| 1 | // Copyright (C) 2008-2012 NVIDIA Corporation. |
| 2 | // Copyright (C) 2022 The Qt Company Ltd. |
| 3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only |
| 4 | |
| 5 | #include "qssglayerrenderdata_p.h" |
| 6 | |
| 7 | #include <QtQuick3DRuntimeRender/private/qssgrenderer_p.h> |
| 8 | #include <QtQuick3DRuntimeRender/private/qssgrenderlight_p.h> |
| 9 | #include <QtQuick3DRuntimeRender/private/qssgrhicustommaterialsystem_p.h> |
| 10 | #include <QtQuick3DRuntimeRender/private/qssgrhiquadrenderer_p.h> |
| 11 | #include <QtQuick3DRuntimeRender/private/qssgrhiparticles_p.h> |
| 12 | #include <QtQuick3DRuntimeRender/private/qssgrenderlayer_p.h> |
| 13 | #include <QtQuick3DRuntimeRender/private/qssgrendereffect_p.h> |
| 14 | #include <QtQuick3DRuntimeRender/private/qssgrendercamera_p.h> |
| 15 | #include <QtQuick3DRuntimeRender/private/qssgrenderskeleton_p.h> |
| 16 | #include <QtQuick3DRuntimeRender/private/qssgrenderjoint_p.h> |
| 17 | #include <QtQuick3DRuntimeRender/private/qssgrendermorphtarget_p.h> |
| 18 | #include <QtQuick3DRuntimeRender/private/qssgrenderparticles_p.h> |
| 19 | #include "../qssgrendercontextcore.h" |
| 20 | #include <QtQuick3DRuntimeRender/private/qssgrenderbuffermanager_p.h> |
| 21 | #include <QtQuick3DRuntimeRender/private/qssgrendershadercache_p.h> |
| 22 | #include <QtQuick3DRuntimeRender/private/qssgperframeallocator_p.h> |
| 23 | #include <QtQuick3DRuntimeRender/private/qssgruntimerenderlogging_p.h> |
| 24 | #include <QtQuick3DRuntimeRender/private/qssglightmapper_p.h> |
| 25 | #include <QtQuick3DRuntimeRender/private/qssgdebugdrawsystem_p.h> |
| 26 | |
| 27 | #include <QtQuick3DUtils/private/qssgutils_p.h> |
| 28 | #include <QtQuick3DUtils/private/qssgassert_p.h> |
| 29 | |
| 30 | #include <QtQuick/private/qsgtexture_p.h> |
| 31 | #include <QtQuick/private/qsgrenderer_p.h> |
| 32 | |
| 33 | #include <QtCore/QCoreApplication> |
| 34 | #include <QtCore/QBitArray> |
| 35 | #include <array> |
| 36 | |
| 37 | #include "qssgrenderpass_p.h" |
| 38 | #include "rendererimpl/qssgrenderhelpers_p.h" |
| 39 | |
| 40 | QT_BEGIN_NAMESPACE |
| 41 | |
| 42 | Q_LOGGING_CATEGORY(lcQuick3DRender, "qt.quick3d.render" ); |
| 43 | |
| 44 | #define POS4BONETRANS(x) (sizeof(float) * 16 * (x) * 2) |
| 45 | #define POS4BONENORM(x) (sizeof(float) * 16 * ((x) * 2 + 1)) |
| 46 | #define BONEDATASIZE4ID(x) POS4BONETRANS(x + 1) |
| 47 | |
| 48 | static bool checkParticleSupport(QRhi *rhi) |
| 49 | { |
| 50 | QSSG_ASSERT(rhi, return false); |
| 51 | |
| 52 | bool ret = true; |
| 53 | const bool supportRgba32f = rhi->isTextureFormatSupported(format: QRhiTexture::RGBA32F); |
| 54 | const bool supportRgba16f = rhi->isTextureFormatSupported(format: QRhiTexture::RGBA16F); |
| 55 | if (!supportRgba32f && !supportRgba16f) { |
| 56 | static bool warningShown = false; |
| 57 | if (!warningShown) { |
| 58 | qWarning () << "Particles not supported due to missing RGBA32F and RGBA16F texture format support" ; |
| 59 | warningShown = true; |
| 60 | } |
| 61 | ret = false; |
| 62 | } |
| 63 | |
| 64 | return ret; |
| 65 | } |
| 66 | |
| 67 | // These are meant to be pixel offsets, so you need to divide them by the width/height |
| 68 | // of the layer respectively. |
| 69 | static const QVector2D s_ProgressiveAAVertexOffsets[QSSGLayerRenderData::MAX_AA_LEVELS] = { |
| 70 | QVector2D(-0.170840f, -0.553840f), // 1x |
| 71 | QVector2D(0.162960f, -0.319340f), // 2x |
| 72 | QVector2D(0.360260f, -0.245840f), // 3x |
| 73 | QVector2D(-0.561340f, -0.149540f), // 4x |
| 74 | QVector2D(0.249460f, 0.453460f), // 5x |
| 75 | QVector2D(-0.336340f, 0.378260f), // 6x |
| 76 | QVector2D(0.340000f, 0.166260f), // 7x |
| 77 | QVector2D(0.235760f, 0.527760f), // 8x |
| 78 | }; |
| 79 | |
| 80 | qsizetype QSSGLayerRenderData::frustumCulling(const QSSGClippingFrustum &clipFrustum, const QSSGRenderableObjectList &renderables, QSSGRenderableObjectList &visibleRenderables) |
| 81 | { |
| 82 | QSSG_ASSERT(visibleRenderables.isEmpty(), visibleRenderables.clear()); |
| 83 | visibleRenderables.reserve(asize: renderables.size()); |
| 84 | for (quint32 end = renderables.size(), idx = quint32(0); idx != end; ++idx) { |
| 85 | auto handle = renderables.at(i: idx); |
| 86 | const auto &b = handle.obj->globalBounds; |
| 87 | if (clipFrustum.intersectsWith(bounds: b)) |
| 88 | visibleRenderables.push_back(t: handle); |
| 89 | } |
| 90 | |
| 91 | return visibleRenderables.size(); |
| 92 | } |
| 93 | |
| 94 | qsizetype QSSGLayerRenderData::frustumCullingInline(const QSSGClippingFrustum &clipFrustum, QSSGRenderableObjectList &renderables) |
| 95 | { |
| 96 | const qint32 end = renderables.size(); |
| 97 | qint32 front = 0; |
| 98 | qint32 back = end - 1; |
| 99 | |
| 100 | while (front <= back) { |
| 101 | const auto &b = renderables.at(i: front).obj->globalBounds; |
| 102 | if (clipFrustum.intersectsWith(bounds: b)) |
| 103 | ++front; |
| 104 | else |
| 105 | renderables.swapItemsAt(i: front, j: back--); |
| 106 | } |
| 107 | |
| 108 | return back + 1; |
| 109 | } |
| 110 | |
| 111 | [[nodiscard]] constexpr static inline bool nearestToFurthestCompare(const QSSGRenderableObjectHandle &lhs, const QSSGRenderableObjectHandle &rhs) noexcept |
| 112 | { |
| 113 | return lhs.cameraDistanceSq < rhs.cameraDistanceSq; |
| 114 | } |
| 115 | |
| 116 | [[nodiscard]] constexpr static inline bool furthestToNearestCompare(const QSSGRenderableObjectHandle &lhs, const QSSGRenderableObjectHandle &rhs) noexcept |
| 117 | { |
| 118 | return lhs.cameraDistanceSq > rhs.cameraDistanceSq; |
| 119 | } |
| 120 | |
| 121 | static void collectBoneTransforms(QSSGRenderNode *node, QSSGRenderSkeleton *skeletonNode, const QVector<QMatrix4x4> &poses) |
| 122 | { |
| 123 | if (node->type == QSSGRenderGraphObject::Type::Joint) { |
| 124 | QSSGRenderJoint *jointNode = static_cast<QSSGRenderJoint *>(node); |
| 125 | jointNode->calculateGlobalVariables(); |
| 126 | QMatrix4x4 globalTrans = jointNode->globalTransform; |
| 127 | // if user doesn't give the inverseBindPose, identity matrices are used. |
| 128 | if (poses.size() > jointNode->index) |
| 129 | globalTrans *= poses[jointNode->index]; |
| 130 | memcpy(dest: skeletonNode->boneData.data() + POS4BONETRANS(jointNode->index), |
| 131 | src: reinterpret_cast<const void *>(globalTrans.constData()), |
| 132 | n: sizeof(float) * 16); |
| 133 | // only upper 3x3 is meaningful |
| 134 | memcpy(dest: skeletonNode->boneData.data() + POS4BONENORM(jointNode->index), |
| 135 | src: reinterpret_cast<const void *>(QMatrix4x4(globalTrans.normalMatrix()).constData()), |
| 136 | n: sizeof(float) * 11); |
| 137 | } else { |
| 138 | skeletonNode->containsNonJointNodes = true; |
| 139 | } |
| 140 | for (auto &child : node->children) |
| 141 | collectBoneTransforms(node: &child, skeletonNode, poses); |
| 142 | } |
| 143 | |
| 144 | static bool hasDirtyNonJointNodes(QSSGRenderNode *node, bool &hasChildJoints) |
| 145 | { |
| 146 | if (!node) |
| 147 | return false; |
| 148 | // we might be non-joint dirty node, but if we do not have child joints we need to return false |
| 149 | // Note! The frontend clears TransformDirty. Use dirty instead. |
| 150 | bool dirtyNonJoint = ((node->type != QSSGRenderGraphObject::Type::Joint) |
| 151 | && node->isDirty()); |
| 152 | |
| 153 | // Tell our parent we are joint |
| 154 | if (node->type == QSSGRenderGraphObject::Type::Joint) |
| 155 | hasChildJoints = true; |
| 156 | bool nodeHasChildJoints = false; |
| 157 | for (auto &child : node->children) { |
| 158 | bool ret = hasDirtyNonJointNodes(node: &child, hasChildJoints&: nodeHasChildJoints); |
| 159 | // return if we have child joints and non-joint dirty nodes, else check other children |
| 160 | hasChildJoints |= nodeHasChildJoints; |
| 161 | if (ret && nodeHasChildJoints) |
| 162 | return true; |
| 163 | } |
| 164 | // return true if we have child joints and we are dirty non-joint |
| 165 | hasChildJoints |= nodeHasChildJoints; |
| 166 | return dirtyNonJoint && nodeHasChildJoints; |
| 167 | } |
| 168 | |
| 169 | template<typename T, typename V> |
| 170 | inline void collectNode(V node, QVector<T> &dst, int &dstPos) |
| 171 | { |
| 172 | if (dstPos < dst.size()) |
| 173 | dst[dstPos] = node; |
| 174 | else |
| 175 | dst.push_back(node); |
| 176 | |
| 177 | ++dstPos; |
| 178 | } |
| 179 | template <typename T, typename V> |
| 180 | static inline void collectNodeFront(V node, QVector<T> &dst, int &dstPos) |
| 181 | { |
| 182 | if (dstPos < dst.size()) |
| 183 | dst[dst.size() - dstPos - 1] = node; |
| 184 | else |
| 185 | dst.push_front(node); |
| 186 | |
| 187 | ++dstPos; |
| 188 | } |
| 189 | |
| 190 | #define MAX_MORPH_TARGET 8 |
| 191 | #define MAX_MORPH_TARGET_INDEX_SUPPORTS_NORMALS 3 |
| 192 | #define MAX_MORPH_TARGET_INDEX_SUPPORTS_TANGENTS 1 |
| 193 | |
| 194 | static bool maybeQueueNodeForRender(QSSGRenderNode &inNode, |
| 195 | QVector<QSSGRenderableNodeEntry> &outRenderableModels, |
| 196 | int &ioRenderableModelsCount, |
| 197 | QVector<QSSGRenderableNodeEntry> &outRenderableParticles, |
| 198 | int &ioRenderableParticlesCount, |
| 199 | QVector<QSSGRenderItem2D *> &outRenderableItem2Ds, |
| 200 | int &ioRenderableItem2DsCount, |
| 201 | QVector<QSSGRenderCamera *> &outCameras, |
| 202 | int &ioCameraCount, |
| 203 | QVector<QSSGRenderLight *> &outLights, |
| 204 | int &ioLightCount, |
| 205 | QVector<QSSGRenderReflectionProbe *> &outReflectionProbes, |
| 206 | int &ioReflectionProbeCount, |
| 207 | quint32 &ioDFSIndex) |
| 208 | { |
| 209 | bool wasDirty = inNode.isDirty(dirtyFlag: QSSGRenderNode::DirtyFlag::GlobalValuesDirty) && inNode.calculateGlobalVariables(); |
| 210 | if (inNode.getGlobalState(stateFlag: QSSGRenderNode::GlobalState::Active)) { |
| 211 | ++ioDFSIndex; |
| 212 | inNode.dfsIndex = ioDFSIndex; |
| 213 | if (QSSGRenderGraphObject::isRenderable(type: inNode.type)) { |
| 214 | if (inNode.type == QSSGRenderNode::Type::Model) |
| 215 | collectNode(node: QSSGRenderableNodeEntry(inNode), dst&: outRenderableModels, dstPos&: ioRenderableModelsCount); |
| 216 | else if (inNode.type == QSSGRenderNode::Type::Particles) |
| 217 | collectNode(node: QSSGRenderableNodeEntry(inNode), dst&: outRenderableParticles, dstPos&: ioRenderableParticlesCount); |
| 218 | else if (inNode.type == QSSGRenderNode::Type::Item2D) // Pushing front to keep item order inside QML file |
| 219 | collectNodeFront(node: static_cast<QSSGRenderItem2D *>(&inNode), dst&: outRenderableItem2Ds, dstPos&: ioRenderableItem2DsCount); |
| 220 | } else if (QSSGRenderGraphObject::isCamera(type: inNode.type)) { |
| 221 | collectNode(node: static_cast<QSSGRenderCamera *>(&inNode), dst&: outCameras, dstPos&: ioCameraCount); |
| 222 | } else if (QSSGRenderGraphObject::isLight(type: inNode.type)) { |
| 223 | if (auto &light = static_cast<QSSGRenderLight &>(inNode); light.isEnabled()) |
| 224 | collectNode(node: &light, dst&: outLights, dstPos&: ioLightCount); |
| 225 | } else if (inNode.type == QSSGRenderGraphObject::Type::ReflectionProbe) { |
| 226 | collectNode(node: static_cast<QSSGRenderReflectionProbe *>(&inNode), dst&: outReflectionProbes, dstPos&: ioReflectionProbeCount); |
| 227 | } |
| 228 | |
| 229 | for (auto &theChild : inNode.children) |
| 230 | wasDirty |= maybeQueueNodeForRender(inNode&: theChild, |
| 231 | outRenderableModels, |
| 232 | ioRenderableModelsCount, |
| 233 | outRenderableParticles, |
| 234 | ioRenderableParticlesCount, |
| 235 | outRenderableItem2Ds, |
| 236 | ioRenderableItem2DsCount, |
| 237 | outCameras, |
| 238 | ioCameraCount, |
| 239 | outLights, |
| 240 | ioLightCount, |
| 241 | outReflectionProbes, |
| 242 | ioReflectionProbeCount, |
| 243 | ioDFSIndex); |
| 244 | } |
| 245 | return wasDirty; |
| 246 | } |
| 247 | |
| 248 | QSSGDefaultMaterialPreparationResult::QSSGDefaultMaterialPreparationResult(QSSGShaderDefaultMaterialKey inKey) |
| 249 | : firstImage(nullptr), opacity(1.0f), materialKey(inKey), dirty(false) |
| 250 | { |
| 251 | } |
| 252 | |
| 253 | static QSSGRenderCameraData getCameraDataImpl(const QSSGRenderCamera *camera) |
| 254 | { |
| 255 | QSSGRenderCameraData ret; |
| 256 | if (camera) { |
| 257 | // Calculate viewProjection and clippingFrustum for Render Camera |
| 258 | QMatrix4x4 viewProjection(Qt::Uninitialized); |
| 259 | camera->calculateViewProjectionMatrix(outMatrix&: viewProjection); |
| 260 | std::optional<QSSGClippingFrustum> clippingFrustum; |
| 261 | if (camera->enableFrustumClipping) { |
| 262 | QSSGClipPlane nearPlane; |
| 263 | QMatrix3x3 theUpper33(camera->globalTransform.normalMatrix()); |
| 264 | QVector3D dir(QSSGUtils::mat33::transform(m: theUpper33, v: QVector3D(0, 0, -1))); |
| 265 | dir.normalize(); |
| 266 | nearPlane.normal = dir; |
| 267 | QVector3D theGlobalPos = camera->getGlobalPos() + camera->clipNear * dir; |
| 268 | nearPlane.d = -(QVector3D::dotProduct(v1: dir, v2: theGlobalPos)); |
| 269 | // the near plane's bbox edges are calculated in the clipping frustum's |
| 270 | // constructor. |
| 271 | clippingFrustum = QSSGClippingFrustum{viewProjection, nearPlane}; |
| 272 | } |
| 273 | ret = { .viewProjection: viewProjection, .clippingFrustum: clippingFrustum, .direction: camera->getScalingCorrectDirection(), .position: camera->getGlobalPos() }; |
| 274 | } |
| 275 | |
| 276 | return ret; |
| 277 | } |
| 278 | |
| 279 | // Returns the cached data for the active render camera(s) (if any) |
| 280 | const QSSGRenderCameraDataList &QSSGLayerRenderData::getCachedCameraDatas() |
| 281 | { |
| 282 | ensureCachedCameraDatas(); |
| 283 | return *renderedCameraData; |
| 284 | } |
| 285 | |
| 286 | void QSSGLayerRenderData::ensureCachedCameraDatas() |
| 287 | { |
| 288 | if (renderedCameraData.has_value()) |
| 289 | return; |
| 290 | |
| 291 | QSSGRenderCameraDataList cameraData; |
| 292 | for (QSSGRenderCamera *cam : std::as_const(t&: renderedCameras)) |
| 293 | cameraData.append(t: getCameraDataImpl(camera: cam)); |
| 294 | renderedCameraData = std::move(cameraData); |
| 295 | } |
| 296 | |
| 297 | [[nodiscard]] static inline float getCameraDistanceSq(const QSSGRenderableObject &obj, |
| 298 | const QSSGRenderCameraData &camera) noexcept |
| 299 | { |
| 300 | const QVector3D difference = obj.worldCenterPoint - camera.position; |
| 301 | return QVector3D::dotProduct(v1: difference, v2: camera.direction) + obj.depthBiasSq; |
| 302 | } |
| 303 | |
| 304 | // Per-frame cache of renderable objects post-sort. |
| 305 | const QVector<QSSGRenderableObjectHandle> &QSSGLayerRenderData::getSortedOpaqueRenderableObjects(const QSSGRenderCamera &camera, size_t index) |
| 306 | { |
| 307 | index = index * size_t(index < opaqueObjectStore.size()); |
| 308 | auto &sortedOpaqueObjects = sortedOpaqueObjectCache[index][&camera]; |
| 309 | if (!sortedOpaqueObjects.empty()) |
| 310 | return sortedOpaqueObjects; |
| 311 | |
| 312 | if (layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest)) |
| 313 | sortedOpaqueObjects = std::as_const(t&: opaqueObjectStore)[index]; |
| 314 | |
| 315 | const auto &clippingFrustum = getCameraRenderData(camera: &camera).clippingFrustum; |
| 316 | if (clippingFrustum.has_value()) { // Frustum culling |
| 317 | const auto visibleObjects = QSSGLayerRenderData::frustumCullingInline(clipFrustum: clippingFrustum.value(), renderables&: sortedOpaqueObjects); |
| 318 | sortedOpaqueObjects.resize(size: visibleObjects); |
| 319 | } |
| 320 | |
| 321 | // Render nearest to furthest objects |
| 322 | std::sort(first: sortedOpaqueObjects.begin(), last: sortedOpaqueObjects.end(), comp: nearestToFurthestCompare); |
| 323 | |
| 324 | return sortedOpaqueObjects; |
| 325 | } |
| 326 | |
| 327 | // If layer depth test is false, this may also contain opaque objects. |
| 328 | const QVector<QSSGRenderableObjectHandle> &QSSGLayerRenderData::getSortedTransparentRenderableObjects(const QSSGRenderCamera &camera, size_t index) |
| 329 | { |
| 330 | index = index * size_t(index < transparentObjectStore.size()); |
| 331 | auto &sortedTransparentObjects = sortedTransparentObjectCache[index][&camera]; |
| 332 | |
| 333 | if (!sortedTransparentObjects.empty()) |
| 334 | return sortedTransparentObjects; |
| 335 | |
| 336 | sortedTransparentObjects = std::as_const(t&: transparentObjectStore)[index]; |
| 337 | |
| 338 | if (!layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest)) { |
| 339 | const auto &opaqueObjects = std::as_const(t&: opaqueObjectStore)[index]; |
| 340 | sortedTransparentObjects.append(l: opaqueObjects); |
| 341 | } |
| 342 | |
| 343 | const auto &clippingFrustum = getCameraRenderData(camera: &camera).clippingFrustum; |
| 344 | if (clippingFrustum.has_value()) { // Frustum culling |
| 345 | const auto visibleObjects = QSSGLayerRenderData::frustumCullingInline(clipFrustum: clippingFrustum.value(), renderables&: sortedTransparentObjects); |
| 346 | sortedTransparentObjects.resize(size: visibleObjects); |
| 347 | } |
| 348 | |
| 349 | // render furthest to nearest. |
| 350 | std::sort(first: sortedTransparentObjects.begin(), last: sortedTransparentObjects.end(), comp: furthestToNearestCompare); |
| 351 | |
| 352 | return sortedTransparentObjects; |
| 353 | } |
| 354 | |
| 355 | const QVector<QSSGRenderableObjectHandle> &QSSGLayerRenderData::getSortedScreenTextureRenderableObjects(const QSSGRenderCamera &camera, size_t index) |
| 356 | { |
| 357 | index = index * size_t(index < screenTextureObjectStore.size()); |
| 358 | const auto &screenTextureObjects = std::as_const(t&: screenTextureObjectStore)[index]; |
| 359 | auto &renderedScreenTextureObjects = sortedScreenTextureObjectCache[index][&camera]; |
| 360 | |
| 361 | if (!renderedScreenTextureObjects.empty()) |
| 362 | return renderedScreenTextureObjects; |
| 363 | renderedScreenTextureObjects = screenTextureObjects; |
| 364 | if (!renderedScreenTextureObjects.empty()) { |
| 365 | // render furthest to nearest. |
| 366 | std::sort(first: renderedScreenTextureObjects.begin(), last: renderedScreenTextureObjects.end(), comp: furthestToNearestCompare); |
| 367 | } |
| 368 | return renderedScreenTextureObjects; |
| 369 | } |
| 370 | |
| 371 | const QVector<QSSGBakedLightingModel> &QSSGLayerRenderData::getSortedBakedLightingModels() |
| 372 | { |
| 373 | if (!renderedBakedLightingModels.empty() || renderedCameras.isEmpty()) |
| 374 | return renderedBakedLightingModels; |
| 375 | if (layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest) && !bakedLightingModels.empty()) { |
| 376 | renderedBakedLightingModels = bakedLightingModels; |
| 377 | for (QSSGBakedLightingModel &lm : renderedBakedLightingModels) { |
| 378 | // sort nearest to furthest (front to back) |
| 379 | std::sort(first: lm.renderables.begin(), last: lm.renderables.end(), comp: nearestToFurthestCompare); |
| 380 | } |
| 381 | } |
| 382 | return renderedBakedLightingModels; |
| 383 | } |
| 384 | |
| 385 | const QSSGLayerRenderData::RenderableItem2DEntries &QSSGLayerRenderData::getRenderableItem2Ds() |
| 386 | { |
| 387 | if (!renderedItem2Ds.isEmpty() || renderedCameras.isEmpty()) |
| 388 | return renderedItem2Ds; |
| 389 | |
| 390 | renderedItem2Ds = renderableItem2Ds; |
| 391 | |
| 392 | if (!renderedItem2Ds.isEmpty()) { |
| 393 | const QSSGRenderCameraDataList &cameraDatas(getCachedCameraDatas()); |
| 394 | // with multiview this means using the left eye camera |
| 395 | const QSSGRenderCameraData &cameraDirectionAndPosition(cameraDatas[0]); |
| 396 | const QVector3D &cameraDirection = cameraDirectionAndPosition.direction; |
| 397 | const QVector3D &cameraPosition = cameraDirectionAndPosition.position; |
| 398 | |
| 399 | const auto isItemNodeDistanceGreatThan = [cameraDirection, cameraPosition] |
| 400 | (const QSSGRenderItem2D *lhs, const QSSGRenderItem2D *rhs) { |
| 401 | if (!lhs->parent || !rhs->parent) |
| 402 | return false; |
| 403 | const QVector3D lhsDifference = lhs->parent->getGlobalPos() - cameraPosition; |
| 404 | const float lhsCameraDistanceSq = QVector3D::dotProduct(v1: lhsDifference, v2: cameraDirection); |
| 405 | const QVector3D rhsDifference = rhs->parent->getGlobalPos() - cameraPosition; |
| 406 | const float rhsCameraDistanceSq = QVector3D::dotProduct(v1: rhsDifference, v2: cameraDirection); |
