specularAAEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.specularAAEnabled); |
690 | |
691 | // isDoubleSided |
692 | renderer->defaultMaterialShaderKeyProperties().m_isDoubleSided.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->cullMode == QSSGCullFaceMode::Disabled); |
693 | |
694 | // default materials never define their on position |
695 | renderer->defaultMaterialShaderKeyProperties().m_overridesPosition.setValue(inDataStore: theGeneratedKey, inValue: false); |
696 | |
697 | // default materials dont make use of raw projection or inverse projection matrices |
698 | renderer->defaultMaterialShaderKeyProperties().m_usesProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: false); |
699 | renderer->defaultMaterialShaderKeyProperties().m_usesInverseProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: false); |
700 | // nor they do rely on VAR_COLOR |
701 | renderer->defaultMaterialShaderKeyProperties().m_usesVarColor.setValue(inDataStore: theGeneratedKey, inValue: false); |
702 | |
703 | // alpha Mode |
704 | renderer->defaultMaterialShaderKeyProperties().m_alphaMode.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->alphaMode); |
705 | |
706 | // vertex attribute presence flags |
707 | setVertexInputPresence(renderableFlags, key&: theGeneratedKey, renderer); |
708 | |
709 | // set the flag indicating the need for gl_PointSize |
710 | renderer->defaultMaterialShaderKeyProperties().m_usesPointsTopology.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.isPointsTopology()); |
711 | |
712 | // propagate the flag indicating the presence of a lightmap |
713 | renderer->defaultMaterialShaderKeyProperties().m_lightmapEnabled.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.rendersWithLightmap()); |
714 | |
715 | renderer->defaultMaterialShaderKeyProperties().m_specularGlossyEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->type == QSSGRenderGraphObject::Type::SpecularGlossyMaterial); |
716 | |
717 | // debug modes |
718 | renderer->defaultMaterialShaderKeyProperties().m_debugMode.setValue(inDataStore: theGeneratedKey, inValue: int(layer.debugMode)); |
719 | |
720 | // fog |
721 | renderer->defaultMaterialShaderKeyProperties().m_fogEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.fog.enabled); |
722 | |
723 | if (!renderer->defaultMaterialShaderKeyProperties().m_hasIbl.getValue(inDataStore: theGeneratedKey) && theMaterial->iblProbe) { |
724 | features.set(feature: QSSGShaderFeatures::Feature::LightProbe, val: true); |
725 | renderer->defaultMaterialShaderKeyProperties().m_hasIbl.setValue(inDataStore: theGeneratedKey, inValue: true); |
726 | // features.set(ShaderFeatureDefines::enableIblFov(), |
727 | // m_Renderer.GetLayerRenderData()->m_Layer.m_ProbeFov < 180.0f ); |
728 | } |
729 | |
730 | if (subsetOpacity >= QSSG_RENDER_MINIMUM_RENDER_OPACITY) { |
731 | |
732 | // Set the semi-transparency flag as specified in PrincipledMaterial's |
733 | // blendMode and alphaMode: |
734 | // - the default SourceOver blendMode does not imply alpha blending on |
735 | // its own, |
736 | // - but other blendMode values do, |
737 | // - an alphaMode of Blend guarantees blending to be enabled regardless |
738 | // of anything else. |
739 | // Additionally: |
740 | // - Opacity and texture map alpha are handled elsewhere (that's when a |
741 | // blendMode of SourceOver or an alphaMode of Default/Opaque can in the |
742 | // end still result in HasTransparency), |
743 | // - the presence of an opacityMap guarantees alpha blending regardless |
744 | // of its content. |
745 | |
746 | if (theMaterial->blendMode != QSSGRenderDefaultMaterial::MaterialBlendMode::SourceOver |
747 | || theMaterial->opacityMap |
748 | || theMaterial->alphaMode == QSSGRenderDefaultMaterial::Blend) |
749 | { |
750 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
751 | } |
752 | |
753 | const bool specularEnabled = theMaterial->isSpecularEnabled(); |
754 | const bool metalnessEnabled = theMaterial->isMetalnessEnabled(); |
755 | renderer->defaultMaterialShaderKeyProperties().m_specularEnabled.setValue(inDataStore: theGeneratedKey, inValue: (specularEnabled || metalnessEnabled)); |
756 | if (specularEnabled || metalnessEnabled) |
757 | renderer->defaultMaterialShaderKeyProperties().m_specularModel.setSpecularModel(inKeySet: theGeneratedKey, inModel: theMaterial->specularModel); |
758 | |
759 | renderer->defaultMaterialShaderKeyProperties().m_fresnelEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->isFresnelEnabled()); |
760 | |
761 | renderer->defaultMaterialShaderKeyProperties().m_vertexColorsEnabled.setValue(inDataStore: theGeneratedKey, |
762 | inValue: theMaterial->isVertexColorsEnabled()); |
763 | renderer->defaultMaterialShaderKeyProperties().m_clearcoatEnabled.setValue(inDataStore: theGeneratedKey, |
764 | inValue: theMaterial->isClearcoatEnabled()); |
765 | renderer->defaultMaterialShaderKeyProperties().m_transmissionEnabled.setValue(inDataStore: theGeneratedKey, |
766 | inValue: theMaterial->isTransmissionEnabled()); |
767 | |
768 | // Run through the material's images and prepare them for render. |
769 | // this may in fact set pickable on the renderable flags if one of the images |
770 | // links to a sub presentation or any offscreen rendered object. |
771 | QSSGRenderableImage *nextImage = nullptr; |
772 | #define CHECK_IMAGE_AND_PREPARE(img, imgtype, shadercomponent) \ |
773 | if ((img)) \ |
774 | prepareImageForRender(*(img), imgtype, firstImage, nextImage, renderableFlags, \ |
775 | theGeneratedKey, shadercomponent, &inMaterial) |
776 | |
777 | if (theMaterial->type == QSSGRenderGraphObject::Type::PrincipledMaterial || |
778 | theMaterial->type == QSSGRenderGraphObject::Type::SpecularGlossyMaterial) { |
779 | CHECK_IMAGE_AND_PREPARE(theMaterial->colorMap, |
780 | QSSGRenderableImage::Type::BaseColor, |
781 | QSSGShaderDefaultMaterialKeyProperties::BaseColorMap); |
782 | CHECK_IMAGE_AND_PREPARE(theMaterial->occlusionMap, |
783 | QSSGRenderableImage::Type::Occlusion, |
784 | QSSGShaderDefaultMaterialKeyProperties::OcclusionMap); |
785 | CHECK_IMAGE_AND_PREPARE(theMaterial->heightMap, |
786 | QSSGRenderableImage::Type::Height, |
787 | QSSGShaderDefaultMaterialKeyProperties::HeightMap); |
788 | CHECK_IMAGE_AND_PREPARE(theMaterial->clearcoatMap, |
789 | QSSGRenderableImage::Type::Clearcoat, |
790 | QSSGShaderDefaultMaterialKeyProperties::ClearcoatMap); |
791 | CHECK_IMAGE_AND_PREPARE(theMaterial->clearcoatRoughnessMap, |
792 | QSSGRenderableImage::Type::ClearcoatRoughness, |
793 | QSSGShaderDefaultMaterialKeyProperties::ClearcoatRoughnessMap); |
794 | CHECK_IMAGE_AND_PREPARE(theMaterial->clearcoatNormalMap, |
795 | QSSGRenderableImage::Type::ClearcoatNormal, |
796 | QSSGShaderDefaultMaterialKeyProperties::ClearcoatNormalMap); |
797 | CHECK_IMAGE_AND_PREPARE(theMaterial->transmissionMap, |
798 | QSSGRenderableImage::Type::Transmission, |
799 | QSSGShaderDefaultMaterialKeyProperties::TransmissionMap); |
800 | CHECK_IMAGE_AND_PREPARE(theMaterial->thicknessMap, |
801 | QSSGRenderableImage::Type::Thickness, |
802 | QSSGShaderDefaultMaterialKeyProperties::ThicknessMap); |
803 | if (theMaterial->type == QSSGRenderGraphObject::Type::PrincipledMaterial) { |
804 | CHECK_IMAGE_AND_PREPARE(theMaterial->metalnessMap, |
805 | QSSGRenderableImage::Type::Metalness, |
806 | QSSGShaderDefaultMaterialKeyProperties::MetalnessMap); |
807 | } |
808 | } else { |
809 | CHECK_IMAGE_AND_PREPARE(theMaterial->colorMap, |
810 | QSSGRenderableImage::Type::Diffuse, |
811 | QSSGShaderDefaultMaterialKeyProperties::DiffuseMap); |
812 | } |
813 | CHECK_IMAGE_AND_PREPARE(theMaterial->emissiveMap, QSSGRenderableImage::Type::Emissive, QSSGShaderDefaultMaterialKeyProperties::EmissiveMap); |
814 | CHECK_IMAGE_AND_PREPARE(theMaterial->specularReflection, |
815 | QSSGRenderableImage::Type::Specular, |
816 | QSSGShaderDefaultMaterialKeyProperties::SpecularMap); |
817 | CHECK_IMAGE_AND_PREPARE(theMaterial->roughnessMap, |
818 | QSSGRenderableImage::Type::Roughness, |
819 | QSSGShaderDefaultMaterialKeyProperties::RoughnessMap); |
820 | CHECK_IMAGE_AND_PREPARE(theMaterial->opacityMap, QSSGRenderableImage::Type::Opacity, QSSGShaderDefaultMaterialKeyProperties::OpacityMap); |
821 | CHECK_IMAGE_AND_PREPARE(theMaterial->bumpMap, QSSGRenderableImage::Type::Bump, QSSGShaderDefaultMaterialKeyProperties::BumpMap); |
822 | CHECK_IMAGE_AND_PREPARE(theMaterial->specularMap, |
823 | QSSGRenderableImage::Type::SpecularAmountMap, |
824 | QSSGShaderDefaultMaterialKeyProperties::SpecularAmountMap); |
825 | CHECK_IMAGE_AND_PREPARE(theMaterial->normalMap, QSSGRenderableImage::Type::Normal, QSSGShaderDefaultMaterialKeyProperties::NormalMap); |
826 | CHECK_IMAGE_AND_PREPARE(theMaterial->translucencyMap, |
827 | QSSGRenderableImage::Type::Translucency, |
828 | QSSGShaderDefaultMaterialKeyProperties::TranslucencyMap); |
829 | } |
830 | #undef CHECK_IMAGE_AND_PREPARE |
831 | |
832 | if (subsetOpacity < QSSG_RENDER_MINIMUM_RENDER_OPACITY) { |
833 | subsetOpacity = 0.0f; |
834 | // You can still pick against completely transparent objects(or rather their bounding |
835 | // box) |
836 | // you just don't render them. |
837 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
838 | renderableFlags |= QSSGRenderableObjectFlag::CompletelyTransparent; |
839 | } |
840 | |
841 | if (subsetOpacity > 1.f - QSSG_RENDER_MINIMUM_RENDER_OPACITY) |
842 | subsetOpacity = 1.f; |
843 | else |
844 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
845 | |
846 | if (inMaterial.isTransmissionEnabled()) { |
847 | ioFlags.setRequiresScreenTexture(true); |
848 | ioFlags.setRequiresMipmapsForScreenTexture(true); |
849 | renderableFlags |= QSSGRenderableObjectFlag::RequiresScreenTexture; |
850 | } |
851 | |
852 | retval.firstImage = firstImage; |
853 | if (retval.renderableFlags.isDirty()) |
854 | retval.dirty = true; |
855 | if (retval.dirty) |
856 | renderer->addMaterialDirtyClear(material: &inMaterial); |
857 | return retval; |
858 | } |
859 | |
860 | QSSGDefaultMaterialPreparationResult QSSGLayerRenderData::prepareCustomMaterialForRender( |
861 | QSSGRenderCustomMaterial &inMaterial, QSSGRenderableObjectFlags &inExistingFlags, |
862 | float inOpacity, bool alreadyDirty, const QSSGShaderLightListView &lights, |
863 | QSSGLayerRenderPreparationResultFlags &ioFlags) |
864 | { |
865 | QSSGDefaultMaterialPreparationResult retval( |
866 | generateLightingKey(inLightingType: QSSGRenderDefaultMaterial::MaterialLighting::FragmentLighting, |
867 | lights, receivesShadows: inExistingFlags.receivesShadows())); |
868 | retval.renderableFlags = inExistingFlags; |
869 | QSSGRenderableObjectFlags &renderableFlags(retval.renderableFlags); |
870 | QSSGShaderDefaultMaterialKey &theGeneratedKey(retval.materialKey); |
871 | retval.opacity = inOpacity; |
872 | float &subsetOpacity(retval.opacity); |
873 | |
874 | if (subsetOpacity < QSSG_RENDER_MINIMUM_RENDER_OPACITY) { |
875 | subsetOpacity = 0.0f; |
876 | // You can still pick against completely transparent objects(or rather their bounding |
877 | // box) |
878 | // you just don't render them. |
879 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
880 | renderableFlags |= QSSGRenderableObjectFlag::CompletelyTransparent; |
881 | } |
882 | |
883 | if (subsetOpacity > 1.f - QSSG_RENDER_MINIMUM_RENDER_OPACITY) |
884 | subsetOpacity = 1.f; |
885 | else |
886 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