| 407 | return lhsCameraDistanceSq > rhsCameraDistanceSq; |
| 408 | }; |
| 409 | |
| 410 | // Render furthest to nearest items (parent nodes). |
| 411 | std::stable_sort(first: renderedItem2Ds.begin(), last: renderedItem2Ds.end(), comp: isItemNodeDistanceGreatThan); |
| 412 | } |
| 413 | |
| 414 | return renderedItem2Ds; |
| 415 | } |
| 416 | |
| 417 | // Depth Write List |
| 418 | void QSSGLayerRenderData::updateSortedDepthObjectsListImp(const QSSGRenderCamera &camera, size_t index) |
| 419 | { |
| 420 | auto &depthWriteObjects = sortedDepthWriteCache[index][&camera]; |
| 421 | auto &depthPrepassObjects = sortedOpaqueDepthPrepassCache[index][&camera]; |
| 422 | |
| 423 | if (!depthWriteObjects.isEmpty() || !depthPrepassObjects.isEmpty()) |
| 424 | return; |
| 425 | |
| 426 | if (layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest)) { |
| 427 | if (hasDepthWriteObjects || (depthPrepassObjectsState & DepthPrepassObjectStateT(DepthPrepassObject::Opaque)) != 0) { |
| 428 | const auto &sortedOpaqueObjects = getSortedOpaqueRenderableObjects(camera, index); // front to back |
| 429 | for (const auto &opaqueObject : sortedOpaqueObjects) { |
| 430 | const auto depthMode = opaqueObject.obj->depthWriteMode; |
| 431 | if (depthMode == QSSGDepthDrawMode::Always || depthMode == QSSGDepthDrawMode::OpaqueOnly) |
| 432 | depthWriteObjects.append(t: opaqueObject); |
| 433 | else if (depthMode == QSSGDepthDrawMode::OpaquePrePass) |
| 434 | depthPrepassObjects.append(t: opaqueObject); |
| 435 | } |
| 436 | } |
| 437 | if (hasDepthWriteObjects || (depthPrepassObjectsState & DepthPrepassObjectStateT(DepthPrepassObject::Transparent)) != 0) { |
| 438 | const auto &sortedTransparentObjects = getSortedTransparentRenderableObjects(camera, index); // back to front |
| 439 | for (const auto &transparentObject : sortedTransparentObjects) { |
| 440 | const auto depthMode = transparentObject.obj->depthWriteMode; |
| 441 | if (depthMode == QSSGDepthDrawMode::Always) |
| 442 | depthWriteObjects.append(t: transparentObject); |
| 443 | else if (depthMode == QSSGDepthDrawMode::OpaquePrePass) |
| 444 | depthPrepassObjects.append(t: transparentObject); |
| 445 | } |
| 446 | } |
| 447 | if (hasDepthWriteObjects || (depthPrepassObjectsState & DepthPrepassObjectStateT(DepthPrepassObject::ScreenTexture)) != 0) { |
| 448 | const auto &sortedScreenTextureObjects = getSortedScreenTextureRenderableObjects(camera, index); // back to front |
| 449 | for (const auto &screenTextureObject : sortedScreenTextureObjects) { |
| 450 | const auto depthMode = screenTextureObject.obj->depthWriteMode; |
| 451 | if (depthMode == QSSGDepthDrawMode::Always || depthMode == QSSGDepthDrawMode::OpaqueOnly) |
| 452 | depthWriteObjects.append(t: screenTextureObject); |
| 453 | else if (depthMode == QSSGDepthDrawMode::OpaquePrePass) |
| 454 | depthPrepassObjects.append(t: screenTextureObject); |
| 455 | } |
| 456 | } |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | const std::unique_ptr<QSSGPerFrameAllocator> &QSSGLayerRenderData::perFrameAllocator(QSSGRenderContextInterface &ctx) |
| 461 | { |
| 462 | return ctx.perFrameAllocator(); |
| 463 | } |
| 464 | |
| 465 | void QSSGLayerRenderData::saveRenderState(const QSSGRenderer &renderer) |
| 466 | { |
| 467 | QSSG_CHECK(!savedRenderState.has_value()); |
| 468 | savedRenderState = std::make_optional<SavedRenderState>(t: { .viewport: renderer.m_viewport, .scissorRect: renderer.m_scissorRect, .dpr: renderer.m_dpr }); |
| 469 | } |
| 470 | |
| 471 | void QSSGLayerRenderData::restoreRenderState(QSSGRenderer &renderer) |
| 472 | { |
| 473 | QSSG_ASSERT(savedRenderState.has_value(), return); |
| 474 | |
| 475 | renderer.m_viewport = savedRenderState->viewport; |
| 476 | renderer.m_scissorRect = savedRenderState->scissorRect; |
| 477 | renderer.m_dpr = savedRenderState->dpr; |
| 478 | savedRenderState.reset(); |
| 479 | } |
| 480 | |
| 481 | static constexpr quint16 PREP_CTX_INDEX_MASK = 0xffff; |
| 482 | static constexpr QSSGPrepContextId createPrepId(size_t index, quint32 frame) { return QSSGPrepContextId { ((quint64(frame) << 32) | index ) * quint64(index <= std::numeric_limits<quint16>::max()) }; } |
| 483 | static constexpr size_t getPrepContextIndex(QSSGPrepContextId id) { return (static_cast<quint64>(id) & PREP_CTX_INDEX_MASK); } |
| 484 | static constexpr bool verifyPrepContext(QSSGPrepContextId id, const QSSGRenderer &renderer) { return (getPrepContextIndex(id) > 0) && ((static_cast<quint64>(id) >> 32) == renderer.frameCount()); } |
| 485 | |
| 486 | QSSGPrepContextId QSSGLayerRenderData::getOrCreateExtensionContext(const QSSGRenderExtension &ext, QSSGRenderCamera *camera, quint32 slot) |
| 487 | { |
| 488 | const auto frame = renderer->frameCount(); |
| 489 | const auto index = extContexts.size(); |
| 490 | // Sanity check... Shouldn't get anywhere close to the max in real world usage (unless somethings broken). |
| 491 | QSSG_ASSERT_X(index < PREP_CTX_INDEX_MASK - 1, "Reached maximum entries!" , return QSSGPrepContextId::Invalid); |
| 492 | auto it = std::find_if(first: extContexts.cbegin(), last: extContexts.cend(), pred: [&ext, slot](const ExtensionContext &e){ return (e.owner == &ext) && (e.slot == slot); }); |
| 493 | if (it == extContexts.cend()) { |
| 494 | extContexts.push_back(x: ExtensionContext{ ext, camera, index, slot }); |
| 495 | it = extContexts.cbegin() + index; |
| 496 | renderableModelStore.emplace_back(); |
| 497 | modelContextStore.emplace_back(); |
| 498 | renderableObjectStore.emplace_back(); |
| 499 | screenTextureObjectStore.emplace_back(); |
| 500 | opaqueObjectStore.emplace_back(); |
| 501 | transparentObjectStore.emplace_back(); |
| 502 | sortedOpaqueObjectCache.emplace_back(); |
| 503 | sortedTransparentObjectCache.emplace_back(); |
| 504 | sortedScreenTextureObjectCache.emplace_back(); |
| 505 | sortedOpaqueDepthPrepassCache.emplace_back(); |
| 506 | sortedDepthWriteCache.emplace_back(); |
| 507 | QSSG_ASSERT(renderableModelStore.size() == extContexts.size(), renderableModelStore.resize(extContexts.size())); |
| 508 | QSSG_ASSERT(modelContextStore.size() == extContexts.size(), modelContextStore.resize(extContexts.size())); |
| 509 | QSSG_ASSERT(renderableObjectStore.size() == extContexts.size(), renderableObjectStore.resize(extContexts.size())); |
| 510 | QSSG_ASSERT(screenTextureObjectStore.size() == extContexts.size(), screenTextureObjectStore.resize(extContexts.size())); |
| 511 | QSSG_ASSERT(opaqueObjectStore.size() == extContexts.size(), opaqueObjectStore.resize(extContexts.size())); |
| 512 | QSSG_ASSERT(transparentObjectStore.size() == extContexts.size(), transparentObjectStore.resize(extContexts.size())); |
| 513 | QSSG_ASSERT(sortedOpaqueObjectCache.size() == extContexts.size(), sortedOpaqueObjectCache.resize(extContexts.size())); |
| 514 | QSSG_ASSERT(sortedTransparentObjectCache.size() == extContexts.size(), sortedTransparentObjectCache.resize(extContexts.size())); |
| 515 | QSSG_ASSERT(sortedScreenTextureObjectCache.size() == extContexts.size(), sortedScreenTextureObjectCache.resize(extContexts.size())); |
| 516 | QSSG_ASSERT(sortedOpaqueDepthPrepassCache.size() == extContexts.size(), sortedOpaqueDepthPrepassCache.resize(extContexts.size())); |
| 517 | QSSG_ASSERT(sortedDepthWriteCache.size() == extContexts.size(), sortedDepthWriteCache.resize(extContexts.size())); |
| 518 | } |
| 519 | |
| 520 | return createPrepId(index: it->index, frame); |
| 521 | } |
| 522 | |
| 523 | static void createRenderablesHelper(QSSGLayerRenderData &layer, const QSSGRenderNode::ChildList &children, QSSGLayerRenderData::RenderableNodeEntries &renderables, QSSGRenderHelpers::CreateFlags createFlags) |
| 524 | { |
| 525 | const bool steal = ((createFlags & QSSGRenderHelpers::CreateFlag::Steal) != 0); |
| 526 | for (auto &chld : children) { |
| 527 | if (chld.type == QSSGRenderGraphObject::Type::Model) { |
| 528 | const auto &renderModel = static_cast<const QSSGRenderModel &>(chld); |
| 529 | auto &renderableModels = layer.renderableModels; |
| 530 | if (auto it = std::find_if(first: renderableModels.cbegin(), last: renderableModels.cend(), pred: [&renderModel](const QSSGRenderableNodeEntry &e) { return (e.node == &renderModel); }); it != renderableModels.cend()) { |
| 531 | renderables.emplace_back(args: *it); |
| 532 | if (steal) |
| 533 | renderableModels.erase(pos: it); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | createRenderablesHelper(layer, children: chld.children, renderables, createFlags); |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | QSSGRenderablesId QSSGLayerRenderData::createRenderables(QSSGPrepContextId prepId, const QList<QSSGNodeId> &nodes, QSSGRenderHelpers::CreateFlags createFlags) |
| 542 | { |
| 543 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid prep id" , return {}); |
| 544 | |
| 545 | const size_t index = getPrepContextIndex(id: prepId); |
| 546 | QSSG_ASSERT(index < renderableModelStore.size(), return {}); |
| 547 | |
| 548 | auto &renderables = renderableModelStore[index]; |
| 549 | if (renderables.size() != 0) { |
| 550 | qWarning() << "Renderables already created for this context - Previous renderables will be overwritten" ; |
| 551 | renderables.clear(); |
| 552 | } |
| 553 | |
| 554 | renderables.reserve(asize: nodes.size()); |
| 555 | |
| 556 | // We now create the renderable node entries for all the models. |
| 557 | // NOTE: The nodes are not complete at this point... |
| 558 | const bool steal = ((createFlags & QSSGRenderHelpers::CreateFlag::Steal) != 0); |
| 559 | for (const auto &nodeId : nodes) { |
| 560 | auto *node = QSSGRenderGraphObjectUtils::getNode<QSSGRenderNode>(nodeId); |
| 561 | if (node && node->type == QSSGRenderGraphObject::Type::Model) { |
| 562 | auto *renderModel = static_cast<QSSGRenderModel *>(node); |
| 563 | // NOTE: Not ideal. |
| 564 | if (auto it = std::find_if(first: renderableModels.cbegin(), last: renderableModels.cend(), pred: [renderModel](const QSSGRenderableNodeEntry &e) { return (e.node == renderModel); }); it != renderableModels.cend()) { |
| 565 | auto &inserted = renderables.emplace_back(args: *it); |
| 566 | inserted.overridden = {}; |
| 567 | if (steal) |
| 568 | it->overridden |= QSSGRenderableNodeEntry::Overridden::Disabled; |
| 569 | } else { |
| 570 | renderables.emplace_back(args&: *renderModel); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | if (node && ((createFlags & QSSGRenderHelpers::CreateFlag::Recurse) != 0)) { |
| 575 | const auto &children = node->children; |
| 576 | createRenderablesHelper(layer&: *this, children, renderables, createFlags); |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | return (renderables.size() != 0) ? static_cast<QSSGRenderablesId>(prepId) : QSSGRenderablesId{ QSSGRenderablesId::Invalid }; |
| 581 | } |
| 582 | |
| 583 | void QSSGLayerRenderData::setGlobalTransform(QSSGRenderablesId renderablesId, const QSSGRenderModel &model, const QMatrix4x4 &globalTransform) |
| 584 | { |
| 585 | const auto prepId = static_cast<QSSGPrepContextId>(renderablesId); |
| 586 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid renderables id" , return); |
| 587 | const size_t index = getPrepContextIndex(id: prepId); |
| 588 | QSSG_ASSERT_X(index < renderableModelStore.size(), "Missing call to createRenderables()?" , return); |
| 589 | |
| 590 | auto &renderables = renderableModelStore[index]; |
| 591 | auto it = std::find_if(first: renderables.cbegin(), last: renderables.cend(), pred: [&model](const QSSGRenderableNodeEntry &e) { return e.node == &model; }); |
| 592 | if (it != renderables.cend()) { |
| 593 | it->globalTransform = globalTransform; |
| 594 | it->overridden |= QSSGRenderableNodeEntry::Overridden::GlobalTransform; |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | QMatrix4x4 QSSGLayerRenderData::getGlobalTransform(QSSGPrepContextId prepId, const QSSGRenderModel &model) |
| 599 | { |
| 600 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid prep id" , return {}); |
| 601 | const size_t index = getPrepContextIndex(id: prepId); |
| 602 | QSSG_ASSERT_X(index < renderableModelStore.size(), "Missing call to createRenderables()?" , return {}); |
| 603 | |
| 604 | QMatrix4x4 ret = model.globalTransform; |
| 605 | auto &renderables = renderableModelStore[index]; |
| 606 | auto it = std::find_if(first: renderables.cbegin(), last: renderables.cend(), pred: [&model](const QSSGRenderableNodeEntry &e) { return e.node == &model; }); |
| 607 | if (it != renderables.cend() && (it->overridden & QSSGRenderableNodeEntry::Overridden::GlobalTransform)) |
| 608 | ret = it->globalTransform; |
| 609 | |
| 610 | return ret; |
| 611 | } |
| 612 | |
| 613 | void QSSGLayerRenderData::setGlobalOpacity(QSSGRenderablesId renderablesId, const QSSGRenderModel &model, float opacity) |
| 614 | { |
| 615 | const auto prepId = static_cast<QSSGPrepContextId>(renderablesId); |
| 616 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid renderables id" , return); |
| 617 | const size_t index = getPrepContextIndex(id: prepId); |
| 618 | QSSG_ASSERT_X(index < renderableModelStore.size(), "Missing call to createRenderables()?" , return); |
| 619 | |
| 620 | auto &renderables = renderableModelStore[index]; |
| 621 | auto it = std::find_if(first: renderables.cbegin(), last: renderables.cend(), pred: [&model](const QSSGRenderableNodeEntry &e) { return e.node == &model; }); |
| 622 | if (it != renderables.cend()) { |
| 623 | it->globalOpacity = opacity; |
| 624 | it->overridden |= QSSGRenderableNodeEntry::Overridden::GlobalOpacity; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | float QSSGLayerRenderData::getGlobalOpacity(QSSGPrepContextId prepId, const QSSGRenderModel &model) |
| 629 | { |
| 630 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid prep id" , return {}); |
| 631 | const size_t index = getPrepContextIndex(id: prepId); |
| 632 | QSSG_ASSERT_X(index < renderableModelStore.size(), "Missing call to createRenderables()?" , return {}); |
| 633 | |
| 634 | float ret = model.globalOpacity; |
| 635 | auto &renderables = renderableModelStore[index]; |
| 636 | auto it = std::find_if(first: renderables.cbegin(), last: renderables.cend(), pred: [&model](const QSSGRenderableNodeEntry &e) { return e.node == &model; }); |
| 637 | if (it != renderables.cend() && (it->overridden & QSSGRenderableNodeEntry::Overridden::GlobalOpacity)) |
| 638 | ret = it->globalOpacity; |
| 639 | |
| 640 | return ret; |
| 641 | } |
| 642 | |
| 643 | void QSSGLayerRenderData::setModelMaterials(QSSGRenderablesId renderablesId, const QSSGRenderModel &model, const QList<QSSGResourceId> &materials) |
| 644 | { |
| 645 | const auto prepId = static_cast<QSSGPrepContextId>(renderablesId); |
| 646 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid renderable id" , return); |
| 647 | const size_t index = getPrepContextIndex(id: prepId); |
| 648 | QSSG_ASSERT(index < renderableModelStore.size(), return); |
| 649 | |
| 650 | // Sanity check |
| 651 | if (materials.size() > 0 && !QSSG_GUARD(QSSGRenderGraphObject::isMaterial(QSSGRenderGraphObjectUtils::getResource(materials.at(0))->type))) |
| 652 | return; |
| 653 | |
| 654 | auto &renderables = renderableModelStore[index]; |
| 655 | auto it = std::find_if(first: renderables.cbegin(), last: renderables.cend(), pred: [&model](const QSSGRenderableNodeEntry &e) { return e.node == &model; }); |
| 656 | if (it != renderables.cend()) { |
| 657 | it->materials.resize(size: materials.size()); |
| 658 | std::memcpy(dest: it->materials.data(), src: materials.data(), n: it->materials.size() * sizeof(QSSGRenderGraphObject *)); |
| 659 | it->overridden |= QSSGRenderableNodeEntry::Overridden::Materials; |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | void QSSGLayerRenderData::setModelMaterials(const QSSGRenderablesId renderablesId, const QList<QSSGResourceId> &materials) |
| 664 | { |
| 665 | const auto prepId = static_cast<QSSGPrepContextId>(renderablesId); |
| 666 | QSSG_ASSERT_X(verifyPrepContext(prepId, *renderer), "Expired or invalid renderablesId or renderables id" , return); |
| 667 | |
| 668 | const size_t index = getPrepContextIndex(id: prepId); |
| 669 | QSSG_ASSERT(index < renderableModelStore.size(), return); |
| 670 | |
| 671 | auto &renderables = renderableModelStore[index]; |
| 672 | for (auto &renderable : renderables) { |
| 673 | auto &renderableMaterials = renderable.materials; |
| 674 | renderableMaterials.resize(size: materials.size()); |
| 675 | std::memcpy(dest: renderableMaterials.data(), src: materials.data(), n: renderableMaterials.size() * sizeof(QSSGRenderGraphObject *)); |
| 676 | renderable.overridden |= QSSGRenderableNodeEntry::Overridden::Materials; |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | QSSGPrepResultId QSSGLayerRenderData::prepareModelsForRender(QSSGRenderContextInterface &contextInterface, |
| 681 | QSSGPrepContextId prepId, |
| 682 | QSSGRenderablesId renderablesId, |
| 683 | float lodThreshold) |
| 684 | { |
| 685 | QSSG_ASSERT_X(renderablesId != QSSGRenderablesId::Invalid && verifyPrepContext(prepId, *renderer), |
| 686 | "Expired or invalid prep or renderables id" , return QSSGPrepResultId::Invalid); |
| 687 | const size_t index = getPrepContextIndex(id: prepId); |
| 688 | QSSG_ASSERT(index < renderableModelStore.size(), return {}); |
| 689 | |
| 690 | const auto &extContext = extContexts.at(n: index); |
| 691 | |
| 692 | QSSG_ASSERT_X(extContext.camera != nullptr, "No camera set!" , return {}); |
| 693 | |
| 694 | const auto vp = contextInterface.renderer()->viewport(); |
| 695 | extContext.camera->calculateGlobalVariables(inViewport: vp); |
| 696 | |
| 697 | auto &renderables = renderableModelStore[index]; |
| 698 | |
| 699 | prepareModelMaterials(renderableModels&: renderables, cullUnrenderables: true /* Cull renderables without materials */); |
| 700 | |
| 701 | prepareModelMeshes(contextInterface, renderableModels&: renderables, globalPickingEnabled: false /* globalPickingEnabled */); |
| 702 | |
| 703 | // ### multiview |
| 704 | QSSGRenderCameraList camera({ extContext.camera }); |
| 705 | QSSGRenderCameraDataList cameraData({ getCameraRenderData(camera: extContext.camera) }); |
| 706 | |
| 707 | auto &modelContexts = modelContextStore[index]; |
| 708 | QSSG_ASSERT(modelContexts.isEmpty(), modelContexts.clear()); |
| 709 | |
| 710 | auto &renderableObjects = renderableObjectStore[index]; |
| 711 | QSSG_ASSERT(renderableObjects.isEmpty(), renderableObjects.clear()); |
| 712 | |
| 713 | auto &opaqueObjects = opaqueObjectStore[index]; |
| 714 | QSSG_ASSERT(opaqueObjects.isEmpty(), opaqueObjects.clear()); |
| 715 | |
| 716 | auto &transparentObjects = transparentObjectStore[index]; |
| 717 | QSSG_ASSERT(transparentObjects.isEmpty(), transparentObjects.clear()); |
| 718 | |
| 719 | auto &screenTextureObjects = screenTextureObjectStore[index]; |
| 720 | QSSG_ASSERT(screenTextureObjects.isEmpty(), screenTextureObjects.clear()); |
| 721 | |
| 722 | bool wasDirty = prepareModelsForRender(ctx&: contextInterface, |
| 723 | renderableModels: renderables, |
| 724 | ioFlags&: layerPrepResult.flags, |
| 725 | allCameras: camera, |
| 726 | allCameraData: cameraData, |
| 727 | modelContexts, |
| 728 | opaqueObjects, |
| 729 | transparentObjects, |
| 730 | screenTextureObjects, |
| 731 | lodThreshold); |
| 732 | |
| 733 | (void)wasDirty; |
| 734 | |
| 735 | return static_cast<QSSGPrepResultId>(prepId); |
| 736 | } |
| 737 | |
| 738 | static constexpr size_t pipelineStateIndex(QSSGRenderablesFilter filter) |
| 739 | { |
| 740 | switch (filter) { |
| 741 | case QSSGRenderablesFilter::All: |
| 742 | return 0; |
| 743 | case QSSGRenderablesFilter::Opaque: |
| 744 | return 1; |
| 745 | case QSSGRenderablesFilter::Transparent: |
| 746 | return 2; |
| 747 | } |
| 748 | |
| 749 | // GCC 8.x does not treat __builtin_unreachable() as constexpr |
| 750 | # if !defined(Q_CC_GNU_ONLY) || (Q_CC_GNU >= 900) |
| 751 | // NOLINTNEXTLINE(qt-use-unreachable-return): Triggers on Clang, breaking GCC 8 |
| 752 | Q_UNREACHABLE(); |
| 753 | # endif |
| 754 | return 0; |
| 755 | } |
| 756 | |
| 757 | void QSSGLayerRenderData::prepareRenderables(QSSGRenderContextInterface &ctx, |
| 758 | QSSGPrepResultId prepId, |
| 759 | QRhiRenderPassDescriptor *renderPassDescriptor, |
| 760 | const QSSGRhiGraphicsPipelineState &ps, |
| 761 | QSSGRenderablesFilters filter) |
| 762 | { |
| 763 | QSSG_ASSERT_X(verifyPrepContext(static_cast<QSSGPrepContextId>(prepId), *renderer), "Expired or invalid result id" , return); |
| 764 | const size_t index = getPrepContextIndex(id: static_cast<QSSGPrepContextId>(prepId)); |
| 765 | QSSG_ASSERT(index < renderableObjectStore.size() && index < extContexts.size(), return); |
| 766 | |
| 767 | auto &extCtx = extContexts[index]; |
| 768 | QSSG_ASSERT(extCtx.camera, return); |
| 769 | extCtx.filter |= filter; |
| 770 | |
| 771 | QSSGShaderFeatures featureSet = getShaderFeatures(); |
| 772 | |
| 773 | QSSGPassKey passKey { reinterpret_cast<void *>(quintptr(extCtx.owner) ^ extCtx.slot) }; // TODO: Pass this along |
| 774 | |
| 775 | if ((filter & QSSGRenderablesFilter::Opaque) != 0) { |
| 776 | auto psCpy = ps; |
| 777 | if (filter == QSSGRenderablesFilter::All) { // If 'All' we set our defaults |
| 778 | psCpy.depthFunc = QRhiGraphicsPipeline::LessOrEqual; |
| 779 | psCpy.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::BlendEnabled, on: false); |
| 780 | } |
| 781 | const auto &sortedRenderables = getSortedOpaqueRenderableObjects(camera: *extCtx.camera, index); |
| 782 | OpaquePass::prep(ctx, data&: *this, passKey, ps&: psCpy, shaderFeatures: featureSet, rpDesc: renderPassDescriptor, sortedOpaqueObjects: sortedRenderables); |
| 783 | const size_t psIndex = pipelineStateIndex(filter: QSSGRenderablesFilter::Opaque); |
| 784 | extCtx.ps[psIndex] = psCpy; |
| 785 | } |
| 786 | |
| 787 | if ((filter & QSSGRenderablesFilter::Transparent) != 0) { |
| 788 | auto psCpy = ps; |
| 789 | if (filter == QSSGRenderablesFilter::All) { // If 'All' we set our defaults |
| 790 | // transparent objects (or, without LayerEnableDepthTest, all objects) |
| 791 | psCpy.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::BlendEnabled, on: true); |
| 792 | psCpy.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::DepthWriteEnabled, on: false); |
| 793 | } |
| 794 | const auto &sortedRenderables = getSortedTransparentRenderableObjects(camera: *extCtx.camera, index); |
| 795 | TransparentPass::prep(ctx, data&: *this, passKey, ps&: psCpy, shaderFeatures: featureSet, rpDesc: renderPassDescriptor, sortedTransparentObjects: sortedRenderables); |
| 796 | const size_t psIndex = pipelineStateIndex(filter: QSSGRenderablesFilter::Transparent); |
| 797 | extCtx.ps[psIndex] = psCpy; |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | void QSSGLayerRenderData::renderRenderables(QSSGRenderContextInterface &ctx, QSSGPrepResultId prepId) |
| 802 | { |
| 803 | QSSG_ASSERT_X(verifyPrepContext(static_cast<QSSGPrepContextId>(prepId), *renderer), "Expired or invalid result id" , return); |
| 804 | const size_t index = getPrepContextIndex(id: static_cast<QSSGPrepContextId>(prepId)); |
| 805 | QSSG_ASSERT(index < renderableObjectStore.size() && index < extContexts.size(), return); |
| 806 | |
| 807 | const auto &extCtx = extContexts.at(n: index); |
| 808 | const auto filter = extCtx.filter; |
| 809 | |
| 810 | if ((filter & QSSGRenderablesFilter::Opaque) != 0) { |
| 811 | const size_t psIndex = pipelineStateIndex(filter: QSSGRenderablesFilter::Opaque); |
| 812 | const auto &ps = extCtx.ps[psIndex]; |
| 813 | const auto &sortedRenderables = getSortedOpaqueRenderableObjects(camera: *extCtx.camera, index); |
| 814 | OpaquePass::render(ctx, ps, sortedOpaqueObjects: sortedRenderables); |
| 815 | } |
| 816 | |
| 817 | if ((filter & QSSGRenderablesFilter::Transparent) != 0) { |
| 818 | const size_t psIndex = pipelineStateIndex(filter: QSSGRenderablesFilter::Transparent); |
| 819 | const auto &ps = extCtx.ps[psIndex]; |
| 820 | const auto &sortedRenderables = getSortedTransparentRenderableObjects(camera: *extCtx.camera, index); |
| 821 | TransparentPass::render(ctx, ps, sortedTransparentObjects: sortedRenderables); |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | const QSSGRenderableObjectList &QSSGLayerRenderData::getSortedRenderedDepthWriteObjects(const QSSGRenderCamera &camera, size_t index) |
| 826 | { |
| 827 | updateSortedDepthObjectsListImp(camera, index); |
| 828 | return sortedDepthWriteCache[index][&camera]; |
| 829 | } |
| 830 | |
| 831 | const QSSGRenderableObjectList &QSSGLayerRenderData::getSortedrenderedOpaqueDepthPrepassObjects(const QSSGRenderCamera &camera, size_t index) |
| 832 | { |
| 833 | updateSortedDepthObjectsListImp(camera, index); |
| 834 | return sortedOpaqueDepthPrepassCache[index][&camera];; |
| 835 | } |
| 836 | |
| 837 | /** |
| 838 | * Usage: T *ptr = RENDER_FRAME_NEW<T>(context, arg0, arg1, ...); is equivalent to: T *ptr = new T(arg0, arg1, ...); |
| 839 | * so RENDER_FRAME_NEW() takes the RCI + T's arguments |
| 840 | */ |
| 841 | template <typename T, typename... Args> |
| 842 | [[nodiscard]] inline T *RENDER_FRAME_NEW(QSSGRenderContextInterface &ctx, Args&&... args) |
| 843 | { |
| 844 | static_assert(std::is_trivially_destructible_v<T>, "Objects allocated using the per-frame allocator needs to be trivially destructible!" ); |
| 845 | return new (QSSGLayerRenderData::perFrameAllocator(ctx)->allocate(size: sizeof(T)))T(std::forward<Args>(args)...); |
| 846 | } |
| 847 | |
| 848 | template <typename T> |
| 849 | [[nodiscard]] inline QSSGDataRef<T> RENDER_FRAME_NEW_BUFFER(QSSGRenderContextInterface &ctx, size_t count) |
| 850 | { |
| 851 | static_assert(std::is_trivially_destructible_v<T>, "Objects allocated using the per-frame allocator needs to be trivially destructible!" ); |
| 852 | const size_t asize = sizeof(T) * count; |
| 853 | return { reinterpret_cast<T *>(QSSGLayerRenderData::perFrameAllocator(ctx)->allocate(size: asize)), qsizetype(count) }; |
| 854 | } |
| 855 | |
| 856 | QSSGShaderDefaultMaterialKey QSSGLayerRenderData::generateLightingKey( |
| 857 | QSSGRenderDefaultMaterial::MaterialLighting inLightingType, const QSSGShaderLightListView &lights, bool receivesShadows) |
| 858 | { |
| 859 | QSSGShaderDefaultMaterialKey theGeneratedKey(qHash(features)); |
| 860 | const bool lighting = inLightingType != QSSGRenderDefaultMaterial::MaterialLighting::NoLighting; |
| 861 | defaultMaterialShaderKeyProperties.m_hasLighting.setValue(inDataStore: theGeneratedKey, inValue: lighting); |
| 862 | if (lighting) { |
| 863 | defaultMaterialShaderKeyProperties.m_hasIbl.setValue(inDataStore: theGeneratedKey, inValue: layer.lightProbe != nullptr); |
| 864 | |
| 865 | quint32 numLights = quint32(lights.size()); |
| 866 | Q_ASSERT(numLights <= QSSGShaderDefaultMaterialKeyProperties::LightCount); |
| 867 | defaultMaterialShaderKeyProperties.m_lightCount.setValue(inDataStore: theGeneratedKey, inValue: numLights); |
| 868 | |
| 869 | int shadowMapCount = 0; |
| 870 | for (int lightIdx = 0, lightEnd = lights.size(); lightIdx < lightEnd; ++lightIdx) { |
| 871 | QSSGRenderLight *theLight(lights[lightIdx].light); |
| 872 | const bool isDirectional = theLight->type == QSSGRenderLight::Type::DirectionalLight; |
| 873 | const bool isSpot = theLight->type == QSSGRenderLight::Type::SpotLight; |
| 874 | const bool castsShadows = theLight->m_castShadow |
| 875 | && !theLight->m_fullyBaked |
| 876 | && receivesShadows |
| 877 | && shadowMapCount < QSSG_MAX_NUM_SHADOW_MAPS; |
| 878 | if (castsShadows) |
| 879 | ++shadowMapCount; |
| 880 | |
| 881 | defaultMaterialShaderKeyProperties.m_lightFlags[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: !isDirectional); |
| 882 | defaultMaterialShaderKeyProperties.m_lightSpotFlags[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: isSpot); |
| 883 | defaultMaterialShaderKeyProperties.m_lightShadowFlags[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: castsShadows); |
| 884 | defaultMaterialShaderKeyProperties.m_lightShadowMapSize[lightIdx].setValue(inDataStore: theGeneratedKey, inValue: theLight->m_shadowMapRes); |
| 885 | defaultMaterialShaderKeyProperties.m_lightSoftShadowQuality[lightIdx].setValue(inDataStore: theGeneratedKey, |
| 886 | inValue: quint32(theLight->m_softShadowQuality)); |
| 887 | } |
| 888 | } |
| 889 | return theGeneratedKey; |
| 890 | } |
| 891 | |
| 892 | void QSSGLayerRenderData::prepareImageForRender(QSSGRenderImage &inImage, |
| 893 | QSSGRenderableImage::Type inMapType, |
| 894 | QSSGRenderableImage *&ioFirstImage, |
| 895 | QSSGRenderableImage *&ioNextImage, |
| 896 | QSSGRenderableObjectFlags &ioFlags, |
| 897 | QSSGShaderDefaultMaterialKey &inShaderKey, |
| 898 | quint32 inImageIndex, |
| 899 | QSSGRenderDefaultMaterial *inMaterial) |
| 900 | { |
| 901 | QSSGRenderContextInterface &contextInterface = *renderer->contextInterface(); |
| 902 | const auto &bufferManager = contextInterface.bufferManager(); |
| 903 | |
| 904 | if (inImage.clearDirty()) |
| 905 | ioFlags |= QSSGRenderableObjectFlag::Dirty; |
| 906 | |
| 907 | // This is where the QRhiTexture gets created, if not already done. Note |
| 908 | // that the bufferManager is per-QQuickWindow, and so per-render-thread. |
| 909 | // Hence using the same Texture (backed by inImage as the backend node) in |
| 910 | // multiple windows will work by each scene in each window getting its own |
| 911 | // QRhiTexture. And that's why the QSSGRenderImageTexture cannot be a |
| 912 | // member of the QSSGRenderImage. Conceptually this matches what we do for |
| 913 | // models (QSSGRenderModel -> QSSGRenderMesh retrieved from the |
| 914 | // bufferManager in each prepareModelForRender, etc.). |
| 915 | |
| 916 | const QSSGRenderImageTexture texture = bufferManager->loadRenderImage(image: &inImage); |
| 917 | |
| 918 | if (texture.m_texture) { |
| 919 | if (texture.m_flags.hasTransparency() |
| 920 | && (inMapType == QSSGRenderableImage::Type::Diffuse // note: Type::BaseColor is skipped here intentionally |
| 921 | || inMapType == QSSGRenderableImage::Type::Opacity |
| 922 | || inMapType == QSSGRenderableImage::Type::Translucency)) |
| 923 | { |
| 924 | ioFlags |= QSSGRenderableObjectFlag::HasTransparency; |
| 925 | } |
| 926 | |
| 927 | QSSGRenderableImage *theImage = RENDER_FRAME_NEW<QSSGRenderableImage>(ctx&: contextInterface, args&: inMapType, args&: inImage, args: texture); |
| 928 | QSSGShaderKeyImageMap &theKeyProp = defaultMaterialShaderKeyProperties.m_imageMaps[inImageIndex]; |
| 929 | |
| 930 | theKeyProp.setEnabled(inKeySet: inShaderKey, val: true); |
| 931 | switch (inImage.m_mappingMode) { |
| 932 | case QSSGRenderImage::MappingModes::Normal: |
| 933 | break; |
| 934 | case QSSGRenderImage::MappingModes::Environment: |
| 935 | theKeyProp.setEnvMap(inKeySet: inShaderKey, val: true); |
| 936 | break; |
| 937 | case QSSGRenderImage::MappingModes::LightProbe: |
| 938 | theKeyProp.setLightProbe(inKeySet: inShaderKey, val: true); |
| 939 | break; |
| 940 | } |
| 941 | |
| 942 | bool hasA = false; |
| 943 | bool hasG = false; |
| 944 | bool hasB = false; |
| 945 | |
| 946 | |
| 947 | //### TODO: More formats |
| 948 | switch (texture.m_texture->format()) { |
| 949 | case QRhiTexture::Format::RED_OR_ALPHA8: |
| 950 | hasA = !renderer->contextInterface()->rhiContext()->rhi()->isFeatureSupported(feature: QRhi::RedOrAlpha8IsRed); |
| 951 | break; |
| 952 | case QRhiTexture::Format::R8: |
| 953 | // Leave BGA as false |
| 954 | break; |
| 955 | default: |
| 956 | hasA = true; |
| 957 | hasG = true; |
| 958 | hasB = true; |
| 959 | break; |
| 960 | } |
| 961 | |
| 962 | if (inImage.isImageTransformIdentity()) |
| 963 | theKeyProp.setIdentityTransform(inKeySet: inShaderKey, val: true); |
| 964 | |
| 965 | if (inImage.m_indexUV == 1) |
| 966 | theKeyProp.setUsesUV1(inKeySet: inShaderKey, val: true); |
| 967 | |
| 968 | if (texture.m_flags.isLinear()) |
| 969 | theKeyProp.setLinear(inKeySet: inShaderKey, val: true); |
| 970 | |
| 971 | if (ioFirstImage == nullptr) |
| 972 | ioFirstImage = theImage; |
| 973 | else |
| 974 | ioNextImage->m_nextImage = theImage; |
| 975 | |
| 976 | ioNextImage = theImage; |
| 977 | |
| 978 | if (inMaterial && inImageIndex >= QSSGShaderDefaultMaterialKeyProperties::SingleChannelImagesFirst) { |
| 979 | QSSGRenderDefaultMaterial::TextureChannelMapping value = QSSGRenderDefaultMaterial::R; |
| 980 | |
| 981 | const quint32 scIndex = inImageIndex - QSSGShaderDefaultMaterialKeyProperties::SingleChannelImagesFirst; |
| 982 | QSSGShaderKeyTextureChannel &channelKey = defaultMaterialShaderKeyProperties.m_textureChannels[scIndex]; |
| 983 | switch (inImageIndex) { |
| 984 | case QSSGShaderDefaultMaterialKeyProperties::OpacityMap: |
| 985 | value = inMaterial->opacityChannel; |
| 986 | break; |
| 987 | case QSSGShaderDefaultMaterialKeyProperties::RoughnessMap: |
| 988 | value = inMaterial->roughnessChannel; |
| 989 | break; |
| 990 | case QSSGShaderDefaultMaterialKeyProperties::MetalnessMap: |
| 991 | value = inMaterial->metalnessChannel; |
| 992 | break; |
| 993 | case QSSGShaderDefaultMaterialKeyProperties::OcclusionMap: |
| 994 | value = inMaterial->occlusionChannel; |
| 995 | break; |
| 996 | case QSSGShaderDefaultMaterialKeyProperties::TranslucencyMap: |
| 997 | value = inMaterial->translucencyChannel; |
| 998 | break; |
| 999 | case QSSGShaderDefaultMaterialKeyProperties::HeightMap: |
| 1000 | value = inMaterial->heightChannel; |
| 1001 | break; |
| 1002 | case QSSGShaderDefaultMaterialKeyProperties::ClearcoatMap: |
| 1003 | value = inMaterial->clearcoatChannel; |
| 1004 | break; |
| 1005 | case QSSGShaderDefaultMaterialKeyProperties::ClearcoatRoughnessMap: |
| 1006 | value = inMaterial->clearcoatRoughnessChannel; |
| 1007 | break; |
| 1008 | case QSSGShaderDefaultMaterialKeyProperties::TransmissionMap: |
| 1009 | value = inMaterial->transmissionChannel; |
| 1010 | break; |
| 1011 | case QSSGShaderDefaultMaterialKeyProperties::ThicknessMap: |
| 1012 | value = inMaterial->thicknessChannel; |
| 1013 | break; |
| 1014 | case QSSGShaderDefaultMaterialKeyProperties::BaseColorMap: |
| 1015 | value = inMaterial->baseColorChannel; |
| 1016 | break; |
| 1017 | case QSSGShaderDefaultMaterialKeyProperties::SpecularAmountMap: |
| 1018 | value = inMaterial->specularAmountChannel; |
| 1019 | break; |
| 1020 | case QSSGShaderDefaultMaterialKeyProperties::EmissiveMap: |
| 1021 | value = inMaterial->emissiveChannel; |
| 1022 | break; |
| 1023 | default: |
| 1024 | break; |
| 1025 | } |
| 1026 | bool useDefault = false; |
| 1027 | switch (value) { |
| 1028 | case QSSGRenderDefaultMaterial::TextureChannelMapping::G: |
| 1029 | useDefault = !hasG; |
| 1030 | break; |
| 1031 | case QSSGRenderDefaultMaterial::TextureChannelMapping::B: |
| 1032 | useDefault = !hasB; |
| 1033 | break; |
| 1034 | case QSSGRenderDefaultMaterial::TextureChannelMapping::A: |
| 1035 | useDefault = !hasA; |
| 1036 | break; |
| 1037 | default: |
| 1038 | break; |
| 1039 | } |
| 1040 | if (useDefault) |
| 1041 | value = QSSGRenderDefaultMaterial::R; // Always Fallback to Red |
| 1042 | channelKey.setTextureChannel(channel: QSSGShaderKeyTextureChannel::TexturChannelBits(value), inKeySet: inShaderKey); |
| 1043 | } |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | void QSSGLayerRenderData::setVertexInputPresence(const QSSGRenderableObjectFlags &renderableFlags, |
| 1048 | QSSGShaderDefaultMaterialKey &key) |
| 1049 | { |
| 1050 | quint32 vertexAttribs = 0; |
| 1051 | if (renderableFlags.hasAttributePosition()) |
| 1052 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Position; |
| 1053 | if (renderableFlags.hasAttributeNormal()) |
| 1054 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Normal; |
| 1055 | if (renderableFlags.hasAttributeTexCoord0()) |
| 1056 | vertexAttribs |= QSSGShaderKeyVertexAttribute::TexCoord0; |
| 1057 | if (renderableFlags.hasAttributeTexCoord1()) |
| 1058 | vertexAttribs |= QSSGShaderKeyVertexAttribute::TexCoord1; |
| 1059 | if (renderableFlags.hasAttributeTexCoordLightmap()) |
| 1060 | vertexAttribs |= QSSGShaderKeyVertexAttribute::TexCoordLightmap; |
| 1061 | if (renderableFlags.hasAttributeTangent()) |
| 1062 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Tangent; |
| 1063 | if (renderableFlags.hasAttributeBinormal()) |
| 1064 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Binormal; |
| 1065 | if (renderableFlags.hasAttributeColor()) |
| 1066 | vertexAttribs |= QSSGShaderKeyVertexAttribute::Color; |
| 1067 | if (renderableFlags.hasAttributeJointAndWeight()) |
| 1068 | vertexAttribs |= QSSGShaderKeyVertexAttribute::JointAndWeight; |
| 1069 | defaultMaterialShaderKeyProperties.m_vertexAttributes.setValue(inDataStore: key, inValue: vertexAttribs); |
| 1070 | } |
| 1071 | |
| 1072 | QSSGDefaultMaterialPreparationResult QSSGLayerRenderData::prepareDefaultMaterialForRender( |
| 1073 | QSSGRenderDefaultMaterial &inMaterial, |
| 1074 | QSSGRenderableObjectFlags &inExistingFlags, |
| 1075 | float inOpacity, |
| 1076 | const QSSGShaderLightListView &lights, |
| 1077 | QSSGLayerRenderPreparationResultFlags &ioFlags) |
| 1078 | { |
| 1079 | QSSGRenderDefaultMaterial *theMaterial = &inMaterial; |
| 1080 | QSSGDefaultMaterialPreparationResult retval(generateLightingKey(inLightingType: theMaterial->lighting, lights, receivesShadows: inExistingFlags.receivesShadows())); |
| 1081 | retval.renderableFlags = inExistingFlags; |
| 1082 | QSSGRenderableObjectFlags &renderableFlags(retval.renderableFlags); |
| 1083 | QSSGShaderDefaultMaterialKey &theGeneratedKey(retval.materialKey); |
| 1084 | retval.opacity = inOpacity; |
| 1085 | float &subsetOpacity(retval.opacity); |
| 1086 | |
| 1087 | if (theMaterial->isDirty()) |
| 1088 | renderableFlags |= QSSGRenderableObjectFlag::Dirty; |
| 1089 | |
| 1090 | subsetOpacity *= theMaterial->opacity; |
| 1091 | |
| 1092 | QSSGRenderableImage *firstImage = nullptr; |
| 1093 | |
| 1094 | defaultMaterialShaderKeyProperties.m_specularAAEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.specularAAEnabled); |
| 1095 | |
| 1096 | // isDoubleSided |
| 1097 | defaultMaterialShaderKeyProperties.m_isDoubleSided.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->cullMode == QSSGCullFaceMode::Disabled); |
| 1098 | |
| 1099 | // default materials never define their on position |
| 1100 | defaultMaterialShaderKeyProperties.m_overridesPosition.setValue(inDataStore: theGeneratedKey, inValue: false); |
| 1101 | |
| 1102 | // default materials dont make use of raw projection or inverse projection matrices |
| 1103 | defaultMaterialShaderKeyProperties.m_usesProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: false); |
| 1104 | defaultMaterialShaderKeyProperties.m_usesInverseProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: false); |
| 1105 | // nor they do rely on VAR_COLOR |
| 1106 | defaultMaterialShaderKeyProperties.m_usesVarColor.setValue(inDataStore: theGeneratedKey, inValue: false); |
| 1107 | |
| 1108 | // alpha Mode |
| 1109 | defaultMaterialShaderKeyProperties.m_alphaMode.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->alphaMode); |
| 1110 | |
| 1111 | // vertex attribute presence flags |
| 1112 | setVertexInputPresence(renderableFlags, key&: theGeneratedKey); |
| 1113 | |
| 1114 | // set the flag indicating the need for gl_PointSize |
| 1115 | defaultMaterialShaderKeyProperties.m_usesPointsTopology.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.isPointsTopology()); |
| 1116 | |
| 1117 | // propagate the flag indicating the presence of a lightmap |
| 1118 | defaultMaterialShaderKeyProperties.m_lightmapEnabled.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.rendersWithLightmap()); |
| 1119 | |
| 1120 | defaultMaterialShaderKeyProperties.m_specularGlossyEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->type == QSSGRenderGraphObject::Type::SpecularGlossyMaterial); |
| 1121 | |
| 1122 | // debug modes |
| 1123 | defaultMaterialShaderKeyProperties.m_debugMode.setValue(inDataStore: theGeneratedKey, inValue: int(layer.debugMode)); |
| 1124 | |
| 1125 | // fog |
| 1126 | defaultMaterialShaderKeyProperties.m_fogEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.fog.enabled); |
| 1127 | |
| 1128 | // multiview |
| 1129 | defaultMaterialShaderKeyProperties.m_viewCount.setValue(inDataStore: theGeneratedKey, inValue: layer.viewCount); |