887 | |
888 | renderer->defaultMaterialShaderKeyProperties().m_specularAAEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.specularAAEnabled); |
889 | |
890 | // isDoubleSided |
891 | renderer->defaultMaterialShaderKeyProperties().m_isDoubleSided.setValue(inDataStore: theGeneratedKey, |
892 | inValue: inMaterial.m_cullMode == QSSGCullFaceMode::Disabled); |
893 | |
894 | // Does the material override the position output |
895 | const bool overridesPosition = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::OverridesPosition); |
896 | renderer->defaultMaterialShaderKeyProperties().m_overridesPosition.setValue(inDataStore: theGeneratedKey, inValue: overridesPosition); |
897 | |
898 | // Optional usage of PROJECTION_MATRIX and/or INVERSE_PROJECTION_MATRIX |
899 | const bool usesProjectionMatrix = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ProjectionMatrix); |
900 | renderer->defaultMaterialShaderKeyProperties().m_usesProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: usesProjectionMatrix); |
901 | const bool usesInvProjectionMatrix = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::InverseProjectionMatrix); |
902 | renderer->defaultMaterialShaderKeyProperties().m_usesInverseProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: usesInvProjectionMatrix); |
903 | |
904 | // vertex attribute presence flags |
905 | setVertexInputPresence(renderableFlags, key&: theGeneratedKey, renderer); |
906 | |
907 | // set the flag indicating the need for gl_PointSize |
908 | renderer->defaultMaterialShaderKeyProperties().m_usesPointsTopology.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.isPointsTopology()); |
909 | |
910 | // propagate the flag indicating the presence of a lightmap |
911 | renderer->defaultMaterialShaderKeyProperties().m_lightmapEnabled.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.rendersWithLightmap()); |
912 | |
913 | // debug modes |
914 | renderer->defaultMaterialShaderKeyProperties().m_debugMode.setValue(inDataStore: theGeneratedKey, inValue: int(layer.debugMode)); |
915 | |
916 | // fog |
917 | renderer->defaultMaterialShaderKeyProperties().m_fogEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.fog.enabled); |
918 | |
919 | // Knowing whether VAR_COLOR is used becomes relevant when there is no |
920 | // custom vertex shader, but VAR_COLOR is present in the custom fragment |
921 | // snippet, because that case needs special care. |
922 | const bool usesVarColor = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::VarColor); |
923 | renderer->defaultMaterialShaderKeyProperties().m_usesVarColor.setValue(inDataStore: theGeneratedKey, inValue: usesVarColor); |
924 | |
925 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::Blending)) |
926 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
927 | |
928 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ScreenTexture)) { |
929 | ioFlags.setRequiresScreenTexture(true); |
930 | renderableFlags |= QSSGRenderableObjectFlag::RequiresScreenTexture; |
931 | } |
932 | |
933 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ScreenMipTexture)) { |
934 | ioFlags.setRequiresScreenTexture(true); |
935 | ioFlags.setRequiresMipmapsForScreenTexture(true); |
936 | renderableFlags |= QSSGRenderableObjectFlag::RequiresScreenTexture; |
937 | } |
938 | |
939 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::DepthTexture)) |
940 | ioFlags.setRequiresDepthTexture(true); |
941 | |
942 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::AoTexture)) { |
943 | ioFlags.setRequiresDepthTexture(true); |
944 | ioFlags.setRequiresSsaoPass(true); |
945 | } |
946 | |
947 | retval.firstImage = nullptr; |
948 | |
949 | if (retval.dirty || alreadyDirty) |
950 | renderer->addMaterialDirtyClear(material: &inMaterial); |
951 | return retval; |
952 | } |
953 | |
954 | void QSSGLayerRenderData::prepareModelMeshes(const QSSGRenderContextInterface &contextInterface, |
955 | RenderableNodeEntries &renderableModels) |
956 | { |
957 | prepareModelMeshesForRenderInternal(contextInterface, renderableModels, globalPickingEnabled: false); |
958 | } |
959 | |
960 | void QSSGLayerRenderData::prepareModelMeshesForRenderInternal(const QSSGRenderContextInterface &contextInterface, |
961 | RenderableNodeEntries &renderableModels, |
962 | bool globalPickingEnabled) |
963 | { |
964 | const auto &bufferManager = contextInterface.bufferManager(); |
965 | |
966 | const auto originalModelCount = renderableModels.size(); |
967 | auto end = originalModelCount; |
968 | |
969 | for (int idx = 0; idx < end; ++idx) { |
970 | // It's up to the BufferManager to employ the appropriate caching mechanisms, so |
971 | // loadMesh() is expected to be fast if already loaded. Note that preparing |
972 | // the same QSSGRenderModel in different QQuickWindows (possible when a |
973 | // scene is shared between View3Ds where the View3Ds belong to different |
974 | // windows) leads to a different QSSGRenderMesh since the BufferManager is, |
975 | // very correctly, per window, and so per scenegraph render thread. |
976 | |
977 | const auto &renderable = renderableModels.at(i: idx); |
978 | const QSSGRenderModel &model = *static_cast<QSSGRenderModel *>(renderable.node); |
979 | // Ensure we have a mesh and at least 1 material |
980 | if (auto theMesh = bufferManager->loadMesh(model: &model); theMesh && model.materials.size() > 0) { |
981 | renderable.mesh = theMesh; |
982 | renderable.materials = QSSGMaterialListView(model.materials); |
983 | // Completely transparent models cannot be pickable. But models with completely |
984 | // transparent materials still are. This allows the artist to control pickability |
985 | // in a somewhat fine-grained style. |
986 | const bool canModelBePickable = (model.globalOpacity > QSSG_RENDER_MINIMUM_RENDER_OPACITY) |
987 | && (globalPickingEnabled |
988 | || model.getGlobalState(stateFlag: QSSGRenderModel::GlobalState::Pickable)); |
989 | if (canModelBePickable) { |
990 | // Check if there is BVH data, if not generate it |
991 | if (!theMesh->bvh) { |
992 | if (!model.meshPath.isNull()) |
993 | theMesh->bvh = bufferManager->loadMeshBVH(inSourcePath: model.meshPath); |
994 | else if (model.geometry) |
995 | theMesh->bvh = bufferManager->loadMeshBVH(geometry: model.geometry); |
996 | |
997 | if (theMesh->bvh) { |
998 | for (int i = 0; i < theMesh->bvh->roots.size(); ++i) |
999 | theMesh->subsets[i].bvhRoot = theMesh->bvh->roots.at(i); |
1000 | } |
1001 | } |
1002 | } |
1003 | } else { |
1004 | // Swap current (idx) and last item (--end). |
1005 | // Note, post-decrement idx to ensure we recheck the new current item on next iteration |
1006 | // and pre-decrement the end move the end of the list to not include the culled renderable. |
1007 | renderableModels.swapItemsAt(i: idx--, j: --end); |
1008 | } |
1009 | } |
1010 | |
1011 | // Any models without a mesh get dropped right here |
1012 | if (end != originalModelCount) |
1013 | renderableModels.resize(size: end); |
1014 | |
1015 | // Now is the time to kick off the vertex/index buffer updates for all the |
1016 | // new meshes (and their submeshes). This here is the last possible place |
1017 | // to kick this off because the rest of the rendering pipeline will only |
1018 | // see the individual sub-objects as "renderable objects". |
1019 | bufferManager->commitBufferResourceUpdates(); |
1020 | } |
1021 | |
1022 | void QSSGLayerRenderData::setLightmapTexture(const QSSGModelContext &modelContext, QRhiTexture *lightmapTexture) |
1023 | { |
1024 | lightmapTextures[&modelContext] = lightmapTexture; |
1025 | } |
1026 | |
1027 | QRhiTexture *QSSGLayerRenderData::getLightmapTexture(const QSSGModelContext &modelContext) const |
1028 | { |
1029 | QRhiTexture *ret = nullptr; |
1030 | if (modelContext.model.hasLightmap()) { |
1031 | const auto it = lightmapTextures.constFind(key: &modelContext); |
1032 | ret = (it != lightmapTextures.cend()) ? *it : nullptr; |
1033 | } |
1034 | |
1035 | return ret; |
1036 | } |
1037 | |
1038 | void QSSGLayerRenderData::setBonemapTexture(const QSSGModelContext &modelContext, QRhiTexture *bonemapTexture) |
1039 | { |
1040 | bonemapTextures[&modelContext] = bonemapTexture; |
1041 | } |
1042 | |
1043 | QRhiTexture *QSSGLayerRenderData::getBonemapTexture(const QSSGModelContext &modelContext) const |
1044 | { |
1045 | QRhiTexture *ret = nullptr; |
1046 | if (modelContext.model.usesBoneTexture()) { |
1047 | const auto it = bonemapTextures.constFind(key: &modelContext); |
1048 | ret = (it != bonemapTextures.cend()) ? *it : nullptr; |
1049 | } |
1050 | |
1051 | return ret; |
1052 | } |
1053 | |
1054 | // inModel is const to emphasize the fact that its members cannot be written |
1055 | // here: in case there is a scene shared between multiple View3Ds in different |
1056 | // QQuickWindows, each window may run this in their own render thread, while |
1057 | // inModel is the same. |
1058 | bool QSSGLayerRenderData::prepareModelsForRender(const RenderableNodeEntries &renderableModels, |
1059 | QSSGLayerRenderPreparationResultFlags &ioFlags, |
1060 | const QSSGCameraRenderData &cameraData, |
1061 | RenderableFilter filter, |
1062 | float lodThreshold) |
1063 | { |
1064 | const auto &rhiCtx = renderer->contextInterface()->rhiContext(); |
1065 | QSSGRenderContextInterface &contextInterface = *renderer->contextInterface(); |
1066 | const auto &bufferManager = contextInterface.bufferManager(); |
1067 | |
1068 | const auto &debugDrawSystem = renderer->contextInterface()->debugDrawSystem(); |
1069 | const bool maybeDebugDraw = debugDrawSystem && debugDrawSystem->isEnabled(); |
1070 | |
1071 | bool wasDirty = false; |
1072 | |
1073 | for (const QSSGRenderableNodeEntry &renderable : renderableModels) { |
1074 | const QSSGRenderModel &model = *static_cast<QSSGRenderModel *>(renderable.node); |
1075 | const auto &lights = renderable.lights; |
1076 | QSSGRenderMesh *theMesh = renderable.mesh; |
1077 | |
1078 | QSSG_ASSERT_X(theMesh != nullptr, "Only renderables with a mesh will be processed!" , continue); |
1079 | |
1080 | QSSGModelContext &theModelContext = *RENDER_FRAME_NEW<QSSGModelContext>(ctx&: contextInterface, args: model, args: cameraData.viewProjection); |
1081 | modelContexts.push_back(t: &theModelContext); |
1082 | // We might over-allocate here, as the material list technically can contain an invalid (nullptr) material. |
1083 | // We'll fix that by adjusting the size at the end for now... |
1084 | const auto &meshSubsets = theMesh->subsets; |
1085 | const auto meshSubsetCount = meshSubsets.size(); |
1086 | theModelContext.subsets = RENDER_FRAME_NEW_BUFFER<QSSGSubsetRenderable>(ctx&: contextInterface, count: meshSubsetCount); |
1087 | |
1088 | // Prepare boneTexture for skinning |
1089 | if (model.skin) { |
1090 | auto boneTexture = bufferManager->loadSkinmap(skin: model.skin); |
1091 | setBonemapTexture(modelContext: theModelContext, bonemapTexture: boneTexture.m_texture); |
1092 | } else if (model.skeleton) { |
1093 | auto boneTexture = bufferManager->loadSkinmap(skin: &(model.skeleton->boneTexData)); |
1094 | setBonemapTexture(modelContext: theModelContext, bonemapTexture: boneTexture.m_texture); |
1095 | } else { |
1096 | setBonemapTexture(modelContext: theModelContext, bonemapTexture: nullptr); |
1097 | } |
1098 | |
1099 | // many renderableFlags are the same for all the subsets |
1100 | QSSGRenderableObjectFlags renderableFlagsForModel; |
1101 | |
1102 | if (meshSubsetCount > 0) { |
1103 | const QSSGRenderSubset &theSubset = meshSubsets.at(i: 0); |
1104 | |
1105 | renderableFlagsForModel.setCastsShadows(model.castsShadows); |
1106 | renderableFlagsForModel.setReceivesShadows(model.receivesShadows); |
1107 | renderableFlagsForModel.setReceivesReflections(model.receivesReflections); |
1108 | renderableFlagsForModel.setCastsReflections(model.castsReflections); |
1109 | |
1110 | renderableFlagsForModel.setUsedInBakedLighting(model.usedInBakedLighting); |
1111 | if (model.hasLightmap()) { |
1112 | QSSGRenderImageTexture lmImageTexture = bufferManager->loadLightmap(model); |
1113 | if (lmImageTexture.m_texture) { |
1114 | renderableFlagsForModel.setRendersWithLightmap(true); |
1115 | setLightmapTexture(modelContext: theModelContext, lightmapTexture: lmImageTexture.m_texture); |
1116 | } |
1117 | } |
1118 | |
1119 | // TODO: This should be a oneshot thing, move the flags over! |
1120 | // With the RHI we need to be able to tell the material shader |
1121 | // generator to not generate vertex input attributes that are not |
1122 | // provided by the mesh. (because unlike OpenGL, other graphics |
1123 | // APIs may treat unbound vertex inputs as a fatal error) |
1124 | bool hasJoint = false; |
1125 | bool hasWeight = false; |
1126 | bool hasMorphTarget = theSubset.rhi.targetsTexture != nullptr; |
1127 | for (const QSSGRhiInputAssemblerState::InputSemantic &sem : std::as_const(t: theSubset.rhi.ia.inputs)) { |
1128 | if (sem == QSSGRhiInputAssemblerState::PositionSemantic) { |
1129 | renderableFlagsForModel.setHasAttributePosition(true); |
1130 | } else if (sem == QSSGRhiInputAssemblerState::NormalSemantic) { |
1131 | renderableFlagsForModel.setHasAttributeNormal(true); |
1132 | } else if (sem == QSSGRhiInputAssemblerState::TexCoord0Semantic) { |
1133 | renderableFlagsForModel.setHasAttributeTexCoord0(true); |
1134 | } else if (sem == QSSGRhiInputAssemblerState::TexCoord1Semantic) { |
1135 | renderableFlagsForModel.setHasAttributeTexCoord1(true); |
1136 | } else if (sem == QSSGRhiInputAssemblerState::TexCoordLightmapSemantic) { |
1137 | renderableFlagsForModel.setHasAttributeTexCoordLightmap(true); |
1138 | } else if (sem == QSSGRhiInputAssemblerState::TangentSemantic) { |
1139 | renderableFlagsForModel.setHasAttributeTangent(true); |
1140 | } else if (sem == QSSGRhiInputAssemblerState::BinormalSemantic) { |
1141 | renderableFlagsForModel.setHasAttributeBinormal(true); |
1142 | } else if (sem == QSSGRhiInputAssemblerState::ColorSemantic) { |
1143 | renderableFlagsForModel.setHasAttributeColor(true); |
1144 | // For skinning, we will set the HasAttribute only |
1145 | // if the mesh has both joint and weight |
1146 | } else if (sem == QSSGRhiInputAssemblerState::JointSemantic) { |
1147 | hasJoint = true; |
1148 | } else if (sem == QSSGRhiInputAssemblerState::WeightSemantic) { |
1149 | hasWeight = true; |
1150 | } |
1151 | } |
1152 | renderableFlagsForModel.setHasAttributeJointAndWeight(hasJoint && hasWeight); |
1153 | renderableFlagsForModel.setHasAttributeMorphTarget(hasMorphTarget); |
1154 | } |
1155 | |
1156 | QSSGRenderableObjectList bakedLightingObjects; |
1157 | bool usesBlendParticles = particlesEnabled && theModelContext.model.particleBuffer != nullptr |
1158 | && model.particleBuffer->particleCount(); |
1159 | |
1160 | // Subset(s) |
1161 | auto &renderableSubsets = theModelContext.subsets; |
1162 | const auto &materials = renderable.materials; |
1163 | const auto materialCount = materials.size(); |
1164 | QSSGRenderGraphObject *lastMaterial = !materials.isEmpty() ? materials.last() : nullptr; |
1165 | int idx = 0, subsetIdx = 0; |
1166 | for (; idx < meshSubsetCount; ++idx) { |
1167 | // If the materials list < size of subsets, then use the last material for the rest |
1168 | QSSGRenderGraphObject *theMaterialObject = (idx >= materialCount) ? lastMaterial : materials[idx]; |
1169 | QSSG_ASSERT_X(theMaterialObject != nullptr, "No material found for model!" , continue); |
1170 | |
1171 | const QSSGRenderSubset &theSubset = meshSubsets.at(i: idx); |
1172 | QSSGRenderableObjectFlags renderableFlags = renderableFlagsForModel; |
1173 | float subsetOpacity = model.globalOpacity; |
1174 | |
1175 | renderableFlags.setPointsTopology(theSubset.rhi.ia.topology == QRhiGraphicsPipeline::Points); |
1176 | QSSGRenderableObject *theRenderableObject = &renderableSubsets[subsetIdx++]; |
1177 | |
1178 | bool usesInstancing = theModelContext.model.instancing() |
1179 | && rhiCtx->rhi()->isFeatureSupported(feature: QRhi::Instancing); |
1180 | if (usesInstancing && theModelContext.model.instanceTable->hasTransparency()) |
1181 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
1182 | if (theModelContext.model.hasTransparency) |
1183 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
1184 | |
1185 | // Level Of Detail |
1186 | quint32 subsetLevelOfDetail = 0; |
1187 | if (!theSubset.lods.isEmpty() && lodThreshold > 0.0f) { |
1188 | // Accounts for FOV |
1189 | float lodDistanceMultiplier = camera->getLevelOfDetailMultiplier(); |
1190 | float distanceThreshold = 0.0f; |
1191 | const auto scale = QSSGUtils::mat44::getScale(m: model.globalTransform); |
1192 | float modelScale = qMax(a: scale.x(), b: qMax(a: scale.y(), b: scale.z())); |
1193 | QSSGBounds3 transformedBounds = theSubset.bounds; |
1194 | if (camera->type != QSSGRenderGraphObject::Type::OrthographicCamera) { |
1195 | transformedBounds.transform(inMatrix: model.globalTransform); |
1196 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLod)) |
1197 | debugDrawSystem->drawBounds(bounds: transformedBounds, color: QColor(Qt::red)); |
1198 | const QVector3D cameraNormal = camera->getScalingCorrectDirection(); |
1199 | const QVector3D cameraPosition = camera->getGlobalPos(); |
1200 | const QSSGPlane cameraPlane = QSSGPlane(cameraPosition, cameraNormal); |
1201 | const QVector3D lodSupportMin = transformedBounds.getSupport(direction: -cameraNormal); |
1202 | const QVector3D lodSupportMax = transformedBounds.getSupport(direction: cameraNormal); |
1203 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLod)) |
1204 | debugDrawSystem->drawPoint(vertex: lodSupportMin, color: QColor("orange" )); |
1205 | |
1206 | const float distanceMin = cameraPlane.distance(p: lodSupportMin); |
1207 | const float distanceMax = cameraPlane.distance(p: lodSupportMax); |
1208 | |
1209 | if (distanceMin * distanceMax < 0.0) |
1210 | distanceThreshold = 0.0; |
1211 | else if (distanceMin >= 0.0) |
1212 | distanceThreshold = distanceMin; |
1213 | else if (distanceMax <= 0.0) |
1214 | distanceThreshold = -distanceMax; |
1215 | |
1216 | } else { |
1217 | // Orthographic Projection |
1218 | distanceThreshold = 1.0; |
1219 | } |
1220 | |
1221 | int currentLod = -1; |
1222 | if (model.levelOfDetailBias > 0.0f) { |
1223 | const float threshold = distanceThreshold * lodDistanceMultiplier; |
1224 | const float modelBias = 1 / model.levelOfDetailBias; |
1225 | for (qsizetype i = 0; i < theSubset.lods.count(); ++i) { |
1226 | float subsetDistance = theSubset.lods[i].distance * modelScale * modelBias; |
1227 | float screenSize = subsetDistance / threshold; |
1228 | if (screenSize > lodThreshold) |
1229 | break; |
1230 | currentLod = i; |
1231 | } |
1232 | } |
1233 | if (currentLod == -1) |
1234 | subsetLevelOfDetail = 0; |
1235 | else |
1236 | subsetLevelOfDetail = currentLod + 1; |
1237 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLod)) |
1238 | debugDrawSystem->drawBounds(bounds: transformedBounds, color: QSSGDebugDrawSystem::levelOfDetailColor(lod: subsetLevelOfDetail)); |
1239 | } |
1240 | |
1241 | QVector3D theModelCenter(theSubset.bounds.center()); |
1242 | theModelCenter = QSSGUtils::mat44::transform(m: model.globalTransform, v: theModelCenter); |
1243 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLodNormal)) |
1244 | debugDrawSystem->debugNormals(bufferManager&: *bufferManager, theModelContext, theSubset, subsetLevelOfDetail, lineLength: (theModelCenter - camera->getGlobalPos()).length() * 0.01); |
1245 | |
1246 | if (theMaterialObject->type == QSSGRenderGraphObject::Type::DefaultMaterial || |
1247 | theMaterialObject->type == QSSGRenderGraphObject::Type::PrincipledMaterial || |
1248 | theMaterialObject->type == QSSGRenderGraphObject::Type::SpecularGlossyMaterial) { |
1249 | QSSGRenderDefaultMaterial &theMaterial(static_cast<QSSGRenderDefaultMaterial &>(*theMaterialObject)); |
1250 | QSSGDefaultMaterialPreparationResult theMaterialPrepResult(prepareDefaultMaterialForRender(inMaterial&: theMaterial, inExistingFlags&: renderableFlags, inOpacity: subsetOpacity, lights, ioFlags)); |
1251 | QSSGShaderDefaultMaterialKey &theGeneratedKey(theMaterialPrepResult.materialKey); |
1252 | subsetOpacity = theMaterialPrepResult.opacity; |
1253 | QSSGRenderableImage *firstImage(theMaterialPrepResult.firstImage); |
1254 | wasDirty |= theMaterialPrepResult.dirty; |
1255 | renderableFlags = theMaterialPrepResult.renderableFlags; |
1256 | |
1257 | // Blend particles |
1258 | renderer->defaultMaterialShaderKeyProperties().m_blendParticles.setValue(inDataStore: theGeneratedKey, inValue: usesBlendParticles); |
1259 | |
1260 | // Skin |
1261 | const auto boneCount = model.skin ? model.skin->boneCount : |
1262 | model.skeleton ? model.skeleton->boneCount : 0; |
1263 | renderer->defaultMaterialShaderKeyProperties().m_boneCount.setValue(inDataStore: theGeneratedKey, inValue: boneCount); |
1264 | renderer->defaultMaterialShaderKeyProperties().m_usesFloatJointIndices.setValue( |
1265 | inDataStore: theGeneratedKey, inValue: !rhiCtx->rhi()->isFeatureSupported(feature: QRhi::IntAttributes)); |
1266 | // Instancing |
1267 | renderer->defaultMaterialShaderKeyProperties().m_usesInstancing.setValue(inDataStore: theGeneratedKey, inValue: usesInstancing); |
1268 | // Morphing |
1269 | renderer->defaultMaterialShaderKeyProperties().m_targetCount.setValue(inDataStore: theGeneratedKey, |
1270 | inValue: theSubset.rhi.ia.targetCount); |
1271 | renderer->defaultMaterialShaderKeyProperties().m_targetPositionOffset.setValue(inDataStore: theGeneratedKey, |
1272 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::PositionSemantic]); |
1273 | renderer->defaultMaterialShaderKeyProperties().m_targetNormalOffset.setValue(inDataStore: theGeneratedKey, |
1274 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::NormalSemantic]); |
1275 | renderer->defaultMaterialShaderKeyProperties().m_targetTangentOffset.setValue(inDataStore: theGeneratedKey, |
1276 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TangentSemantic]); |
1277 | renderer->defaultMaterialShaderKeyProperties().m_targetBinormalOffset.setValue(inDataStore: theGeneratedKey, |
1278 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::BinormalSemantic]); |
1279 | renderer->defaultMaterialShaderKeyProperties().m_targetTexCoord0Offset.setValue(inDataStore: theGeneratedKey, |
1280 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord0Semantic]); |
1281 | renderer->defaultMaterialShaderKeyProperties().m_targetTexCoord1Offset.setValue(inDataStore: theGeneratedKey, |
1282 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord1Semantic]); |
1283 | renderer->defaultMaterialShaderKeyProperties().m_targetColorOffset.setValue(inDataStore: theGeneratedKey, |