| 1130 | defaultMaterialShaderKeyProperties.m_usesViewIndex.setValue(inDataStore: theGeneratedKey, inValue: layer.viewCount >= 2); |
| 1131 | |
| 1132 | if (!defaultMaterialShaderKeyProperties.m_hasIbl.getValue(inDataStore: theGeneratedKey) && theMaterial->iblProbe) { |
| 1133 | features.set(feature: QSSGShaderFeatures::Feature::LightProbe, val: true); |
| 1134 | defaultMaterialShaderKeyProperties.m_hasIbl.setValue(inDataStore: theGeneratedKey, inValue: true); |
| 1135 | // features.set(ShaderFeatureDefines::enableIblFov(), |
| 1136 | // m_Renderer.GetLayerRenderData()->m_Layer.m_ProbeFov < 180.0f ); |
| 1137 | } |
| 1138 | |
| 1139 | if (subsetOpacity >= QSSG_RENDER_MINIMUM_RENDER_OPACITY) { |
| 1140 | |
| 1141 | // Set the semi-transparency flag as specified in PrincipledMaterial's |
| 1142 | // blendMode and alphaMode: |
| 1143 | // - the default SourceOver blendMode does not imply alpha blending on |
| 1144 | // its own, |
| 1145 | // - but other blendMode values do, |
| 1146 | // - an alphaMode of Blend guarantees blending to be enabled regardless |
| 1147 | // of anything else. |
| 1148 | // Additionally: |
| 1149 | // - Opacity and texture map alpha are handled elsewhere (that's when a |
| 1150 | // blendMode of SourceOver or an alphaMode of Default/Opaque can in the |
| 1151 | // end still result in HasTransparency), |
| 1152 | // - the presence of an opacityMap guarantees alpha blending regardless |
| 1153 | // of its content. |
| 1154 | |
| 1155 | if (theMaterial->blendMode != QSSGRenderDefaultMaterial::MaterialBlendMode::SourceOver |
| 1156 | || theMaterial->opacityMap |
| 1157 | || theMaterial->alphaMode == QSSGRenderDefaultMaterial::Blend) |
| 1158 | { |
| 1159 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
| 1160 | } |
| 1161 | |
| 1162 | const bool specularEnabled = theMaterial->isSpecularEnabled(); |
| 1163 | const bool metalnessEnabled = theMaterial->isMetalnessEnabled(); |
| 1164 | defaultMaterialShaderKeyProperties.m_specularEnabled.setValue(inDataStore: theGeneratedKey, inValue: (specularEnabled || metalnessEnabled)); |
| 1165 | if (specularEnabled || metalnessEnabled) |
| 1166 | defaultMaterialShaderKeyProperties.m_specularModel.setSpecularModel(inKeySet: theGeneratedKey, inModel: theMaterial->specularModel); |
| 1167 | |
| 1168 | defaultMaterialShaderKeyProperties.m_fresnelScaleBiasEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->isFresnelScaleBiasEnabled()); |
| 1169 | |
| 1170 | defaultMaterialShaderKeyProperties.m_clearcoatFresnelScaleBiasEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->isClearcoatFresnelScaleBiasEnabled()); |
| 1171 | |
| 1172 | defaultMaterialShaderKeyProperties.m_fresnelEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->isFresnelEnabled()); |
| 1173 | |
| 1174 | defaultMaterialShaderKeyProperties.m_fresnelEnabled.setValue(inDataStore: theGeneratedKey, inValue: theMaterial->isFresnelEnabled()); |
| 1175 | |
| 1176 | defaultMaterialShaderKeyProperties.m_baseColorSingleChannelEnabled.setValue(inDataStore: theGeneratedKey, |
| 1177 | inValue: theMaterial->isBaseColorSingleChannelEnabled()); |
| 1178 | defaultMaterialShaderKeyProperties.m_specularSingleChannelEnabled.setValue(inDataStore: theGeneratedKey, |
| 1179 | inValue: theMaterial->isSpecularAmountSingleChannelEnabled()); |
| 1180 | defaultMaterialShaderKeyProperties.m_emissiveSingleChannelEnabled.setValue(inDataStore: theGeneratedKey, |
| 1181 | inValue: theMaterial->isEmissiveSingleChannelEnabled()); |
| 1182 | defaultMaterialShaderKeyProperties.m_invertOpacityMapValue.setValue(inDataStore: theGeneratedKey, |
| 1183 | inValue: theMaterial->isInvertOpacityMapValue()); |
| 1184 | defaultMaterialShaderKeyProperties.m_vertexColorsEnabled.setValue(inDataStore: theGeneratedKey, |
| 1185 | inValue: theMaterial->isVertexColorsEnabled()); |
| 1186 | defaultMaterialShaderKeyProperties.m_vertexColorsMaskEnabled.setValue(inDataStore: theGeneratedKey, |
| 1187 | inValue: theMaterial->isVertexColorsMaskEnabled()); |
| 1188 | defaultMaterialShaderKeyProperties.m_vertexColorRedMask.setValue(inDataStore: theGeneratedKey, |
| 1189 | inValue: theMaterial->vertexColorRedMask.toInt()); |
| 1190 | defaultMaterialShaderKeyProperties.m_vertexColorGreenMask.setValue(inDataStore: theGeneratedKey, |
| 1191 | inValue: quint16(theMaterial->vertexColorGreenMask.toInt())); |
| 1192 | defaultMaterialShaderKeyProperties.m_vertexColorBlueMask.setValue(inDataStore: theGeneratedKey, |
| 1193 | inValue: quint16(theMaterial->vertexColorBlueMask.toInt())); |
| 1194 | defaultMaterialShaderKeyProperties.m_vertexColorAlphaMask.setValue(inDataStore: theGeneratedKey, |
| 1195 | inValue: quint16(theMaterial->vertexColorAlphaMask.toInt())); |
| 1196 | |
| 1197 | defaultMaterialShaderKeyProperties.m_clearcoatEnabled.setValue(inDataStore: theGeneratedKey, |
| 1198 | inValue: theMaterial->isClearcoatEnabled()); |
| 1199 | defaultMaterialShaderKeyProperties.m_transmissionEnabled.setValue(inDataStore: theGeneratedKey, |
| 1200 | inValue: theMaterial->isTransmissionEnabled()); |
| 1201 | |
| 1202 | // Run through the material's images and prepare them for render. |
| 1203 | // this may in fact set pickable on the renderable flags if one of the images |
| 1204 | // links to a sub presentation or any offscreen rendered object. |
| 1205 | QSSGRenderableImage *nextImage = nullptr; |
| 1206 | #define CHECK_IMAGE_AND_PREPARE(img, imgtype, shadercomponent) \ |
| 1207 | if ((img)) \ |
| 1208 | prepareImageForRender(*(img), imgtype, firstImage, nextImage, renderableFlags, \ |
| 1209 | theGeneratedKey, shadercomponent, &inMaterial) |
| 1210 | |
| 1211 | if (theMaterial->type == QSSGRenderGraphObject::Type::PrincipledMaterial || |
| 1212 | theMaterial->type == QSSGRenderGraphObject::Type::SpecularGlossyMaterial) { |
| 1213 | CHECK_IMAGE_AND_PREPARE(theMaterial->colorMap, |
| 1214 | QSSGRenderableImage::Type::BaseColor, |
| 1215 | QSSGShaderDefaultMaterialKeyProperties::BaseColorMap); |
| 1216 | CHECK_IMAGE_AND_PREPARE(theMaterial->occlusionMap, |
| 1217 | QSSGRenderableImage::Type::Occlusion, |
| 1218 | QSSGShaderDefaultMaterialKeyProperties::OcclusionMap); |
| 1219 | CHECK_IMAGE_AND_PREPARE(theMaterial->heightMap, |
| 1220 | QSSGRenderableImage::Type::Height, |
| 1221 | QSSGShaderDefaultMaterialKeyProperties::HeightMap); |
| 1222 | CHECK_IMAGE_AND_PREPARE(theMaterial->clearcoatMap, |
| 1223 | QSSGRenderableImage::Type::Clearcoat, |
| 1224 | QSSGShaderDefaultMaterialKeyProperties::ClearcoatMap); |
| 1225 | CHECK_IMAGE_AND_PREPARE(theMaterial->clearcoatRoughnessMap, |
| 1226 | QSSGRenderableImage::Type::ClearcoatRoughness, |
| 1227 | QSSGShaderDefaultMaterialKeyProperties::ClearcoatRoughnessMap); |
| 1228 | CHECK_IMAGE_AND_PREPARE(theMaterial->clearcoatNormalMap, |
| 1229 | QSSGRenderableImage::Type::ClearcoatNormal, |
| 1230 | QSSGShaderDefaultMaterialKeyProperties::ClearcoatNormalMap); |
| 1231 | CHECK_IMAGE_AND_PREPARE(theMaterial->transmissionMap, |
| 1232 | QSSGRenderableImage::Type::Transmission, |
| 1233 | QSSGShaderDefaultMaterialKeyProperties::TransmissionMap); |
| 1234 | CHECK_IMAGE_AND_PREPARE(theMaterial->thicknessMap, |
| 1235 | QSSGRenderableImage::Type::Thickness, |
| 1236 | QSSGShaderDefaultMaterialKeyProperties::ThicknessMap); |
| 1237 | if (theMaterial->type == QSSGRenderGraphObject::Type::PrincipledMaterial) { |
| 1238 | CHECK_IMAGE_AND_PREPARE(theMaterial->metalnessMap, |
| 1239 | QSSGRenderableImage::Type::Metalness, |
| 1240 | QSSGShaderDefaultMaterialKeyProperties::MetalnessMap); |
| 1241 | } |
| 1242 | } else { |
| 1243 | CHECK_IMAGE_AND_PREPARE(theMaterial->colorMap, |
| 1244 | QSSGRenderableImage::Type::Diffuse, |
| 1245 | QSSGShaderDefaultMaterialKeyProperties::DiffuseMap); |
| 1246 | } |
| 1247 | CHECK_IMAGE_AND_PREPARE(theMaterial->emissiveMap, QSSGRenderableImage::Type::Emissive, QSSGShaderDefaultMaterialKeyProperties::EmissiveMap); |
| 1248 | CHECK_IMAGE_AND_PREPARE(theMaterial->specularReflection, |
| 1249 | QSSGRenderableImage::Type::Specular, |
| 1250 | QSSGShaderDefaultMaterialKeyProperties::SpecularMap); |
| 1251 | CHECK_IMAGE_AND_PREPARE(theMaterial->roughnessMap, |
| 1252 | QSSGRenderableImage::Type::Roughness, |
| 1253 | QSSGShaderDefaultMaterialKeyProperties::RoughnessMap); |
| 1254 | CHECK_IMAGE_AND_PREPARE(theMaterial->opacityMap, QSSGRenderableImage::Type::Opacity, QSSGShaderDefaultMaterialKeyProperties::OpacityMap); |
| 1255 | CHECK_IMAGE_AND_PREPARE(theMaterial->bumpMap, QSSGRenderableImage::Type::Bump, QSSGShaderDefaultMaterialKeyProperties::BumpMap); |
| 1256 | CHECK_IMAGE_AND_PREPARE(theMaterial->specularMap, |
| 1257 | QSSGRenderableImage::Type::SpecularAmountMap, |
| 1258 | QSSGShaderDefaultMaterialKeyProperties::SpecularAmountMap); |
| 1259 | CHECK_IMAGE_AND_PREPARE(theMaterial->normalMap, QSSGRenderableImage::Type::Normal, QSSGShaderDefaultMaterialKeyProperties::NormalMap); |
| 1260 | CHECK_IMAGE_AND_PREPARE(theMaterial->translucencyMap, |
| 1261 | QSSGRenderableImage::Type::Translucency, |
| 1262 | QSSGShaderDefaultMaterialKeyProperties::TranslucencyMap); |
| 1263 | } |
| 1264 | #undef CHECK_IMAGE_AND_PREPARE |
| 1265 | |
| 1266 | if (subsetOpacity < QSSG_RENDER_MINIMUM_RENDER_OPACITY) { |
| 1267 | subsetOpacity = 0.0f; |
| 1268 | // You can still pick against completely transparent objects(or rather their bounding |
| 1269 | // box) |
| 1270 | // you just don't render them. |
| 1271 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
| 1272 | renderableFlags |= QSSGRenderableObjectFlag::CompletelyTransparent; |
| 1273 | } |
| 1274 | |
| 1275 | if (subsetOpacity > 1.f - QSSG_RENDER_MINIMUM_RENDER_OPACITY) |
| 1276 | subsetOpacity = 1.f; |
| 1277 | else |
| 1278 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
| 1279 | |
| 1280 | if (inMaterial.isTransmissionEnabled()) { |
| 1281 | ioFlags.setRequiresScreenTexture(true); |
| 1282 | ioFlags.setRequiresMipmapsForScreenTexture(true); |
| 1283 | renderableFlags |= QSSGRenderableObjectFlag::RequiresScreenTexture; |
| 1284 | } |
| 1285 | |
| 1286 | retval.firstImage = firstImage; |
| 1287 | if (retval.renderableFlags.isDirty()) |
| 1288 | retval.dirty = true; |
| 1289 | if (retval.dirty) |
| 1290 | renderer->addMaterialDirtyClear(material: &inMaterial); |
| 1291 | return retval; |
| 1292 | } |
| 1293 | |
| 1294 | QSSGDefaultMaterialPreparationResult QSSGLayerRenderData::prepareCustomMaterialForRender( |
| 1295 | QSSGRenderCustomMaterial &inMaterial, QSSGRenderableObjectFlags &inExistingFlags, |
| 1296 | float inOpacity, bool alreadyDirty, const QSSGShaderLightListView &lights, |
| 1297 | QSSGLayerRenderPreparationResultFlags &ioFlags) |
| 1298 | { |
| 1299 | QSSGDefaultMaterialPreparationResult retval( |
| 1300 | generateLightingKey(inLightingType: QSSGRenderDefaultMaterial::MaterialLighting::FragmentLighting, |
| 1301 | lights, receivesShadows: inExistingFlags.receivesShadows())); |
| 1302 | retval.renderableFlags = inExistingFlags; |
| 1303 | QSSGRenderableObjectFlags &renderableFlags(retval.renderableFlags); |
| 1304 | QSSGShaderDefaultMaterialKey &theGeneratedKey(retval.materialKey); |
| 1305 | retval.opacity = inOpacity; |
| 1306 | float &subsetOpacity(retval.opacity); |
| 1307 | |
| 1308 | if (subsetOpacity < QSSG_RENDER_MINIMUM_RENDER_OPACITY) { |
| 1309 | subsetOpacity = 0.0f; |
| 1310 | // You can still pick against completely transparent objects(or rather their bounding |
| 1311 | // box) |
| 1312 | // you just don't render them. |
| 1313 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
| 1314 | renderableFlags |= QSSGRenderableObjectFlag::CompletelyTransparent; |
| 1315 | } |
| 1316 | |
| 1317 | if (subsetOpacity > 1.f - QSSG_RENDER_MINIMUM_RENDER_OPACITY) |
| 1318 | subsetOpacity = 1.f; |
| 1319 | else |
| 1320 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
| 1321 | |
| 1322 | defaultMaterialShaderKeyProperties.m_specularAAEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.specularAAEnabled); |
| 1323 | |
| 1324 | // isDoubleSided |
| 1325 | defaultMaterialShaderKeyProperties.m_isDoubleSided.setValue(inDataStore: theGeneratedKey, |
| 1326 | inValue: inMaterial.m_cullMode == QSSGCullFaceMode::Disabled); |
| 1327 | |
| 1328 | // Does the material override the position output |
| 1329 | const bool overridesPosition = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::OverridesPosition); |
| 1330 | defaultMaterialShaderKeyProperties.m_overridesPosition.setValue(inDataStore: theGeneratedKey, inValue: overridesPosition); |
| 1331 | |
| 1332 | // Optional usage of PROJECTION_MATRIX and/or INVERSE_PROJECTION_MATRIX |
| 1333 | const bool usesProjectionMatrix = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ProjectionMatrix); |
| 1334 | defaultMaterialShaderKeyProperties.m_usesProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: usesProjectionMatrix); |
| 1335 | const bool usesInvProjectionMatrix = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::InverseProjectionMatrix); |
| 1336 | defaultMaterialShaderKeyProperties.m_usesInverseProjectionMatrix.setValue(inDataStore: theGeneratedKey, inValue: usesInvProjectionMatrix); |
| 1337 | |
| 1338 | // vertex attribute presence flags |
| 1339 | setVertexInputPresence(renderableFlags, key&: theGeneratedKey); |
| 1340 | |
| 1341 | // set the flag indicating the need for gl_PointSize |
| 1342 | defaultMaterialShaderKeyProperties.m_usesPointsTopology.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.isPointsTopology()); |
| 1343 | |
| 1344 | // propagate the flag indicating the presence of a lightmap |
| 1345 | defaultMaterialShaderKeyProperties.m_lightmapEnabled.setValue(inDataStore: theGeneratedKey, inValue: renderableFlags.rendersWithLightmap()); |
| 1346 | |
| 1347 | // debug modes |
| 1348 | defaultMaterialShaderKeyProperties.m_debugMode.setValue(inDataStore: theGeneratedKey, inValue: int(layer.debugMode)); |
| 1349 | |
| 1350 | // fog |
| 1351 | defaultMaterialShaderKeyProperties.m_fogEnabled.setValue(inDataStore: theGeneratedKey, inValue: layer.fog.enabled); |
| 1352 | |
| 1353 | // multiview |
| 1354 | defaultMaterialShaderKeyProperties.m_viewCount.setValue(inDataStore: theGeneratedKey, inValue: layer.viewCount); |
| 1355 | defaultMaterialShaderKeyProperties.m_usesViewIndex.setValue(inDataStore: theGeneratedKey, |
| 1356 | inValue: inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ViewIndex)); |
| 1357 | |
| 1358 | // Knowing whether VAR_COLOR is used becomes relevant when there is no |
| 1359 | // custom vertex shader, but VAR_COLOR is present in the custom fragment |
| 1360 | // snippet, because that case needs special care. |
| 1361 | const bool usesVarColor = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::VarColor); |
| 1362 | defaultMaterialShaderKeyProperties.m_usesVarColor.setValue(inDataStore: theGeneratedKey, inValue: usesVarColor); |
| 1363 | |
| 1364 | const bool usesClearcoat = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::Clearcoat); |
| 1365 | defaultMaterialShaderKeyProperties.m_clearcoatEnabled.setValue(inDataStore: theGeneratedKey, inValue: usesClearcoat); |
| 1366 | |
| 1367 | const bool usesClearcoatFresnelScaleBias = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ClearcoatFresnelScaleBias); |
| 1368 | defaultMaterialShaderKeyProperties.m_clearcoatFresnelScaleBiasEnabled.setValue(inDataStore: theGeneratedKey, inValue: usesClearcoatFresnelScaleBias); |
| 1369 | |
| 1370 | const bool usesFresnelScaleBias = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::FresnelScaleBias); |
| 1371 | defaultMaterialShaderKeyProperties.m_fresnelScaleBiasEnabled.setValue(inDataStore: theGeneratedKey, inValue: usesFresnelScaleBias); |
| 1372 | |
| 1373 | const bool usesTransmission = inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::Transmission); |
| 1374 | defaultMaterialShaderKeyProperties.m_transmissionEnabled.setValue(inDataStore: theGeneratedKey, inValue: usesTransmission); |
| 1375 | |
| 1376 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::Blending)) |
| 1377 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
| 1378 | |
| 1379 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ScreenTexture)) { |
| 1380 | ioFlags.setRequiresScreenTexture(true); |
| 1381 | renderableFlags |= QSSGRenderableObjectFlag::RequiresScreenTexture; |
| 1382 | } |
| 1383 | |
| 1384 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::ScreenMipTexture)) { |
| 1385 | ioFlags.setRequiresScreenTexture(true); |
| 1386 | ioFlags.setRequiresMipmapsForScreenTexture(true); |
| 1387 | renderableFlags |= QSSGRenderableObjectFlag::RequiresScreenTexture; |
| 1388 | } |
| 1389 | |
| 1390 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::DepthTexture)) |
| 1391 | ioFlags.setRequiresDepthTexture(true); |
| 1392 | |
| 1393 | if (inMaterial.m_renderFlags.testFlag(flag: QSSGRenderCustomMaterial::RenderFlag::AoTexture)) { |
| 1394 | ioFlags.setRequiresDepthTexture(true); |
| 1395 | ioFlags.setRequiresSsaoPass(true); |
| 1396 | } |
| 1397 | |
| 1398 | retval.firstImage = nullptr; |
| 1399 | |
| 1400 | if (retval.dirty || alreadyDirty) |
| 1401 | renderer->addMaterialDirtyClear(material: &inMaterial); |
| 1402 | return retval; |
| 1403 | } |
| 1404 | |
| 1405 | enum class CullUnrenderables { Off, On }; |
| 1406 | template <CullUnrenderables cull = CullUnrenderables::On> |
| 1407 | static void prepareModelMaterialsImpl(QSSGLayerRenderData::RenderableNodeEntries &renderableModels) |
| 1408 | { |
| 1409 | const auto originalModelCount = renderableModels.size(); |
| 1410 | auto end = originalModelCount; |
| 1411 | |
| 1412 | for (int idx = 0; idx < end; ++idx) { |
| 1413 | const auto &renderable = renderableModels.at(i: idx); |
| 1414 | const QSSGRenderModel &model = *static_cast<QSSGRenderModel *>(renderable.node); |
| 1415 | // Ensure we have at least 1 material |
| 1416 | if ((renderable.overridden & QSSGRenderableNodeEntry::Overridden::Materials) == 0) |
| 1417 | renderable.materials = model.materials; |
| 1418 | |
| 1419 | if constexpr (cull == CullUnrenderables::On) { |
| 1420 | const bool isDisabled = ((renderable.overridden & QSSGRenderableNodeEntry::Overridden::Disabled) != 0); |
| 1421 | if (isDisabled || renderable.materials.isEmpty()) { |
| 1422 | // Swap current (idx) and last item (--end). |
| 1423 | // Note, post-decrement idx to ensure we recheck the new current item on next iteration |
| 1424 | // and pre-decrement the end move the end of the list to not include the culled renderable. |
| 1425 | renderableModels.swapItemsAt(i: idx--, j: --end); |
| 1426 | } |
| 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | if constexpr (cull == CullUnrenderables::On) { |
| 1431 | // Any models without materials get dropped right here |
| 1432 | if (end != originalModelCount) |
| 1433 | renderableModels.resize(size: end); |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | void QSSGLayerRenderData::prepareModelMaterials(RenderableNodeEntries &renderableModels, bool cullUnrenderables) |
| 1438 | { |
| 1439 | if (cullUnrenderables) |
| 1440 | prepareModelMaterialsImpl<CullUnrenderables::On>(renderableModels); |
| 1441 | else |
| 1442 | prepareModelMaterialsImpl<CullUnrenderables::Off>(renderableModels); |
| 1443 | } |
| 1444 | |
| 1445 | void QSSGLayerRenderData::prepareModelMeshes(const QSSGRenderContextInterface &contextInterface, |
| 1446 | RenderableNodeEntries &renderableModels, |
| 1447 | bool globalPickingEnabled) |
| 1448 | { |
| 1449 | const auto &bufferManager = contextInterface.bufferManager(); |
| 1450 | |
| 1451 | const auto originalModelCount = renderableModels.size(); |
| 1452 | auto end = originalModelCount; |
| 1453 | |
| 1454 | for (int idx = 0; idx < end; ++idx) { |
| 1455 | // It's up to the BufferManager to employ the appropriate caching mechanisms, so |
| 1456 | // loadMesh() is expected to be fast if already loaded. Note that preparing |
| 1457 | // the same QSSGRenderModel in different QQuickWindows (possible when a |
| 1458 | // scene is shared between View3Ds where the View3Ds belong to different |
| 1459 | // windows) leads to a different QSSGRenderMesh since the BufferManager is, |
| 1460 | // very correctly, per window, and so per scenegraph render thread. |
| 1461 | |