1284 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::ColorSemantic]); |
1285 | |
1286 | new (theRenderableObject) QSSGSubsetRenderable(QSSGSubsetRenderable::Type::DefaultMaterialMeshSubset, |
1287 | renderableFlags, |
1288 | theModelCenter, |
1289 | renderer, |
1290 | theSubset, |
1291 | theModelContext, |
1292 | subsetOpacity, |
1293 | subsetLevelOfDetail, |
1294 | theMaterial, |
1295 | firstImage, |
1296 | theGeneratedKey, |
1297 | lights); |
1298 | wasDirty = wasDirty || renderableFlags.isDirty(); |
1299 | } else if (theMaterialObject->type == QSSGRenderGraphObject::Type::CustomMaterial) { |
1300 | QSSGRenderCustomMaterial &theMaterial(static_cast<QSSGRenderCustomMaterial &>(*theMaterialObject)); |
1301 | |
1302 | const auto &theMaterialSystem(contextInterface.customMaterialSystem()); |
1303 | wasDirty |= theMaterialSystem->prepareForRender(inModel: theModelContext.model, inSubset: theSubset, inMaterial&: theMaterial); |
1304 | |
1305 | QSSGDefaultMaterialPreparationResult theMaterialPrepResult( |
1306 | prepareCustomMaterialForRender(inMaterial&: theMaterial, inExistingFlags&: renderableFlags, inOpacity: subsetOpacity, alreadyDirty: wasDirty, |
1307 | lights, ioFlags)); |
1308 | QSSGShaderDefaultMaterialKey &theGeneratedKey(theMaterialPrepResult.materialKey); |
1309 | subsetOpacity = theMaterialPrepResult.opacity; |
1310 | QSSGRenderableImage *firstImage(theMaterialPrepResult.firstImage); |
1311 | renderableFlags = theMaterialPrepResult.renderableFlags; |
1312 | |
1313 | if (model.particleBuffer && model.particleBuffer->particleCount()) |
1314 | renderer->defaultMaterialShaderKeyProperties().m_blendParticles.setValue(inDataStore: theGeneratedKey, inValue: true); |
1315 | else |
1316 | renderer->defaultMaterialShaderKeyProperties().m_blendParticles.setValue(inDataStore: theGeneratedKey, inValue: false); |
1317 | |
1318 | // Skin |
1319 | const auto boneCount = model.skin ? model.skin->boneCount : |
1320 | model.skeleton ? model.skeleton->boneCount : 0; |
1321 | renderer->defaultMaterialShaderKeyProperties().m_boneCount.setValue(inDataStore: theGeneratedKey, inValue: boneCount); |
1322 | renderer->defaultMaterialShaderKeyProperties().m_usesFloatJointIndices.setValue( |
1323 | inDataStore: theGeneratedKey, inValue: !rhiCtx->rhi()->isFeatureSupported(feature: QRhi::IntAttributes)); |
1324 | |
1325 | // Instancing |
1326 | bool usesInstancing = theModelContext.model.instancing() |
1327 | && rhiCtx->rhi()->isFeatureSupported(feature: QRhi::Instancing); |
1328 | renderer->defaultMaterialShaderKeyProperties().m_usesInstancing.setValue(inDataStore: theGeneratedKey, inValue: usesInstancing); |
1329 | // Morphing |
1330 | renderer->defaultMaterialShaderKeyProperties().m_targetCount.setValue(inDataStore: theGeneratedKey, |
1331 | inValue: theSubset.rhi.ia.targetCount); |
1332 | renderer->defaultMaterialShaderKeyProperties().m_targetPositionOffset.setValue(inDataStore: theGeneratedKey, |
1333 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::PositionSemantic]); |
1334 | renderer->defaultMaterialShaderKeyProperties().m_targetNormalOffset.setValue(inDataStore: theGeneratedKey, |
1335 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::NormalSemantic]); |
1336 | renderer->defaultMaterialShaderKeyProperties().m_targetTangentOffset.setValue(inDataStore: theGeneratedKey, |
1337 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TangentSemantic]); |
1338 | renderer->defaultMaterialShaderKeyProperties().m_targetBinormalOffset.setValue(inDataStore: theGeneratedKey, |
1339 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::BinormalSemantic]); |
1340 | renderer->defaultMaterialShaderKeyProperties().m_targetTexCoord0Offset.setValue(inDataStore: theGeneratedKey, |
1341 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord0Semantic]); |
1342 | renderer->defaultMaterialShaderKeyProperties().m_targetTexCoord1Offset.setValue(inDataStore: theGeneratedKey, |
1343 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord1Semantic]); |
1344 | renderer->defaultMaterialShaderKeyProperties().m_targetColorOffset.setValue(inDataStore: theGeneratedKey, |
1345 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::ColorSemantic]); |
1346 | |
1347 | if (theMaterial.m_iblProbe) |
1348 | theMaterial.m_iblProbe->clearDirty(); |
1349 | |
1350 | new (theRenderableObject) QSSGSubsetRenderable(QSSGSubsetRenderable::Type::CustomMaterialMeshSubset, |
1351 | renderableFlags, |
1352 | theModelCenter, |
1353 | renderer, |
1354 | theSubset, |
1355 | theModelContext, |
1356 | subsetOpacity, |
1357 | subsetLevelOfDetail, |
1358 | theMaterial, |
1359 | firstImage, |
1360 | theGeneratedKey, |
1361 | lights); |
1362 | } |
1363 | if (theRenderableObject) // NOTE: Should just go in with the ctor args |
1364 | theRenderableObject->camdistSq = getCameraDistanceSq(obj: *theRenderableObject, camera: cameraData); |
1365 | } |
1366 | |
1367 | // If the indices don't match then something's off and we need to adjust the subset renderable list size. |
1368 | if (Q_UNLIKELY(idx != subsetIdx)) |
1369 | renderableSubsets.mSize = subsetIdx + 1; |
1370 | |
1371 | bool handled = false; |
1372 | if (filter) |
1373 | handled = filter(&theModelContext); |
1374 | |
1375 | if (!handled) { |
1376 | for (auto &ro : renderableSubsets) { |
1377 | const auto depthMode = ro.depthWriteMode; |
1378 | hasDepthWriteObjects |= (depthMode == QSSGDepthDrawMode::Always || depthMode == QSSGDepthDrawMode::OpaqueOnly); |
1379 | enum ObjectType : quint8 { ScreenTexture, Transparent, Opaque }; |
1380 | static constexpr DepthPrepassObject ppState[][2] = { {DepthPrepassObject::None, DepthPrepassObject::ScreenTexture}, |
1381 | {DepthPrepassObject::None, DepthPrepassObject::Transparent}, |
1382 | {DepthPrepassObject::None, DepthPrepassObject::Opaque} }; |
1383 | |
1384 | if (ro.renderableFlags.requiresScreenTexture()) { |
1385 | depthPrepassObjectsState |= DepthPrepassObjectStateT(ppState[ObjectType::ScreenTexture][size_t(depthMode == QSSGDepthDrawMode::OpaquePrePass)]); |
1386 | screenTextureObjects.push_back(t: {&ro, ro.camdistSq}); |
1387 | } else if (ro.renderableFlags.hasTransparency()) { |
1388 | depthPrepassObjectsState |= DepthPrepassObjectStateT(ppState[ObjectType::Transparent][size_t(depthMode == QSSGDepthDrawMode::OpaquePrePass)]); |
1389 | transparentObjects.push_back(t: {&ro, ro.camdistSq}); |
1390 | } else { |
1391 | depthPrepassObjectsState |= DepthPrepassObjectStateT(ppState[ObjectType::Opaque][size_t(depthMode == QSSGDepthDrawMode::OpaquePrePass)]); |
1392 | opaqueObjects.push_back(t: {&ro, ro.camdistSq}); |
1393 | } |
1394 | |
1395 | if (ro.renderableFlags.usedInBakedLighting()) |
1396 | bakedLightingObjects.push_back(t: {&ro, ro.camdistSq}); |
1397 | } |
1398 | } |
1399 | |
1400 | if (!bakedLightingObjects.isEmpty()) |
1401 | bakedLightingModels.push_back(t: QSSGBakedLightingModel(&model, bakedLightingObjects)); |
1402 | } |
1403 | |
1404 | return wasDirty; |
1405 | } |
1406 | |
1407 | bool QSSGLayerRenderData::prepareParticlesForRender(const RenderableNodeEntries &renderableParticles, const QSSGCameraRenderData &cameraData) |
1408 | { |
1409 | QSSG_ASSERT(particlesEnabled, return false); |
1410 | |
1411 | QSSGRenderContextInterface &contextInterface = *renderer->contextInterface(); |
1412 | |
1413 | bool dirty = false; |
1414 | |
1415 | for (const auto &renderable : renderableParticles) { |
1416 | const QSSGRenderParticles &particles = *static_cast<QSSGRenderParticles *>(renderable.node); |
1417 | const auto &lights = renderable.lights; |
1418 | |
1419 | QSSGRenderableObjectFlags renderableFlags; |
1420 | renderableFlags.setCastsShadows(false); |
1421 | renderableFlags.setReceivesShadows(false); |
1422 | renderableFlags.setHasAttributePosition(true); |
1423 | renderableFlags.setHasAttributeNormal(true); |
1424 | renderableFlags.setHasAttributeTexCoord0(true); |
1425 | renderableFlags.setHasAttributeColor(true); |
1426 | renderableFlags.setHasTransparency(particles.m_hasTransparency); |
1427 | renderableFlags.setCastsReflections(particles.m_castsReflections); |
1428 | |
1429 | float opacity = particles.globalOpacity; |
1430 | QVector3D center(particles.m_particleBuffer.bounds().center()); |
1431 | center = QSSGUtils::mat44::transform(m: particles.globalTransform, v: center); |
1432 | |
1433 | QSSGRenderableImage *firstImage = nullptr; |
1434 | if (particles.m_sprite) { |
1435 | const auto &bufferManager = contextInterface.bufferManager(); |
1436 | |
1437 | if (particles.m_sprite->clearDirty()) |
1438 | dirty = true; |
1439 | |
1440 | const QSSGRenderImageTexture texture = bufferManager->loadRenderImage(image: particles.m_sprite); |
1441 | QSSGRenderableImage *theImage = RENDER_FRAME_NEW<QSSGRenderableImage>(ctx&: contextInterface, args: QSSGRenderableImage::Type::Diffuse, args&: *particles.m_sprite, args: texture); |
1442 | firstImage = theImage; |
1443 | } |
1444 | |
1445 | QSSGRenderableImage *colorTable = nullptr; |
1446 | if (particles.m_colorTable) { |
1447 | const auto &bufferManager = contextInterface.bufferManager(); |
1448 | |
1449 | if (particles.m_colorTable->clearDirty()) |
1450 | dirty = true; |
1451 | |
1452 | const QSSGRenderImageTexture texture = bufferManager->loadRenderImage(image: particles.m_colorTable); |
1453 | |
1454 | QSSGRenderableImage *theImage = RENDER_FRAME_NEW<QSSGRenderableImage>(ctx&: contextInterface, args: QSSGRenderableImage::Type::Diffuse, args&: *particles.m_colorTable, args: texture); |
1455 | colorTable = theImage; |
1456 | } |
1457 | |
1458 | if (opacity > 0.0f && particles.m_particleBuffer.particleCount()) { |
1459 | auto *theRenderableObject = RENDER_FRAME_NEW<QSSGParticlesRenderable>(ctx&: contextInterface, |
1460 | args&: renderableFlags, |
1461 | args&: center, |
1462 | args&: renderer, |
1463 | args: particles, |
1464 | args&: firstImage, |
1465 | args&: colorTable, |
1466 | args: lights, |
1467 | args&: opacity); |
1468 | if (theRenderableObject) { |
1469 | if (theRenderableObject->renderableFlags.requiresScreenTexture()) |
1470 | screenTextureObjects.push_back(t: {theRenderableObject, getCameraDistanceSq(obj: *theRenderableObject, camera: cameraData)}); |
1471 | else if (theRenderableObject->renderableFlags.hasTransparency()) |
1472 | transparentObjects.push_back(t: {theRenderableObject, getCameraDistanceSq(obj: *theRenderableObject, camera: cameraData)}); |
1473 | else |
1474 | opaqueObjects.push_back(t: {theRenderableObject, getCameraDistanceSq(obj: *theRenderableObject, camera: cameraData)}); |
1475 | } |
1476 | } |
1477 | } |
1478 | |
1479 | return dirty; |
1480 | } |
1481 | |
1482 | bool QSSGLayerRenderData::prepareItem2DsForRender(const QSSGRenderContextInterface &ctxIfc, |
1483 | const RenderableItem2DEntries &renderableItem2Ds) |
1484 | { |
1485 | const bool hasItems = (renderableItem2Ds.size() != 0); |
1486 | if (hasItems) { |
1487 | const auto &clipSpaceCorrMatrix = ctxIfc.rhiContext()->rhi()->clipSpaceCorrMatrix(); |
1488 | auto cameraData = getCachedCameraData(); |
1489 | for (const auto &theItem2D : renderableItem2Ds) { |
1490 | theItem2D->MVP = cameraData.viewProjection * theItem2D->globalTransform; |
1491 | static const QMatrix4x4 flipMatrix(1.0f, 0.0f, 0.0f, 0.0f, |
1492 | 0.0f, -1.0f, 0.0f, 0.0f, |
1493 | 0.0f, 0.0f, 1.0f, 0.0f, |
1494 | 0.0f, 0.0f, 0.0f, 1.0f); |
1495 | theItem2D->MVP = clipSpaceCorrMatrix * theItem2D->MVP * flipMatrix; |
1496 | } |
1497 | } |
1498 | |
1499 | return hasItems; |
1500 | } |
1501 | |
1502 | void QSSGLayerRenderData::prepareResourceLoaders() |
1503 | { |
1504 | QSSGRenderContextInterface &contextInterface = *renderer->contextInterface(); |
1505 | const auto &bufferManager = contextInterface.bufferManager(); |
1506 | |
1507 | for (const auto resourceLoader : std::as_const(t&: layer.resourceLoaders)) |
1508 | bufferManager->processResourceLoader(loader: static_cast<QSSGRenderResourceLoader *>(resourceLoader)); |
1509 | } |
1510 | |
1511 | void QSSGLayerRenderData::prepareReflectionProbesForRender() |
1512 | { |
1513 | const auto probeCount = reflectionProbes.size(); |
1514 | requestReflectionMapManager(); // ensure that we have a reflection map manager |
1515 | |
1516 | for (int i = 0; i < probeCount; i++) { |
1517 | QSSGRenderReflectionProbe* probe = reflectionProbes.at(i); |
1518 | |
1519 | int reflectionObjectCount = 0; |
1520 | QVector3D probeExtent = probe->boxSize / 2; |
1521 | QSSGBounds3 probeBound = QSSGBounds3::centerExtents(center: probe->getGlobalPos() + probe->boxOffset, extent: probeExtent); |
1522 | |
1523 | const auto injectProbe = [&](const QSSGRenderableObjectHandle &handle) { |
1524 | if (handle.obj->renderableFlags.testFlag(flag: QSSGRenderableObjectFlag::ReceivesReflections) |
1525 | && !(handle.obj->type == QSSGRenderableObject::Type::Particles)) { |
1526 | QSSGSubsetRenderable* renderableObj = static_cast<QSSGSubsetRenderable*>(handle.obj); |
1527 | QSSGBounds3 nodeBound = renderableObj->bounds; |
1528 | QVector4D vmin(nodeBound.minimum, 1.0); |
1529 | QVector4D vmax(nodeBound.maximum, 1.0); |
1530 | vmin = renderableObj->globalTransform * vmin; |
1531 | vmax = renderableObj->globalTransform * vmax; |
1532 | nodeBound.minimum = vmin.toVector3D(); |
1533 | nodeBound.maximum = vmax.toVector3D(); |
1534 | if (probeBound.intersects(b: nodeBound)) { |
1535 | QVector3D nodeBoundCenter = nodeBound.center(); |
1536 | QVector3D probeBoundCenter = probeBound.center(); |
1537 | float distance = nodeBoundCenter.distanceToPoint(point: probeBoundCenter); |
1538 | if (renderableObj->reflectionProbeIndex == -1 || distance < renderableObj->distanceFromReflectionProbe) { |
1539 | renderableObj->reflectionProbeIndex = i; |
1540 | renderableObj->distanceFromReflectionProbe = distance; |
1541 | renderableObj->reflectionProbe.parallaxCorrection = probe->parallaxCorrection; |
1542 | renderableObj->reflectionProbe.probeCubeMapCenter = probe->getGlobalPos(); |
1543 | renderableObj->reflectionProbe.probeBoxMax = probeBound.maximum; |
1544 | renderableObj->reflectionProbe.probeBoxMin = probeBound.minimum; |
1545 | renderableObj->reflectionProbe.enabled = true; |
1546 | reflectionObjectCount++; |
1547 | } |
1548 | } |
1549 | } |
1550 | }; |
1551 | |
1552 | for (const auto &handle : std::as_const(t&: transparentObjects)) |
1553 | injectProbe(handle); |
1554 | |
1555 | for (const auto &handle : std::as_const(t&: opaqueObjects)) |
1556 | injectProbe(handle); |
1557 | |
1558 | if (probe->texture) |
1559 | reflectionMapManager->addTexturedReflectionMapEntry(probeIdx: i, probe: *probe); |
1560 | else if (reflectionObjectCount > 0) |
1561 | reflectionMapManager->addReflectionMapEntry(probeIdx: i, probe: *probe); |
1562 | } |
1563 | } |
1564 | |
1565 | static bool scopeLight(QSSGRenderNode *node, QSSGRenderNode *lightScope) |
1566 | { |
1567 | // check if the node is parent of the lightScope |
1568 | while (node) { |
1569 | if (node == lightScope) |
1570 | return true; |
1571 | node = node->parent; |
1572 | } |
1573 | return false; |
1574 | } |
1575 | |
1576 | static const int REDUCED_MAX_LIGHT_COUNT_THRESHOLD_BYTES = 4096; // 256 vec4 |
1577 | |
1578 | static inline int effectiveMaxLightCount(const QSSGShaderFeatures &features) |
1579 | { |
1580 | if (features.isSet(feature: QSSGShaderFeatures::Feature::ReduceMaxNumLights)) |
1581 | return QSSG_REDUCED_MAX_NUM_LIGHTS; |
1582 | |
1583 | return QSSG_MAX_NUM_LIGHTS; |
1584 | } |
1585 | |
1586 | void updateDirtySkeletons(const QVector<QSSGRenderableNodeEntry> &renderableNodes) |
1587 | { |
1588 | // First model using skeleton clears the dirty flag so we need another mechanism |
1589 | // to tell to the other models the skeleton is dirty. |
1590 | QSet<QSSGRenderSkeleton *> dirtySkeletons; |
1591 | for (const auto &node : std::as_const(t: renderableNodes)) { |
1592 | if (node.node->type == QSSGRenderGraphObject::Type::Model) { |
1593 | auto modelNode = static_cast<QSSGRenderModel *>(node.node); |
1594 | auto skeletonNode = modelNode->skeleton; |
1595 | bool hcj = false; |
1596 | if (skeletonNode) { |
1597 | const bool dirtySkeleton = dirtySkeletons.contains(value: skeletonNode); |
1598 | const bool hasDirtyNonJoints = (skeletonNode->containsNonJointNodes |
1599 | && (hasDirtyNonJointNodes(node: skeletonNode, hasChildJoints&: hcj) || dirtySkeleton)); |
1600 | const bool dirtyTransform = skeletonNode->isDirty(dirtyFlag: QSSGRenderNode::DirtyFlag::TransformDirty); |
1601 | if (skeletonNode->skinningDirty || hasDirtyNonJoints || dirtyTransform) { |
1602 | skeletonNode->boneTransformsDirty = false; |
1603 | if (hasDirtyNonJoints && !dirtySkeleton) |
1604 | dirtySkeletons.insert(value: skeletonNode); |
1605 | skeletonNode->skinningDirty = false; |
1606 | const qsizetype dataSize = BONEDATASIZE4ID(skeletonNode->maxIndex); |
1607 | if (skeletonNode->boneData.size() < dataSize) |
1608 | skeletonNode->boneData.resize(size: dataSize); |
1609 | skeletonNode->calculateGlobalVariables(); |
1610 | skeletonNode->containsNonJointNodes = false; |
1611 | for (auto &child : skeletonNode->children) |
1612 | collectBoneTransforms(node: &child, skeletonNode, poses: modelNode->inverseBindPoses); |
1613 | } |
1614 | skeletonNode->boneCount = skeletonNode->boneData.size() / 2 / 4 / 16; |
1615 | const int boneTexWidth = qCeil(v: qSqrt(v: skeletonNode->boneCount * 4 * 2)); |
1616 | skeletonNode->boneTexData.setSize(QSize(boneTexWidth, boneTexWidth)); |
1617 | skeletonNode->boneData.resize(size: boneTexWidth * boneTexWidth * 16); |
1618 | skeletonNode->boneTexData.setTextureData(skeletonNode->boneData); |
1619 | } |
1620 | const int numMorphTarget = modelNode->morphTargets.size(); |
1621 | for (int i = 0; i < numMorphTarget; ++i) { |
1622 | auto morphTarget = static_cast<const QSSGRenderMorphTarget *>(modelNode->morphTargets.at(i)); |
1623 | modelNode->morphWeights[i] = morphTarget->weight; |
1624 | modelNode->morphAttributes[i] = morphTarget->attributes; |
1625 | if (i > MAX_MORPH_TARGET_INDEX_SUPPORTS_NORMALS) |
1626 | modelNode->morphAttributes[i] &= 0x1; // MorphTarget.Position |
1627 | else if (i > MAX_MORPH_TARGET_INDEX_SUPPORTS_TANGENTS) |
1628 | modelNode->morphAttributes[i] &= 0x3; // MorphTarget.Position | MorphTarget.Normal |
1629 | } |
1630 | } |
1631 | } |
1632 | |
1633 | dirtySkeletons.clear(); |
1634 | } |
1635 | |
1636 | void QSSGLayerRenderData::prepareForRender() |
1637 | { |
1638 | if (layerPrepResult.has_value()) |
1639 | return; |
1640 | |
1641 | // Verify that the depth write list(s) were cleared between frames |
1642 | QSSG_ASSERT(renderedDepthWriteObjects.isEmpty(), renderedDepthWriteObjects.clear()); |
1643 | QSSG_ASSERT(renderedOpaqueDepthPrepassObjects.isEmpty(), renderedOpaqueDepthPrepassObjects.clear()); |
1644 | |
1645 | QRect theViewport(renderer->contextInterface()->viewport()); |
1646 | |
1647 | // NOTE: The renderer won't change in practice (after being set the first time), but just update |
1648 | // it anyways. |
1649 | frameData.m_renderer = renderer; |
1650 | frameData.clear(); |
1651 | |
1652 | // Create base pipeline state |
1653 | ps = {}; // Reset |
1654 | ps.viewport = { float(theViewport.x()), float(theViewport.y()), float(theViewport.width()), float(theViewport.height()), 0.0f, 1.0f }; |
1655 | if (layer.scissorRect.isValid()) { |
1656 | ps.scissorEnable = true; |
1657 | ps.scissor = { layer.scissorRect.x(), |
1658 | theViewport.height() - (layer.scissorRect.y() + layer.scissorRect.height()), |
1659 | layer.scissorRect.width(), |
1660 | layer.scissorRect.height() }; |
1661 | } |
1662 | |
1663 | ps.depthFunc = QRhiGraphicsPipeline::LessOrEqual; |
1664 | ps.blendEnable = false; |
1665 | |
1666 | // Enable Wireframe mode |
1667 | ps.polygonMode = layer.wireframeMode ? QRhiGraphicsPipeline::Line : QRhiGraphicsPipeline::Fill; |
1668 | |
1669 | bool wasDirty = false; |
1670 | bool wasDataDirty = false; |
1671 | wasDirty = layer.isDirty(); |
1672 | |
1673 | QSSGLayerRenderPreparationResult thePrepResult(theViewport, layer); |
1674 | |
1675 | // SSAO |
1676 | const bool SSAOEnabled = layer.ssaoEnabled(); |
1677 | thePrepResult.flags.setRequiresSsaoPass(SSAOEnabled); |
1678 | features.set(feature: QSSGShaderFeatures::Feature::Ssao, val: SSAOEnabled); |
1679 | |
1680 | // Effects |
1681 | bool requiresDepthTexture = SSAOEnabled; |
1682 | for (QSSGRenderEffect *theEffect = layer.firstEffect; theEffect; theEffect = theEffect->m_nextEffect) { |
1683 | if (theEffect->isDirty()) { |
1684 | wasDirty = true; |
1685 | theEffect->clearDirty(); |
1686 | } |
1687 | if (theEffect->requiresDepthTexture) |
1688 | requiresDepthTexture = true; |
1689 | } |
1690 | thePrepResult.flags.setRequiresDepthTexture(requiresDepthTexture); |
1691 | |
1692 | // Tonemapping. Except when there are effects, then it is up to the |
1693 | // last pass of the last effect to perform tonemapping. |
1694 | if (!layer.firstEffect) |
1695 | QSSGRenderer::setTonemapFeatures(features, tonemapMode: layer.tonemapMode); |
1696 | |
1697 | // We may not be able to have an array of 15 light struct elements in |
1698 | // the shaders. Switch on the reduced-max-number-of-lights feature |
1699 | // if necessary. In practice this is relevant with OpenGL ES 3.0 or |
1700 | // 2.0, because there are still implementations in use that only |
1701 | // support the spec mandated minimum of 224 vec4s (so 3584 bytes). |
1702 | const auto &rhiCtx = renderer->contextInterface()->rhiContext(); |
1703 | if (rhiCtx->maxUniformBufferRange() < REDUCED_MAX_LIGHT_COUNT_THRESHOLD_BYTES) { |
1704 | features.set(feature: QSSGShaderFeatures::Feature::ReduceMaxNumLights, val: true); |
1705 | static bool notified = false; |
1706 | if (!notified) { |
1707 | notified = true; |
1708 | qCDebug(lcQuick3DRender, "Qt Quick 3D maximum number of lights has been reduced from %d to %d due to the graphics driver's limitations" , |
1709 | QSSG_MAX_NUM_LIGHTS, QSSG_REDUCED_MAX_NUM_LIGHTS); |
1710 | } |
1711 | } |
1712 | |
1713 | // IBL Lightprobe Image |
1714 | QSSGRenderImageTexture lightProbeTexture; |
1715 | if (layer.lightProbe) { |
1716 | if (layer.lightProbe->m_format == QSSGRenderTextureFormat::Unknown) { |
1717 | // Choose on a format that makes sense for a light probe |
1718 | // At this point it's just a suggestion |
1719 | if (renderer->contextInterface()->rhiContext()->rhi()->isTextureFormatSupported(format: QRhiTexture::RGBA16F)) |
1720 | layer.lightProbe->m_format = QSSGRenderTextureFormat::RGBA16F; |
1721 | else |
1722 | layer.lightProbe->m_format = QSSGRenderTextureFormat::RGBE8; |
1723 | } |
1724 | |
1725 | if (layer.lightProbe->clearDirty()) |
1726 | wasDataDirty = true; |
1727 | |
1728 | // NOTE: This call can lead to rendering (of envmap) and a texture upload |
1729 | lightProbeTexture = renderer->contextInterface()->bufferManager()->loadRenderImage(image: layer.lightProbe, inMipMode: QSSGBufferManager::MipModeBsdf); |