| 1462 | const auto &renderable = renderableModels.at(i: idx); |
| 1463 | const QSSGRenderModel &model = *static_cast<QSSGRenderModel *>(renderable.node); |
| 1464 | // Ensure we have a mesh |
| 1465 | if (auto *theMesh = bufferManager->loadMesh(model: &model)) { |
| 1466 | renderable.mesh = theMesh; |
| 1467 | // Completely transparent models cannot be pickable. But models with completely |
| 1468 | // transparent materials still are. This allows the artist to control pickability |
| 1469 | // in a somewhat fine-grained style. |
| 1470 | const bool canModelBePickable = (model.globalOpacity > QSSG_RENDER_MINIMUM_RENDER_OPACITY) |
| 1471 | && (globalPickingEnabled |
| 1472 | || model.getGlobalState(stateFlag: QSSGRenderModel::GlobalState::Pickable)); |
| 1473 | if (canModelBePickable) { |
| 1474 | // Check if there is BVH data, if not generate it |
| 1475 | if (!theMesh->bvh) { |
| 1476 | if (!model.meshPath.isNull()) |
| 1477 | theMesh->bvh = bufferManager->loadMeshBVH(inSourcePath: model.meshPath); |
| 1478 | else if (model.geometry) |
| 1479 | theMesh->bvh = bufferManager->loadMeshBVH(geometry: model.geometry); |
| 1480 | |
| 1481 | if (theMesh->bvh) { |
| 1482 | const auto &roots = theMesh->bvh->roots(); |
| 1483 | for (qsizetype i = 0, end = qsizetype(roots.size()); i < end; ++i) |
| 1484 | theMesh->subsets[i].bvhRoot = roots[i]; |
| 1485 | } |
| 1486 | } |
| 1487 | } |
| 1488 | } else { |
| 1489 | // Swap current (idx) and last item (--end). |
| 1490 | // Note, post-decrement idx to ensure we recheck the new current item on next iteration |
| 1491 | // and pre-decrement the end move the end of the list to not include the culled renderable. |
| 1492 | renderableModels.swapItemsAt(i: idx--, j: --end); |
| 1493 | } |
| 1494 | } |
| 1495 | |
| 1496 | // Any models without a mesh get dropped right here |
| 1497 | if (end != originalModelCount) |
| 1498 | renderableModels.resize(size: end); |
| 1499 | |
| 1500 | // Now is the time to kick off the vertex/index buffer updates for all the |
| 1501 | // new meshes (and their submeshes). This here is the last possible place |
| 1502 | // to kick this off because the rest of the rendering pipeline will only |
| 1503 | // see the individual sub-objects as "renderable objects". |
| 1504 | bufferManager->commitBufferResourceUpdates(); |
| 1505 | } |
| 1506 | |
| 1507 | void QSSGLayerRenderData::setLightmapTexture(const QSSGModelContext &modelContext, QRhiTexture *lightmapTexture) |
| 1508 | { |
| 1509 | lightmapTextures[&modelContext] = lightmapTexture; |
| 1510 | } |
| 1511 | |
| 1512 | QRhiTexture *QSSGLayerRenderData::getLightmapTexture(const QSSGModelContext &modelContext) const |
| 1513 | { |
| 1514 | QRhiTexture *ret = nullptr; |
| 1515 | if (modelContext.model.hasLightmap()) { |
| 1516 | const auto it = lightmapTextures.constFind(key: &modelContext); |
| 1517 | ret = (it != lightmapTextures.cend()) ? *it : nullptr; |
| 1518 | } |
| 1519 | |
| 1520 | return ret; |
| 1521 | } |
| 1522 | |
| 1523 | void QSSGLayerRenderData::setBonemapTexture(const QSSGModelContext &modelContext, QRhiTexture *bonemapTexture) |
| 1524 | { |
| 1525 | bonemapTextures[&modelContext] = bonemapTexture; |
| 1526 | } |
| 1527 | |
| 1528 | QRhiTexture *QSSGLayerRenderData::getBonemapTexture(const QSSGModelContext &modelContext) const |
| 1529 | { |
| 1530 | QRhiTexture *ret = nullptr; |
| 1531 | if (modelContext.model.usesBoneTexture()) { |
| 1532 | const auto it = bonemapTextures.constFind(key: &modelContext); |
| 1533 | ret = (it != bonemapTextures.cend()) ? *it : nullptr; |
| 1534 | } |
| 1535 | |
| 1536 | return ret; |
| 1537 | } |
| 1538 | |
| 1539 | // inModel is const to emphasize the fact that its members cannot be written |
| 1540 | // here: in case there is a scene shared between multiple View3Ds in different |
| 1541 | // QQuickWindows, each window may run this in their own render thread, while |
| 1542 | // inModel is the same. |
| 1543 | bool QSSGLayerRenderData::prepareModelsForRender(QSSGRenderContextInterface &contextInterface, |
| 1544 | const RenderableNodeEntries &renderableModels, |
| 1545 | QSSGLayerRenderPreparationResultFlags &ioFlags, |
| 1546 | const QSSGRenderCameraList &allCameras, |
| 1547 | const QSSGRenderCameraDataList &allCameraData, |
| 1548 | TModelContextPtrList &modelContexts, |
| 1549 | QSSGRenderableObjectList &opaqueObjects, |
| 1550 | QSSGRenderableObjectList &transparentObjects, |
| 1551 | QSSGRenderableObjectList &screenTextureObjects, |
| 1552 | float lodThreshold) |
| 1553 | { |
| 1554 | const auto &rhiCtx = contextInterface.rhiContext(); |
| 1555 | const auto &bufferManager = contextInterface.bufferManager(); |
| 1556 | |
| 1557 | const auto &debugDrawSystem = contextInterface.debugDrawSystem(); |
| 1558 | const bool maybeDebugDraw = debugDrawSystem && debugDrawSystem->isEnabled(); |
| 1559 | |
| 1560 | bool wasDirty = false; |
| 1561 | |
| 1562 | for (const QSSGRenderableNodeEntry &renderable : renderableModels) { |
| 1563 | if ((renderable.overridden & QSSGRenderableNodeEntry::Overridden::Disabled) != 0) |
| 1564 | continue; |
| 1565 | |
| 1566 | const QSSGRenderModel &model = *static_cast<QSSGRenderModel *>(renderable.node); |
| 1567 | const auto &lights = renderable.lights; |
| 1568 | QSSGRenderMesh *theMesh = renderable.mesh; |
| 1569 | |
| 1570 | QSSG_ASSERT_X(theMesh != nullptr, "Only renderables with a mesh will be processed!" , continue); |
| 1571 | |
| 1572 | const bool altGlobalTransform = ((renderable.overridden & QSSGRenderableNodeEntry::Overridden::GlobalTransform) != 0); |
| 1573 | const auto &globalTransform = altGlobalTransform ? renderable.globalTransform : model.globalTransform; |
| 1574 | QSSGModelContext &theModelContext = *RENDER_FRAME_NEW<QSSGModelContext>(ctx&: contextInterface, args: model, args: globalTransform, args: allCameraData); |
| 1575 | modelContexts.push_back(t: &theModelContext); |
| 1576 | // We might over-allocate here, as the material list technically can contain an invalid (nullptr) material. |
| 1577 | // We'll fix that by adjusting the size at the end for now... |
| 1578 | const auto &meshSubsets = theMesh->subsets; |
| 1579 | const auto meshSubsetCount = meshSubsets.size(); |
| 1580 | theModelContext.subsets = RENDER_FRAME_NEW_BUFFER<QSSGSubsetRenderable>(ctx&: contextInterface, count: meshSubsetCount); |
| 1581 | |
| 1582 | // Prepare boneTexture for skinning |
| 1583 | if (model.skin) { |
| 1584 | auto boneTexture = bufferManager->loadSkinmap(skin: model.skin); |
| 1585 | setBonemapTexture(modelContext: theModelContext, bonemapTexture: boneTexture.m_texture); |
| 1586 | } else if (model.skeleton) { |
| 1587 | auto boneTexture = bufferManager->loadSkinmap(skin: &(model.skeleton->boneTexData)); |
| 1588 | setBonemapTexture(modelContext: theModelContext, bonemapTexture: boneTexture.m_texture); |
| 1589 | } else { |
| 1590 | setBonemapTexture(modelContext: theModelContext, bonemapTexture: nullptr); |
| 1591 | } |
| 1592 | |
| 1593 | // many renderableFlags are the same for all the subsets |
| 1594 | QSSGRenderableObjectFlags renderableFlagsForModel; |
| 1595 | |
| 1596 | if (meshSubsetCount > 0) { |
| 1597 | const QSSGRenderSubset &theSubset = meshSubsets.at(i: 0); |
| 1598 | |
| 1599 | renderableFlagsForModel.setCastsShadows(model.castsShadows); |
| 1600 | renderableFlagsForModel.setReceivesShadows(model.receivesShadows); |
| 1601 | renderableFlagsForModel.setReceivesReflections(model.receivesReflections); |
| 1602 | renderableFlagsForModel.setCastsReflections(model.castsReflections); |
| 1603 | |
| 1604 | renderableFlagsForModel.setUsedInBakedLighting(model.usedInBakedLighting); |
| 1605 | if (model.hasLightmap()) { |
| 1606 | QSSGRenderImageTexture lmImageTexture = bufferManager->loadLightmap(model); |
| 1607 | if (lmImageTexture.m_texture) { |
| 1608 | renderableFlagsForModel.setRendersWithLightmap(true); |
| 1609 | setLightmapTexture(modelContext: theModelContext, lightmapTexture: lmImageTexture.m_texture); |
| 1610 | } |
| 1611 | } |
| 1612 | |
| 1613 | // TODO: This should be a oneshot thing, move the flags over! |
| 1614 | // With the RHI we need to be able to tell the material shader |
| 1615 | // generator to not generate vertex input attributes that are not |
| 1616 | // provided by the mesh. (because unlike OpenGL, other graphics |
| 1617 | // APIs may treat unbound vertex inputs as a fatal error) |
| 1618 | bool hasJoint = false; |
| 1619 | bool hasWeight = false; |
| 1620 | bool hasMorphTarget = theSubset.rhi.targetsTexture != nullptr; |
| 1621 | for (const QSSGRhiInputAssemblerState::InputSemantic &sem : std::as_const(t: theSubset.rhi.ia.inputs)) { |
| 1622 | if (sem == QSSGRhiInputAssemblerState::PositionSemantic) { |
| 1623 | renderableFlagsForModel.setHasAttributePosition(true); |
| 1624 | } else if (sem == QSSGRhiInputAssemblerState::NormalSemantic) { |
| 1625 | renderableFlagsForModel.setHasAttributeNormal(true); |
| 1626 | } else if (sem == QSSGRhiInputAssemblerState::TexCoord0Semantic) { |
| 1627 | renderableFlagsForModel.setHasAttributeTexCoord0(true); |
| 1628 | } else if (sem == QSSGRhiInputAssemblerState::TexCoord1Semantic) { |
| 1629 | renderableFlagsForModel.setHasAttributeTexCoord1(true); |
| 1630 | } else if (sem == QSSGRhiInputAssemblerState::TexCoordLightmapSemantic) { |
| 1631 | renderableFlagsForModel.setHasAttributeTexCoordLightmap(true); |
| 1632 | } else if (sem == QSSGRhiInputAssemblerState::TangentSemantic) { |
| 1633 | renderableFlagsForModel.setHasAttributeTangent(true); |
| 1634 | } else if (sem == QSSGRhiInputAssemblerState::BinormalSemantic) { |
| 1635 | renderableFlagsForModel.setHasAttributeBinormal(true); |
| 1636 | } else if (sem == QSSGRhiInputAssemblerState::ColorSemantic) { |
| 1637 | renderableFlagsForModel.setHasAttributeColor(true); |
| 1638 | // For skinning, we will set the HasAttribute only |
| 1639 | // if the mesh has both joint and weight |
| 1640 | } else if (sem == QSSGRhiInputAssemblerState::JointSemantic) { |
| 1641 | hasJoint = true; |
| 1642 | } else if (sem == QSSGRhiInputAssemblerState::WeightSemantic) { |
| 1643 | hasWeight = true; |
| 1644 | } |
| 1645 | } |
| 1646 | renderableFlagsForModel.setHasAttributeJointAndWeight(hasJoint && hasWeight); |
| 1647 | renderableFlagsForModel.setHasAttributeMorphTarget(hasMorphTarget); |
| 1648 | } |
| 1649 | |
| 1650 | QSSGRenderableObjectList bakedLightingObjects; |
| 1651 | bool usesBlendParticles = particlesEnabled && theModelContext.model.particleBuffer != nullptr |
| 1652 | && model.particleBuffer->particleCount(); |
| 1653 | |
| 1654 | // Subset(s) |
| 1655 | auto &renderableSubsets = theModelContext.subsets; |
| 1656 | const auto &materials = renderable.materials; |
| 1657 | const auto materialCount = materials.size(); |
| 1658 | const bool altModelOpacity = ((renderable.overridden & QSSGRenderableNodeEntry::Overridden::GlobalOpacity) != 0); |
| 1659 | const float modelOpacity = altModelOpacity ? renderable.globalOpacity : model.globalOpacity; |
| 1660 | QSSGRenderGraphObject *lastMaterial = !materials.isEmpty() ? materials.last() : nullptr; |
| 1661 | int idx = 0, subsetIdx = 0; |
| 1662 | for (; idx < meshSubsetCount; ++idx) { |
| 1663 | // If the materials list < size of subsets, then use the last material for the rest |
| 1664 | QSSGRenderGraphObject *theMaterialObject = (idx >= materialCount) ? lastMaterial : materials[idx]; |
| 1665 | QSSG_ASSERT_X(theMaterialObject != nullptr, "No material found for model!" , continue); |
| 1666 | |
| 1667 | const QSSGRenderSubset &theSubset = meshSubsets.at(i: idx); |
| 1668 | QSSGRenderableObjectFlags renderableFlags = renderableFlagsForModel; |
| 1669 | float subsetOpacity = modelOpacity; |
| 1670 | |
| 1671 | renderableFlags.setPointsTopology(theSubset.rhi.ia.topology == QRhiGraphicsPipeline::Points); |
| 1672 | QSSGRenderableObject *theRenderableObject = &renderableSubsets[subsetIdx++]; |
| 1673 | |
| 1674 | bool usesInstancing = theModelContext.model.instancing() |
| 1675 | && rhiCtx->rhi()->isFeatureSupported(feature: QRhi::Instancing); |
| 1676 | if (usesInstancing && theModelContext.model.instanceTable->hasTransparency()) |
| 1677 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
| 1678 | if (theModelContext.model.hasTransparency) |
| 1679 | renderableFlags |= QSSGRenderableObjectFlag::HasTransparency; |
| 1680 | |
| 1681 | // Level Of Detail |
| 1682 | quint32 subsetLevelOfDetail = 0; |
| 1683 | if (!theSubset.lods.isEmpty() && lodThreshold > 0.0f) { |
| 1684 | // Accounts for FOV |
| 1685 | float lodDistanceMultiplier = cameras[0]->getLevelOfDetailMultiplier(); |
| 1686 | float distanceThreshold = 0.0f; |
| 1687 | const auto scale = QSSGUtils::mat44::getScale(m: model.globalTransform); |
| 1688 | float modelScale = qMax(a: scale.x(), b: qMax(a: scale.y(), b: scale.z())); |
| 1689 | QSSGBounds3 transformedBounds = theSubset.bounds; |
| 1690 | if (cameras[0]->type != QSSGRenderGraphObject::Type::OrthographicCamera) { |
| 1691 | transformedBounds.transform(inMatrix: model.globalTransform); |
| 1692 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLod)) |
| 1693 | debugDrawSystem->drawBounds(bounds: transformedBounds, color: QColor(Qt::red)); |
| 1694 | const QVector3D cameraNormal = cameras[0]->getScalingCorrectDirection(); |
| 1695 | const QVector3D cameraPosition = cameras[0]->getGlobalPos(); |
| 1696 | const QSSGPlane cameraPlane = QSSGPlane(cameraPosition, cameraNormal); |
| 1697 | const QVector3D lodSupportMin = transformedBounds.getSupport(direction: -cameraNormal); |
| 1698 | const QVector3D lodSupportMax = transformedBounds.getSupport(direction: cameraNormal); |
| 1699 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLod)) |
| 1700 | debugDrawSystem->drawPoint(vertex: lodSupportMin, color: QColor("orange" )); |
| 1701 | |
| 1702 | const float distanceMin = cameraPlane.distance(p: lodSupportMin); |
| 1703 | const float distanceMax = cameraPlane.distance(p: lodSupportMax); |
| 1704 | |
| 1705 | if (distanceMin * distanceMax < 0.0) |
| 1706 | distanceThreshold = 0.0; |
| 1707 | else if (distanceMin >= 0.0) |
| 1708 | distanceThreshold = distanceMin; |
| 1709 | else if (distanceMax <= 0.0) |
| 1710 | distanceThreshold = -distanceMax; |
| 1711 | |
| 1712 | } else { |
| 1713 | // Orthographic Projection |
| 1714 | distanceThreshold = 1.0; |
| 1715 | } |
| 1716 | |
| 1717 | int currentLod = -1; |
| 1718 | if (model.levelOfDetailBias > 0.0f) { |
| 1719 | const float threshold = distanceThreshold * lodDistanceMultiplier; |
| 1720 | const float modelBias = 1 / model.levelOfDetailBias; |
| 1721 | for (qsizetype i = 0; i < theSubset.lods.count(); ++i) { |
| 1722 | float subsetDistance = theSubset.lods[i].distance * modelScale * modelBias; |
| 1723 | float screenSize = subsetDistance / threshold; |
| 1724 | if (screenSize > lodThreshold) |
| 1725 | break; |
| 1726 | currentLod = i; |
| 1727 | } |
| 1728 | } |
| 1729 | if (currentLod == -1) |
| 1730 | subsetLevelOfDetail = 0; |
| 1731 | else |
| 1732 | subsetLevelOfDetail = currentLod + 1; |
| 1733 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLod)) |
| 1734 | debugDrawSystem->drawBounds(bounds: transformedBounds, color: QSSGDebugDrawSystem::levelOfDetailColor(lod: subsetLevelOfDetail)); |
| 1735 | } |
| 1736 | |
| 1737 | QVector3D theModelCenter(theSubset.bounds.center()); |
| 1738 | theModelCenter = QSSGUtils::mat44::transform(m: model.globalTransform, v: theModelCenter); |
| 1739 | if (maybeDebugDraw && debugDrawSystem->isEnabled(mode: QSSGDebugDrawSystem::Mode::MeshLodNormal)) |
| 1740 | debugDrawSystem->debugNormals(bufferManager&: *bufferManager, theModelContext, theSubset, subsetLevelOfDetail, lineLength: (theModelCenter - allCameras[0]->getGlobalPos()).length() * 0.01); |
| 1741 | |
| 1742 | auto checkF32TypeIndex = [&rhiCtx](QRhiVertexInputAttribute::Format f) { |
| 1743 | if ((f == QRhiVertexInputAttribute::Format::Float4) |
| 1744 | || (f == QRhiVertexInputAttribute::Format::Float3) |
| 1745 | || (f == QRhiVertexInputAttribute::Format::Float2) |
| 1746 | || (f == QRhiVertexInputAttribute::Format::Float)) { |
| 1747 | return true; |
| 1748 | } |
| 1749 | if (!rhiCtx->rhi()->isFeatureSupported(feature: QRhi::IntAttributes)) |
| 1750 | qWarning() << "WARN: Model has non-integer type indices for skinning but current RHI backend doesn't support it!" ; |
| 1751 | return false; |
| 1752 | }; |
| 1753 | |
| 1754 | if (theMaterialObject->type == QSSGRenderGraphObject::Type::DefaultMaterial || |
| 1755 | theMaterialObject->type == QSSGRenderGraphObject::Type::PrincipledMaterial || |
| 1756 | theMaterialObject->type == QSSGRenderGraphObject::Type::SpecularGlossyMaterial) { |
| 1757 | QSSGRenderDefaultMaterial &theMaterial(static_cast<QSSGRenderDefaultMaterial &>(*theMaterialObject)); |
| 1758 | QSSGDefaultMaterialPreparationResult theMaterialPrepResult(prepareDefaultMaterialForRender(inMaterial&: theMaterial, inExistingFlags&: renderableFlags, inOpacity: subsetOpacity, lights, ioFlags)); |
| 1759 | QSSGShaderDefaultMaterialKey &theGeneratedKey(theMaterialPrepResult.materialKey); |
| 1760 | subsetOpacity = theMaterialPrepResult.opacity; |
| 1761 | QSSGRenderableImage *firstImage(theMaterialPrepResult.firstImage); |
| 1762 | wasDirty |= theMaterialPrepResult.dirty; |
| 1763 | renderableFlags = theMaterialPrepResult.renderableFlags; |
| 1764 | |
| 1765 | // Blend particles |
| 1766 | defaultMaterialShaderKeyProperties.m_blendParticles.setValue(inDataStore: theGeneratedKey, inValue: usesBlendParticles); |
| 1767 | |
| 1768 | // Skin |
| 1769 | const auto boneCount = model.skin ? model.skin->boneCount : |
| 1770 | model.skeleton ? model.skeleton->boneCount : 0; |
| 1771 | defaultMaterialShaderKeyProperties.m_boneCount.setValue(inDataStore: theGeneratedKey, inValue: boneCount); |
| 1772 | if (auto idJoint = theSubset.rhi.ia.inputs.indexOf(t: QSSGRhiInputAssemblerState::JointSemantic); idJoint != -1) { |
| 1773 | const auto attr = theSubset.rhi.ia.inputLayout.attributeAt(index: idJoint); |
| 1774 | defaultMaterialShaderKeyProperties.m_usesFloatJointIndices.setValue(inDataStore: theGeneratedKey, inValue: checkF32TypeIndex(attr->format())); |
| 1775 | } |
| 1776 | |
| 1777 | // Instancing |
| 1778 | defaultMaterialShaderKeyProperties.m_usesInstancing.setValue(inDataStore: theGeneratedKey, inValue: usesInstancing); |
| 1779 | // Morphing |
| 1780 | defaultMaterialShaderKeyProperties.m_targetCount.setValue(inDataStore: theGeneratedKey, |
| 1781 | inValue: theSubset.rhi.ia.targetCount); |
| 1782 | defaultMaterialShaderKeyProperties.m_targetPositionOffset.setValue(inDataStore: theGeneratedKey, |
| 1783 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::PositionSemantic]); |
| 1784 | defaultMaterialShaderKeyProperties.m_targetNormalOffset.setValue(inDataStore: theGeneratedKey, |
| 1785 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::NormalSemantic]); |
| 1786 | defaultMaterialShaderKeyProperties.m_targetTangentOffset.setValue(inDataStore: theGeneratedKey, |
| 1787 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TangentSemantic]); |
| 1788 | defaultMaterialShaderKeyProperties.m_targetBinormalOffset.setValue(inDataStore: theGeneratedKey, |
| 1789 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::BinormalSemantic]); |
| 1790 | defaultMaterialShaderKeyProperties.m_targetTexCoord0Offset.setValue(inDataStore: theGeneratedKey, |
| 1791 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord0Semantic]); |
| 1792 | defaultMaterialShaderKeyProperties.m_targetTexCoord1Offset.setValue(inDataStore: theGeneratedKey, |
| 1793 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord1Semantic]); |
| 1794 | defaultMaterialShaderKeyProperties.m_targetColorOffset.setValue(inDataStore: theGeneratedKey, |
| 1795 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::ColorSemantic]); |
| 1796 | |
| 1797 | new (theRenderableObject) QSSGSubsetRenderable(QSSGSubsetRenderable::Type::DefaultMaterialMeshSubset, |
| 1798 | renderableFlags, |
| 1799 | theModelCenter, |
| 1800 | renderer, |
| 1801 | theSubset, |
| 1802 | theModelContext, |
| 1803 | subsetOpacity, |
| 1804 | subsetLevelOfDetail, |
| 1805 | theMaterial, |
| 1806 | firstImage, |
| 1807 | theGeneratedKey, |
| 1808 | lights); |
| 1809 | wasDirty = wasDirty || renderableFlags.isDirty(); |
| 1810 | } else if (theMaterialObject->type == QSSGRenderGraphObject::Type::CustomMaterial) { |
| 1811 | QSSGRenderCustomMaterial &theMaterial(static_cast<QSSGRenderCustomMaterial &>(*theMaterialObject)); |
| 1812 | |
| 1813 | const auto &theMaterialSystem(contextInterface.customMaterialSystem()); |
| 1814 | wasDirty |= theMaterialSystem->prepareForRender(inModel: theModelContext.model, inSubset: theSubset, inMaterial&: theMaterial); |
| 1815 | |
| 1816 | QSSGDefaultMaterialPreparationResult theMaterialPrepResult( |
| 1817 | prepareCustomMaterialForRender(inMaterial&: theMaterial, inExistingFlags&: renderableFlags, inOpacity: subsetOpacity, alreadyDirty: wasDirty, |
| 1818 | lights, ioFlags)); |
| 1819 | QSSGShaderDefaultMaterialKey &theGeneratedKey(theMaterialPrepResult.materialKey); |
| 1820 | subsetOpacity = theMaterialPrepResult.opacity; |
| 1821 | QSSGRenderableImage *firstImage(theMaterialPrepResult.firstImage); |
| 1822 | renderableFlags = theMaterialPrepResult.renderableFlags; |
| 1823 | |
| 1824 | if (model.particleBuffer && model.particleBuffer->particleCount()) |
| 1825 | defaultMaterialShaderKeyProperties.m_blendParticles.setValue(inDataStore: theGeneratedKey, inValue: true); |
| 1826 | else |
| 1827 | defaultMaterialShaderKeyProperties.m_blendParticles.setValue(inDataStore: theGeneratedKey, inValue: false); |
| 1828 | |
| 1829 | // Skin |
| 1830 | const auto boneCount = model.skin ? model.skin->boneCount : |
| 1831 | model.skeleton ? model.skeleton->boneCount : 0; |
| 1832 | defaultMaterialShaderKeyProperties.m_boneCount.setValue(inDataStore: theGeneratedKey, inValue: boneCount); |
| 1833 | if (auto idJoint = theSubset.rhi.ia.inputs.indexOf(t: QSSGRhiInputAssemblerState::JointSemantic); idJoint != -1) { |
| 1834 | const auto attr = theSubset.rhi.ia.inputLayout.attributeAt(index: idJoint); |
| 1835 | defaultMaterialShaderKeyProperties.m_usesFloatJointIndices.setValue(inDataStore: theGeneratedKey, inValue: checkF32TypeIndex(attr->format())); |
| 1836 | } |
| 1837 | |
| 1838 | // Instancing |
| 1839 | bool usesInstancing = theModelContext.model.instancing() |
| 1840 | && rhiCtx->rhi()->isFeatureSupported(feature: QRhi::Instancing); |
| 1841 | defaultMaterialShaderKeyProperties.m_usesInstancing.setValue(inDataStore: theGeneratedKey, inValue: usesInstancing); |
| 1842 | // Morphing |
| 1843 | defaultMaterialShaderKeyProperties.m_targetCount.setValue(inDataStore: theGeneratedKey, |
| 1844 | inValue: theSubset.rhi.ia.targetCount); |
| 1845 | defaultMaterialShaderKeyProperties.m_targetPositionOffset.setValue(inDataStore: theGeneratedKey, |
| 1846 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::PositionSemantic]); |
| 1847 | defaultMaterialShaderKeyProperties.m_targetNormalOffset.setValue(inDataStore: theGeneratedKey, |
| 1848 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::NormalSemantic]); |
| 1849 | defaultMaterialShaderKeyProperties.m_targetTangentOffset.setValue(inDataStore: theGeneratedKey, |
| 1850 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TangentSemantic]); |
| 1851 | defaultMaterialShaderKeyProperties.m_targetBinormalOffset.setValue(inDataStore: theGeneratedKey, |
| 1852 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::BinormalSemantic]); |
| 1853 | defaultMaterialShaderKeyProperties.m_targetTexCoord0Offset.setValue(inDataStore: theGeneratedKey, |
| 1854 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord0Semantic]); |
| 1855 | defaultMaterialShaderKeyProperties.m_targetTexCoord1Offset.setValue(inDataStore: theGeneratedKey, |
| 1856 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::TexCoord1Semantic]); |
| 1857 | defaultMaterialShaderKeyProperties.m_targetColorOffset.setValue(inDataStore: theGeneratedKey, |
| 1858 | inValue: theSubset.rhi.ia.targetOffsets[QSSGRhiInputAssemblerState::ColorSemantic]); |
| 1859 | |
| 1860 | if (theMaterial.m_iblProbe) |
| 1861 | theMaterial.m_iblProbe->clearDirty(); |
| 1862 | |
| 1863 | new (theRenderableObject) QSSGSubsetRenderable(QSSGSubsetRenderable::Type::CustomMaterialMeshSubset, |
| 1864 | renderableFlags, |
| 1865 | theModelCenter, |
| 1866 | renderer, |
| 1867 | theSubset, |
| 1868 | theModelContext, |
| 1869 | subsetOpacity, |
| 1870 | subsetLevelOfDetail, |
| 1871 | theMaterial, |
| 1872 | firstImage, |
| 1873 | theGeneratedKey, |
| 1874 | lights); |
| 1875 | } |
| 1876 | if (theRenderableObject) // NOTE: Should just go in with the ctor args |
| 1877 | theRenderableObject->camdistSq = getCameraDistanceSq(obj: *theRenderableObject, camera: allCameraData[0]); |
| 1878 | } |
| 1879 | |
| 1880 | // If the indices don't match then something's off and we need to adjust the subset renderable list size. |
| 1881 | if (Q_UNLIKELY(idx != subsetIdx)) |
| 1882 | renderableSubsets.mSize = subsetIdx + 1; |
| 1883 | |
| 1884 | for (auto &ro : renderableSubsets) { |
| 1885 | const auto depthMode = ro.depthWriteMode; |
| 1886 | hasDepthWriteObjects |= (depthMode == QSSGDepthDrawMode::Always || depthMode == QSSGDepthDrawMode::OpaqueOnly); |
| 1887 | enum ObjectType : quint8 { ScreenTexture, Transparent, Opaque }; |
| 1888 | static constexpr DepthPrepassObject ppState[][2] = { {DepthPrepassObject::None, DepthPrepassObject::ScreenTexture}, |
| 1889 | {DepthPrepassObject::None, DepthPrepassObject::Transparent}, |
| 1890 | {DepthPrepassObject::None, DepthPrepassObject::Opaque} }; |
| 1891 | |
| 1892 | if (ro.renderableFlags.requiresScreenTexture()) { |
| 1893 | depthPrepassObjectsState |= DepthPrepassObjectStateT(ppState[ObjectType::ScreenTexture][size_t(depthMode == QSSGDepthDrawMode::OpaquePrePass)]); |
| 1894 | screenTextureObjects.push_back(t: {&ro, ro.camdistSq}); |
| 1895 | } else if (ro.renderableFlags.hasTransparency()) { |
| 1896 | depthPrepassObjectsState |= DepthPrepassObjectStateT(ppState[ObjectType::Transparent][size_t(depthMode == QSSGDepthDrawMode::OpaquePrePass)]); |
| 1897 | transparentObjects.push_back(t: {&ro, ro.camdistSq}); |
| 1898 | } else { |
| 1899 | depthPrepassObjectsState |= DepthPrepassObjectStateT(ppState[ObjectType::Opaque][size_t(depthMode == QSSGDepthDrawMode::OpaquePrePass)]); |
| 1900 | opaqueObjects.push_back(t: {&ro, ro.camdistSq}); |
| 1901 | } |
| 1902 | |
| 1903 | if (ro.renderableFlags.usedInBakedLighting()) |
| 1904 | bakedLightingObjects.push_back(t: {&ro, ro.camdistSq}); |
| 1905 | } |
| 1906 | |
| 1907 | if (!bakedLightingObjects.isEmpty()) |
| 1908 | bakedLightingModels.push_back(t: QSSGBakedLightingModel(&model, bakedLightingObjects)); |
| 1909 | } |
| 1910 | |
| 1911 | return wasDirty; |
| 1912 | } |
| 1913 | |
| 1914 | bool QSSGLayerRenderData::prepareParticlesForRender(const RenderableNodeEntries &renderableParticles, const QSSGRenderCameraData &cameraData) |
| 1915 | { |
| 1916 | QSSG_ASSERT(particlesEnabled, return false); |
| 1917 | |
| 1918 | QSSGRenderContextInterface &contextInterface = *renderer->contextInterface(); |
| 1919 | |
| 1920 | bool dirty = false; |
| 1921 | |
| 1922 | // |
| 1923 | auto &opaqueObjects = opaqueObjectStore[0]; |
| 1924 | auto &transparentObjects = transparentObjectStore[0]; |
| 1925 | auto &screenTextureObjects = screenTextureObjectStore[0]; |
| 1926 | |
| 1927 | for (const auto &renderable : renderableParticles) { |
| 1928 | const QSSGRenderParticles &particles = *static_cast<QSSGRenderParticles *>(renderable.node); |
| 1929 | const auto &lights = renderable.lights; |
| 1930 | |
| 1931 | QSSGRenderableObjectFlags renderableFlags; |
| 1932 | renderableFlags.setCastsShadows(false); |
| 1933 | renderableFlags.setReceivesShadows(false); |
| 1934 | renderableFlags.setHasAttributePosition(true); |
| 1935 | renderableFlags.setHasAttributeNormal(true); |
| 1936 | renderableFlags.setHasAttributeTexCoord0(true); |
| 1937 | renderableFlags.setHasAttributeColor(true); |
| 1938 | renderableFlags.setHasTransparency(particles.m_hasTransparency); |
| 1939 | renderableFlags.setCastsReflections(particles.m_castsReflections); |
| 1940 | |
| 1941 | float opacity = particles.globalOpacity; |
| 1942 | QVector3D center(particles.m_particleBuffer.bounds().center()); |
| 1943 | center = QSSGUtils::mat44::transform(m: particles.globalTransform, v: center); |
| 1944 | |
| 1945 | QSSGRenderableImage *firstImage = nullptr; |
| 1946 | if (particles.m_sprite) { |
| 1947 | const auto &bufferManager = contextInterface.bufferManager(); |
| 1948 | |
| 1949 | if (particles.m_sprite->clearDirty()) |
| 1950 | dirty = true; |
| 1951 | |
| 1952 | const QSSGRenderImageTexture texture = bufferManager->loadRenderImage(image: particles.m_sprite); |
| 1953 | QSSGRenderableImage *theImage = RENDER_FRAME_NEW<QSSGRenderableImage>(ctx&: contextInterface, args: QSSGRenderableImage::Type::Diffuse, args&: *particles.m_sprite, args: texture); |
| 1954 | firstImage = theImage; |
| 1955 | } |
| 1956 | |
| 1957 | QSSGRenderableImage *colorTable = nullptr; |
| 1958 | if (particles.m_colorTable) { |
| 1959 | const auto &bufferManager = contextInterface.bufferManager(); |
| 1960 | |
| 1961 | if (particles.m_colorTable->clearDirty()) |
| 1962 | dirty = true; |
| 1963 | |
| 1964 | const QSSGRenderImageTexture texture = bufferManager->loadRenderImage(image: particles.m_colorTable); |
| 1965 | |
| 1966 | QSSGRenderableImage *theImage = RENDER_FRAME_NEW<QSSGRenderableImage>(ctx&: contextInterface, args: QSSGRenderableImage::Type::Diffuse, args&: *particles.m_colorTable, args: texture); |
| 1967 | colorTable = theImage; |
| 1968 | } |
| 1969 | |
| 1970 | if (opacity > 0.0f && particles.m_particleBuffer.particleCount()) { |
| 1971 | auto *theRenderableObject = RENDER_FRAME_NEW<QSSGParticlesRenderable>(ctx&: contextInterface, |
| 1972 | args&: renderableFlags, |
| 1973 | args&: center, |
| 1974 | args&: renderer, |
| 1975 | args: particles, |
| 1976 | args&: firstImage, |
| 1977 | args&: colorTable, |
| 1978 | args: lights, |
| 1979 | args&: opacity); |
| 1980 | if (theRenderableObject) { |
| 1981 | if (theRenderableObject->renderableFlags.requiresScreenTexture()) |
| 1982 | screenTextureObjects.push_back(t: {theRenderableObject, getCameraDistanceSq(obj: *theRenderableObject, camera: cameraData)}); |
| 1983 | else if (theRenderableObject->renderableFlags.hasTransparency()) |
| 1984 | transparentObjects.push_back(t: {theRenderableObject, getCameraDistanceSq(obj: *theRenderableObject, camera: cameraData)}); |
| 1985 | else |
| 1986 | opaqueObjects.push_back(t: {theRenderableObject, getCameraDistanceSq(obj: *theRenderableObject, camera: cameraData)}); |
| 1987 | } |
| 1988 | } |
| 1989 | } |
| 1990 | |
| 1991 | return dirty; |
| 1992 | } |
| 1993 | |
| 1994 | bool QSSGLayerRenderData::prepareItem2DsForRender(const QSSGRenderContextInterface &ctxIfc, |
| 1995 | const RenderableItem2DEntries &renderableItem2Ds) |
| 1996 | { |
| 1997 | const bool hasItems = (renderableItem2Ds.size() != 0); |
| 1998 | if (hasItems) { |
| 1999 | const auto &clipSpaceCorrMatrix = ctxIfc.rhiContext()->rhi()->clipSpaceCorrMatrix(); |
| 2000 | const QSSGRenderCameraDataList &cameraDatas(getCachedCameraDatas()); |
| 2001 | for (const auto &theItem2D : renderableItem2Ds) { |
| 2002 | theItem2D->mvps.clear(); |
| 2003 | for (const QSSGRenderCameraData &camData : cameraDatas) { |
| 2004 | QMatrix4x4 mvp = camData.viewProjection * theItem2D->globalTransform; |
| 2005 | static const QMatrix4x4 flipMatrix(1.0f, 0.0f, 0.0f, 0.0f, |
| 2006 | 0.0f, -1.0f, 0.0f, 0.0f, |
| 2007 | 0.0f, 0.0f, 1.0f, 0.0f, |
| 2008 | 0.0f, 0.0f, 0.0f, 1.0f); |
| 2009 | mvp = clipSpaceCorrMatrix * mvp * flipMatrix; |
| 2010 | theItem2D->mvps.append(t: mvp); |
| 2011 | } |
| 2012 | } |
| 2013 | } |
| 2014 | |
| 2015 | return hasItems; |
| 2016 | } |
| 2017 | |
| 2018 | void QSSGLayerRenderData::prepareResourceLoaders() |
| 2019 | { |
| 2020 | QSSGRenderContextInterface &contextInterface = *renderer->contextInterface(); |
| 2021 | const auto &bufferManager = contextInterface.bufferManager(); |
| 2022 | |
| 2023 | for (const auto resourceLoader : std::as_const(t&: layer.resourceLoaders)) |
| 2024 | bufferManager->processResourceLoader(loader: static_cast<QSSGRenderResourceLoader *>(resourceLoader)); |
| 2025 | } |
| 2026 | |
| 2027 | void QSSGLayerRenderData::prepareReflectionProbesForRender() |
| 2028 | { |
| 2029 | const auto probeCount = reflectionProbes.size(); |
| 2030 | requestReflectionMapManager(); // ensure that we have a reflection map manager |
| 2031 | |
| 2032 | for (int i = 0; i < probeCount; i++) { |
| 2033 | QSSGRenderReflectionProbe* probe = reflectionProbes.at(i); |
| 2034 | |
| 2035 | int reflectionObjectCount = 0; |
| 2036 | QVector3D probeExtent = probe->boxSize / 2; |
| 2037 | QSSGBounds3 probeBound = QSSGBounds3::centerExtents(center: probe->getGlobalPos() + probe->boxOffset, extent: probeExtent); |
| 2038 | |
| 2039 | const auto injectProbe = [&](const QSSGRenderableObjectHandle &handle) { |
| 2040 | if (handle.obj->renderableFlags.testFlag(flag: QSSGRenderableObjectFlag::ReceivesReflections) |
| 2041 | && !(handle.obj->type == QSSGRenderableObject::Type::Particles)) { |
| 2042 | QSSGSubsetRenderable* renderableObj = static_cast<QSSGSubsetRenderable*>(handle.obj); |
| 2043 | QSSGBounds3 nodeBound = renderableObj->bounds; |
| 2044 | QVector4D vmin(nodeBound.minimum, 1.0); |
| 2045 | QVector4D vmax(nodeBound.maximum, 1.0); |
| 2046 | vmin = renderableObj->globalTransform * vmin; |
| 2047 | vmax = renderableObj->globalTransform * vmax; |
| 2048 | nodeBound.minimum = vmin.toVector3D(); |
| 2049 | nodeBound.maximum = vmax.toVector3D(); |
| 2050 | if (probeBound.intersects(b: nodeBound)) { |
| 2051 | QVector3D nodeBoundCenter = nodeBound.center(); |
| 2052 | QVector3D probeBoundCenter = probeBound.center(); |
| 2053 | float distance = nodeBoundCenter.distanceToPoint(point: probeBoundCenter); |
| 2054 | if (renderableObj->reflectionProbeIndex == -1 || distance < renderableObj->distanceFromReflectionProbe) { |
| 2055 | renderableObj->reflectionProbeIndex = i; |
| 2056 | renderableObj->distanceFromReflectionProbe = distance; |
| 2057 | renderableObj->reflectionProbe.parallaxCorrection = probe->parallaxCorrection; |
| 2058 | renderableObj->reflectionProbe.probeCubeMapCenter = probe->getGlobalPos(); |
| 2059 | renderableObj->reflectionProbe.probeBoxMax = probeBound.maximum; |
| 2060 | renderableObj->reflectionProbe.probeBoxMin = probeBound.minimum; |
| 2061 | renderableObj->reflectionProbe.enabled = true; |
| 2062 | reflectionObjectCount++; |
| 2063 | } |
| 2064 | } |
| 2065 | } |
| 2066 | }; |
| 2067 | |
| 2068 | const auto &transparentObjects = std::as_const(t&: transparentObjectStore[0]); |
| 2069 | const auto &opaqueObjects = std::as_const(t&: opaqueObjectStore[0]); |
| 2070 | const auto &screenTextureObjects = std::as_const(t&: screenTextureObjectStore[0]); |
| 2071 | |
| 2072 | for (const auto &handle : std::as_const(t: transparentObjects)) |
| 2073 | injectProbe(handle); |
| 2074 | |
| 2075 | for (const auto &handle : std::as_const(t: opaqueObjects)) |
| 2076 | injectProbe(handle); |
| 2077 | |
| 2078 | for (const auto &handle : std::as_const(t: screenTextureObjects)) |
| 2079 | injectProbe(handle); |
| 2080 | |
| 2081 | if (probe->texture) |
| 2082 | reflectionMapManager->addTexturedReflectionMapEntry(probeIdx: i, probe: *probe); |
| 2083 | else if (reflectionObjectCount > 0) |
| 2084 | reflectionMapManager->addReflectionMapEntry(probeIdx: i, probe: *probe); |
| 2085 | } |
| 2086 | } |
| 2087 | |
| 2088 | static bool scopeLight(QSSGRenderNode *node, QSSGRenderNode *lightScope) |
| 2089 | { |
| 2090 | // check if the node is parent of the lightScope |
| 2091 | while (node) { |
| 2092 | if (node == lightScope) |
| 2093 | return true; |
| 2094 | node = node->parent; |
| 2095 | } |
| 2096 | return false; |
| 2097 | } |
| 2098 | |
| 2099 | static const int REDUCED_MAX_LIGHT_COUNT_THRESHOLD_BYTES = 4096; // 256 vec4 |
| 2100 | |
| 2101 | static inline int effectiveMaxLightCount(const QSSGShaderFeatures &features) |
| 2102 | { |
| 2103 | if (features.isSet(feature: QSSGShaderFeatures::Feature::ReduceMaxNumLights)) |
| 2104 | return QSSG_REDUCED_MAX_NUM_LIGHTS; |
| 2105 | |
| 2106 | return QSSG_MAX_NUM_LIGHTS; |
| 2107 | } |
| 2108 | |
| 2109 | void updateDirtySkeletons(const QVector<QSSGRenderableNodeEntry> &renderableNodes) |
| 2110 | { |
| 2111 | // First model using skeleton clears the dirty flag so we need another mechanism |
| 2112 | // to tell to the other models the skeleton is dirty. |
| 2113 | QSet<QSSGRenderSkeleton *> dirtySkeletons; |
| 2114 | for (const auto &node : std::as_const(t: renderableNodes)) { |
| 2115 | if (node.node->type == QSSGRenderGraphObject::Type::Model) { |
| 2116 | auto modelNode = static_cast<QSSGRenderModel *>(node.node); |
| 2117 | auto skeletonNode = modelNode->skeleton; |
| 2118 | bool hcj = false; |
| 2119 | if (skeletonNode) { |
| 2120 | const bool dirtySkeleton = dirtySkeletons.contains(value: skeletonNode); |
| 2121 | const bool hasDirtyNonJoints = (skeletonNode->containsNonJointNodes |
| 2122 | && (hasDirtyNonJointNodes(node: skeletonNode, hasChildJoints&: hcj) || dirtySkeleton)); |
| 2123 | const bool dirtyTransform = skeletonNode->isDirty(dirtyFlag: QSSGRenderNode::DirtyFlag::TransformDirty); |
| 2124 | if (skeletonNode->skinningDirty || hasDirtyNonJoints || dirtyTransform) { |
| 2125 | skeletonNode->boneTransformsDirty = false; |
| 2126 | if (hasDirtyNonJoints && !dirtySkeleton) |
| 2127 | dirtySkeletons.insert(value: skeletonNode); |
| 2128 | skeletonNode->skinningDirty = false; |
| 2129 | const qsizetype dataSize = BONEDATASIZE4ID(skeletonNode->maxIndex); |
| 2130 | if (skeletonNode->boneData.size() < dataSize) |
| 2131 | skeletonNode->boneData.resize(size: dataSize); |
| 2132 | skeletonNode->calculateGlobalVariables(); |
| 2133 | skeletonNode->containsNonJointNodes = false; |
| 2134 | for (auto &child : skeletonNode->children) |
| 2135 | collectBoneTransforms(node: &child, skeletonNode, poses: modelNode->inverseBindPoses); |
| 2136 | } |
| 2137 | skeletonNode->boneCount = skeletonNode->boneData.size() / 2 / 4 / 16; |
| 2138 | const int boneTexWidth = qCeil(v: qSqrt(v: skeletonNode->boneCount * 4 * 2)); |
| 2139 | skeletonNode->boneTexData.setSize(QSize(boneTexWidth, boneTexWidth)); |
| 2140 | skeletonNode->boneData.resize(size: boneTexWidth * boneTexWidth * 16); |
| 2141 | skeletonNode->boneTexData.setTextureData(skeletonNode->boneData); |
| 2142 | } |
| 2143 | const int numMorphTarget = modelNode->morphTargets.size(); |
| 2144 | for (int i = 0; i < numMorphTarget; ++i) { |
| 2145 | auto morphTarget = static_cast<const QSSGRenderMorphTarget *>(modelNode->morphTargets.at(i)); |
| 2146 | modelNode->morphWeights[i] = morphTarget->weight; |
| 2147 | modelNode->morphAttributes[i] = morphTarget->attributes; |
| 2148 | if (i > MAX_MORPH_TARGET_INDEX_SUPPORTS_NORMALS) |
| 2149 | modelNode->morphAttributes[i] &= 0x1; // MorphTarget.Position |
| 2150 | else if (i > MAX_MORPH_TARGET_INDEX_SUPPORTS_TANGENTS) |
| 2151 | modelNode->morphAttributes[i] &= 0x3; // MorphTarget.Position | MorphTarget.Normal |
| 2152 | } |
| 2153 | } |
| 2154 | } |
| 2155 | |
| 2156 | dirtySkeletons.clear(); |
| 2157 | } |
| 2158 | |
| 2159 | void QSSGLayerRenderData::prepareForRender() |
| 2160 | { |
| 2161 | QSSG_ASSERT_X(layerPrepResult.isNull(), "Prep-result was not reset for render!" , layerPrepResult = {}); |
| 2162 | |
| 2163 | QRect theViewport(renderer->viewport()); |
| 2164 | |
| 2165 | // NOTE: The renderer won't change in practice (after being set the first time), but just update |
| 2166 | // it anyways. |
| 2167 | frameData.m_ctx = renderer->contextInterface(); |
| 2168 | frameData.clear(); |
| 2169 | |
| 2170 | // Create base pipeline state |
| 2171 | ps = {}; // Reset |
| 2172 | ps.viewport = { float(theViewport.x()), float(theViewport.y()), float(theViewport.width()), float(theViewport.height()), 0.0f, 1.0f }; |
| 2173 | if (layer.scissorRect.isValid()) { |
| 2174 | ps.flags |= QSSGRhiGraphicsPipelineState::Flag::UsesScissor; |
| 2175 | ps.scissor = { layer.scissorRect.x(), |
| 2176 | theViewport.height() - (layer.scissorRect.y() + layer.scissorRect.height()), |