1730 | if (lightProbeTexture.m_texture) { |
1731 | |
1732 | features.set(feature: QSSGShaderFeatures::Feature::LightProbe, val: true); |
1733 | features.set(feature: QSSGShaderFeatures::Feature::IblOrientation, val: !layer.probeOrientation.isIdentity()); |
1734 | |
1735 | // By this point we will know what the actual texture format of the light probe is |
1736 | // Check if using RGBE format light probe texture (the Rhi format will be RGBA8) |
1737 | if (lightProbeTexture.m_flags.isRgbe8()) |
1738 | features.set(feature: QSSGShaderFeatures::Feature::RGBELightProbe, val: true); |
1739 | } else { |
1740 | layer.lightProbe = nullptr; |
1741 | } |
1742 | } |
1743 | |
1744 | // Gather Spatial Nodes from Render Tree |
1745 | // Do not just clear() renderableNodes and friends. Rather, reuse |
1746 | // the space (even if clear does not actually deallocate, it still |
1747 | // costs time to run dtors and such). In scenes with a static node |
1748 | // count in the range of thousands this may matter. |
1749 | int renderableModelsCount = 0; |
1750 | int renderableParticlesCount = 0; |
1751 | int renderableItem2DsCount = 0; |
1752 | int cameraNodeCount = 0; |
1753 | int lightNodeCount = 0; |
1754 | int reflectionProbeCount = 0; |
1755 | quint32 dfsIndex = 0; |
1756 | for (auto &theChild : layer.children) |
1757 | wasDataDirty |= maybeQueueNodeForRender(inNode&: theChild, |
1758 | outRenderableModels&: renderableModels, |
1759 | ioRenderableModelsCount&: renderableModelsCount, |
1760 | outRenderableParticles&: renderableParticles, |
1761 | ioRenderableParticlesCount&: renderableParticlesCount, |
1762 | outRenderableItem2Ds&: renderableItem2Ds, |
1763 | ioRenderableItem2DsCount&: renderableItem2DsCount, |
1764 | outCameras&: cameras, |
1765 | ioCameraCount&: cameraNodeCount, |
1766 | outLights&: lights, |
1767 | ioLightCount&: lightNodeCount, |
1768 | outReflectionProbes&: reflectionProbes, |
1769 | ioReflectionProbeCount&: reflectionProbeCount, |
1770 | ioDFSIndex&: dfsIndex); |
1771 | |
1772 | if (renderableModels.size() != renderableModelsCount) |
1773 | renderableModels.resize(size: renderableModelsCount); |
1774 | if (renderableParticles.size() != renderableParticlesCount) |
1775 | renderableParticles.resize(size: renderableParticlesCount); |
1776 | if (renderableItem2Ds.size() != renderableItem2DsCount) |
1777 | renderableItem2Ds.resize(size: renderableItem2DsCount); |
1778 | |
1779 | if (cameras.size() != cameraNodeCount) |
1780 | cameras.resize(size: cameraNodeCount); |
1781 | if (lights.size() != lightNodeCount) |
1782 | lights.resize(size: lightNodeCount); |
1783 | if (reflectionProbes.size() != reflectionProbeCount) |
1784 | reflectionProbes.resize(size: reflectionProbeCount); |
1785 | |
1786 | // Cameras |
1787 | // 1. If there's an explicit camera set and it's active (visible) we'll use that. |
1788 | // 2. ... if the explicitly set camera is not visible, no further attempts will be done. |
1789 | // 3. If no explicit camera is set, we'll search and pick the first active camera. |
1790 | camera = layer.explicitCamera; |
1791 | if (camera != nullptr) { |
1792 | // 1. |
1793 | wasDataDirty = wasDataDirty || camera->isDirty(); |
1794 | QSSGCameraGlobalCalculationResult theResult = thePrepResult.setupCameraForRender(*camera); |
1795 | wasDataDirty = wasDataDirty || theResult.m_wasDirty; |
1796 | if (!theResult.m_computeFrustumSucceeded) |
1797 | qCCritical(INTERNAL_ERROR, "Failed to calculate camera frustum" ); |
1798 | |
1799 | // 2. |
1800 | if (!camera->getGlobalState(stateFlag: QSSGRenderCamera::GlobalState::Active)) |
1801 | camera = nullptr; |
1802 | } else { |
1803 | // 3. |
1804 | for (auto iter = cameras.cbegin(); |
1805 | (camera == nullptr) && (iter != cameras.cend()); iter++) { |
1806 | QSSGRenderCamera *theCamera = *iter; |
1807 | wasDataDirty = wasDataDirty |
1808 | || theCamera->isDirty(); |
1809 | QSSGCameraGlobalCalculationResult theResult = thePrepResult.setupCameraForRender(*theCamera); |
1810 | wasDataDirty = wasDataDirty || theResult.m_wasDirty; |
1811 | if (!theResult.m_computeFrustumSucceeded) |
1812 | qCCritical(INTERNAL_ERROR, "Failed to calculate camera frustum" ); |
1813 | if (theCamera->getGlobalState(stateFlag: QSSGRenderCamera::GlobalState::Active)) |
1814 | camera = theCamera; |
1815 | } |
1816 | } |
1817 | |
1818 | float meshLodThreshold = 1.0f; |
1819 | if (camera) { |
1820 | camera->dpr = renderer->contextInterface()->dpr(); |
1821 | meshLodThreshold = camera->levelOfDetailPixelThreshold / theViewport.width(); |
1822 | } |
1823 | |
1824 | layer.renderedCamera = camera; |
1825 | |
1826 | // ResourceLoaders |
1827 | prepareResourceLoaders(); |
1828 | |
1829 | // Skeletons |
1830 | updateDirtySkeletons(renderableNodes: renderableModels); |
1831 | |
1832 | // Lights |
1833 | int shadowMapCount = 0; |
1834 | bool hasScopedLights = false; |
1835 | // Determine which lights will actually Render |
1836 | // Determine how many lights will need shadow maps |
1837 | // NOTE: This culling is specific to our Forward renderer |
1838 | const int maxLightCount = effectiveMaxLightCount(features); |
1839 | const bool showLightCountWarning = !tooManyLightsWarningShown && (lights.size() > maxLightCount); |
1840 | if (showLightCountWarning) { |
1841 | qWarning(msg: "Too many lights in scene, maximum is %d" , maxLightCount); |
1842 | tooManyLightsWarningShown = true; |
1843 | } |
1844 | |
1845 | QSSGShaderLightList renderableLights; // All lights (upto 'maxLightCount') |
1846 | |
1847 | // List should contain only enabled lights (active && birghtness > 0). |
1848 | { |
1849 | auto it = lights.crbegin(); |
1850 | const auto end = it + qMin(a: maxLightCount, b: lights.size()); |
1851 | |
1852 | for (; it != end; ++it) { |
1853 | QSSGRenderLight *renderLight = (*it); |
1854 | hasScopedLights |= (renderLight->m_scope != nullptr); |
1855 | const bool mightCastShadows = renderLight->m_castShadow && !renderLight->m_fullyBaked; |
1856 | const bool shadows = mightCastShadows && (shadowMapCount < QSSG_MAX_NUM_SHADOW_MAPS); |
1857 | shadowMapCount += int(shadows); |
1858 | const auto &direction = renderLight->getScalingCorrectDirection(); |
1859 | renderableLights.push_back(t: QSSGShaderLight{ .light: renderLight, .shadows: shadows, .direction: direction }); |
1860 | } |
1861 | |
1862 | if ((shadowMapCount >= QSSG_MAX_NUM_SHADOW_MAPS) && !tooManyShadowLightsWarningShown) { |
1863 | qWarning(msg: "Too many shadow casting lights in scene, maximum is %d" , QSSG_MAX_NUM_SHADOW_MAPS); |
1864 | tooManyShadowLightsWarningShown = true; |
1865 | } |
1866 | } |
1867 | |
1868 | if (shadowMapCount > 0) { // Setup Shadow Maps Entries for Lights casting shadows |
1869 | requestShadowMapManager(); // Ensure we have a shadow map manager |
1870 | |
1871 | for (int i = 0, end = renderableLights.size(); i != end; ++i) { |
1872 | const auto &shaderLight = renderableLights.at(idx: i); |
1873 | if (shaderLight.shadows) { |
1874 | quint32 mapSize = 1 << shaderLight.light->m_shadowMapRes; |
1875 | ShadowMapModes mapMode = (shaderLight.light->type != QSSGRenderLight::Type::DirectionalLight) |
1876 | ? ShadowMapModes::CUBE |
1877 | : ShadowMapModes::VSM; |
1878 | shadowMapManager->addShadowMapEntry(lightIdx: i, |
1879 | width: mapSize, |
1880 | height: mapSize, |
1881 | mode: mapMode, |
1882 | renderNodeObjName: shaderLight.light->debugObjectName); |
1883 | thePrepResult.flags.setRequiresShadowMapPass(true); |
1884 | // Any light with castShadow=true triggers shadow mapping |
1885 | // in the generated shaders. The fact that some (or even |
1886 | // all) objects may opt out from receiving shadows plays no |
1887 | // role here whatsoever. |
1888 | features.set(feature: QSSGShaderFeatures::Feature::Ssm, val: true); |
1889 | } |
1890 | } |
1891 | } |
1892 | |
1893 | // Give each renderable a copy of the lights available |
1894 | // Also setup scoping for scoped lights |
1895 | |
1896 | QSSG_ASSERT(globalLights.isEmpty(), globalLights.clear()); |
1897 | if (hasScopedLights) { // Filter out scoped lights from the global lights list |
1898 | for (const auto &shaderLight : std::as_const(t&: renderableLights)) { |
1899 | if (!shaderLight.light->m_scope) |
1900 | globalLights.push_back(t: shaderLight); |
1901 | } |
1902 | |
1903 | const auto prepareLightsWithScopedLights = [&renderableLights, this](QVector<QSSGRenderableNodeEntry> &renderableNodes) { |
1904 | for (qint32 idx = 0, end = renderableNodes.size(); idx < end; ++idx) { |
1905 | QSSGRenderableNodeEntry &theNodeEntry(renderableNodes[idx]); |
1906 | QSSGShaderLightList filteredLights; |
1907 | for (const auto &light : std::as_const(t&: renderableLights)) { |
1908 | if (light.light->m_scope && !scopeLight(node: theNodeEntry.node, lightScope: light.light->m_scope)) |
1909 | continue; |
1910 | filteredLights.push_back(t: light); |
1911 | } |
1912 | |
1913 | if (filteredLights.isEmpty()) { // Node without scoped lights, just reference the global light list. |
1914 | theNodeEntry.lights = QSSGDataView(globalLights); |
1915 | } else { |
1916 | // This node has scoped lights, i.e., it's lights differ from the global list |
1917 | // we therefore create a bespoke light list for it. Technically this might be the same for |
1918 | // more then this one node, but the overhead for tracking that is not worth it. |
1919 | auto customLightList = RENDER_FRAME_NEW_BUFFER<QSSGShaderLight>(ctx&: *renderer->contextInterface(), count: filteredLights.size()); |
1920 | std::copy(first: filteredLights.cbegin(), last: filteredLights.cend(), result: customLightList.begin()); |
1921 | theNodeEntry.lights = customLightList; |
1922 | } |
1923 | } |
1924 | }; |
1925 | |
1926 | prepareLightsWithScopedLights(renderableModels); |
1927 | prepareLightsWithScopedLights(renderableParticles); |
1928 | } else { // Just a simple copy |
1929 | globalLights = renderableLights; |
1930 | // No scoped lights, all nodes can just reference the global light list. |
1931 | const auto prepareLights = [this](QVector<QSSGRenderableNodeEntry> &renderableNodes) { |
1932 | for (qint32 idx = 0, end = renderableNodes.size(); idx < end; ++idx) { |
1933 | QSSGRenderableNodeEntry &theNodeEntry(renderableNodes[idx]); |
1934 | theNodeEntry.lights = QSSGDataView(globalLights); |
1935 | } |
1936 | }; |
1937 | |
1938 | prepareLights(renderableModels); |
1939 | prepareLights(renderableParticles); |
1940 | } |
1941 | |
1942 | { |
1943 | // Give user provided passes a chance to modify the renderable data before starting |
1944 | // Note: All non-active extensions should be filtered out by now |
1945 | Q_STATIC_ASSERT(USERPASSES == QSSGRenderLayer::RenderExtensionMode::Count); |
1946 | for (int i = 0; i != QSSGRenderLayer::RenderExtensionMode::Count; ++i) { |
1947 | const auto &renderExtensions = layer.renderExtensions[i]; |
1948 | auto &userPass = userPasses[i]; |
1949 | for (auto rit = renderExtensions.crbegin(), rend = renderExtensions.crend(); rit != rend; ++rit) { |
1950 | wasDirty |= (*rit)->prepareData(data&: frameData); |
1951 | userPass.extensions.push_back(t: *rit); |
1952 | } |
1953 | } |
1954 | } |
1955 | |
1956 | // Ensure meshes for models |
1957 | prepareModelMeshesForRenderInternal(contextInterface: *renderer->contextInterface(), renderableModels, globalPickingEnabled: renderer->isGlobalPickingEnabled()); |
1958 | |
1959 | if (camera) { // NOTE: We shouldn't really get this far without a camera... |