| 2177 | layer.scissorRect.width(), |
| 2178 | layer.scissorRect.height() }; |
| 2179 | } |
| 2180 | |
| 2181 | ps.depthFunc = QRhiGraphicsPipeline::LessOrEqual; |
| 2182 | ps.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::BlendEnabled, on: false); |
| 2183 | |
| 2184 | // Enable Wireframe mode |
| 2185 | ps.polygonMode = layer.wireframeMode ? QRhiGraphicsPipeline::Line : QRhiGraphicsPipeline::Fill; |
| 2186 | |
| 2187 | bool wasDirty = false; |
| 2188 | bool wasDataDirty = false; |
| 2189 | wasDirty = layer.isDirty(); |
| 2190 | |
| 2191 | layerPrepResult = { theViewport, layer }; |
| 2192 | |
| 2193 | // SSAO |
| 2194 | const bool SSAOEnabled = layer.ssaoEnabled(); |
| 2195 | layerPrepResult.flags.setRequiresSsaoPass(SSAOEnabled); |
| 2196 | features.set(feature: QSSGShaderFeatures::Feature::Ssao, val: SSAOEnabled); |
| 2197 | |
| 2198 | // Effects |
| 2199 | bool requiresDepthTexture = SSAOEnabled; |
| 2200 | for (QSSGRenderEffect *theEffect = layer.firstEffect; theEffect; theEffect = theEffect->m_nextEffect) { |
| 2201 | if (theEffect->isDirty()) { |
| 2202 | wasDirty = true; |
| 2203 | theEffect->clearDirty(); |
| 2204 | } |
| 2205 | if (theEffect->requiresDepthTexture) |
| 2206 | requiresDepthTexture = true; |
| 2207 | } |
| 2208 | layerPrepResult.flags.setRequiresDepthTexture(requiresDepthTexture); |
| 2209 | |
| 2210 | // Tonemapping. Except when there are effects, then it is up to the |
| 2211 | // last pass of the last effect to perform tonemapping. |
| 2212 | if (!layer.firstEffect) |
| 2213 | QSSGLayerRenderData::setTonemapFeatures(features, tonemapMode: layer.tonemapMode); |
| 2214 | |
| 2215 | // We may not be able to have an array of 15 light struct elements in |
| 2216 | // the shaders. Switch on the reduced-max-number-of-lights feature |
| 2217 | // if necessary. In practice this is relevant with OpenGL ES 3.0 or |
| 2218 | // 2.0, because there are still implementations in use that only |
| 2219 | // support the spec mandated minimum of 224 vec4s (so 3584 bytes). |
| 2220 | const auto &rhiCtx = renderer->contextInterface()->rhiContext(); |
| 2221 | if (rhiCtx->rhi()->resourceLimit(limit: QRhi::MaxUniformBufferRange) < REDUCED_MAX_LIGHT_COUNT_THRESHOLD_BYTES) { |
| 2222 | features.set(feature: QSSGShaderFeatures::Feature::ReduceMaxNumLights, val: true); |
| 2223 | static bool notified = false; |
| 2224 | if (!notified) { |
| 2225 | notified = true; |
| 2226 | qCDebug(lcQuick3DRender, "Qt Quick 3D maximum number of lights has been reduced from %d to %d due to the graphics driver's limitations" , |
| 2227 | QSSG_MAX_NUM_LIGHTS, QSSG_REDUCED_MAX_NUM_LIGHTS); |
| 2228 | } |
| 2229 | } |
| 2230 | |
| 2231 | // IBL Lightprobe Image |
| 2232 | QSSGRenderImageTexture lightProbeTexture; |
| 2233 | if (layer.lightProbe) { |
| 2234 | const auto &lightProbeSettings = layer.lightProbeSettings; |
| 2235 | if (layer.lightProbe->m_format == QSSGRenderTextureFormat::Unknown) { |
| 2236 | // Choose on a format that makes sense for a light probe |
| 2237 | // At this point it's just a suggestion |
| 2238 | if (renderer->contextInterface()->rhiContext()->rhi()->isTextureFormatSupported(format: QRhiTexture::RGBA16F)) |
| 2239 | layer.lightProbe->m_format = QSSGRenderTextureFormat::RGBA16F; |
| 2240 | else |
| 2241 | layer.lightProbe->m_format = QSSGRenderTextureFormat::RGBE8; |
| 2242 | } |
| 2243 | |
| 2244 | if (layer.lightProbe->clearDirty()) |
| 2245 | wasDataDirty = true; |
| 2246 | |
| 2247 | // NOTE: This call can lead to rendering (of envmap) and a texture upload |
| 2248 | lightProbeTexture = renderer->contextInterface()->bufferManager()->loadRenderImage(image: layer.lightProbe, inMipMode: QSSGBufferManager::MipModeBsdf); |
| 2249 | if (lightProbeTexture.m_texture) { |
| 2250 | |
| 2251 | features.set(feature: QSSGShaderFeatures::Feature::LightProbe, val: true); |
| 2252 | features.set(feature: QSSGShaderFeatures::Feature::IblOrientation, val: !lightProbeSettings.probeOrientation.isIdentity()); |
| 2253 | |
| 2254 | // By this point we will know what the actual texture format of the light probe is |
| 2255 | // Check if using RGBE format light probe texture (the Rhi format will be RGBA8) |
| 2256 | if (lightProbeTexture.m_flags.isRgbe8()) |
| 2257 | features.set(feature: QSSGShaderFeatures::Feature::RGBELightProbe, val: true); |
| 2258 | } else { |
| 2259 | layer.lightProbe = nullptr; |
| 2260 | } |
| 2261 | |
| 2262 | const bool forceIblExposureValues = (features.isSet(feature: QSSGShaderFeatures::Feature::LightProbe) && layer.tonemapMode == QSSGRenderLayer::TonemapMode::Custom); |
| 2263 | features.set(feature: QSSGShaderFeatures::Feature::ForceIblExposure, val: forceIblExposureValues); |
| 2264 | } |
| 2265 | |
| 2266 | // Gather Spatial Nodes from Render Tree |
| 2267 | // Do not just clear() renderableNodes and friends. Rather, reuse |
| 2268 | // the space (even if clear does not actually deallocate, it still |
| 2269 | // costs time to run dtors and such). In scenes with a static node |
| 2270 | // count in the range of thousands this may matter. |
| 2271 | int renderableModelsCount = 0; |
| 2272 | int renderableParticlesCount = 0; |
| 2273 | int renderableItem2DsCount = 0; |
| 2274 | int cameraNodeCount = 0; |
| 2275 | int lightNodeCount = 0; |
| 2276 | int reflectionProbeCount = 0; |
| 2277 | quint32 dfsIndex = 0; |
| 2278 | for (auto &theChild : layer.children) |
| 2279 | wasDataDirty |= maybeQueueNodeForRender(inNode&: theChild, |
| 2280 | outRenderableModels&: renderableModels, |
| 2281 | ioRenderableModelsCount&: renderableModelsCount, |
| 2282 | outRenderableParticles&: renderableParticles, |
| 2283 | ioRenderableParticlesCount&: renderableParticlesCount, |
| 2284 | outRenderableItem2Ds&: renderableItem2Ds, |
| 2285 | ioRenderableItem2DsCount&: renderableItem2DsCount, |
| 2286 | outCameras&: cameras, |
| 2287 | ioCameraCount&: cameraNodeCount, |
| 2288 | outLights&: lights, |
| 2289 | ioLightCount&: lightNodeCount, |
| 2290 | outReflectionProbes&: reflectionProbes, |
| 2291 | ioReflectionProbeCount&: reflectionProbeCount, |
| 2292 | ioDFSIndex&: dfsIndex); |
| 2293 | |
| 2294 | if (renderableModels.size() != renderableModelsCount) |
| 2295 | renderableModels.resize(size: renderableModelsCount); |
| 2296 | if (renderableParticles.size() != renderableParticlesCount) |
| 2297 | renderableParticles.resize(size: renderableParticlesCount); |
| 2298 | if (renderableItem2Ds.size() != renderableItem2DsCount) |
| 2299 | renderableItem2Ds.resize(size: renderableItem2DsCount); |
| 2300 | |
| 2301 | if (cameras.size() != cameraNodeCount) |
| 2302 | cameras.resize(size: cameraNodeCount); |
| 2303 | if (lights.size() != lightNodeCount) |
| 2304 | lights.resize(size: lightNodeCount); |
| 2305 | if (reflectionProbes.size() != reflectionProbeCount) |
| 2306 | reflectionProbes.resize(size: reflectionProbeCount); |
| 2307 | |
| 2308 | // Cameras |
| 2309 | // 1. If there's an explicit camera set and it's active (visible) we'll use that. |
| 2310 | // 2. ... if the explicitly set camera is not visible, no further attempts will be done. |
| 2311 | // 3. If no explicit camera is set, we'll search and pick the first active camera. |
| 2312 | renderedCameras.clear(); |
| 2313 | if (!layer.explicitCameras.isEmpty()) { |
| 2314 | for (QSSGRenderCamera *cam : std::as_const(t&: layer.explicitCameras)) { |
| 2315 | // 1. |
| 2316 | wasDataDirty = wasDataDirty || cam->isDirty(); |
| 2317 | QSSGCameraGlobalCalculationResult theResult = layerPrepResult.setupCameraForRender(inCamera&: *cam, dpr: renderer->dpr()); |
| 2318 | wasDataDirty = wasDataDirty || theResult.m_wasDirty; |
| 2319 | if (!theResult.m_computeFrustumSucceeded) |
| 2320 | qCCritical(INTERNAL_ERROR, "Failed to calculate camera frustum" ); |
| 2321 | |
| 2322 | // 2. |
| 2323 | if (cam->getGlobalState(stateFlag: QSSGRenderCamera::GlobalState::Active)) |
| 2324 | renderedCameras.append(t: cam); |
| 2325 | } |
| 2326 | } else if (QSSG_GUARD_X(layer.viewCount == 1, "Multiview rendering requires explicit cameras to be set!." )) { |
| 2327 | // NOTE: This path can never be hit with multiview, hence the guard. |
| 2328 | // (Multiview will always have explicit cameras set.) |
| 2329 | |
| 2330 | // 3. |
| 2331 | for (auto iter = cameras.cbegin(); renderedCameras.isEmpty() && iter != cameras.cend(); iter++) { |
| 2332 | QSSGRenderCamera *theCamera = *iter; |
| 2333 | wasDataDirty = wasDataDirty || theCamera->isDirty(); |
| 2334 | QSSGCameraGlobalCalculationResult theResult = layerPrepResult.setupCameraForRender(inCamera&: *theCamera, dpr: renderer->dpr()); |
| 2335 | wasDataDirty = wasDataDirty || theResult.m_wasDirty; |
| 2336 | if (!theResult.m_computeFrustumSucceeded) |
| 2337 | qCCritical(INTERNAL_ERROR, "Failed to calculate camera frustum" ); |
| 2338 | if (theCamera->getGlobalState(stateFlag: QSSGRenderCamera::GlobalState::Active)) |
| 2339 | renderedCameras.append(t: theCamera); |
| 2340 | } |
| 2341 | } |
| 2342 | |
| 2343 | for (QSSGRenderCamera *cam : renderedCameras) |
| 2344 | cam->dpr = renderer->dpr(); |
| 2345 | |
| 2346 | float meshLodThreshold = 1.0f; |
| 2347 | if (!renderedCameras.isEmpty()) |
| 2348 | meshLodThreshold = renderedCameras[0]->levelOfDetailPixelThreshold / theViewport.width(); |
| 2349 | |
| 2350 | layer.renderedCamerasMutex.lock(); |
| 2351 | layer.renderedCameras = renderedCameras; |
| 2352 | layer.renderedCamerasMutex.unlock(); |
| 2353 | |
| 2354 | // ResourceLoaders |
| 2355 | prepareResourceLoaders(); |
| 2356 | |
| 2357 | // Skeletons |
| 2358 | updateDirtySkeletons(renderableNodes: renderableModels); |
| 2359 | |
| 2360 | // Lights |
| 2361 | int shadowMapCount = 0; |
| 2362 | bool hasScopedLights = false; |
| 2363 | // Determine which lights will actually Render |
| 2364 | // Determine how many lights will need shadow maps |
| 2365 | // NOTE: This culling is specific to our Forward renderer |
| 2366 | const int maxLightCount = effectiveMaxLightCount(features); |
| 2367 | const bool showLightCountWarning = !tooManyLightsWarningShown && (lights.size() > maxLightCount); |
| 2368 | if (showLightCountWarning) { |
| 2369 | qWarning(msg: "Too many lights in scene, maximum is %d" , maxLightCount); |
| 2370 | tooManyLightsWarningShown = true; |
| 2371 | } |
| 2372 | |
| 2373 | QSSGShaderLightList renderableLights; // All lights (upto 'maxLightCount') |
| 2374 | |
| 2375 | // List should contain only enabled lights (active && birghtness > 0). |
| 2376 | { |
| 2377 | auto it = lights.crbegin(); |
| 2378 | const auto end = it + qMin(a: maxLightCount, b: lights.size()); |
| 2379 | |
| 2380 | for (; it != end; ++it) { |
| 2381 | QSSGRenderLight *renderLight = (*it); |
| 2382 | hasScopedLights |= (renderLight->m_scope != nullptr); |
| 2383 | const bool mightCastShadows = renderLight->m_castShadow && !renderLight->m_fullyBaked; |
| 2384 | const bool shadows = mightCastShadows && (shadowMapCount < QSSG_MAX_NUM_SHADOW_MAPS); |
| 2385 | shadowMapCount += int(shadows); |
| 2386 | const auto &direction = renderLight->getScalingCorrectDirection(); |
| 2387 | renderableLights.push_back(t: QSSGShaderLight{ .light: renderLight, .shadows: shadows, .direction: direction }); |
| 2388 | } |
| 2389 | |
| 2390 | if ((shadowMapCount >= QSSG_MAX_NUM_SHADOW_MAPS) && !tooManyShadowLightsWarningShown) { |
| 2391 | qWarning(msg: "Too many shadow casting lights in scene, maximum is %d" , QSSG_MAX_NUM_SHADOW_MAPS); |
| 2392 | tooManyShadowLightsWarningShown = true; |
| 2393 | } |
| 2394 | } |
| 2395 | |
| 2396 | if (shadowMapCount > 0) { // Setup Shadow Maps Entries for Lights casting shadows |
| 2397 | requestShadowMapManager(); // Ensure we have a shadow map manager |
| 2398 | layerPrepResult.flags.setRequiresShadowMapPass(true); |
| 2399 | // Any light with castShadow=true triggers shadow mapping |
| 2400 | // in the generated shaders. The fact that some (or even |
| 2401 | // all) objects may opt out from receiving shadows plays no |
| 2402 | // role here whatsoever. |
| 2403 | features.set(feature: QSSGShaderFeatures::Feature::Ssm, val: true); |
| 2404 | shadowMapManager->addShadowMaps(renderableLights); |
| 2405 | } else if (shadowMapManager) { |
| 2406 | // No shadows but a shadow manager so clear old resources |
| 2407 | shadowMapManager->releaseCachedResources(); |
| 2408 | } |
| 2409 | |
| 2410 | // Give each renderable a copy of the lights available |
| 2411 | // Also setup scoping for scoped lights |
| 2412 | |
| 2413 | QSSG_ASSERT(globalLights.isEmpty(), globalLights.clear()); |
| 2414 | if (hasScopedLights) { // Filter out scoped lights from the global lights list |
| 2415 | for (const auto &shaderLight : std::as_const(t&: renderableLights)) { |
| 2416 | if (!shaderLight.light->m_scope) |
| 2417 | globalLights.push_back(t: shaderLight); |
| 2418 | } |
| 2419 | |
| 2420 | const auto prepareLightsWithScopedLights = [&renderableLights, this](QVector<QSSGRenderableNodeEntry> &renderableNodes) { |
| 2421 | for (qint32 idx = 0, end = renderableNodes.size(); idx < end; ++idx) { |
| 2422 | QSSGRenderableNodeEntry &theNodeEntry(renderableNodes[idx]); |
| 2423 | QSSGShaderLightList filteredLights; |
| 2424 | for (const auto &light : std::as_const(t&: renderableLights)) { |
| 2425 | if (light.light->m_scope && !scopeLight(node: theNodeEntry.node, lightScope: light.light->m_scope)) |
| 2426 | continue; |
| 2427 | filteredLights.push_back(t: light); |
| 2428 | } |
| 2429 | |
| 2430 | if (filteredLights.isEmpty()) { // Node without scoped lights, just reference the global light list. |
| 2431 | theNodeEntry.lights = QSSGDataView(globalLights); |
| 2432 | } else { |
| 2433 | // This node has scoped lights, i.e., it's lights differ from the global list |
| 2434 | // we therefore create a bespoke light list for it. Technically this might be the same for |
| 2435 | // more then this one node, but the overhead for tracking that is not worth it. |
| 2436 | auto customLightList = RENDER_FRAME_NEW_BUFFER<QSSGShaderLight>(ctx&: *renderer->contextInterface(), count: filteredLights.size()); |
| 2437 | std::copy(first: filteredLights.cbegin(), last: filteredLights.cend(), result: customLightList.begin()); |
| 2438 | theNodeEntry.lights = customLightList; |
| 2439 | } |
| 2440 | } |
| 2441 | }; |
| 2442 | |
| 2443 | prepareLightsWithScopedLights(renderableModels); |
| 2444 | prepareLightsWithScopedLights(renderableParticles); |
| 2445 | } else { // Just a simple copy |
| 2446 | globalLights = renderableLights; |
| 2447 | // No scoped lights, all nodes can just reference the global light list. |
| 2448 | const auto prepareLights = [this](QVector<QSSGRenderableNodeEntry> &renderableNodes) { |
| 2449 | for (qint32 idx = 0, end = renderableNodes.size(); idx < end; ++idx) { |
| 2450 | QSSGRenderableNodeEntry &theNodeEntry(renderableNodes[idx]); |
| 2451 | theNodeEntry.lights = QSSGDataView(globalLights); |
| 2452 | } |
| 2453 | }; |
| 2454 | |
| 2455 | prepareLights(renderableModels); |
| 2456 | prepareLights(renderableParticles); |
| 2457 | } |
| 2458 | |
| 2459 | bool hasUserExtensions = false; |
| 2460 | |
| 2461 | { |
| 2462 | // Give user provided passes a chance to modify the renderable data before starting |
| 2463 | // Note: All non-active extensions should be filtered out by now |
| 2464 | Q_STATIC_ASSERT(USERPASSES == size_t(QSSGRenderLayer::RenderExtensionStage::Count)); |
| 2465 | for (size_t i = 0; i != size_t(QSSGRenderLayer::RenderExtensionStage::Count); ++i) { |
| 2466 | const auto &renderExtensions = layer.renderExtensions[i]; |
| 2467 | auto &userPass = userPasses[i]; |
| 2468 | for (auto rit = renderExtensions.crbegin(), rend = renderExtensions.crend(); rit != rend; ++rit) { |
| 2469 | hasUserExtensions = true; |
| 2470 | if ((*rit)->prepareData(data&: frameData)) { |
| 2471 | wasDirty |= true; |
| 2472 | userPass.extensions.push_back(t: *rit); |
| 2473 | } |
| 2474 | } |
| 2475 | } |
| 2476 | } |
| 2477 | |
| 2478 | // Ensure materials (If there are user extensions we don't cull renderables without materials!) |
| 2479 | prepareModelMaterials(renderableModels, cullUnrenderables: !hasUserExtensions); |
| 2480 | // Ensure meshes for models |
| 2481 | prepareModelMeshes(contextInterface: *renderer->contextInterface(), renderableModels, globalPickingEnabled: QSSGRendererPrivate::isGlobalPickingEnabled(renderer: *renderer)); |
| 2482 | |
| 2483 | auto &opaqueObjects = opaqueObjectStore[0]; |
| 2484 | auto &transparentObjects = transparentObjectStore[0]; |
| 2485 | auto &screenTextureObjects = screenTextureObjectStore[0]; |
| 2486 | |
| 2487 | if (!renderedCameras.isEmpty()) { // NOTE: We shouldn't really get this far without a camera... |
| 2488 | wasDirty |= prepareModelsForRender(contextInterface&: *renderer->contextInterface(), renderableModels, ioFlags&: layerPrepResult.flags, allCameras: renderedCameras, allCameraData: getCachedCameraDatas(), modelContexts, opaqueObjects, transparentObjects, screenTextureObjects, lodThreshold: meshLodThreshold); |
| 2489 | if (particlesEnabled) { |
| 2490 | const auto &cameraDatas = getCachedCameraDatas(); |
| 2491 | wasDirty |= prepareParticlesForRender(renderableParticles, cameraData: cameraDatas[0]); |
| 2492 | } |
| 2493 | wasDirty |= prepareItem2DsForRender(ctxIfc: *renderer->contextInterface(), renderableItem2Ds); |
| 2494 | } |
| 2495 | |
| 2496 | prepareReflectionProbesForRender(); |
| 2497 | |
| 2498 | wasDirty = wasDirty || wasDataDirty; |
| 2499 | layerPrepResult.flags.setWasDirty(wasDirty); |
| 2500 | layerPrepResult.flags.setLayerDataDirty(wasDataDirty); |
| 2501 | |
| 2502 | // |
| 2503 | const bool animating = wasDirty; |
| 2504 | if (animating) |
| 2505 | layer.progAAPassIndex = 0; |
| 2506 | |
| 2507 | const bool progressiveAA = layer.isProgressiveAAEnabled() && !animating; |
| 2508 | layer.progressiveAAIsActive = progressiveAA; |
| 2509 | const bool temporalAA = layer.isTemporalAAEnabled() && !progressiveAA; |
| 2510 | |
| 2511 | layer.temporalAAIsActive = temporalAA; |
| 2512 | |
| 2513 | QVector2D vertexOffsetsAA; |
| 2514 | |
| 2515 | if (progressiveAA && layer.progAAPassIndex > 0 && layer.progAAPassIndex < quint32(layer.antialiasingQuality)) { |
| 2516 | int idx = layer.progAAPassIndex - 1; |
| 2517 | vertexOffsetsAA = s_ProgressiveAAVertexOffsets[idx] / QVector2D{ float(theViewport.width()/2.0), float(theViewport.height()/2.0) }; |
| 2518 | } |
| 2519 | |
| 2520 | if (temporalAA) { |
| 2521 | const int t = 1 - 2 * (layer.tempAAPassIndex % 2); |
| 2522 | const float f = t * layer.temporalAAStrength; |
| 2523 | vertexOffsetsAA = { f / float(theViewport.width()/2.0), f / float(theViewport.height()/2.0) }; |
| 2524 | } |
| 2525 | |
| 2526 | if (!renderedCameras.isEmpty()) { |
| 2527 | if (temporalAA || progressiveAA /*&& !vertexOffsetsAA.isNull()*/) { |
| 2528 | QMatrix4x4 offsetProjection = renderedCameras[0]->projection; |
| 2529 | QMatrix4x4 invProjection = renderedCameras[0]->projection.inverted(); |
| 2530 | if (renderedCameras[0]->type == QSSGRenderCamera::Type::OrthographicCamera) { |
| 2531 | offsetProjection(0, 3) -= vertexOffsetsAA.x(); |
| 2532 | offsetProjection(1, 3) -= vertexOffsetsAA.y(); |
| 2533 | } else if (renderedCameras[0]->type == QSSGRenderCamera::Type::PerspectiveCamera) { |
| 2534 | offsetProjection(0, 2) += vertexOffsetsAA.x(); |
| 2535 | offsetProjection(1, 2) += vertexOffsetsAA.y(); |
| 2536 | } |
| 2537 | for (auto &modelContext : std::as_const(t&: modelContexts)) { |
| 2538 | for (int mvpIdx = 0; mvpIdx < renderedCameras.count(); ++mvpIdx) |
| 2539 | modelContext->modelViewProjections[mvpIdx] = offsetProjection * invProjection * modelContext->modelViewProjections[mvpIdx]; |
| 2540 | } |
| 2541 | } |
| 2542 | } |
| 2543 | |
| 2544 | const bool hasItem2Ds = (renderableItem2DsCount > 0); |
| 2545 | const bool layerEnableDepthTest = layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthTest); |
| 2546 | const bool layerEnabledDepthPrePass = layer.layerFlags.testFlag(flag: QSSGRenderLayer::LayerFlag::EnableDepthPrePass); |
| 2547 | const bool depthTestEnableDefault = layerEnableDepthTest && (!opaqueObjects.isEmpty() || depthPrepassObjectsState || hasDepthWriteObjects); |
| 2548 | const bool zPrePassForced = (depthPrepassObjectsState != 0); |
| 2549 | zPrePassActive = zPrePassForced || (layerEnabledDepthPrePass && layerEnableDepthTest && (hasDepthWriteObjects || hasItem2Ds)); |
| 2550 | const bool depthWriteEnableDefault = depthTestEnableDefault && (!layerEnabledDepthPrePass || !zPrePassActive); |
| 2551 | |
| 2552 | ps.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::DepthTestEnabled, on: depthTestEnableDefault); |
| 2553 | ps.flags.setFlag(flag: QSSGRhiGraphicsPipelineState::Flag::DepthWriteEnabled, on: depthWriteEnableDefault); |
| 2554 | |
| 2555 | // Prepare passes |
| 2556 | QSSG_ASSERT(activePasses.isEmpty(), activePasses.clear()); |
| 2557 | // If needed, generate a depth texture with the opaque objects. This |
| 2558 | // and the SSAO texture must come first since other passes may want to |
| 2559 | // expose these textures to their shaders. |
| 2560 | if (layerPrepResult.flags.requiresDepthTexture()) |
| 2561 | activePasses.push_back(t: &depthMapPass); |
| 2562 | |
| 2563 | // Screen space ambient occlusion. Relies on the depth texture and generates an AO map. |
| 2564 | if (layerPrepResult.flags.requiresSsaoPass()) |
| 2565 | activePasses.push_back(t: &ssaoMapPass); |
| 2566 | |
| 2567 | // Shadows. Generates a 2D or cube shadow map. (opaque + pre-pass transparent objects) |
| 2568 | if (layerPrepResult.flags.requiresShadowMapPass()) |
| 2569 | activePasses.push_back(t: &shadowMapPass); |
| 2570 | |
| 2571 | if (zPrePassActive) |
| 2572 | activePasses.push_back(t: &zPrePassPass); |
| 2573 | |
| 2574 | // Screen texture with opaque objects. |
| 2575 | if (layerPrepResult.flags.requiresScreenTexture()) |
| 2576 | activePasses.push_back(t: &screenMapPass); |
| 2577 | |
| 2578 | // Reflection pass |
| 2579 | activePasses.push_back(t: &reflectionMapPass); |
| 2580 | |
| 2581 | auto &underlayPass = userPasses[size_t(QSSGRenderLayer::RenderExtensionStage::Underlay)]; |
| 2582 | if (underlayPass.hasData()) |
| 2583 | activePasses.push_back(t: &underlayPass); |
| 2584 | |
| 2585 | const bool hasOpaqueObjects = (opaqueObjects.size() > 0); |
| 2586 | |
| 2587 | if (hasOpaqueObjects) |
| 2588 | activePasses.push_back(t: &opaquePass); |
| 2589 | |
| 2590 | // NOTE: When the a screen texture is used, the skybox pass will be called twice. First from |
| 2591 | // the screen texture pass and later as part of the normal run through the list. |
| 2592 | if (renderer->contextInterface()->rhiContext()->rhi()->isFeatureSupported(feature: QRhi::TexelFetch)) { |
| 2593 | if (layer.background == QSSGRenderLayer::Background::SkyBoxCubeMap && layer.skyBoxCubeMap) |
| 2594 | activePasses.push_back(t: &skyboxCubeMapPass); |
| 2595 | else if (layer.background == QSSGRenderLayer::Background::SkyBox && layer.lightProbe) |
| 2596 | activePasses.push_back(t: &skyboxPass); |
| 2597 | } |
| 2598 | |
| 2599 | if (hasItem2Ds) |
| 2600 | activePasses.push_back(t: &item2DPass); |
| 2601 | |
| 2602 | if (layerPrepResult.flags.requiresScreenTexture()) |
| 2603 | activePasses.push_back(t: &reflectionPass); |
| 2604 | |
| 2605 | // Note: Transparent pass includeds opaque objects when layerEnableDepthTest is false. |
| 2606 | if (transparentObjects.size() > 0 || (!layerEnableDepthTest && hasOpaqueObjects)) |
| 2607 | activePasses.push_back(t: &transparentPass); |
| 2608 | |
| 2609 | auto &overlayPass = userPasses[size_t(QSSGRenderLayer::RenderExtensionStage::Overlay)]; |
| 2610 | if (overlayPass.hasData()) |
| 2611 | activePasses.push_back(t: &overlayPass); |
| 2612 | |
| 2613 | if (layer.gridEnabled) |
| 2614 | activePasses.push_back(t: &infiniteGridPass); |
| 2615 | |
| 2616 | if (const auto &dbgDrawSystem = renderer->contextInterface()->debugDrawSystem(); dbgDrawSystem && dbgDrawSystem->isEnabled()) |
| 2617 | activePasses.push_back(t: &debugDrawPass); |
| 2618 | } |
| 2619 | |
| 2620 | template<typename T> |
| 2621 | static void clearTable(std::vector<T> &entry) |
| 2622 | { |
| 2623 | for (auto &e : entry) |
| 2624 | e.clear(); |
| 2625 | } |
| 2626 | |
| 2627 | void QSSGLayerRenderData::resetForFrame() |
| 2628 | { |
| 2629 | for (const auto &pass : activePasses) |
| 2630 | pass->resetForFrame(); |
| 2631 | activePasses.clear(); |
| 2632 | bakedLightingModels.clear(); |
| 2633 | layerPrepResult = {}; |
| 2634 | renderedCameras.clear(); |
| 2635 | renderedCameraData.reset(); |
| 2636 | renderedItem2Ds.clear(); |
| 2637 | renderedBakedLightingModels.clear(); |
| 2638 | renderableItem2Ds.clear(); |
| 2639 | lightmapTextures.clear(); |
| 2640 | bonemapTextures.clear(); |
| 2641 | globalLights.clear(); |
| 2642 | modelContexts.clear(); |
| 2643 | features = QSSGShaderFeatures(); |
| 2644 | hasDepthWriteObjects = false; |
| 2645 | depthPrepassObjectsState = { DepthPrepassObjectStateT(DepthPrepassObject::None) }; |
| 2646 | zPrePassActive = false; |
| 2647 | savedRenderState.reset(); |
| 2648 | |
| 2649 | clearTable(entry&: renderableModelStore); |
| 2650 | clearTable(entry&: modelContextStore); |
| 2651 | clearTable(entry&: renderableObjectStore); |
| 2652 | clearTable(entry&: opaqueObjectStore); |
| 2653 | clearTable(entry&: transparentObjectStore); |
| 2654 | clearTable(entry&: screenTextureObjectStore); |
| 2655 | clearTable(entry&: sortedOpaqueObjectCache); |
| 2656 | clearTable(entry&: sortedTransparentObjectCache); |
| 2657 | clearTable(entry&: sortedScreenTextureObjectCache); |
| 2658 | clearTable(entry&: sortedOpaqueDepthPrepassCache); |
| 2659 | clearTable(entry&: sortedDepthWriteCache); |
| 2660 | } |
| 2661 | |
| 2662 | QSSGLayerRenderPreparationResult::QSSGLayerRenderPreparationResult(const QRectF &inViewport, QSSGRenderLayer &inLayer) |
| 2663 | : layer(&inLayer) |
| 2664 | { |
| 2665 | viewport = inViewport; |
| 2666 | } |
| 2667 | |
| 2668 | bool QSSGLayerRenderPreparationResult::isLayerVisible() const |
| 2669 | { |
| 2670 | return viewport.height() >= 2.0f && viewport.width() >= 2.0f; |
| 2671 | } |
| 2672 | |
| 2673 | QSize QSSGLayerRenderPreparationResult::textureDimensions() const |
| 2674 | { |
| 2675 | const auto size = viewport.size().toSize(); |
| 2676 | return QSize(QSSGRendererUtil::nextMultipleOf4(value: size.width()), QSSGRendererUtil::nextMultipleOf4(value: size.height())); |
| 2677 | } |
| 2678 | |
| 2679 | QSSGCameraGlobalCalculationResult QSSGLayerRenderPreparationResult::setupCameraForRender(QSSGRenderCamera &inCamera, float dpr) |
| 2680 | { |
| 2681 | // When using ssaa we need to zoom with the ssaa multiplier since otherwise the |
| 2682 | // orthographic camera will be zoomed out due to the bigger viewport. We therefore |
| 2683 | // scale the magnification before calulating the camera variables and then revert. |
| 2684 | // Since the same camera can be used in several View3Ds with or without ssaa we |
| 2685 | // cannot store the magnification permanently. |
| 2686 | const float horizontalMagnification = inCamera.horizontalMagnification; |
| 2687 | const float verticalMagnification = inCamera.verticalMagnification; |
| 2688 | inCamera.dpr = dpr; |
| 2689 | const float ssaaMultiplier = layer->isSsaaEnabled() ? layer->ssaaMultiplier : 1.0f; |
| 2690 | inCamera.horizontalMagnification *= ssaaMultiplier; |
| 2691 | inCamera.verticalMagnification *= ssaaMultiplier; |
| 2692 | const auto result = inCamera.calculateGlobalVariables(inViewport: viewport); |
| 2693 | inCamera.horizontalMagnification = horizontalMagnification; |
| 2694 | inCamera.verticalMagnification = verticalMagnification; |
| 2695 | return result; |
| 2696 | } |
| 2697 | |
| 2698 | QSSGLayerRenderData::QSSGLayerRenderData(QSSGRenderLayer &inLayer, QSSGRenderer &inRenderer) |
| 2699 | : layer(inLayer) |
| 2700 | , renderer(&inRenderer) |
| 2701 | , particlesEnabled(checkParticleSupport(rhi: inRenderer.contextInterface()->rhi())) |
| 2702 | { |
| 2703 | Q_ASSERT(extContexts.size() == 1); |
| 2704 | } |
| 2705 | |
| 2706 | QSSGLayerRenderData::~QSSGLayerRenderData() |
| 2707 | { |
| 2708 | delete m_lightmapper; |
| 2709 | for (auto &pass : activePasses) |
| 2710 | pass->resetForFrame(); |
| 2711 | |
| 2712 | for (auto &renderResult : renderResults) |
| 2713 | renderResult.reset(); |
| 2714 | } |
| 2715 | |
| 2716 | static void sortInstances(QByteArray &sortedData, QList<QSSGRhiSortData> &sortData, const void *instances, |
| 2717 | int stride, int count, const QVector3D &cameraDirection) |
| 2718 | { |
| 2719 | sortData.resize(size: count); |
| 2720 | Q_ASSERT(stride == sizeof(QSSGRenderInstanceTableEntry)); |
| 2721 | // create sort data |
| 2722 | { |
| 2723 | const QSSGRenderInstanceTableEntry *instance = reinterpret_cast<const QSSGRenderInstanceTableEntry *>(instances); |
| 2724 | for (int i = 0; i < count; i++) { |
| 2725 | const QVector3D pos = QVector3D(instance->row0.w(), instance->row1.w(), instance->row2.w()); |
| 2726 | sortData[i] = {.d: QVector3D::dotProduct(v1: pos, v2: cameraDirection), .indexOrOffset: i}; |
| 2727 | instance++; |
| 2728 | } |
| 2729 | } |
| 2730 | |
| 2731 | // sort |
| 2732 | std::sort(first: sortData.begin(), last: sortData.end(), comp: [](const QSSGRhiSortData &a, const QSSGRhiSortData &b){ |
| 2733 | return a.d > b.d; |
| 2734 | }); |
| 2735 | |
| 2736 | // copy instances |
| 2737 | { |
| 2738 | const QSSGRenderInstanceTableEntry *instance = reinterpret_cast<const QSSGRenderInstanceTableEntry *>(instances); |
| 2739 | QSSGRenderInstanceTableEntry *dest = reinterpret_cast<QSSGRenderInstanceTableEntry *>(sortedData.data()); |
| 2740 | for (auto &s : sortData) |
| 2741 | *dest++ = instance[s.indexOrOffset]; |
| 2742 | } |
| 2743 | } |
| 2744 | |
| 2745 | static void cullLodInstances(QByteArray &lodData, const void *instances, int count, |
| 2746 | const QVector3D &cameraPosition, float minThreshold, float maxThreshold) |
| 2747 | { |
| 2748 | const QSSGRenderInstanceTableEntry *instance = reinterpret_cast<const QSSGRenderInstanceTableEntry *>(instances); |
| 2749 | QSSGRenderInstanceTableEntry *dest = reinterpret_cast<QSSGRenderInstanceTableEntry *>(lodData.data()); |
| 2750 | for (int i = 0; i < count; ++i) { |
| 2751 | const float x = cameraPosition.x() - instance->row0.w(); |
| 2752 | const float y = cameraPosition.y() - instance->row1.w(); |
| 2753 | const float z = cameraPosition.z() - instance->row2.w(); |
| 2754 | const float distanceSq = x * x + y * y + z * z; |
| 2755 | if (distanceSq >= minThreshold * minThreshold && (maxThreshold < 0 || distanceSq < maxThreshold * maxThreshold)) |
| 2756 | *dest = *instance; |
| 2757 | else |
| 2758 | *dest= {}; |
| 2759 | dest++; |
| 2760 | instance++; |
| 2761 | } |
| 2762 | } |
| 2763 | |
| 2764 | bool QSSGLayerRenderData::prepareInstancing(QSSGRhiContext *rhiCtx, |
| 2765 | QSSGSubsetRenderable *renderable, |
| 2766 | const QVector3D &cameraDirection, |
| 2767 | const QVector3D &cameraPosition, |
| 2768 | float minThreshold, |
| 2769 | float maxThreshold) |
| 2770 | { |
| 2771 | QSSGRhiContextPrivate *rhiCtxD = QSSGRhiContextPrivate::get(q: rhiCtx); |
| 2772 | auto &modelContext = renderable->modelContext; |
| 2773 | auto &instanceBuffer = renderable->instanceBuffer; // intentional ref2ptr |
| 2774 | if (!modelContext.model.instancing() || instanceBuffer) |
| 2775 | return instanceBuffer; |
| 2776 | auto *table = modelContext.model.instanceTable; |
| 2777 | bool usesLod = minThreshold >= 0 || maxThreshold >= 0; |
| 2778 | QSSGRhiInstanceBufferData &instanceData(usesLod ? rhiCtxD->instanceBufferData(model: &modelContext.model) : rhiCtxD->instanceBufferData(instanceTable: table)); |
| 2779 | quint32 instanceBufferSize = table->dataSize(); |
| 2780 | // Create or resize the instance buffer ### if (instanceData.owned) |
| 2781 | bool sortingChanged = table->isDepthSortingEnabled() != instanceData.sorting; |
| 2782 | bool cameraDirectionChanged = !qFuzzyCompare(v1: instanceData.sortedCameraDirection, v2: cameraDirection); |
| 2783 | bool cameraPositionChanged = !qFuzzyCompare(v1: instanceData.cameraPosition, v2: cameraPosition); |
| 2784 | bool updateInstanceBuffer = table->serial() != instanceData.serial || sortingChanged || (cameraDirectionChanged && table->isDepthSortingEnabled()); |
| 2785 | bool updateForLod = cameraPositionChanged && usesLod; |
| 2786 | if (sortingChanged && !table->isDepthSortingEnabled()) { |
| 2787 | instanceData.sortedData.clear(); |
| 2788 | instanceData.sortData.clear(); |
| 2789 | instanceData.sortedCameraDirection = {}; |
| 2790 | } |
| 2791 | instanceData.sorting = table->isDepthSortingEnabled(); |
| 2792 | if (instanceData.buffer && instanceData.buffer->size() < instanceBufferSize) { |
| 2793 | updateInstanceBuffer = true; |
| 2794 | // qDebug() << "Resizing instance buffer"; |
| 2795 | instanceData.buffer->setSize(instanceBufferSize); |
| 2796 | instanceData.buffer->create(); |
| 2797 | } |
| 2798 | if (!instanceData.buffer) { |
| 2799 | // qDebug() << "Creating instance buffer"; |
| 2800 | updateInstanceBuffer = true; |
| 2801 | instanceData.buffer = rhiCtx->rhi()->newBuffer(type: QRhiBuffer::Dynamic, usage: QRhiBuffer::VertexBuffer, size: instanceBufferSize); |
| 2802 | instanceData.buffer->create(); |
| 2803 | } |
| 2804 | if (updateInstanceBuffer || updateForLod) { |
| 2805 | const void *data = nullptr; |
| 2806 | if (table->isDepthSortingEnabled()) { |
| 2807 | if (updateInstanceBuffer) { |
| 2808 | QMatrix4x4 invGlobalTransform = modelContext.model.globalTransform.inverted(); |
| 2809 | instanceData.sortedData.resize(size: table->dataSize()); |
| 2810 | sortInstances(sortedData&: instanceData.sortedData, |
| 2811 | sortData&: instanceData.sortData, |
| 2812 | instances: table->constData(), |
| 2813 | stride: table->stride(), |
| 2814 | count: table->count(), |
| 2815 | cameraDirection: invGlobalTransform.map(point: cameraDirection).normalized()); |
| 2816 | } |
| 2817 | data = instanceData.sortedData.constData(); |
| 2818 | instanceData.sortedCameraDirection = cameraDirection; |
| 2819 | } else { |
| 2820 | data = table->constData(); |
| 2821 | } |
| 2822 | if (data) { |
| 2823 | if (updateForLod) { |
| 2824 | if (table->isDepthSortingEnabled()) { |
| 2825 | instanceData.lodData.resize(size: table->dataSize()); |
| 2826 | cullLodInstances(lodData&: instanceData.lodData, instances: instanceData.sortedData.constData(), count: instanceData.sortedData.size(), cameraPosition, minThreshold, maxThreshold); |
| 2827 | data = instanceData.lodData.constData(); |
| 2828 | } else { |
| 2829 | instanceData.lodData.resize(size: table->dataSize()); |
| 2830 | cullLodInstances(lodData&: instanceData.lodData, instances: table->constData(), count: table->count(), cameraPosition, minThreshold, maxThreshold); |
| 2831 | data = instanceData.lodData.constData(); |
| 2832 | } |
| 2833 | } |
| 2834 | QRhiResourceUpdateBatch *rub = rhiCtx->rhi()->nextResourceUpdateBatch(); |
| 2835 | rub->updateDynamicBuffer(buf: instanceData.buffer, offset: 0, size: instanceBufferSize, data); |
| 2836 | rhiCtx->commandBuffer()->resourceUpdate(resourceUpdates: rub); |
| 2837 | //qDebug() << "****** UPDATING INST BUFFER. Size" << instanceBufferSize; |
| 2838 | } else { |
| 2839 | qWarning() << "NO DATA IN INSTANCE TABLE" ; |
| 2840 | } |
| 2841 | instanceData.serial = table->serial(); |
| 2842 | instanceData.cameraPosition = cameraPosition; |
| 2843 | } |
| 2844 | instanceBuffer = instanceData.buffer; |
| 2845 | return instanceBuffer; |
| 2846 | } |
| 2847 | |
| 2848 | void QSSGLayerRenderData::maybeBakeLightmap() |
| 2849 | { |
| 2850 | if (!interactiveLightmapBakingRequested) { |
| 2851 | static bool bakeRequested = false; |
| 2852 | static bool bakeFlagChecked = false; |
| 2853 | if (!bakeFlagChecked) { |
| 2854 | bakeFlagChecked = true; |
| 2855 | const bool cmdLineReq = QCoreApplication::arguments().contains(QStringLiteral("--bake-lightmaps" )); |
| 2856 | const bool envReq = qEnvironmentVariableIntValue(varName: "QT_QUICK3D_BAKE_LIGHTMAPS" ); |
| 2857 | bakeRequested = cmdLineReq || envReq; |
| 2858 | } |
| 2859 | if (!bakeRequested) |
| 2860 | return; |
| 2861 | } |
| 2862 | |
| 2863 | const auto &sortedBakedLightingModels = getSortedBakedLightingModels(); // front to back |
| 2864 | |
| 2865 | QSSGRhiContext *rhiCtx = renderer->contextInterface()->rhiContext().get(); |
| 2866 | |
| 2867 | if (!m_lightmapper) |
| 2868 | m_lightmapper = new QSSGLightmapper(rhiCtx, renderer); |
| 2869 | |
| 2870 | // sortedBakedLightingModels contains all models with |
| 2871 | // usedInBakedLighting: true. These, together with lights that |
| 2872 | // have a bakeMode set to either Indirect or All, form the |
| 2873 | // lightmapped scene. A lightmap is stored persistently only |
| 2874 | // for models that have their lightmapKey set. |
| 2875 | |
| 2876 | m_lightmapper->reset(); |
| 2877 | m_lightmapper->setOptions(layer.lmOptions); |
| 2878 | m_lightmapper->setOutputCallback(lightmapBakingOutputCallback); |
| 2879 | |
| 2880 | for (int i = 0, ie = sortedBakedLightingModels.size(); i != ie; ++i) |
| 2881 | m_lightmapper->add(model: sortedBakedLightingModels[i]); |
| 2882 | |
| 2883 | QRhiCommandBuffer *cb = rhiCtx->commandBuffer(); |
| 2884 | cb->debugMarkBegin(name: "Quick3D lightmap baking" ); |
| 2885 | m_lightmapper->bake(); |
| 2886 | cb->debugMarkEnd(); |
| 2887 | |
| 2888 | if (!interactiveLightmapBakingRequested) { |
| 2889 | qDebug(msg: "Lightmap baking done, exiting application" ); |
| 2890 | QMetaObject::invokeMethod(qApp, member: "quit" ); |
| 2891 | } |
| 2892 | |
| 2893 | interactiveLightmapBakingRequested = false; |
| 2894 | } |
| 2895 | |
| 2896 | QSSGFrameData &QSSGLayerRenderData::getFrameData() |
| 2897 | { |
| 2898 | return frameData; |
| 2899 | } |
| 2900 | |
| 2901 | QSSGRenderGraphObject *QSSGLayerRenderData::getCamera(QSSGCameraId id) const |
| 2902 | { |
| 2903 | QSSGRenderGraphObject *ret = nullptr; |
| 2904 | if (auto res = reinterpret_cast<QSSGRenderGraphObject *>(id)) |
| 2905 | ret = res; |
| 2906 | |
| 2907 | return ret; |
| 2908 | } |
| 2909 | |
| 2910 | QSSGRenderCameraData QSSGLayerRenderData::getCameraRenderData(const QSSGRenderCamera *camera_) |
| 2911 | { |
| 2912 | if ((!camera_ || camera_ == renderedCameras[0]) && renderedCameraData.has_value()) |
| 2913 | return renderedCameraData.value()[0]; |
| 2914 | if (camera_) |
| 2915 | return getCameraDataImpl(camera: camera_); |
| 2916 | return {}; |
| 2917 | } |
| 2918 | |
| 2919 | QSSGRenderCameraData QSSGLayerRenderData::getCameraRenderData(const QSSGRenderCamera *camera_) const |
| 2920 | { |
| 2921 | if ((!camera_ || camera_ == renderedCameras[0]) && renderedCameraData.has_value()) |
| 2922 | return renderedCameraData.value()[0]; |
| 2923 | if (camera_) |
| 2924 | return getCameraDataImpl(camera: camera_); |
| 2925 | return {}; |
| 2926 | } |
| 2927 | |
| 2928 | QSSGRenderContextInterface *QSSGLayerRenderData::contextInterface() const |
| 2929 | { |
| 2930 | return renderer ? renderer->contextInterface() : nullptr; |
| 2931 | } |
| 2932 | |
| 2933 | QSSGLayerRenderData::GlobalRenderProperties QSSGLayerRenderData::globalRenderProperties(const QSSGRenderContextInterface &ctx) |
| 2934 | { |
| 2935 | GlobalRenderProperties props {}; |
| 2936 | if (const auto &rhiCtx = ctx.rhiContext(); rhiCtx->isValid()) { |
| 2937 | QRhi *rhi = rhiCtx->rhi(); |
| 2938 | props.isYUpInFramebuffer = rhi->isYUpInFramebuffer(); |
| 2939 | props.isYUpInNDC = rhi->isYUpInNDC(); |
| 2940 | props.isClipDepthZeroToOne = rhi->isClipDepthZeroToOne(); |
| 2941 | } |
| 2942 | |
| 2943 | return props; |
| 2944 | } |
| 2945 | |
| 2946 | const QSSGRenderShadowMapPtr &QSSGLayerRenderData::requestShadowMapManager() |
| 2947 | { |
| 2948 | if (!shadowMapManager && QSSG_GUARD(renderer && renderer->contextInterface())) |
| 2949 | shadowMapManager.reset(p: new QSSGRenderShadowMap(*renderer->contextInterface())); |
| 2950 | return shadowMapManager; |
| 2951 | } |
| 2952 | |
| 2953 | const QSSGRenderReflectionMapPtr &QSSGLayerRenderData::requestReflectionMapManager() |
| 2954 | { |
| 2955 | if (!reflectionMapManager && QSSG_GUARD(renderer && renderer->contextInterface())) |
| 2956 | reflectionMapManager.reset(p: new QSSGRenderReflectionMap(*renderer->contextInterface())); |
| 2957 | return reflectionMapManager; |
| 2958 | } |
| 2959 | |
| 2960 | QT_END_NAMESPACE |
| 2961 | |