1960 | const auto &cameraData = getCachedCameraData(); |
1961 | wasDirty |= prepareModelsForRender(renderableModels, ioFlags&: thePrepResult.flags, cameraData, filter: {}, lodThreshold: meshLodThreshold); |
1962 | if (particlesEnabled) |
1963 | wasDirty |= prepareParticlesForRender(renderableParticles, cameraData); |
1964 | wasDirty |= prepareItem2DsForRender(ctxIfc: *renderer->contextInterface(), renderableItem2Ds); |
1965 | } |
1966 | |
1967 | prepareReflectionProbesForRender(); |
1968 | |
1969 | wasDirty = wasDirty || wasDataDirty; |
1970 | thePrepResult.flags.setWasDirty(wasDirty); |
1971 | thePrepResult.flags.setLayerDataDirty(wasDataDirty); |
1972 | |
1973 | layerPrepResult = thePrepResult; |
1974 | |
1975 | // |
1976 | const bool animating = wasDirty; |
1977 | if (animating) |
1978 | layer.progAAPassIndex = 0; |
1979 | |
1980 | const bool progressiveAA = layer.antialiasingMode == QSSGRenderLayer::AAMode::ProgressiveAA && !animating; |
1981 | layer.progressiveAAIsActive = progressiveAA; |
1982 | const bool temporalAA = layer.temporalAAEnabled && !progressiveAA && layer.antialiasingMode != QSSGRenderLayer::AAMode::MSAA; |
1983 | |
1984 | layer.temporalAAIsActive = temporalAA; |
1985 | |
1986 | QVector2D vertexOffsetsAA; |
1987 | |
1988 | if (progressiveAA && layer.progAAPassIndex > 0 && layer.progAAPassIndex < quint32(layer.antialiasingQuality)) { |
1989 | int idx = layer.progAAPassIndex - 1; |
1990 | vertexOffsetsAA = s_ProgressiveAAVertexOffsets[idx] / QVector2D{ float(theViewport.width()/2.0), float(theViewport.height()/2.0) }; |
1991 | } |
1992 | |
1993 | if (temporalAA) { |
1994 | const int t = 1 - 2 * (layer.tempAAPassIndex % 2); |
1995 | const float f = t * layer.temporalAAStrength; |
1996 | vertexOffsetsAA = { f / float(theViewport.width()/2.0), f / float(theViewport.height()/2.0) }; |
1997 | } |
1998 | |
1999 | if (camera) { |
2000 | if (temporalAA || progressiveAA /*&& !vertexOffsetsAA.isNull()*/) { |
2001 | QMatrix4x4 offsetProjection = camera->projection; |
2002 | QMatrix4x4 invProjection = camera->projection.inverted(); |
2003 | if (camera->type == QSSGRenderCamera::Type::OrthographicCamera) { |
2004 | offsetProjection(0, 3) -= vertexOffsetsAA.x(); |
2005 | offsetProjection(1, 3) -= vertexOffsetsAA.y(); |
2006 | } else if (camera->type == QSSGRenderCamera::Type::PerspectiveCamera) { |
2007 | offsetProjection(0, 2) += vertexOffsetsAA.x(); |
2008 | offsetProjection(1, 2) += vertexOffsetsAA.y(); |
2009 | } |
2010 | for (auto &modelContext : std::as_const(t&: modelContexts)) |
2011 | modelContext->modelViewProjection = offsetProjection * invProjection * modelContext->modelViewProjection; |
2012 | } |
2013 | } |
2014 | |
2015 | const bool hasItem2Ds = (renderableItem2DsCount > 0); |
2016 | const bool layerEnableDepthTest = layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest); |
2017 | const bool layerEnabledDepthPrePass = layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthPrePass); |
2018 | const bool depthTestEnableDefault = layerEnableDepthTest && (!opaqueObjects.isEmpty() || depthPrepassObjectsState || hasDepthWriteObjects); |
2019 | const bool zPrePassForced = (depthPrepassObjectsState != 0); |
2020 | zPrePassActive = zPrePassForced || (layerEnabledDepthPrePass && layerEnableDepthTest && (hasDepthWriteObjects || hasItem2Ds)); |
2021 | const bool depthWriteEnableDefault = depthTestEnableDefault && (!layerEnabledDepthPrePass || !zPrePassActive); |
2022 | |
2023 | ps.depthTestEnable = depthTestEnableDefault; |
2024 | ps.depthWriteEnable = depthWriteEnableDefault; |
2025 | |
2026 | // Prepare passes |
2027 | QSSG_ASSERT(activePasses.isEmpty(), activePasses.clear()); |
2028 | // If needed, generate a depth texture with the opaque objects. This |
2029 | // and the SSAO texture must come first since other passes may want to |
2030 | // expose these textures to their shaders. |
2031 | if (thePrepResult.flags.requiresDepthTexture()) |
2032 | activePasses.push_back(t: &depthMapPass); |
2033 | |
2034 | // Screen space ambient occlusion. Relies on the depth texture and generates an AO map. |
2035 | if (thePrepResult.flags.requiresSsaoPass()) |
2036 | activePasses.push_back(t: &ssaoMapPass); |
2037 | |
2038 | // Shadows. Generates a 2D or cube shadow map. (opaque + pre-pass transparent objects) |
2039 | if (thePrepResult.flags.requiresShadowMapPass()) |
2040 | activePasses.push_back(t: &shadowMapPass); |
2041 | |
2042 | activePasses.push_back(t: &reflectionMapPass); |
2043 | |
2044 | if (zPrePassActive) |
2045 | activePasses.push_back(t: &zPrePassPass); |
2046 | |
2047 | // Screen texture with opaque objects. |
2048 | if (thePrepResult.flags.requiresScreenTexture()) |
2049 | activePasses.push_back(t: &screenMapPass); |
2050 | |
2051 | auto &underlayPass = userPasses[QSSGRenderLayer::RenderExtensionMode::Underlay]; |
2052 | if (underlayPass.hasData()) |
2053 | activePasses.push_back(t: &underlayPass); |
2054 | |
2055 | const bool hasOpaqueObjects = (opaqueObjects.size() > 0); |
2056 | |
2057 | if (hasOpaqueObjects) |
2058 | activePasses.push_back(t: &opaquePass); |
2059 | |
2060 | // NOTE: When the a screen texture is used, the skybox pass will be called twice. First from |
2061 | // the screen texture pass and later as part of the normal run through the list. |
2062 | if (renderer->contextInterface()->rhiContext()->rhi()->isFeatureSupported(feature: QRhi::TexelFetch)) { // TODO: |
2063 | if (layer.background == QSSGRenderLayer::Background::SkyBoxCubeMap && layer.skyBoxCubeMap) |
2064 | activePasses.push_back(t: &skyboxCubeMapPass); |
2065 | else if (layer.background == QSSGRenderLayer::Background::SkyBox && layer.lightProbe) |
2066 | activePasses.push_back(t: &skyboxPass); |
2067 | } |
2068 | |
2069 | if (hasItem2Ds) |
2070 | activePasses.push_back(t: &item2DPass); |
2071 | |
2072 | if (thePrepResult.flags.requiresScreenTexture()) |
2073 | activePasses.push_back(t: &reflectionPass); |
2074 | |
2075 | // Note: Transparent pass includeds opaque objects when layerEnableDepthTest is false. |
2076 | if (transparentObjects.size() > 0 || (!layerEnableDepthTest && hasOpaqueObjects)) |
2077 | activePasses.push_back(t: &transparentPass); |
2078 | |
2079 | auto &overlayPass = userPasses[QSSGRenderLayer::RenderExtensionMode::Overlay]; |
2080 | if (overlayPass.hasData()) |
2081 | activePasses.push_back(t: &overlayPass); |
2082 | |
2083 | if (layer.gridEnabled) |
2084 | activePasses.push_back(t: &infiniteGridPass); |
2085 | |
2086 | if (const auto &dbgDrawSystem = renderer->contextInterface()->debugDrawSystem(); dbgDrawSystem && dbgDrawSystem->isEnabled() && dbgDrawSystem->hasContent()) |
2087 | activePasses.push_back(t: &debugDrawPass); |
2088 | } |
2089 | |
2090 | void QSSGLayerRenderData::resetForFrame() |
2091 | { |
2092 | for (const auto &pass : activePasses) |
2093 | pass->release(); |
2094 | activePasses.clear(); |
2095 | transparentObjects.clear(); |
2096 | screenTextureObjects.clear(); |
2097 | opaqueObjects.clear(); |
2098 | bakedLightingModels.clear(); |
2099 | layerPrepResult.reset(); |
2100 | // The check for if the camera is or is not null is used |
2101 | // to figure out if this layer was rendered at all. |
2102 | camera = nullptr; |
2103 | cameraData.reset(); |
2104 | clippingFrustum.reset(); |
2105 | renderedOpaqueObjects.clear(); |
2106 | renderedTransparentObjects.clear(); |
2107 | renderedScreenTextureObjects.clear(); |
2108 | renderedItem2Ds.clear(); |
2109 | renderedOpaqueDepthPrepassObjects.clear(); |
2110 | renderedDepthWriteObjects.clear(); |
2111 | renderedBakedLightingModels.clear(); |
2112 | renderableItem2Ds.clear(); |
2113 | lightmapTextures.clear(); |
2114 | bonemapTextures.clear(); |
2115 | globalLights.clear(); |
2116 | modelContexts.clear(); |
2117 | features = QSSGShaderFeatures(); |
2118 | hasDepthWriteObjects = false; |
2119 | depthPrepassObjectsState = { DepthPrepassObjectStateT(DepthPrepassObject::None) }; |
2120 | zPrePassActive = false; |
2121 | } |
2122 | |
2123 | QSSGLayerRenderPreparationResult::QSSGLayerRenderPreparationResult(const QRectF &inViewport, QSSGRenderLayer &inLayer) |
2124 | : layer(&inLayer) |
2125 | { |
2126 | viewport = inViewport; |
2127 | } |
2128 | |
2129 | bool QSSGLayerRenderPreparationResult::isLayerVisible() const |
2130 | { |
2131 | return viewport.height() >= 2.0f && viewport.width() >= 2.0f; |
2132 | } |
2133 | |
2134 | QSize QSSGLayerRenderPreparationResult::textureDimensions() const |
2135 | { |
2136 | const auto size = viewport.size().toSize(); |
2137 | return QSize(QSSGRendererUtil::nextMultipleOf4(value: size.width()), QSSGRendererUtil::nextMultipleOf4(value: size.height())); |
2138 | } |
2139 | |
2140 | QSSGCameraGlobalCalculationResult QSSGLayerRenderPreparationResult::setupCameraForRender(QSSGRenderCamera &inCamera) |
2141 | { |
2142 | // When using ssaa we need to zoom with the ssaa multiplier since otherwise the |
2143 | // orthographic camera will be zoomed out due to the bigger viewport. We therefore |
2144 | // scale the magnification before calulating the camera variables and then revert. |
2145 | // Since the same camera can be used in several View3Ds with or without ssaa we |
2146 | // cannot store the magnification permanently. |
2147 | const float horizontalMagnification = inCamera.horizontalMagnification; |
2148 | const float verticalMagnification = inCamera.verticalMagnification; |
2149 | inCamera.horizontalMagnification *= layer->ssaaEnabled ? layer->ssaaMultiplier : 1.0f; |
2150 | inCamera.verticalMagnification *= layer->ssaaEnabled ? layer->ssaaMultiplier : 1.0f; |
2151 | const auto result = inCamera.calculateGlobalVariables(inViewport: viewport); |
2152 | inCamera.horizontalMagnification = horizontalMagnification; |
2153 | inCamera.verticalMagnification = verticalMagnification; |
2154 | return result; |
2155 | } |
2156 | |
2157 | QSSGLayerRenderData::QSSGLayerRenderData(QSSGRenderLayer &inLayer, QSSGRenderer &inRenderer) |
2158 | : layer(inLayer) |
2159 | , renderer(&inRenderer) |
2160 | , particlesEnabled(checkParticleSupport(rhi: inRenderer.contextInterface()->rhi())) |
2161 | { |
2162 | } |
2163 | |
2164 | QSSGLayerRenderData::~QSSGLayerRenderData() |
2165 | { |
2166 | delete m_lightmapper; |
2167 | for (auto &pass : activePasses) |
2168 | pass->release(); |
2169 | |
2170 | for (auto &renderResult : renderResults) |
2171 | renderResult.reset(); |
2172 | } |
2173 | |
2174 | static void sortInstances(QByteArray &sortedData, QList<QSSGRhiSortData> &sortData, const void *instances, |
2175 | int stride, int count, const QVector3D &cameraDirection) |
2176 | { |
2177 | sortData.resize(size: count); |
2178 | Q_ASSERT(stride == sizeof(QSSGRenderInstanceTableEntry)); |
2179 | // create sort data |
2180 | { |
2181 | const QSSGRenderInstanceTableEntry *instance = reinterpret_cast<const QSSGRenderInstanceTableEntry *>(instances); |
2182 | for (int i = 0; i < count; i++) { |
2183 | const QVector3D pos = QVector3D(instance->row0.w(), instance->row1.w(), instance->row2.w()); |
2184 | sortData[i] = {.d: QVector3D::dotProduct(v1: pos, v2: cameraDirection), .indexOrOffset: i}; |
2185 | instance++; |
2186 | } |
2187 | } |
2188 | |
2189 | // sort |
2190 | std::sort(first: sortData.begin(), last: sortData.end(), comp: [](const QSSGRhiSortData &a, const QSSGRhiSortData &b){ |
2191 | return a.d > b.d; |
2192 | }); |
2193 | |
2194 | // copy instances |
2195 | { |
2196 | const QSSGRenderInstanceTableEntry *instance = reinterpret_cast<const QSSGRenderInstanceTableEntry *>(instances); |
2197 | QSSGRenderInstanceTableEntry *dest = reinterpret_cast<QSSGRenderInstanceTableEntry *>(sortedData.data()); |
2198 | for (auto &s : sortData) |
2199 | *dest++ = instance[s.indexOrOffset]; |
2200 | } |
2201 | } |
2202 | |
2203 | static void cullLodInstances(QByteArray &lodData, const void *instances, int count, |
2204 | const QVector3D &cameraPosition, float minThreshold, float maxThreshold) |
2205 | { |
2206 | const QSSGRenderInstanceTableEntry *instance = reinterpret_cast<const QSSGRenderInstanceTableEntry *>(instances); |
2207 | QSSGRenderInstanceTableEntry *dest = reinterpret_cast<QSSGRenderInstanceTableEntry *>(lodData.data()); |
2208 | for (int i = 0; i < count; ++i) { |
2209 | const float x = cameraPosition.x() - instance->row0.w(); |
2210 | const float y = cameraPosition.y() - instance->row1.w(); |
2211 | const float z = cameraPosition.z() - instance->row2.w(); |
2212 | const float distanceSq = x * x + y * y + z * z; |
2213 | if (distanceSq >= minThreshold * minThreshold && (maxThreshold < 0 || distanceSq < maxThreshold * maxThreshold)) |
2214 | *dest = *instance; |
2215 | else |
2216 | *dest= {}; |
2217 | dest++; |
2218 | instance++; |
2219 | } |
2220 | } |
2221 | |
2222 | bool QSSGLayerRenderData::prepareInstancing(QSSGRhiContext *rhiCtx, |
2223 | QSSGSubsetRenderable *renderable, |
2224 | const QVector3D &cameraDirection, |
2225 | const QVector3D &cameraPosition, |
2226 | float minThreshold, |
2227 | float maxThreshold) |
2228 | { |
2229 | auto &modelContext = renderable->modelContext; |
2230 | auto &instanceBuffer = renderable->instanceBuffer; // intentional ref2ptr |
2231 | if (!modelContext.model.instancing() || instanceBuffer) |
2232 | return instanceBuffer; |
2233 | auto *table = modelContext.model.instanceTable; |
2234 | bool usesLod = minThreshold >= 0 || maxThreshold >= 0; |
2235 | QSSGRhiInstanceBufferData &instanceData(usesLod ? rhiCtx->instanceBufferData(model: &modelContext.model) : rhiCtx->instanceBufferData(instanceTable: table)); |
2236 | quint32 instanceBufferSize = table->dataSize(); |
2237 | // Create or resize the instance buffer ### if (instanceData.owned) |
2238 | bool sortingChanged = table->isDepthSortingEnabled() != instanceData.sorting; |
2239 | bool cameraDirectionChanged = !qFuzzyCompare(v1: instanceData.sortedCameraDirection, v2: cameraDirection); |
2240 | bool cameraPositionChanged = !qFuzzyCompare(v1: instanceData.cameraPosition, v2: cameraPosition); |
2241 | bool updateInstanceBuffer = table->serial() != instanceData.serial || sortingChanged || (cameraDirectionChanged && table->isDepthSortingEnabled()); |
2242 | bool updateForLod = cameraPositionChanged && usesLod; |
2243 | if (sortingChanged && !table->isDepthSortingEnabled()) { |
2244 | instanceData.sortedData.clear(); |
2245 | instanceData.sortData.clear(); |
2246 | instanceData.sortedCameraDirection = {}; |
2247 | } |
2248 | instanceData.sorting = table->isDepthSortingEnabled(); |
2249 | if (instanceData.buffer && instanceData.buffer->size() < instanceBufferSize) { |
2250 | updateInstanceBuffer = true; |
2251 | // qDebug() << "Resizing instance buffer"; |
2252 | instanceData.buffer->setSize(instanceBufferSize); |
2253 | instanceData.buffer->create(); |
2254 | } |
2255 | if (!instanceData.buffer) { |
2256 | // qDebug() << "Creating instance buffer"; |
2257 | updateInstanceBuffer = true; |
2258 | instanceData.buffer = rhiCtx->rhi()->newBuffer(type: QRhiBuffer::Dynamic, usage: QRhiBuffer::VertexBuffer, size: instanceBufferSize); |
2259 | instanceData.buffer->create(); |
2260 | } |
2261 | if (updateInstanceBuffer || updateForLod) { |
2262 | const void *data = nullptr; |
2263 | if (table->isDepthSortingEnabled()) { |
2264 | if (updateInstanceBuffer) { |
2265 | QMatrix4x4 invGlobalTransform = modelContext.model.globalTransform.inverted(); |
2266 | instanceData.sortedData.resize(size: table->dataSize()); |
2267 | sortInstances(sortedData&: instanceData.sortedData, |
2268 | sortData&: instanceData.sortData, |
2269 | instances: table->constData(), |
2270 | stride: table->stride(), |
2271 | count: table->count(), |
2272 | cameraDirection: invGlobalTransform.map(point: cameraDirection).normalized()); |
2273 | } |
2274 | data = instanceData.sortedData.constData(); |
2275 | instanceData.sortedCameraDirection = cameraDirection; |
2276 | } else { |
2277 | data = table->constData(); |
2278 | } |
2279 | if (data) { |
2280 | if (updateForLod) { |
2281 | if (table->isDepthSortingEnabled()) { |
2282 | instanceData.lodData.resize(size: table->dataSize()); |
2283 | cullLodInstances(lodData&: instanceData.lodData, instances: instanceData.sortedData.constData(), count: instanceData.sortedData.size(), cameraPosition, minThreshold, maxThreshold); |
2284 | data = instanceData.lodData.constData(); |
2285 | } else { |
2286 | instanceData.lodData.resize(size: table->dataSize()); |
2287 | cullLodInstances(lodData&: instanceData.lodData, instances: table->constData(), count: table->count(), cameraPosition, minThreshold, maxThreshold); |
2288 | data = instanceData.lodData.constData(); |
2289 | } |
2290 | } |
2291 | QRhiResourceUpdateBatch *rub = rhiCtx->rhi()->nextResourceUpdateBatch(); |
2292 | rub->updateDynamicBuffer(buf: instanceData.buffer, offset: 0, size: instanceBufferSize, data); |
2293 | rhiCtx->commandBuffer()->resourceUpdate(resourceUpdates: rub); |
2294 | //qDebug() << "****** UPDATING INST BUFFER. Size" << instanceBufferSize; |
2295 | } else { |
2296 | qWarning() << "NO DATA IN INSTANCE TABLE" ; |
2297 | } |
2298 | instanceData.serial = table->serial(); |
2299 | instanceData.cameraPosition = cameraPosition; |
2300 | } |
2301 | instanceBuffer = instanceData.buffer; |
2302 | return instanceBuffer; |
2303 | } |
2304 | |
2305 | void QSSGLayerRenderData::maybeBakeLightmap() |
2306 | { |
2307 | if (!interactiveLightmapBakingRequested) { |
2308 | static bool bakeRequested = false; |
2309 | static bool bakeFlagChecked = false; |
2310 | if (!bakeFlagChecked) { |
2311 | bakeFlagChecked = true; |
2312 | const bool cmdLineReq = QCoreApplication::arguments().contains(QStringLiteral("--bake-lightmaps" )); |
2313 | const bool envReq = qEnvironmentVariableIntValue(varName: "QT_QUICK3D_BAKE_LIGHTMAPS" ); |
2314 | bakeRequested = cmdLineReq || envReq; |
2315 | } |
2316 | if (!bakeRequested) |
2317 | return; |
2318 | } |
2319 | |
2320 | const auto &sortedBakedLightingModels = getSortedBakedLightingModels(); // front to back |
2321 | |
2322 | QSSGRhiContext *rhiCtx = renderer->contextInterface()->rhiContext().get(); |
2323 | |
2324 | if (!m_lightmapper) |
2325 | m_lightmapper = new QSSGLightmapper(rhiCtx, renderer); |
2326 | |
2327 | // sortedBakedLightingModels contains all models with |
2328 | // usedInBakedLighting: true. These, together with lights that |
2329 | // have a bakeMode set to either Indirect or All, form the |
2330 | // lightmapped scene. A lightmap is stored persistently only |
2331 | // for models that have their lightmapKey set. |
2332 | |
2333 | m_lightmapper->reset(); |
2334 | m_lightmapper->setOptions(layer.lmOptions); |
2335 | m_lightmapper->setOutputCallback(lightmapBakingOutputCallback); |
2336 | |
2337 | for (int i = 0, ie = sortedBakedLightingModels.size(); i != ie; ++i) |
2338 | m_lightmapper->add(model: sortedBakedLightingModels[i]); |
2339 | |
2340 | QRhiCommandBuffer *cb = rhiCtx->commandBuffer(); |
2341 | cb->debugMarkBegin(name: "Quick3D lightmap baking" ); |
2342 | m_lightmapper->bake(); |
2343 | cb->debugMarkEnd(); |
2344 | |
2345 | if (!interactiveLightmapBakingRequested) { |
2346 | qDebug(msg: "Lightmap baking done, exiting application" ); |
2347 | QMetaObject::invokeMethod(qApp, member: "quit" ); |
2348 | } |
2349 | |
2350 | interactiveLightmapBakingRequested = false; |
2351 | } |
2352 | |
2353 | QSSGFrameData &QSSGLayerRenderData::getFrameData() |
2354 | { |
2355 | return frameData; |
2356 | } |
2357 | |
2358 | QSSGRenderableNodeEntry QSSGLayerRenderData::getNode(QSSGNodeId id) const |
2359 | { |
2360 | QSSGRenderableNodeEntry ret; |
2361 | if (auto node = reinterpret_cast<QSSGRenderNode *>(id)) { |
2362 | // NOTE: We only look-up models for now. |
2363 | if (node->type == QSSGRenderNode::Type::Model) { |
2364 | const auto cbegin = renderableModels.cbegin(); |
2365 | const auto cend = renderableModels.cend(); |
2366 | const auto foundIt = std::find_if(first: cbegin, last: cend, pred: [node](const QSSGRenderableNodeEntry &e){ return (e.node == node); }); |
2367 | if (foundIt != cend) |
2368 | ret = *foundIt; |
2369 | } |
2370 | } |
2371 | |
2372 | return ret; |
2373 | } |
2374 | |
2375 | QSSGRenderableNodeEntry QSSGLayerRenderData::takeNode(QSSGNodeId id) |
2376 | { |
2377 | QSSGRenderableNodeEntry ret; |
2378 | if (auto node = reinterpret_cast<QSSGRenderNode *>(id)) { |
2379 | // NOTE: We only look-up models for now. |
2380 | if (node->type == QSSGRenderNode::Type::Model) { |
2381 | const auto cbegin = renderableModels.cbegin(); |
2382 | const auto cend = renderableModels.cend(); |
2383 | const auto foundIt = std::find_if(first: cbegin, last: cend, pred: [node](const QSSGRenderableNodeEntry &e){ return (e.node == node); }); |
2384 | if (foundIt != cend) { |
2385 | ret = *foundIt; |
2386 | renderableModels.erase(pos: foundIt); |
2387 | } |
2388 | } |
2389 | } |
2390 | |
2391 | return ret; |
2392 | } |
2393 | |
2394 | QSSGRenderGraphObject *QSSGLayerRenderData::getResource(QSSGResourceId id) const |
2395 | { |
2396 | QSSGRenderGraphObject *ret = nullptr; |
2397 | if (auto res = reinterpret_cast<QSSGRenderGraphObject *>(id)) |
2398 | ret = res; |
2399 | |
2400 | return ret; |
2401 | } |
2402 | |
2403 | QSSGCameraRenderData QSSGLayerRenderData::getCameraRenderData(const QSSGRenderCamera *camera_) |
2404 | { |
2405 | QSSGCameraRenderData data; |
2406 | if (!camera_ || camera_ == camera) |
2407 | data = getCachedCameraData(); |
2408 | else if (camera_) |
2409 | data = getCameraDataImpl(camera: camera_); |
2410 | |
2411 | return data; |
2412 | } |
2413 | |
2414 | QSSGCameraRenderData QSSGLayerRenderData::getCameraRenderData(const QSSGRenderCamera *camera_) const |
2415 | { |
2416 | QSSGCameraRenderData data; |
2417 | if ((!camera_ || camera_ == camera) && cameraData.has_value()) |
2418 | data = cameraData.value(); |
2419 | else if (camera_) |
2420 | data = getCameraDataImpl(camera: camera_); |
2421 | |
2422 | return data; |
2423 | } |
2424 | |
2425 | QSSGRenderContextInterface *QSSGLayerRenderData::contextInterface() const |
2426 | { |
2427 | return renderer ? renderer->contextInterface() : nullptr; |
2428 | } |
2429 | |
2430 | const QSSGRenderShadowMapPtr &QSSGLayerRenderData::requestShadowMapManager() |
2431 | { |
2432 | if (!shadowMapManager && QSSG_GUARD(renderer && renderer->contextInterface())) |
2433 | shadowMapManager.reset(p: new QSSGRenderShadowMap(*renderer->contextInterface())); |
2434 | return shadowMapManager; |
2435 | } |
2436 | |
2437 | const QSSGRenderReflectionMapPtr &QSSGLayerRenderData::requestReflectionMapManager() |
2438 | { |
2439 | if (!reflectionMapManager && QSSG_GUARD(renderer && renderer->contextInterface())) |
2440 | reflectionMapManager.reset(p: new QSSGRenderReflectionMap(*renderer->contextInterface())); |
2441 | return reflectionMapManager; |
2442 | } |
2443 | |
2444 | QT_END_NAMESPACE |
2445 | |